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Abstract 

Theories suggest that groups within organizations often develop shared values, beliefs, 

affect, behaviors or agreed-upon routines; however, researchers rarely study predictors of 

consensus emergence over time. Recently, a multilevel-methods approach for detecting and 

studying emergence in organizational field data has been described. This approach—the 

consensus emergence model—builds on an extended three-level multilevel model. Researchers 

planning future studies based on the consensus emergence model need to consider (a) sample size 

characteristics required to detect emergence effects with satisfactory statistical power, and (b) 

how the distribution of the overall sample size across the levels of the multilevel model 

influences power. We systematically address both issues by conducting a power simulation for 

detecting main and moderating effects involving consensus emergence under a variety of typical 

research scenarios, and provide an R-based tool that readers can use to estimate power. Our 

discussion focuses on the future use and development of multilevel methods for studying 

emergence in organizational research.  
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Detecting Consensus Emergence in Organizational Multilevel Data: Power Simulations 

In their classic work The Social Psychology of Organizations, Daniel Katz and Robert 

Kahn (Katz & Kahn, 1978) suggested that the essence of an organization is “patterned” human 

behavior. Building on this idea, organizational research frequently describes and defines groups 

through attributes such as shared values, affect, common behaviors, or procedures on which the 

organizational or group members have developed. One important question for organizational 

research is how the psychological essence of organizations and groups—like shared values and 

common behavior patterns—develop through interactions among unit-members.  

Researchers have used different terms to formally describe patterns of change associated 

with social interactions. One frequently used term is "emergence" (Cronin & Weingart, 2011; 

Dansereau, Yammarino, & Kohles, 1999; Felin, Foss, & Ployhart, 2015; Humphrey & Aime, 

2014; Kozlowski, 2015; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013; Morgeson & 

Hofmann, 1999; Ployhart & Moliterno, 2011). Emergence generally indicates an increase in 

similarity, agreement, or commonality among unit members that leads to the formation of a 

shared climate (Ashforth, 1985); however, the term “emergence” can be interpreted more broadly 

to imply the creation of any new property. Within this broad conceptualization of emergence, an 

extended range of phenomena are possible including the formation of a state of dissensus – an 

important process less frequently studied in the organizational literature (Harrison & Klein, 2007; 

Mathieu, Tannenbaum, Donsbach, & Alliger, 2014). Given these potential definitional 

ambiguities, we use the narrow term "consensus emergence" to describe increases in shared 

values, opinions or behaviors over time, and the term “dissensus” to refer to a pattern of 

decreased similarity in outcome variables. We use the term “emergence” more generally to refer 

to patterns of change associated with either consensus or dissensus emergence. 

One challenge for organizational researchers studying emergence is that the process both 
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unfolds over time and is simultaneously a multilevel group-phenomenon. This inherent 

complexity requires a methodological approach that accounts for change over time within higher-

level entities, and that captures gradual increases (or decreases) in consensus over time. In 

contrast, organizational multilevel research has generally been confined to assessing the amount 

of emergence among unit-members at snapshots in time using cross-sectional multilevel statistics 

like the intra-class correlation, type 1 (Bliese, 2000). For instance, at first glance a sample of 

groups with an ICC1 of .02 at time 1, an ICC1 of .15 at time 2, and an ICC1 of .20 at time 3 

would appear to be showing a pattern of consensus emergence. Later we describe why it is 

problematic to interpret raw ICC1 values across time as done here. 

Recently, researchers have described an extended three-level multilevel modeling 

approach—the consensus emergence model (CEM)—that allows researchers to systematically 

model emergence in the multilevel framework and to study organizational and group 

characteristics that predict emergence (Lang & Bliese, 2018; Lang, Bliese, & Adler, 2019; Lang, 

Bliese, & de Voogt, 2018). For instance, an initial study applied the CEM approach to archival 

data from U.S. Army companies undergoing a major change in core technology and showed that 

a shared climate of job satisfaction emerged among company members over time (Lang et al., 

2018). That is, the finding was focused not on how job satisfaction increased or decreased; rather, 

the focus was on how soldiers within companies become more similar to each other over time.  

The CEM approach can potentially be used to investigate a wide variety of organizational 

research questions. Nonetheless, three open questions remain for organizational researchers who 

plan future studies on emergence. First, are questions about sample sizes needed to detect 

emergence effects with satisfactory statistical power. An initial article on consensus emergence 

briefly explored this issue by running a power simulation under a typical scenario using 10, 20, 

and 30 groups. These initial findings suggested that 20 groups were needed (Lang et al., 2018); 
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however, sample size questions are more complex than captured by Lang et al. (2018) because 

statistical power may be impacted by combinations of different distributional properties – 

specifically how observations are distributed across different group sizes, the number of groups 

and by the overall number of observations. A second related question centers on determining 

what effect sizes can be detected under different distributional properties, and the third question 

pertains to how predictors of emergence (e.g., moderation effects) respond to different 

distributional properties. In this paper, we systematically address these questions by conducting a 

comprehensive power simulation of emergence effects under a variety of common scenarios. We 

supplement our simulations with the description of a tool written in the R statistical language that 

readers can use to conduct power simulations for emergence effects.  

An Illustrative Example 

Table 1 includes a prototypical dataset with 10 units with 5 members across three time 

points. The measurements were conducted on a Likert-scale ranging from 1 (strongly disagree) to 

5 (strongly agree) with multiple items. The 10 units differ on the basis of a group-level predictor.  

A hypothetical example where researchers might encounter a dataset of this type would be 

perceptions of procedural justice in newly formed work groups that work under pay systems 

which differ in flexibility. For the purposes of illustration, assume we have access to a continuous 

pay system rating scale where low values represent low flexibility and high values represent high 

flexibility. Several researchers have argued that justice perceptions in groups may lead to 

emergence effects because perceptions of organizational injustice may be contagious (Degoey, 

2004; Ehrhart, 2004; A. Li & Cropanzano, 2009; Liao & Rupp, 2005). The underlying idea is that 

people have a tendency to compare and validate their own emotional reactions to stressful events 

with others (Barsade, 2002). This validation process may lead to consensus about how events (in 

particular events related to fairness) should be interpreted. Researchers have long been interested 
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in contagion effects in organizational field data but statistically showing these types of effects in 

field data has been challenging so existing data often comes from the laboratory (Ambrose, 

Harland, & Kulik, 1991; A. Li & Cropanzano, 2009). We use the term “contagion” in this context 

because there is no explicit goal to form consensus; hence, consensus formation is not deliberate. 

Researchers may also be interested in consensus in groups where the explicit goal is to come to 

consensus. As examples, juries deliberate to form a joint opinion (Lang et al., 2019) and teams 

may need to agree about a negotiation strategy.  

Figure 1 shows a prototypical emergence pattern with individual measurements 

increasingly moving closer to the group trend over time. The figure illustrates a form of 

heteroscedasticity where the variance among group members is dramatically decreasing. In the 

CEM, this pattern of variance change is treated as a substantive variable that can be formally 

tested and predicted. The strong effects in Figure 1 (while illustrative) are not realistic in most 

organizational data. Figure 2 provides a more realistic pattern for 10 teams – several of the 

groups (units 4, 5, 6, and 9) appear to show evidence of a consensus emergence pattern. Over 

time, the responses seem to move closer to the average opinion of the group, but it is not clear 

how large the effect is nor whether the observed pattern would be statistically significant for the 

sample as a whole. In the next section, we show how the CEM can be used to formally test the 

hypothesis that a consensus emergence pattern exists in the data in Table 1 and Figure 2.  

