
Ontology-Based Model Abstraction
Giancarlo Guizzardi∗, Guylerme Figueiredo†, Maria M. Hedblom∗ and Geert Poels‡

∗Conceptual and Cognitive Modeling Research Group (CORE), Free University of Bozen-Bolzano, Bolzano, Italy
†Ontology and Conceptual Modeling Research Group (NEMO), Federal University of Espírito Santo, Vitoria, Brazil

‡Faculty of Applied Economics, Ghent University, Belgium
gguizzardi@unibz.it, gvsfigueiredo@inf.ufes.br, mhedblom@unibz.it, geert.poels@ugent.be

Abstract—In recent years, there has been a growth in the use
of reference conceptual models to capture information about
complex and critical domains. However, as the complexity of
domain increases, so does the size and complexity of the models
that represent them. Over the years, different techniques for
complexity management in large conceptual models have been
developed. In particular, several authors have proposed different
techniques for model abstraction. In this paper, we leverage on the
ontologically well-founded semantics of the modeling language
OntoUML to propose a novel approach for model abstraction
in conceptual models. We provide a precise definition for a
set of Graph-Rewriting rules that can automatically produce
much-reduced versions of OntoUML models that concentrate the
models’ information content around the ontologically essential
types in that domain, i.e., the so-called Kinds. The approach has
been implemented using a model-based editor and tested over a
repository of OntoUML models.

Index Terms—Model Abstraction, Complexity Management in
Conceptual Modeling, Ontology-Based Conceptual Modeling

I. INTRODUCTION

In recent years, there has been a growth in the use of refer-
ence conceptual models to capture information about complex
and critical domains. These models play a fundamental role
in different types of critical semantic interoperability tasks.
Therefore, it is essential that domain experts are able to
understand the subtleties of their content and reason with
them. In other words, it is important that conceptual models
remain cognitively tractable. However, as complexity of the
information about the represented domain grows, so does the
size and complexity of the artifacts that represent them.

Over the years, different techniques for complexity man-
agement in large conceptual models have been developed.
In particular, a number of authors have proposed different
techniques for model abstraction. These techniques aim at
systematically producing reduced versions of the original
conceptual models omitting details while concentrating on the
gist of the semantic content at hand. However, since basically
all traditional techniques have been produced for ontologically
neutral conceptual modeling languages (e.g., ER, UML), they
are constrained to rely solely on syntactical properties of the
models and, more specifically, on topological properties of the
graph. This happens because these languages treat all types as
being the same, semantically overloading one single construct
(e.g., Class or Entity Type) by using it to represent different
types of ontological categories.

In contrast, ontology-driven conceptual modeling (ODCM)
languages are systematically designed to conform to an un-

derlying ontological theory. In particular, an ODCM language
contains exactly the modeling primitives that are necessary to
represent the ontological distinctions put forth by its underly-
ing ontology. For example, as different ontological categories
of types (e.g., Kinds, Mixins, Roles) play different roles with
respect to their instances regarding issues such as classification
(e.g., dynamic versus static) and identity, these distinctions
should be explicitly represented by the language’s constructs.

ODCM approaches have enjoyed an increasing adoption by
the Conceptual Modeling community as a number of indepen-
dent results consistently show their benefits for improving the
quality of conceptual models [3], [21], [28]. An example of an
ODCM language is OntoUML [12]. It has been successfully
employed in academic, industrial and governmental settings
to create conceptual models in a number of different domains,
including Geology, Biodiversity Management, Organ Dona-
tion, Petroleum Reservoir Modeling, Disaster Management,
Context Modeling, Datawarehousing, Enterprise Architecture,
Data Provenance, Measurement, Logistics, Complex Media
Management, Telecommunications, Heart Electrophysiology,
among many others [14]. In fact, research shows that it
is among the most used ODCM languages in the literature
[27]. Moreover, empirical evidence shows that OntoUML
significantly contributes to improving the quality of conceptual
models without requiring an additional effort to produce
them. For instance, the work of [28] reports on a modeling
experiment conducted with 100 participants in two countries
showing the advantages (in these respects) of OntoUML when
compared to a classical conceptual modeling language (EER).

