
Demonstration of a Stream Reasoning Platform
on Low-End Devices to Enable Personalized

Real-Time Cycling Feedback

Mathias De Brouwer1,2[0000−0001−8769−6861], Femke
Ongenae1[0000−0003−2529−5477], and Filip De Turck1[0000−0003−4824−1199]

1 Ghent University – imec, IDLab, Department of Information Technology
iGent Tower, Technologiepark-Zwijnaarde 126, B-9052 Ghent, Belgium

2 mrdbrouw.DeBrouwer@UGent.be

Abstract During amateur cycling training, analyzing sensor data in
real-time would allow riders to receive immediate feedback on how they
are performing, and adapt their training accordingly. In this paper, a
solution with Semantic Web technologies is presented that gives such
real-time personalized feedback, by integrating the data streams with
domain knowledge, rider profiles & other context data. This solution
consists of a stream reasoning engine running on a low-end Raspberry Pi
device, and a tablet app showing feedback based on the continuous query
results. To demonstrate this in a static environment, a virtual training
app is presented, allowing a user to simulate an amateur cycling training.

Keywords: Stream reasoning · Low-end devices · Real-time feedback ·
Personalization · Cycling.

1 Introduction

In recent years, the importance of using data in sports has significantly increased,
both on a professional and amateur level. In cycling, riders can be equipped with
various sensors, e.g., heart rate monitors, GPS sensors, speed sensors etc. Ana-
lyzing the data measured by these sensors in real-time allows a rider to receive
immediate feedback on how he/she is performing. Especially during training,
this would allow a rider to adapt his/her training in real-time according to a
prescribed training plan. Personalization of this feedback is required to max-
imize its value. For example, the physiological profile of a rider includes the
boundaries between the different heart rate training zones in cycling, which are
an important aspect of real-time training feedback. These rider profiles, poten-
tially complemented with other context data such as route information, should
be integrated with domain knowledge and the sensor data streams.

In amateur cycling, resources are limited compared to professional cycling.
Existing real-time sports analytics solutions used by amateur cyclists, such as
Strava3 and TrainingPeaks4, only focus on post-processing the sensor data, and

3 https://www.strava.com
4 https://www.trainingpeaks.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/237011891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. De Brouwer et al.

sensor platform feedback visualization app

data streams

stream reasoning server

feedback

(query results)

Figure 1: Architecture of the real-time training feedback platform

do not focus on giving real-time personalized feedback. Moreover, they do not al-
low to integrate with various heterogeneous sensors and background data sources,
e.g., domain knowledge and rider profiles [3]. By using Semantic Web technolo-
gies, this can be made possible: sensor & background data can be semantically
enriched using ontologies, and stream reasoning techniques can be applied that
combine semantic reasoners with stream processing techniques to consolidate &
analyze the sensor data streams & available background knowledge [4]. By run-
ning these techniques on an inexpensive low-end device, e.g., a Raspberry Pi,
mobile phone or tablet, such a solution can also be adopted by amateur cyclists.

In this paper, a solution is presented that gives personalized real-time cycling
feedback to amateurs during training, by continuously evaluating queries on a
stream reasoning engine running on a Raspberry Pi. By using Semantic Web
technologies, this solution enables the real-time integration and processing of
heterogeneous sensor data streams and background knowledge & context data
on a low-end device. As a demonstrator of the solution, a virtual cycling training
app is presented. It is virtual as it allows a user to simulate an amateur cycling
training from within a static environment.

2 Platform Architecture

The architecture of the training feedback platform, which is designed to give
individual feedback to a rider, is visualized in Figure 1. It consists of three
main components, which should all be mounted on the rider’s bike: the sensors,
the Raspberry Pi running the stream reasoning server, and a mobile phone or
tablet with a feedback visualization app. Various heterogeneous sensor devices
can be plugged in into the platform and communicate with the stream reasoning
server over wireless technologies, by using an existing IoT platform designed
in previous research [2]. The stream reasoning server [3] consists of a running
instance of the C-SPARQL RDF stream processing engine [1]. A cycling ontology
has been designed to model domain knowledge, rider profiles, other context data
and sensor observations. This data is hosted on the stream reasoning server, and
used by the C-SPARQL engine as input data. Depending on the desired feedback,
different continuous queries can be registered to the engine, which publish their
results on a WebSocket. A feedback visualization app can listen over Wi-Fi to
this WebSocket, to visualize the query results as real-time training feedback for
the rider. This can help the rider to instantly react to his/her performance.