The Consensus Emergence Model 

We previously noted that a frequently used tool for assessing the presence of consensus in 

cross-sectional data is the ICC1. Unfortunately, the ICC1 has two severe limitations for modeling 

consensus emergence over time that make it poorly-suited for detecting consensus emergence 

patterns in data like the illustrative dataset shown in Table 1.  

One limitation of the ICC1 is evident in the formula for the ICC1. This formula is based on 



Running Head: DETECTING EMERGENCE 7 

a basic intercept-only multilevel model (Yij = γ00 + u0j + eij where Y is the response, i the unit-

member, j the unit, γ00 the intercept, u0j the latent group mean and eij the residual). The formula 

(ICC1 = 00 / [00  + σ2]) defines the ICC1 as the variance, 00, of the latent group means (u0j) 

divided by itself plus the variance, σ2, of the residuals (eij). In other words, the percentage of 

variance that group membership explains in the overall variance. The problem is that the ICC1 

cannot effectively be used to track changes in emergence over time because two different process 

can lead to increases in ICC1: Either (a) change in the variance of the latent group means (an 

increase or reduction in 00) or (b) change in the amount of similarity that group members show 

with the group mean (an increase or decreases in σ2).  

Empirical ICC1 values tracked over time frequently fail to show emergence patterns (Allen 

& O’Neill, 2015)—possibly because changes in 00along with simultaneous changes in σ2 work 

against detecting these types of patterns. A pattern of simultaneous change in 00and σ2 applies to 

the example data in Table 1 and Figure 2. The ICC1 values for these data at T1, T2, and T3 were 

.11, .02, and .02, respectively. These values do not imply a consensus emergence effect even 

though Figure 2 seems to provide evidence for an effect of this type.  

The second limitation of the ICC1 is that it does not provide a comprehensive modeling 

framework for studying emergence. To conduct effective research on emergence phenomena, 

researchers would benefit from a formal statistical test for the presence of emergence, effect size 

information, and the ability to test for moderators of emergence effects.  

The limitations of the ICC1 were the main motivation for the development of the CEM 

(Lang & Bliese, 2018; Lang et al., 2018). The CEM addresses the limitations of the ICC1 and the 

need for a modeling framework to formally test for consensus emergence using an extended 

three-level multilevel model specification. The basic CEM can be written as follows. 
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Level-1: Ytij = π0ij + π1ijTIMEt+ etij     (1) 

Level-2: π0ij = β00j + r0ij      (2) 

π1ij = β10j 

Level-3: β00j = γ000 + u00j     (3) 

β10j = γ100 + u10j 

etij  ~  N (0, σ²exp[2δ1TIMEt])      (4) 

r0ij  ~  N (0, 00)       (5) 

 
u00j   0          υ00     υ10   (6) 
  ~   N       , 
u10j   0          υ01     υ11 

 

In these equations, t refers to the measurement occasion, i refers to the unit-member 

(typically individuals), and j refers to the unit. The model combines the basic model structure of 

the intercept-only model for the ICC1 with a growth model that accounts for changes (u10j) in the 

latent unit-means (u00j) along with change in the between group variance over time (captured by 

υ01, and υ11). The model accounts for the fact that each unit-member provides multiple ratings 

through the unit-member-specific variance (00). The resulting three-level model includes 

measurements at level-1 nested in unit-members at level-2, and unit-members at level-2 nested in 

units (i.e., groups) at level-3.  

The model is extended in the sense that it goes beyond the standard multilevel models and 

uses a variance function (σ²exp[2δ1TIMEt]) to model change in the residual variance over time 

(Culpepper, 2010; Harvey, 1976; Pinheiro & Bates, 2000; Rutemiller & Bowers, 1968). In 

organizational research and other social sciences, variance functions have usually been included 

in multilevel models and other regression models to account for potential violations of the 

homogeneity of residual variance assumption (Bliese & Ployhart, 2002; Culpepper, 2010; 

Harvey, 1976; Rutemiller & Bowers, 1968; Singer & Willett, 2003). However, research methods 
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experts have long realized that changes in residual variance functions can also have substantive 

meaning and can thus be used to gain substantive insights (Goldstein, 2011; Kim & Seltzer, 

2011; Pinheiro & Bates, 2000; Raudenbush, 1988). Building on this earlier work, the CEM uses 

an exponential variance function to account for the gradual increases or decreases in residual 

variance among unit-members. One advantage of using an exponential variance function is that it 

yields an effect size estimate, δ1, that corresponds to an approximate linear increase or decrease 

in the residual standard deviation σ (square root of the residual variance).2 That is, when the time 

variable TIME is coded so that it increases by 1 with each measurement occasion t (e.g., 0, 1, 

2,…), δ1 approximately captures the percent change in the residual standard deviation with each 

measurement occasion up to about +/- .20 (or 20% change) after which the interpretation is not 

quite as direct.  

In research on consensus emergence, δ1 is expected to be negative implying a reduction in 

the residual standard deviation. For instance, when σ is 2.6, δ1 is -0.06, and TIME runs from 0 to 

2, the formula for the residual variance at the three measurement occasions would be σ² = 

2.6²×exp(2×-0.06×0) = 6.76, σ² = 2.6²×exp(2×-0.06×1) = 6, and σ² = 2.6²×exp(2×-0.06×2) = 

5.32, respectively. Taking the square root of the variance, the change pattern in the residual 

standard deviation is σ = 2.60, σ = 2.45, and σ = 2.31 which is approximately equivalent to a six 

percent decrease with each measurement occasion (2.45 is 94% of 2.60). To test the significance 

of δ1, researchers can use a loglikelihood ratio test that compares a model without the exponential 

variance function (or δ1 = 0) with the basic CEM specification shown in Equation 1-6.  

The CEM model can be fit in several advanced multilevel modeling software packages like 

the nlme package (Pinheiro & Bates, 2000) in the R environment (R Core Team, 2018) and 

Mplus (Lang et al., 2018). Typically, restricted maximum likelihood (REML) estimation is 

preferred because the δ1 effect is a component of the variance portion of the model, and REML is 
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considered more accurate for estimating variance components where fixed-effects remain 

constant as they do in the CEM model (Pinheiro & Bates, 2000; Singer & Willett, 2003).  

While the ICC1 has limitations as a measure of consensus emergence, it has the desirable 

property of providing information that can be readily interpreted by researchers as the percentage 

of variance that group membership explains in the overall variance at specific points in time. In 

some cases, researchers may therefore be interested in translating information from a CEM-based 

analysis into ICC values for particular points in time to evaluate the degree of overall emergence. 