In this paper, we leverage on the ontologically well-founded
semantics of OntoUML to propose an approach for model
abstraction in conceptual models. We provide a precise defini-
tion for a set of Graph-Rewriting rules that can automatically
produce much-reduced versions of OntoUML models. These
reduced models concentrate the models’ information content
around the ontologically essential types in that domain, i.e.,
the so-called Kinds. The approach has been implemented using
a model-based editor and tested over a varied set of OntoUML
models.

The remainder of the paper is organized as follow. Section
II discusses related work in the area of complexity manage-
ment of conceptual models; Section III briefly presents the On-
toUML language and its ontological foundations; Section IV
presents the main contribution of this paper by defining a set
of Graph-Rewriting abstraction rules; Section V presents a



plug-in to a model-based editor that implements the proposed
abstraction rules. The implementation of this plug-in itself
counts as a first validation of the approach (claim to practical
realizability). However, in that same section, we also report
on a study conducted with a varied set of OntoUML models
to assess both the proposed rule set and its implementation;
Section VI systematically compares the results presented here
with relevant related work; Finally, Section VII concludes the
paper with some final considerations.

II. COMPLEXITY MANAGEMENT OF CONCEPTUAL
MODELS

The discipline of complexity management of large concep-
tual models (henceforth CM-CM) has been around for quite
some time and has been represented in the literature by a series
of different approaches and techniques. In fact, [29] claims
that “one of the most challenging and long-standing goals in
conceptual modeling... is to understand, comprehend and work
with very large conceptual schemas”.

The challenge and importance of this discipline lies in the
following. On one hand, real information systems often have
large and extremely complex conceptual models [29]. On the
other hand, this complexity poses a serious additional chal-
lenge in the comprehension and, consequent, quality assurance
of these models. For example, [22] reports on an empirical
study conducted with a large and professionally constructed
conceptual model.1 In that study, the authors managed to
show that the model contained 879 occurrences of error-prone
structures (anti-patterns), 52.56% of which really introduced
representation errors according to the creators of the model. A
more dramatic case (both in size and percentage of occurrences
of anti-patterns) is reported in [4], in which the authors show a
case of an anti-pattern present in 85% of the relevant relations
in Wikidata.

According to [29], the methods for CM-CM can be clas-
sified in three areas, namely, Clustering Methods, Relevance
Methods, and Summarization Methods. Clustering is about
classifying the elements of a conceptual model into groups, or
clusters, according to some criteria (e.g., a similarity function);
Relevance Methods are about the application of ranking func-
tions to the elements of a model in order to obtain ordered lists
(i.e., a ranking) of model elements according to their perceived
relevance in representing the domain at hand; finally, Model
Summarization is about producing from an original model a
reduced version consisting only of the elements that are judged
to be of more relevance for representing the domain at hand.
A variation of Model Summarization is Model Abstraction,
which can be described as “a process that transforms lower-
level elements into higher-level elements containing fewer
details on a larger granularity” [7]. The idea here is to allow
for the possibility of “zooming out” of models in order to
provide the user with the “bigger picture” of the domain at
hand, allowing her to focus on the gist of the model by

1This model consisted of 3800 classes, 61 datatypes, 1918 associations,
3616 subtyping relations, 698 generalization sets and 865 attributes, i.e.,
navigable association ends [22].

filtering out specific details [7]. In clustering methods, the
goal is to break down a model in fragments such that the
sum of these fragments should be informationally equivalent
to the whole (i.e., to the original model). In contrast, relevance
and summarization methods (including model abstraction) aim
to produce partial views of the original model at hand. In
other words, while clustering methods have lossless model
transformations, the latter classes of methods are based on
lossy transformations.