Demonstration of a Stream Reasoning Platform on Low-End Devices 3

SELECT ?uuid ?firstName ?lastName ?time ?tzName
FROM STREAM <http :// idlab.ugent.be/cycling/stream > [RANGE 5s STEP 1s]
FROM <http :// localhost :8177/ cycling -riders.rdf >
FROM <http :// localhost :8177/ cycling -sensors.rdf >
WHERE {

?o sosa:hasResult ?ov . ?o sosa:resultTime ?time .
?ov rdf:type cycling -sosa:HeartRateObservationValue .
?ov schema:value ?heartRate .
{ SELECT ?sensor (MAX(f:timestamp (?x, sosa:madeBySensor , ?sensor)) AS ?ts)

WHERE { ?x sosa:madeBySensor ?sensor . ?x sosa:hasResult ?xv .
?xv rdf:type cycling -sosa:HeartRateObservationValue . }

GROUP BY ?sensor }
?sensor sosa:isHostedBy ?device . ?device cycling -sosa:UUID ?uuid .
?athlete cycling -profile:monitoredBy ?device .
?athlete schema:givenName ?firstName. ?athlete schema:familyName ?lastName.

FILTER (f:timestamp (?o, sosa:madeBySensor , ?sensor) = ?ts)

?athlete cycling -profile:hasThreshold ?thLB , ?thUB .
?thLB cycling -profile:isLowerBoundOf ?tzAthlete .
?thUB cycling -profile:isUpperBoundOf ?tzAthlete .
?thLB schema:value ?thValueLB . ?thUB schema:value ?thValueUB .
?tzAthlete rdf:type ?tz . ?tz rdfs:label ?tzName .

FILTER (?heartRate > ?thValueLB) FILTER (?heartRate <= ?thValueUB)
}

Listing 1: getTrainingZone C-SPARQL query (prefixes are omitted)

3 Use Case & Demonstrator: Virtual Training App

A virtual cycling training app, which is an adapted version of the visualization
app in Figure 1, has been implemented for an Android tablet as a demonstrator of
the proposed solution. The goal of the designed application is to let the demo user
execute a cycling training. Due to portability and complexity issues, bringing a
bike with a static bike system, e.g., Tacx, is unfeasible. Therefore, the cycling
part is simulated by the user using the tablet’s touch screen.

The architecture of the demo set-up consists of the Raspberry Pi and
the tablet app of Figure 1. The sensors are replaced by virtual sensors in
the app generating data based on the simulated cycling. On the Raspberry
Pi, a C-SPARQL server is running. Two continuous queries are registered:
getQuantityObservationValue to retrieve quantity sensor observations [3], and
getTrainingZone, to retrieve the heart rate training zone corresponding to the
rider’s heart rate (Listing 1). Both queries are executed every 1 second on a win-
dow of 5 seconds. The C-SPARQL input data consists of the cycling ontology,
the rider profile, the sensors’ context data & the sensor data streams.

The tablet application consists of three different chronological parts, which
can be categorized as pre-training, during training, and post-training.5

5 The online demo page, including a video of the full demo process, is available at
https://IBCNServices.github.io/cyclists-monitoring. The demo data (ontology, con-
text data & queries) is also available at https://github.com/IBCNServices/cyclists-
monitoring/tree/master/virtual-training-app-demo.