This goal can be achieved using the ICCEM coefficient (Lang & Bliese, 2018):  

  υ00 + 2υ01TIMEt + υ11TIMEt
2  

ICCEMt = —————————————————————— (7) 
υ00 + 2υ01TIMEt + υ11TIMEt

2 + τ00 + σ2exp(2δ1TIMEt)  
 

In interpreting ICCEM values, researchers can follow existing guidance on interpreting 

ICC1 values (Bliese, 2000; LeBreton & Senter, 2008). A desirable feature of the ICCEM is that it 

is model-based and thus more robust and stable than ICC1 values at particular points in time.  

While δ1 values provide an approximate relative measure of change and ICCEM values 

provide a measure of emergence at particular points in time, researchers may also be interested in 

an overall measure of effect size or explained variance for emergence effects. A challenge for 

models that include change in the residual variance is that most approaches for estimating R² 

values in mixed-effects models build on the residuals so that these R² values either do not change 

or they decrease when changes in residual variances are included (see overviews in LaHuis, 

Hartman, Hakoyama, & Clark, 2014; Rights & Sterba, 2019). Thus, typical R² approaches are not 

useful for extended multilevel mixed-effects models. A solution is to use a generalized R² statistic 

such as the 𝑅  (Magee, 1990). This statistic is based on the sample size (N), and the likelihood 

ratio from a null model with only an intercept (𝐿 ) compared to the model of interest (𝐿 ).  
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𝑅 = 1 − = 1 − exp (− [log 𝐿 − log 𝐿 ])   (8) 

 
𝑅  was originally proposed and discussed in the context of logistic regression analyses, 

but statisticians later realized that 𝑅  represents a generalized R² coefficient for a large class of 

models. For OLS regression, 𝑅  is identical to the ordinary OLS R². Thus, 𝑅  allows 

researchers to directly compare the explained variance of OLS, mixed-effects models, and 

complex mixed-effects models like the CEM.  

The basic CEM shown in Equation 1-6 above can be relatively easily extended to allow 

researchers to test for potential effects of moderators on consensus emergence. More specifically, 

substituting Equation 3 and 4 against the following Equations 9 and 10, respectively, yields a 

model that tests the effect of a unit-level predictor on emergence.  

Level-3: β00j = γ000 + γ010(PREDj) + u00j    (9) 

   β10j = γ100 + γ110(PREDj) + u10j 

etij  ~  N (0, σ²exp[2δ1TIMEt + 2δ2PREDj + 2δ3TIMEtPREDj])  (10) 

 

In using this type of model, researchers should be aware that the CEM is a type of growth 

model and thus the unit-level predictor should be stable (Ployhart & Kim, 2013; Singer & 

Willett, 2003). The model is flexible in the sense that the predictor in the model can either be 

dichotomous or continuous. The interpretation of the δ2 and δ3 parameters in the model are 

analogous to the interpretation of interaction effects in normal regression analyses: δ2 captures 

the main effect of the predictor at baseline (when TIME is coded 0 at T1), and δ3 captures 

differences in the consensus emergence effect δ1 for different levels of the predictor.  

CEM Analysis of the Illustrative Example 

To illustrate the use of the CEM, Table 2 provides the results of a CEM analysis of the 

illustrative data in Table 1. As shown in Table 2, a consensus emergence effect is present in this 
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dataset, δ1 = -0.22. The log-likelihood comparison test between a model without consensus 

emergence and the CEM suggests that this effect is significant, χ² (df = 1, N = 150) = 5.10, p = 

.02. The significant TIME × PRED interaction effect, δ3 = 0.44, χ²(df = 1, N = 150) = 11.22, p < 

.01, in the residual part of Model 4 in Table 2 also indicates that the environment variable 

(“PRED” – pay system flexibility in our earlier example) moderates the consensus emergence 

effect so that the effect over time is stronger when pay system flexibility is high. While 

hypothetical, these findings suggest that justice contagion is a function of the groups’ pay system 

flexibility: contagion occurs more strongly in the groups with a flexible payment system than in 

groups with an inflexible system.  

Researchers interested in further examining the data can estimate the ICCEM for each time 

point. The ICCEM estimates from the data are .13, .05, and .04 at TIME = 0, TIME = 1, and 

TIME =2, respectively, and are similar to the ICC1 values of .11, .02, and .02. The CEM analyses 

in Table 2 illustrate why the ICCEM (and ICC1) values become smaller. Specifically, in this 

example the negative covariance term (υ01) leads to a decrease in the between-group variance that 

is more pronounced than the decrease in the within-group variance lowering ICCEM values. We 

note that in applied examples with many measurement occasions, the ICCEM will often return 

values that are easier to interpret. Table 2 also includes the 𝑅  estimates and shows that adding 

the emergence effects increases the amount of explained variance. The final model (model 4) 

explains 26 percent of the overall variance. Readers interested in running the analyses with the 

data can consult the dataset and R code provided in Appendix A.  

The Power Simulations 

Statistical power refers to the long-term probability of detecting a significant effect when 

the effect is present (Cohen, 1992). A basic convention for statistical power is that it should at 

least be .80 so a researcher has an 80% chance of detecting the effect. A power analysis 
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commonly includes several steps. In the first step, a researcher chooses an alpha level (e.g., <.05) 

and a reasonable a-priori expected effect size that seems plausible for the research question on 

the basis of earlier research and practical considerations (what effect size would be of practical 

interest). Theoretical considerations may also be of interest but actual information on the 

magnitude of effect sizes from theory is often rare. After choosing the effect size, the next step is 

to estimate power for the given effect size. For relatively simple statistical models, it is possible 

to directly estimate power using formulas (Cohen, Cohen, West, & Aiken, 2003). However, for 

more complex types of models like multilevel models, power depends on a variety of parameters 

in the model and their combination so power may more efficiently be estimated using simulations 

(Bliese & Hanges, 2004; Bolker et al., 2013; Mathieu, Aguinis, Culpepper, & Chen, 2012; 

Pinheiro & Bates, 2000). In power simulations, the researcher specifies the parameters of the data 

that he/she expects and then generates a series of datasets from the resulting model using a 

pseudo random number generator. Because the resulting datasets have been generated from a 

model for which the underlying parameters are known, power represents the percentage of 

datasets that return a significant effect when the effect exists.  

We conducted two different power simulations. In the first power simulation, we focused 

on detecting consensus emergence effects. For the CEM, the focus was on the log-likelihood-

ratio test (χ² -test) which compared a model with a consensus emergence effect to a model 

without this effect. The second power simulation focused on detecting moderators of consensus 

emergence. The focus thus was on the log-likelihood-ratio test contrasting a model with a 

moderator of the consensus emergence effect to a model without this effect. Multilevel literature 

commonly states that studies require at least 30 to 50 groups (Hox, 2002; Maas & Hox, 2005; 

Mathieu et al., 2012; Snijders & Bosker, 1993, 1999); however, these recommendations are based 

on cross-sectional studies and focus on top-down effects and thus apply to situations that 
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fundamentally differ from the CEM. To gain insights into the requirements for the CEM, we 

manipulated the total sample size, the sample size at the unit level, and how the observations 

were distributed among units, unit members, and measurement occasions. Simulation conditions 

were selected to provide insights into designing field studies – for instance whether including 

additional measurements might compensate for a smaller number of units. 