Given the purpose of this paper, we henceforth focus our
discussion in this class of lossy methods and, in particu-
lar, in summarization/abstraction methods. First, however, we
elaborate on a drawback that is common to the majority
of existing methods in all these classes. Namely, as nearly
all these methods are based on classic conceptual modeling
notations (e.g., UML, ER) [29], they are constrained to rely
almost exclusively on syntactic (mainly topological) properties
of the addressed models. These properties include closeness
(a quantitative evaluation of the links among elements in the
model) [10], hierarchical distance (length of the shortest rela-
tionship path between entities), structural-connective distance
(elements are considered closer if they are neighbors in a
hierarchy mereological or subtyping structure), or category
distance (elements are considered to be closer if one subtypes
the other) [1]. For example, [5] proposes a (relevance) method
based on the assumption that the number of attributes and
relations characterizing an element in a model can be used
as a (heuristic) measure of its relevance for that model. In
the same spirit, [25], [26] go as far as proposing PageRank-
style algorithms to infer the relevance of elements in entity-
relationship diagrams and RDF schemas (even ignoring the
difference between association and subtyping relations). The
problem with relying solely on these properties is that there is
no guarantee that a model element satisfying some topological
requirement (e.g., a node with more edges connected to it)
by necessity represents the model’s most important concepts.
This is related to the work by [18], [19], that while criticizing
existing CM-CM methods, referred to it as lack of cognitive
justification.

One of the main approaches for Model Abstraction in the
literature is the one proposed by Egyed in [6]–[8]. It is a tool-
supported approach that provides conceptual model designers
with the ability to ‘zoom out’ from a model to investigate
and reason about its bigger picture. Like in our case, the
proposed approach is based on a set of pattern detection
and replacement rules. The approach is built around a classic
conceptual modeling technique (UML) and, hence, it heavily
relies on structural (topological) properties of the diagram.
As a consequence, it is subject to some extent to all the
aforementioned drawbacks. In fairness, the author makes a
significant effort in defining structural patterns that reflect the
intuitive semantics of UML class diagrams, for instances, re-
garding transitivity of dependence, method calling, inheritance
and propagation from parts to wholes. However, the whole
approach has a strong focus of the use of these diagrams
from the point of view of Object-Oriented Programming and,



hence, many fundamental conceptual modeling primitives are
simply ignored. These include not only modal aspects of
class instantiation, existential dependence relations, but also
more basic aspects such as generalization sets and association
classes (or reified associations).

In contrast with all the aforementioned approaches, our
proposal in this paper focuses mainly on the ontological
semantics [12] of the elements represented in a conceptual
model. In particular, it produces an abstraction of an original
model by representing a summarized version of the domain
information around the backbone of the ontological kinds of
entities represented therein. As supported by a significant body
of evidence in cognitive psychology [17], [31], [32], these
kinds (also termed substance sortals) represent the most salient
category of types in human cognition, being responsible for
our most basic operations of object individuation and identity.

The approach presented here (and detailed in section IV)
is only made possible because it is based on a non-classical
CM language, namely, the ODCM language OntoUML (briefly
presented in section III). There are two CM-CM methods in
the literature that are based on the same language, namely,
the approaches of [9] and [15], [16]. However, none of these
are methods of model abstraction. The former proposes a
method for model clustering by viewpoint extraction. The
idea is to divide the model into a number of clusters, each
of which represents a well-founded ontological viewpoint. As
a clustering method, the approach produces a set of clusters
whose sums are informationally equivalent to the original
model (lossless transformation). The latter approach, although
also being about view extraction, can be considered as a
summarization method, since it produces partial versions of
the original model (lossy transformation). It is, nonetheless,
not a method of model abstraction. The idea there is that, given
a set of entities from the original model provided by the model
user, the method produces a subset of that model containing
the elements that are more relevant for the context of the
selected entities. One important point is that the notion of
relevance there is not a syntactic but an ontological one, related
to notions such as conservation of identity, of existential
dependence, of parthood, etc. In any case, different from our
proposal, the approach achieves summarization by presenting
a model that is identical to a proper part of the original model,
not by producing a global view of the entire model in a much
higher level of abstraction.