4 M. De Brouwer et al.

(a) Personalization (b) Virtual training (c) Data insights

Figure 2: Screenshots of the virtual cycling training app, chronologically with
respect to the user executing the demo

Personalization (Pre-training). The first part of the app consists of a set
of profile-related questions, which allow to construct the user’s profile based on
the answers and semantically represent it in the cycling ontology. In specific, the
user’s name, gender, birth date, fitness level, and resting and maximum heart
rate (if known) are retrieved. An example of one of the app screens asking this
data is shown in Figure 2a. Using expertise rules of thumb and the Karvonen
formula, the user’s personalized heart rate training zone boundaries can be de-
termined from this data [3,5]. This enables to personalize training zone feedback
for amateur cyclists, who cannot let their physiological profile be determined in
expert lab tests, like in professional cycling.

Virtual Training. The second part of the app consists of the virtual training.
The simulated use case involves the demo user being a rider (virtually) equipped
with a heart rate monitor, riding on a bike (virtually) equipped with a speed
sensor. The rider will execute a training on a specific track, where each track
segment has a target heart rate training zone. The goal of the training is to ride
in the target training zone as much as possible.

A screenshot of the real-time interface is presented in Figure 2b. This part
consists of two panes: the upper pane (above the separator) consists of the real-
time feedback and track & location data, while the lower pane contains the bike
control UI. During a real-life training, the app will only consist of the upper
pane; the control pane is only added to let the user control his/her speed.

Demonstration of a Stream Reasoning Platform on Low-End Devices 5

As soon as the user starts the training, the user can use the slider in the
control pane to increase his/her speed. The virtual sensors will start sending
observations every 1 second to the C-SPARQL sensor streams. To generate these
virtual sensor values, different algorithms are running in the app:

– The user’s speed, initially 0, is iteratively increased or decreased with a
value directly derived from the position of the slider in the control pane. If
the gradient is non-zero, the speed is corrected with a factor depending on it.
The speed is upper bounded based on the user’s fitness level & the gradient.

– The user’s heart rate starts in the recovery training zone. The next heart
rate value is iteratively calculated based on the user’s profile, speed, current
heart rate, training zone, the gradient of the route, & a random factor.

Based on the results of the C-SPARQL queries, real-time feedback is shown
to the user, in order to help him/her in achieving the training goals. The feedback
includes the user’s speed, heart rate, heart rate training zone, information on this
zone, and an indicator whether to maintain, increase or decrease speed & effort.
To allow for quick visual feedback during the cycling, a color is given to each
training zone. The user can see a graphical representation of the track, as well as
his/her location on it, to ensure he/she knows the current gradient of the route
and the currently targeted training zone. The latter is also visually indicated.

Data Insights (Post-training). Using the data collected by the real-time pro-
cessing, various data insights can be generated after the user has completed the
full training. In particular, it is interesting to see how well the user has followed
the prescribed training plan in terms of heart rate training zones. Therefore,
the final part of the app shows a timeline and distribution of the user’s training
zones throughout the training. Both an overview and a dissection per segment
are visualized. A screenshot of this part is shown in Figure 2c. Other insights
could be generated using the data, e.g., by relating speed & heart rate over time.

Acknowledgements. F. Ongenae is funded by a UGent BOF postdoc grant.
Part of this research was funded by the FWO SBO S004017N IDEAL-IoT and
the imec.icon CONAMO, funded by imec, VLAIO, Rombit, Energy Lab & VRT.

References

1. Barbieri, D.F., et al.: C-SPARQL: a continuous query language for RDF data
streams. International Journal of Semantic Computing 4(1), 3–25 (2010)

2. Daneels, G., et al.: Real-time data dissemination and analytics platform for chal-
lenging IoT environments. In: GIIS 2017. pp. 23–30. IEEE (2017)

3. De Brouwer, M., et al.: Personalized real-time monitoring of amateur cyclists on
low-end devices. In: WWW2018. pp. 1833–1840. ACM Press (2018)

4. Dell’Aglio, D., et al.: Stream reasoning: A survey and outlook. Data Science
(Preprint), 1–25 (2017)

5. Kent, M.: Oxford dictionary of sports science and medicine, vol. 10. Oxford univer-
sity press (2006)