Method 

Table 3 shows the data generating values used for the two simulations. The values in both 

simulations were based on experience with existing data, effect sizes from initial consensus 

emergence analyses, and theoretical assumptions. Experience suggests that meaningful consensus 

emergence effects are typically around -.15. For instance, a reanalysis of a study of group 

cohesion ratings by psychology students working in teams over six weeks (32 groups / 243 

persons / 705 observations) yielded an effect size of δ1= -0.15 over three time points (Lang & 

Bliese, 2018). A reanalysis of a dataset on job satisfaction in 34 Army companies measured three 

times (471 soldiers and a total of 1,351 observations) originally reported by Bliese and Ployhart 

(2002) revealed an effect size of δ1= -0.10 (Lang et al., 2018). A more extreme effect size 

estimate (δ1= -1.02) was obtained in a reanalysis of Sherif’s (1935) classic laboratory study on 

group norms that included four measurements (see Lang & Bliese, 2018). This group norm study 

isolated the phenomenon of group norm formation by not providing much additional information 

to participants: such extreme effect sizes are unlikely in field data.1  

From a theoretical perspective, it seems reasonable to expect that a typical organizational 

study could yield a reduction of 15 percent of the variance with each measurement occasion 

across three measurements (45 percent reduction in the residual variance overall). We therefore 

used δ1 = -0.15 as the moderate effect size, δ1 = -0.08 as a small effect size, and δ1 = -0.25 as a 

large effect size across three time points for the simulation. Because we were interested in 
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comparing the effects of the number of time points on power, we rescaled the time variable when 

more time points were included in the study by dividing the time variable for the larger number 

of measurement occasions by 3 so that the effect sizes were equivalent. For instance, with 10 

measurement time points 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 were rescaled to 0, 1/3, 2/3, 1, 4/3, 5/3, 2, 

7/3, 8/3, and 3, respectively so that 10 measurement occasions would also have a 45% overall 

reduction in the moderate effect size condition. All power simulations were conducted in the R 

(R Core Team, 2018) environment using the nlme package (Pinheiro & Bates, 2000).  

Results 

The results of the power simulations are provided in Table 4, and Figures 3 and 4. Notice in 

both figures that power was mostly dependent on the overall number of data points and the effect 

size. The large effect size of δ1/δ3 = -0.25 yielded sufficient power across all conditions in both 

sets of simulations. In the first set of simulations focused on detecting consensus emergence, the 

moderate effect size of δ1 = -0.15 had acceptable power (> .80) with at least 900 observations no 

matter how these observations were distributed across units, unit sizes, and time points (see 

Figure 3). While a value of 900 seems large, consider that 30 groups with ten group members 

over three measurement occasions produces 900 observations. The small effect size, in contrast, 

required 3,000 observations to consistently yield sufficient power. 

In the second set of simulations focused on the power to detect moderators of consensus 

emergence, the moderate effect size also yielded sufficient power with 900 observations in three 

of the four conditions (see Figure 4). However, in the fourth condition with a large number of 

unit-members, and a large number of time points, power was insufficient. The reason is that just 

6 groups are not adequate to effectively account for sample size variation of the moderator. In 

contrast, 10 units were sufficient to generate acceptable power with a large number of 

measurement occasions (15) and a large number of unit members (10). Again, the small effect 
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size required 3000 observations to consistently yield sufficient power.  

Power Simulation Tool 

The power simulations cover a set of typical scenarios in organizational research. However, 

researchers may want to do their own power simulation on the basis of more specific 

expectations. Appendix B and C provide R code allowing researchers to conduct simulations of 

this type. The R functions include model components that a researcher can specify a-priori and 

additionally the setting “tscale” allows researchers to more easily study the impact of varying 

numbers of time points without changing the metric of the values entered into the model. tscale 

simply rescales the time variable to make scenarios comparable. For instance, if a researcher 

wants to compare a scenario with 9 or 3 time points, he/she enters tscale=3 in the model with 9 

time points so that all other data generating values for the simulation are equivalent.  

Discussion 

Emergence represents a multilevel process describing how lower-level units change over 

time to form characteristics of higher-level units. The concept of emergence plays several roles in 

theory development and in advancing research. First, emergence often provides the theoretical 

foundation for aggregating responses to higher-levels and conducting research using higher-level 

constructs. That is, demonstrating that emergent processes occur for specific constructs represents 

an important aspect of the multilevel construct validation process that help justifies aggregation. 

Second, on a related note, examining emergence via the CEM can provide a deeper 

understanding of existing unit-level constructs. For instance, unit-level constructs like justice 

climate or safety climate (e.g., Zohar, 2010) are well-established predictors of organizational 

outcomes. As a field, however, organizational research does not currently know if justice 

climates and safety climates develop through emergent processes where unit members become 

more similar over time with relatively little mean change across units, or whether safety climates 
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develop because units becoming more extreme in term of mean differences. That is, a significant 

ICC value at one time point does not provide information about the process that produced it.  

Third, the ability to model predictors provides a way to develop and test procedures to 

predict emergence. Again, using the example of safety climate, researchers and practitioners 

could determine whether a specific training program causes units to more quickly develop shared 

safety climates. A study of this nature would be interested in mean change over time, but in 

addition to mean change, it would be important to examine patterns of emergence among unit 

members with an eye towards enhancing consensus. As another example, research could also be 

framed around understanding why some group members become more divergent over time and 

incorporate predictors of these divergent patterns. Work in this area is important because a lack 

of consensus among group members is presumably an index of a poorly functioning team.  

In the end, studies of emergence potentially have much to offer in terms of theory 

development. Like other areas of research, studies of emergence need to have acceptable 

statistical power to help advance knowledge. We used simulation studies to examine how the 

statistical power of the CEM was related to differences in overall sample sizes, the number of 

groups, group size, and the number of time points. In addition, we provide R-based tools that 

researchers can use to conduct power simulations. Our results suggest that the power of the CEM 

mainly depends on the overall number of data points and the effect size. The distribution of data 

points across units, time, and unit-members generally appears to have a limited influence on the 

results. An important exception is that power to detect moderation is substantially lowered by 

having a small number of units in combination with a high number of measurement occasions 

and unit members. In this scenario, the large number of measurement occasions and unit 

members cannot compensate for the lack of information related to the moderator due to the small 

number of units.  
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Overall, the results suggest that in many situations a relatively small number of groups may 

be sufficient when there are either many group members or many measurements for detecting 

consensus emergence. These results are encouraging in suggesting that datasets that include a 

limited number of groups can potentially be used to generate novel and interesting insights when 

frequent measurements are possible. The results may also open the door for studies that track a 

small number of groups for an extended period of time to see whether group members come 

together to gain insights on group functioning. An initial example for a study of this type is a 

diary study that tracked a small number of groups of archeologists on a field mission over several 

weeks (Lang et al., 2018). The results also suggest that the sample size requirements for detecting 

emergence are lower than for other types of multilevel effects like, for instance, cross-level 

moderation effects (Maas & Hox, 2005; Mathieu et al., 2012; Snijders & Bosker, 1993, 1999).  