III. A BRIEF INTRODUCTION TO UFO AND ONTOUML

OntoUML is a language whose meta-model has been de-
signed to comply with the ontological distinctions and axiom-
atization of a theoretically well-grounded foundational ontol-
ogy named UFO (Unified Foundational Ontology) [12], [14].
UFO is an axiomatic formal theory based on contributions
from Formal Ontology in Philosophy, Philosophical Logics,
Cognitive Psychology, and Linguistics. A recent study shows
that UFO is the second-most used foundational ontology in
conceptual modeling and the one with the fastest adoption
rate [27]. In the remainder of this section, we briefly explain

a selected subset of the ontological distinctions put forth by
the Unified Foundational Ontology (UFO). We also show how
these distinctions are represented by the modeling primitives of
OntoUML. In order to do that, we rely on the running example
depicted in fig. 1. For an in-depth discussion, philosophical
justifications, formal characterization and empirical support for
these categories one should refer to [11], [12].

Take a domain in reality restricted to endurants [12] (as
opposed to events or occurrents). Central to this domain
we will have a number of object Kinds, i.e., the genuine
fundamental types of objects that exist in this domain. The
term “kind” is meant here in a strong technical sense, i.e., by
a kind, we mean a type capturing essential properties of the
things it classifies. In other words, the objects classified by that
kind could not possibly exist without being of that specific
kind. In fig. 1, we have represented three kinds, namely,
‘Person’,‘Car’ and ‘Organization’. These are the fundamental
kinds of entities that are deemed to exist in the domain.

Kinds tessellate the possible space of objects in that domain,
i.e., all objects belong necessarily to exactly one kind. How-
ever, we can have other static subdivisions (or subtypes) of a
kind. These are naturally termed Subkinds. As an example, the
kind ‘Person’ can be specialized in the subkinds ‘Man’ and
‘Woman’; the kind ‘Organization’ also be specialized in sub-
kinds, e.g., ‘Car Agency’ is a static subkind of Organization
(fig. 1).

Object kinds and subkinds represent essential properties of
objects (they are also termed rigid or static types [12]). We
have, however, types that represent contingent or accidental
properties of objects (termed anti-rigid types [12]). These in-
clude Phases and Roles. The difference between the contingent
properties represented by a phase and a role is the following:
phases represent properties that are intrinsic to entities; roles,
in contrast, represent properties that entities have in a relational
context, i.e., contingent relational properties.

Phases but also typically subkinds appear in OntoUML
models forming (disjoint and complete, i.e., exhaustive) par-
titions following a Dividing Principle [30]. For example,
in fig. 1, we have the following phase partitions: the one
including ‘Living Person’ and ‘Deceased Person’ (as phases
of ‘Person’ and according to a ‘life status’ dividing principle);
the one including ‘Child’, ‘Teenager’ and ‘Adult’ (as phases of
‘Living Person’ and according to a ‘developmental phase’); the
one including ‘Available Car’ and ‘Under Maintenance Car’(as
phases of ‘Car’ and according to a ‘operational status’).
Since they are exclusively composed of phases, these are all
dynamic partitions [30]. In this model, we also have a (static)
subkind partition formed by the subkinds ‘Man’ and ‘Woman’,
dividing ‘Person’ according to ‘gender’.

Kinds, Subkinds, Phases, and Roles are categories of object
Sortals. In the philosophical literature, a sortal is a type
that provides a uniform principle of identity, persistence, and
individuation for its instances [12]. To put it simply, a sortal
is either a kind (e.g., ‘Person’) or a specialization of a kind
(e.g., ‘Husband’, ‘Teenager’, ‘Woman’), i.e., it is either a
type representing the essence of what things are or a sub-



Fig. 1. An Example of an OntoUML Model.

classification applied to the entities that “have that same type
of essence”.