Limitations 

We note several limitations of this work. One limitation relates to the nature of the model 

on which we focused in this article—the consensus emergence model (CEM). The CEM 

fundamentally assumes that changes in the residual variance convey important and relevant 

information about emergence, and that patterns of variance change are manifest reflections of 

changes in group climate. We see the CEM as complementing other approaches and note that the 

literature on emergence has described several other types of emergence phenomena and 

alternative methods to study these complex phenomena. Other models to study emergence 

include qualitative research methods (Gehman, Trevino, & Garud, 2013), computational models 

that simulate complex emergence processes to gain insights into plausible explanations for 

empirical patterns (Kozlowski et al., 2013), and network models (Fowler & Christakis, 2008). A 

review of these methods is beyond the scope of this article but interested readers may examine 

reviews and overviews of these methods (Kozlowski et al., 2013; Lang et al., 2018). We believe 
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that these alternative methods will complement the multilevel approach for studying emergence.  

We also note that a limitation of the CEM is that it—like all linear mixed-effect multilevel 

models—assumes normally distributed residuals. This assumption does not mean that the 

dependent variable itself needs to be normally distributed; rather, the assumption is that the 

residuals of the model are approximately normally distributed after accounting for all model 

components. In practice, the assumption of normally distributed residuals implies that users of 

the CEM should be cautious because heavily skewed data with strong floor and ceiling effects 

can violate the assumption of normally distributed residuals. A recommended strategy is to 

examine the residuals using graphical model checking procedures (Pinheiro & Bates, 2000). 

Finally, a specific limitation of our study is the fact that we only examined a limited set of 

conditions so our power simulations will likely not cover some situations that researchers will 

face in their research. Nonetheless, we attempted to test scenarios that reflected common data 

characteristics with respect to factors such as group size, the number of measurement occasions, 

and the number of groups. In addition, the R code in the Appendices B and C can be used to 

conduct power simulation studies tailored to the specific attributes of the research setting.  

Future Directions  

One area for future research could be to extend the CEM to study more complex 

phenomena. One possible extension is to include more complex types of change. The analyses we 

considered in this study were limited to linear change in both latent group means and consensus. 

Change, however, may show forms such as a quadratic emergence trajectory where a group first 

becomes more homogenous and then more heterogeneous (e.g., Tuckman & Jensen, 1977). 

Change in consensus could also be discontinuous (Bliese & Lang, 2016; Singer & Willett, 2003) 

because a catalyst event could occur in a group and lead to a pattern of either consensus or 

dissensus. These more complex consensus change models can be specified relatively easily using 
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the procedures described in this paper by adding the respective change terms both in the fixed 

effects part (e.g., Ytij = π0ij + π1ijTIMEt + π2ijTIMEt² + etij) and the variance change part (e.g., 

σ²exp[2δ1TIMEt]exp[2δ1TIMEt²]) of the model. However, the interpretation of these more 

complex models can be challenging and future research needs to study the statistical power for 

detecting more complex consensus change effects.  

Another potential extension of the CEM is to include additional complexity in the 

consensus change part of the model. For instance, it is possible to add an additional level of 

analysis to the CEM to account for measurement error (Lang et al., 2018). This approach requires 

one to use a somewhat different parametrization of variance function models (Goldstein, 2005, 

2011) that is not as easy to interpret as the parametrization with the exponential variance 

functions we generally recommend, but can be fit in almost all multilevel software packages. To 

implement this approach, one adds time as a predictor centered at the end of the observation 

period [TIMEt – max(TIMEt)] at the person level (now Level 2 because of the additional level of 

nesting) and specifies that the time variable is uncorrelated with the intercept. The advantage of 

this alternative model is that it allows both the intercept and the slope to vary across individuals 

with the assumption that both are from a normal distribution (random effects). A somewhat 

similar approach pursued by researchers is to directly add a random intercept effect to the 

exponential variance specification for the residual variance (Culpepper, 2010; X. Li & Hedeker, 

2012). These types of models typically do not include random slopes for time like the CEM but 

have the advantage that they can even be fit with a joint random effects distribution so that the 

random error variability can be correlated with the other random effects in the model. Although 

interesting, these more complex models are frequently not easy to fit for three-level structures 

and may run into convergence problems unless the sample size is very large (X. Li & Hedeker, 

2012; Nestler, Geukes, & Back, 2018). Ultimately, it is important for researchers to carefully 
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balance model complexity and model parsimony (Bates, Kliegl, Vasishth, & Baayen, 2015; 

Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). 

From a theoretical perspective, it may be interesting to use the CEM to capture more 

complex forms of emergence. One way this can already be done within the framework of the 

CEM is to add dichotomous predictors (e.g., leaders vs. non-leaders or ethnic minority vs. non-

ethnic minority, or male vs. female) that separate subgroups within groups from each other. For 

instance, a recent article provides an illustration of how to test consensus emergence among 

minority and majority group members in mock juries (Lang et al., 2019). We anticipate 

opportunities to extend the model by looking at other predictors associated with group members.  

A set of final questions for future research center on how the CEM can be combined with 

other established techniques in the multilevel literature like multi-membership models (Cafri, 

Hedeker, & Aarons, 2015) or mediation models (MacKinnon, Fairchild, & Fritz, 2007). Multi-

membership models allow persons to be members of multiple groups. We are not aware of work 

examining how multi-membership affect emergence. Mediation models are frequently discussed 

in the literature but it is not clear how the approach could be extended to emergence models. 

Even with this limitation, however, we note that the ability to include group-level predictors 

provides a potentially powerful way to examine mechanisms that lead to emergence. Indeed, 

researchers have argued that one possible approach for testing mediation theories in practice is to 

manipulate both the predictor and the mediator (Spencer, Zanna, & Fong, 2005). One way to 

study mediation using the CEM is therefore to experimentally manipulate both the predictor and 

the mediator and to then test both using a CEM model with a dichotomous predictor for the 

experimental condition.  
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Footnotes 

1Both the job satisfaction data and the Sherif data are available in the multilevel package 

for R (Bliese, 2016). 

2The exponential specification, σ²exp[2δ1TIMEt] is a shortened way to write the equivalent 

form, (σ exp[δ1TIMEt])², using one less pair of parentheses. 
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Table 1 
Example Dataset 
  Unit 
Unit member TIME 1 2 3 4 5 6 7 8 9 10 

1 0 3.5 2.5 3.3 4.0 3.9 3.8 2.9 3.0 1.5 3.3 
1 1 3.1 3.1 3.1 3.2 3.0 3.5 2.8 3.3 2.8 2.7 
1 2 3.5 3.0 3.2 3.7 3.4 2.9 2.7 3.4 3.1 3.3 
2 0 4.5 2.8 3.2 2.0 4.1 3.4 3.2 4.3 2.5 2.3 
2 1 4.0 2.8 2.5 2.8 2.8 3.4 3.4 4.1 2.7 2.3 
2 2 4.2 4.3 2.5 2.9 2.9 3.0 3.2 4.0 3.4 3.0 
3 0 3.1 2.6 3.3 3.4 2.6 3.2 2.9 2.3 3.0 2.3 
3 1 3.5 3.6 3.4 2.9 3.4 2.1 3.2 3.0 2.3 3.2 
3 2 3.0 3.0 3.6 3.4 3.0 2.9 3.4 2.4 3.0 2.8 
4 0 2.6 3.1 3.2 3.3 3.2 2.7 2.7 3.6 3.0 3.3 
4 1 3.1 3.6 2.7 3.7 4.0 2.9 2.4 3.4 3.0 3.0 
4 2 2.7 3.5 3.0 3.4 3.9 2.9 2.4 3.5 2.8 3.1 
5 0 3.6 2.6 3.3 3.4 2.9 3.9 3.0 3.6 3.0 3.0 
5 1 3.2 2.3 2.6 2.5 2.7 3.0 3.0 2.9 2.5 3.6 
5 2 3.5 3.7 2.8 3.0 2.9 3.5 2.8 3.1 2.9 2.7 

            
Predictor  0.2 2.0 1.0 -0.3 -1.0 -0.3 -0.2 0.1 0.1 0.4 
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Table 2 
Baseline Model (Model 1), Consensus Emergence Model (Model 2), and Test of a Moderator of 
Consensus Emergence (Model 3 and Model 4) Fitted to the Example Dataset 
Parameters Model 1 Model 2 Model 3 Model 4 
Intercept, γ000 3.08 3.07 3.09 3.08 
TIME, γ100 0.03 0.04 0.02 0.02 
PRED, γ010 — — -0.15 -0.14 
TIME × PRED, γ110 — — 0.11 0.08 
Unit intercept variance, υ00 0.05 0.04 0.03 0.04 
Unit slope variance, υ11 0.01 0.01 0.004 0.01 
Unit covariance, υ01 -0.03 -0.02 -0.01 -0.02 
Unit-member variance, τ00 0.09 0.09 0.09 0.10 
Residual variance, σ² 0.14 0.20 0.21 0.20 
   TIME, δ1 — -0.22 -0.27 -0.35 
   PRED, δ2 — — 0.09 -0.37 
   TIME × PRED, δ3 — — — 0.44 
logLik -97.92 -95.37 -96.28 -90.67 
df 7 8 11 12 
χ2 vs. previous model  5.10*  11.22* 
𝑅  .15 .18 .21 .26 

Note. 10 units with 5 unit-members measured at 3 measurement occasions (150 observations).  
* p < .05 
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Table 3 
Values Used in the Simulations 

Used in the simulation Simulation 1 Simulation 2 
   Intercept, γ000 3.00 a 

   TIME, γ100 (slope) 0.01 a 

   PRED, γ010  0.01 
   TIME × PRED, γ110  0.01 
   Unit intercept variance, υ00 0.05 a 

   Unit slope variance, υ11 0.005 a 

   Unit covariance, υ01 -0.005 a 

   Unit-member variance, τ00 0.10 a 

   Residual variance, σ² 0.20 a 

   Total observations 450, 900, 1500, 3000 a 

   Distribution of total observations    
      (units * members/unit * timepoints) 

30/60/100/200 × 5 × 3 
15/30/50/100 × 10 × 3 
15/30/50/100 × 3 × 10 

3/6/10/20 × 10 × 15 

a 

   Effect size δ1 (TIME) 0, -0.08, -0.15, -0.25 a 

   Effect size δ2 (PRED)  0, -0.08, -0.15, -0.25 
   Effect size δ3 (TIME × PRED)  0, -0.08, -0.15, -0.25 

Note.  aLike in Simulation 1. 
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Table 4 
Results of the Simulations 

 Members in 
each unit  

   Power in simulation 1  Power in simulation 2 
Units Timepoints Total 

N 
 δ1 = 

.00 
δ1 = 
 -.08 

δ1 =  
-.15 

δ1 =  
-.25 

 δ3 = 
.00 

δ3 =  
-.08 

δ3 = 
 -.15 

δ3 = 
 -.25 

30 5 3 450  0.051 0.290 0.723 0.986  0.052 0.277 0.687 0.960 

60 5 3 900  0.048 0.512 0.949 1.000  0.050 0.493 0.930 0.999 

100 5 3 1,500  0.053 0.729 0.996 1.000  0.050 0.715 0.995 1.000 
200 5 3 3,000  0.051 0.950 1.000 1.000  0.049 0.947 1.000 1.000 
15 10 3 450  0.055 0.299 0.747 0.987  0.052 0.280 0.670 0.941 

30 10 3 900  0.052 0.520 0.964 1.000  0.051 0.503 0.928 0.999 

50 10 3 1,500  0.054 0.747 0.998 1.000  0.048 0.727 0.994 1.000 
100 10 3 3,000  0.052 0.957 1.000 1.000  0.052 0.951 1.000 1.000 
15 3 10 450  0.052 0.284 0.717 0.988  0.049 0.254 0.660 0.946 

30 3 10 900  0.048 0.491 0.952 1.000  0.050 0.470 0.920 0.999 

50 3 10 1,500  0.052 0.703 0.996 1.000  0.049 0.683 0.991 1.000 
100 3 10 3,000  0.052 0.942 1.000 1.000  0.047 0.934 1.000 1.000 

3 10 15 450  0.051 0.285 0.736 0.990  0.047 0.203 0.457 0.707 

6 10 15 900  0.049 0.491 0.957 1.000  0.049 0.402 0.803 0.958 

10 10 15 1,500  0.046 0.705 0.998 1.000  0.047 0.628 0.953 0.998 
20 10 15 3,000  0.049 0.949 1.000 1.000  0.049 0.900 0.999 1.000 

Note. Convergence rate was 99.73% in simulation 1 and 99.66% in simulation 2. 10,000 simulation runs for both simulations. 
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Figure 1. Example for a prototypical consensus emergence pattern.  
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Figure 2. Plot of the example dataset in Table 1.  
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Figure 3. Power to detect a consensus emergence effect as a function of effect size, the total 

number of observations, and the distribution of the observations over groups and timepoints.  
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Figure 4. Power to detect a moderator of a consensus emergence effect as a function of effect 

size, the total number of observations, and the distribution of the observations over groups and 

timepoints.  
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Appendix A: Example R Data and R Code 

edat<-expand.grid(time = 0:2,person = 1:5,group = 1:10)  
edat$y <-c(3.5, 3.1, 3.5, 4.5, 4, 4.2, 3.1, 3.5,  
3, 2.6, 3.1, 2.7, 3.6, 3.2, 3.5, 2.5, 3.1, 3, 2.8, 2.8, 4.3,  
2.6, 3.6, 3, 3.1, 3.6, 3.5, 2.6, 2.3, 3.7, 3.3, 3.1, 3.2, 3.2,  
2.5, 2.5, 3.3, 3.4, 3.6, 3.2, 2.7, 3, 3.3, 2.6, 2.8, 4, 3.2,  
3.7, 2, 2.8, 2.9, 3.4, 2.9, 3.4, 3.3, 3.7, 3.4, 3.4, 2.5, 3,  
3.9, 3, 3.4, 4.1, 2.8, 2.9, 2.6, 3.4, 3, 3.2, 4, 3.9, 2.9, 2.7,  
2.9, 3.8, 3.5, 2.9, 3.4, 3.4, 3, 3.2, 2.1, 2.9, 2.7, 2.9, 2.9,  
3.9, 3, 3.5, 2.9, 2.8, 2.7, 3.2, 3.4, 3.2, 2.9, 3.2, 3.4, 2.7,  
2.4, 2.4, 3, 3, 2.8, 3, 3.3, 3.4, 4.3, 4.1, 4, 2.3, 3, 2.4, 3.6,  
3.4, 3.5, 3.6, 2.9, 3.1, 1.5, 2.8, 3.1, 2.5, 2.7, 3.4, 3, 2.3,  
3, 3, 3, 2.8, 3, 2.5, 2.9, 3.3, 2.7, 3.3, 2.3, 2.3, 3, 2.3, 3.2,  
2.8, 3.3, 3, 3.1, 3, 3.6, 2.7) 
edat$pred<-rep(c(0.2,2.0,1.0,-0.3,-1.0,-0.3,-0.2,0.1,0.1,0.4),each=15) 
 