Relators (or relationships in a particular technical sense
[11]) represent clusters of relational properties that “hang
together” by a nexus. Moreover, relators (e.g.,‘enrollments’,
‘employments’, ‘presidential mandates’, ‘citizenships’, but
also ‘marriages’, ‘Car Rentals’, and ‘Ownerships’ (fig. 1)) are
full-fledged Endurants. In other words, entities that endure
in time bearing their own essential and accidental properties
and, hence, first-class entities that can change in a qualitative
manner while maintaining their identity. As discussed in
depth in [11], [12], relators are fundamental for addressing
a number of problems in conceptual modeling, ranging from
ambiguity of cardinality constraints, to ambiguity in relation
specialization, to transitivity of part-whole relations.

As discussed in depth in [11], relators are the truthmakers
of relational propositions, and relations (as classes of n-tuples)
can be completely derived from relators [12]. For instance, it
is the ‘marriage’ (as a complex relator composed of mutual
commitments and claims) between ‘John’ and ‘Mary’ that
makes true the proposition that “John is the husband of Mary”.
In other words, the pair <John,Mary> is an instance of the
relation ‘married-with’ because there is a particular instance
of the relation ‘Marriage’ connecting John and Mary (fig. 1). In
OntoUML, the relation of derivation, connecting relations to
the relator types from which they are derived is represented by
a dashed line with a black circle in the relator type association
end (fig. 1). Technically, Relators bind their relata because
they are existentially dependent entities (e.g., the marriage

between John and Mary can only exist if John and Mary exist).
The formal connection between Relators and their relata is
made by the so-called mediation relations, a particular type of
existential dependence relation [12].

Objects participate in relationships (relators) playing certain
Roles. For instance, people play the role of spouse in a
marriage relationship; a person plays the role of president in a
presidential mandate. ‘Spouse’ and ‘President’ (but also typi-
cally ‘Student’, ‘Teacher’, ‘Pet’, ‘Rented Car’2) are examples
of what we technically term a role in UFO, i.e., a relational
contingent sortal (since these roles can only be played by
entities of a unique given kind). There are, however, relational
and contingent role-like types that can be played by entities
of multiple kinds. An example is the role ‘Customer’ (which
can be played by both people and organizations). We call
these role-like types that classify entities of multiple kinds
RoleMixins.

In general, types that represent properties shared by entities
of multiple kinds are termed Non-Sortals. In UFO, besides
rolemixins, we have two other types of non-sortals, namely
Categories and Mixins. Categories represent necessary prop-
erties that are shared by entities of multiple kinds (e.g., the
category ‘Physical Object’ represent properties of all kinds of
entities that have masses, spatial extensions, etc.). In contrast,

2In order to illustrate different combinations of cardinality constraints, in
fig.1, we assume here that a RentedCar can be related to several rentals
provided that they do not overlap in time, hence, the cardinality ‘1..*’ on
the side of Car Rental as well as the corresponding cardinality constraints on
the derived ‘rents’ relation.



mixins represent shared properties that are necessary to some
of its instances but accidental to others. For example, in fig. 1,
we have the mixin ‘Physical Object’, since it represent prop-
erties (e.g., having a ‘Weight’) that are necessary to ‘Cars’,
while being accidental to instances of ‘Person’ (people are
only physical objects when they instantiate the phase ‘Living
Person’). Categories and mixins are, in contrast to rolemixins,
considered as Relationally Independent Non-Sortals.

Finally, as all OntoUML models are valid UML models,
the classes in the model can also be connected (via particular
types of relations termed navigable association ends) with
datatypes. Datatypes, in UML, are classifiers that include the
so-called ‘pure values’. As discussed in [12], datatypes are
sets of abstract elements. As sets they can be defined by a
formula or by extension, in which the total membership of
that datatype is explicitly enumerated. In these cases, these
datatypes are termed enumerations. Still, in all UML models,
association ends of relations can be characterized by so-called
rolenames, which are intended to represent the way an instance
of a type (connected to that association end) participates in that
relation. Examples of enumerations and rolenames are shown
later in this article.