library(nlme) 
 
m1<-lme(y ~ time, random = list(group=pdSymm(~time), 
  person=pdIdent(~1)),data=edat)   
m2<-update(m1,weights=varExp( form = ~ time)) 
anova(m1,m2) 
 
m3<-lme(y ~ time*pred, random = list(group=pdSymm(~time), 
  person=pdIdent(~1)),data=edat, 
  weights=varComb(varExp( form = ~ time),varExp( form = ~ pred)))  
m4<-update(m3,weights=varComb(varExp( form = ~ time), 
   varExp( form = ~ pred),varExp( form = ~ pred*time))) 
anova(m3,m4)    
 
nu00<-as.numeric(VarCorr(m2)[2,1]) 
nu11<-as.numeric(VarCorr(m2)[3,1]) 
nu01<-as.numeric(VarCorr(m2)[3,3])*( 
  as.numeric(VarCorr(m2)[2,2])*as.numeric(VarCorr(m2)[3,2])) 
tau<-as.numeric(VarCorr(m2)[5,1]) 
vsigma<-as.numeric(VarCorr(m2)[6,1]) 
delta1<-m2$modelStruct$varStruct 
time<-0:2 
 
# ICCEM 
((nu00+2*nu01*time+nu11*time^2)/ 
(nu00+2*nu01*time+nu11*time^2+tau+vsigma*exp(2*delta1*time))) 
 
r2lr<-function(mod1,mod0=NULL) { 
 if(is.null(mod0)&is(mod1,"lm")) { 
 mod0<-update(mod1,.~1) 
 }  
 if(is.null(mod0)&is(mod1,"merMod")) { 
 mod0<-lm(update(formula(mod1),.~1),data=mod1@frame) 
 }  
 if(is.null(mod0)&is(mod1,"lme")) { 
 mod0<-lm(update.formula(formula(mod1),.~1),data=mod1$data)  
 } 
 out<-1 - exp(-2/nobs(mod1) * (as.vector(logLik(mod1, REML = FALSE)) -   
  
    as.vector(logLik(mod0, REML = FALSE)))) 
 return(r2lr=out) 
} 
 
r2lr(m1) 
r2lr(m2) 
r2lr(m3) 
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r2lr(m4) 

 
Appendix B: Power Simulation Code for the Consensus Emergence Model. 

Note: Depending on the nature of the computer, running the full simulation may take up to 

several weeks. We recommend doing a test run with a small number of simulation runs before 

starting the full simulation 

 
library(nlme) 
# simulates a dataset with consensus emergence and fits a CEM to it 
# function determines power of log-likelihood ratio test for delta1  
simem <- function(l3n,l2n,l1n, 
     gamma000,gamma100, 
     nu00,nu11,nu01,tau,vsigma, 
     delta1,tscale=NULL){ 
 if (is.null(tscale)) { tscale=l1n } 
 dat=expand.grid(time = 0:(l1n-1)/((l1n-1)/(tscale-1)), 
  member = 1:l2n,unit = 1:l3n)  
 u <- MASS::mvrnorm(l3n, c(0,0), matrix( c(nu00,nu01,nu01,nu11), 2) ) 
 dat$u1<-u[,1][dat[,3]] 
 dat$u2<-u[,2][dat[,3]] 
 dat$r<-rep(rnorm(l2n*l3n,0,sd=sqrt(tau)),each=l1n) 
 dat$e<-rnorm(l1n*l2n*l3n,0,sd=sqrt(vsigma*exp(2*delta1*dat$time))) 
 dat$y<-(gamma000+gamma100*dat$time+dat$u1+dat$u2*dat$time+dat$r+dat$e) 
 m1<-try(lme(y ~ time, random = list(unit=pdSymm(~time), 
  member=pdIdent(~1)),data=dat, 
  control=lmeControl(maxIter=15000,msMaxIter=15000)))   
 m2<-try(update(m1,weights=varExp( form = ~ time))) 
 if((inherits(m1, 'try-error')==F)&&(inherits(m2, 'try-error')==F)) { 
  evsigma<-as.numeric(VarCorr(m2)[6,1]) 
  etau<-as.numeric(VarCorr(m2)[5,1]) 
  enu00<-as.numeric(VarCorr(m2)[2,1]) 
  enu11<-as.numeric(VarCorr(m2)[3,1]) 
  enu01<-as.numeric(VarCorr(m2)[3,3])*( 
   as.numeric(VarCorr(m2)[2,2])*as.numeric(VarCorr(m2)[3,2])) 
  edelta1<-m2$modelStruct$varStruct 
  out<-c(anova(m1,m2)[2,9],fixef(m2),enu00,enu11,enu01, 
     etau,evsigma,edelta1) 
 } else {  out<-rep(NA,9) } 
 return(out) 
} 
 
# illustrative use of simempred for a single situation  
set.seed(123) 
REPS=3 # test purposes only 
#REPS=1000 # uncomment for actual simulation  
system.time(simresults<-sapply(1:REPS, function(i,...) { 
   set.seed(123+i); simem(l3n=30,l2n=3,l1n=10,  
   gamma000=3,gamma100=0.01, 
   nu00=0.05,nu11=0.005,nu01=-0.005,tau=0.10,vsigma=.20, 
   delta1=-0.15,tscale=3)})) 
mean(simresults[1,] < 0.05 ,na.rm=T) 
 
 
# full simulation  
sdat<-data.frame( 
 l3n = rep(c(30,60,100,200,15,30,50,100,15,30,50,100,3,6,10,20),4),   
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 l2n = rep(rep(c(5,10,3,10),each=4),4),  
 l1n = rep(rep(c(3,3,10,15),each=4),4),  
 delta1 = rep(c(-0.25,-0.15,-0.08,0),each=16), 
 tn=NA,power=NA,nran=NA,gamma000=NA,gamma100=NA, 
   nu00=NA,nu11=NA,nu01=NA,tau=NA, 
   vsigma=NA,edelta1=NA) 
sdat$tn<-sdat$l3n*sdat$l2n*sdat$l1n 
 
library(parallel) 
no_cores <- detectCores() - 1  # get the number of cores 
no_cores 
 
runrows<-1:nrow(sdat) # which conditions 
REPS = 10000 # simulation runs  
path1<-"C:\\mydata\\test1.RData" # where to save the workspace  
 
cl<-makeCluster(no_cores)  
clusterExport(cl,ls())  
clusterEvalQ(cl, library("nlme"))  
system.time( 
out<-parSapply(cl,runrows, function(i,...) { 
 set.seed(123+i);  
 simresults<-sapply(1:REPS, function(j,...) { 
  simem(sdat[i,]$l3n, 
  sdat[i,]$l2n,sdat[i,]$l1n, 
  gamma000=3,gamma100=0.01, 
  nu00=0.05,nu11=0.005,nu01=-0.005,tau=0.10,vsigma=.20, 
  sdat[i,]$delta1,tscale=3)}) 
 return(c(mean(simresults[1,] < 0.05 ,na.rm=T), 
  table(is.na(simresults[1,]))[1], 
  rowMeans(simresults,na.rm=T)[2:9])) 
 })  
) 
stopCluster(cl) 
sdat1<-sdat 
sdat1[runrows,6:15]<-t(out) 
sdat1[runrows,] 
 
saveRDS(path1) 

 

Appendix C: Power Simulation Code for the Consensus Emergence Model With a Predictor 

library(nlme) 
 
# simulates a dataset with consensus emergence that is explained  
# by a predictor and fits a CEM to it 
# function determines power of logliklihood ratio test for delta3 
simempred <- function(l3n,l2n,l1n, 
     gamma000,gamma100,gamma010,gamma110, 
     nu00,nu11,nu01,tau,vsigma, 
     delta1,delta2,delta3,tscale=NULL){ 
 if (is.null(tscale)) { tscale=l1n } 
 dat=expand.grid(time = 0:(l1n-1)/((l1n-1)/(tscale-1)), 
  member = 1:l2n,unit = 1:l3n)  
 u <- MASS::mvrnorm(l3n, c(0,0), matrix( c(nu00,nu01,nu01,nu11), 2) ) 
 dat$u1<-u[,1][dat[,3]] 
 dat$u2<-u[,2][dat[,3]] 
 dat$pred<-rep(rnorm(l3n),each=l1n*l2n) 
 dat$r<-rep(rnorm(l2n*l3n,0,sd=sqrt(tau)),each=l1n) 
 dat$e<-rnorm(l1n*l2n*l3n,0,sd=sqrt(vsigma* 
    exp(2*delta1*dat$time)*exp(2*delta2*dat$pred)* 
    exp(2*delta3*(-1)*dat$time*dat$pred))) 
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 dat$y<-(gamma000+gamma100*dat$time+gamma010*dat$pred+ 
   
 gamma110*dat$time*dat$pred+dat$u1+dat$u2*dat$time+dat$r+dat$e) 
 m1<-try(lme(y ~ time*pred, random = list(unit=pdSymm(~time), 
  member=pdIdent(~1)),data=dat, 
  control=lmeControl(maxIter=15000,msMaxIter=15000), 
  weights=varComb(varExp( form = ~ time),varExp( form = ~ pred))))   
 m2<-try(update(m1,weights=varComb(varExp( form = ~ time), 
   varExp( form = ~ pred),varExp( form = ~ pred*time)))) 
 if((inherits(m1, 'try-error')==F)&&(inherits(m2, 'try-error')==F)) { 
  evsigma<-as.numeric(VarCorr(m2)[6,1]) 
  etau<-as.numeric(VarCorr(m2)[5,1]) 
  enu00<-as.numeric(VarCorr(m2)[2,1]) 
  enu11<-as.numeric(VarCorr(m2)[3,1]) 
  enu01<-as.numeric(VarCorr(m2)[3,3])*( 
    
 as.numeric(VarCorr(m2)[2,2])*as.numeric(VarCorr(m2)[3,2])) 
  edelta1<-m2$modelStruct$varStruct$A 
  edelta2<-m2$modelStruct$varStruct$B 
  edelta3<-m2$modelStruct$varStruct$C 
  out<-c(anova(m1,m2)[2,9],fixef(m2),enu00,enu11,enu01, 
     etau,evsigma,edelta1,edelta2,edelta3) 
 } else {  out<-rep(NA,13) } 
 return(out) 
} 
 
#illustrative use of simempred for a single situation 
set.seed(321) 
REPS=3 # test purposes only 
#REPS=1000 # uncomment for actual simulation  
system.time(simresults2<-sapply(1:REPS, function(i,...) { 
   set.seed(321+i); simempred(l3n=30,l2n=3,l1n=10,  
   gamma000=3,gamma100=0.01,gamma010=0.01,gamma110=0.01, 
   nu00=0.05,nu11=0.005,nu01=-0.005,tau=0.10,vsigma=.20, 
   delta1=-0.15,delta2=-0.15,delta3=-0.15,tscale=3)})) 
mean(simresults2[1,] < 0.05 ,na.rm=T) 
 
# full simulation  
sdat<-data.frame( 
 l3n = rep(c(30,60,100,200,15,30,50,100,15,30,50,100,3,6,10,20),4),   
 l2n = rep(rep(c(5,10,3,10),each=4),4),  
 l1n = rep(rep(c(3,3,10,15),each=4),4),  
 delta1 = rep(c(-0.25,-0.15,-0.08,0),each=16), 
 delta2 = rep(c(-0.25,-0.15,-0.08,0),each=16), 
 delta3 = rep(c(-0.25,-0.15,-0.08,0),each=16), 
 tn=NA,power=NA,nran=NA,gamma000=NA,gamma100=NA,gamma010=NA,gamma110=NA, 
   nu00=NA,nu11=NA,nu01=NA,tau=NA, 
   vsigma=NA,edelta1=NA,edelta2=NA,edelta3=NA) 
sdat$tn<-sdat$l3n*sdat$l2n*sdat$l1n 
 
library(parallel) 
no_cores <- detectCores() - 1  # get the number of cores 
no_cores 
 
runrows<-1:nrow(sdat) # which conditions 
REPS = 10000 # simulation runs  
path2<-"C:\\mydata\\test2.RData" # where to save the workspace  
 
cl<-makeCluster(no_cores)  
clusterExport(cl,ls())  
clusterEvalQ(cl, library("nlme"))  
system.time( 
out<-parSapply(cl,runrows, function(i,...) { 
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 set.seed(321+i);  
 simresults<-sapply(1:REPS, function(j,...) { 
  simempred(sdat[i,]$l3n, 
   sdat[i,]$l2n,sdat[i,]$l1n, 
   gamma000=3,gamma100=0.01,gamma010=0.01,gamma110=0.01, 
   nu00=0.05,nu11=0.005,nu01=-0.005,tau=0.10,vsigma=0.20, 
   sdat[i,]$delta1,sdat[i,]$delta2,sdat[i,]$delta3, 
   tscale=3)}) 
 return(c(mean(simresults[1,] < 0.05 ,na.rm=T), 
  table(is.na(simresults[1,]))[1], 
  rowMeans(simresults,na.rm=T)[2:13])) 
 })  
) 
stopCluster(cl) 
sdat2<-sdat 
sdat2[runrows,8:21]<-t(out) 
sdat2[runrows,] 
 
saveRDS(path2) 
 