IV. ABSTRACTION RULES

In this section, we present a set of graph-rewriting rules.3

As a system of graph-rewriting, the approach replaces frag-
ments of the original model by reduced fragments that, while
filtering out details, maintain essential information. In particu-
lar, these rules and their specific order of application (from R1
to R4) have been designed according to the following rationale.

As previously explained, in ODCMs, we have that:
1) objects take a precedence over relators, given that the

latter are existentially dependent on the former. So,
in the reduced model, we focus on the representation
of objects as well as the relations derived from these
relators without representing the latter explicitly. In other
words, instead of explicitly representing the relators that
are truthmakers of certain relational properties involving
objects, we simply represent these derived properties. R1
was designed to address this abstraction step and should
be the first to be applied to a model;

2) the most important object types in an ODCM are the
Kinds of entities that exist in that domain, i.e., the rigid
identity-supplying types. Once relator types have been
abstracted from a model (R1), the goal is to distribute
the information in a such a way that it ends up being
concentrated around the kinds represented in the model.
We do that by: firstly, taking all properties of Non-Sortal
types and moving it downwards towards the sortals in
the model. These non-sortals are then abstracted away
in the resulting fragment (R2); secondly, we move all

3Due to lack of space for this article, we present these rules without
employing a specific formal language. In an extension of this paper, we
shall present their formalization using the same tools we used for formalizing
OntoUML as a Pattern Grammar [33].

properties of sortals that are not kinds upwards towards
the kinds in the model. These (non-kind) sortals are
then abstracted away in the resulting fragment (R3);
finally, for all subkind and phase partitions, after moving
their properties upwards according to (R3), we abstract
from these partitions by representing their concrete leaf
types in enumeration datatypes (R4). As a result of the
application of these rules, the final abstracted model
should only contain Kinds and Enumerations, hence,
making redundant the use there of the stereotype «kind».

Each of these four rules (R1-R4) occupy a row in Table I.
Once more, following the aforementioned rationale, the rules
should be applied in this specific order. For each of these rules,
whenever a graph structure satisfying the pattern in column
Matching Graph is found in an OntoUML model, that portion
of the model is replaced by the corresponding structure in
column Replacing Graph. In the remainder of this section, we
elaborate on each of these rules by relying on our running
example of fig. 1.

A. Abstracting Relators (R1)

As previously discussed, relators are fundamental in OD-
CMs. For instance, by representing the cardinality constraints
c1..cn, d1..dn, a1..an and b1..bn in table I, we can eliminate
instances of the so-called single-tuple/multiple-tuple cardinal-
ity ambiguity problem [12] in the model; by representing
the the cardinality constraints e1..en and f1..fn, we can
eliminate occurrences of the repeatable instances anti-pattern
as discussed in [22]. However, in order to compress our model,
and following the previously discussed rationale, we abstract
from this relator pattern by replacing each of its occurrences
with a structure in which only the derived relations are shown.
For example, in the model in fig. 1, there are three occurrences
of this pattern (highlighted by oval shadows). By applying
R1 to that model, we obtain the model in fig. 2. Hence, for
example, instead of having represented there the full relator
pattern connecting ‘Marriage’ to ‘Husband’ and ‘Wife’ (as
well as the corresponding full set of cardinality constraints and
the derivation relation), this pattern is replaced by the graph
structure that only represents the ‘married-with’ and associate
roles and cardinality constraints (see the oval marked as R1*
in fig. 2).

B. Abstracting Non-Sortals (R2)

As discussed in [12], Non-Sortals capture properties that are
shared by individuals of different kinds. As discussed there,
they play a significant role in model refactoring. However, for
the sake of model compression, R2 reverses this refactoring
operation by replicating the information represented in non-
sortal types in its concrete concrete sortal subtypes. This rule
serves as an intermediate step for the application of rule R3.
In summary, as shown by the rewriting scheme of row 2 in
table I, this rule consists of:

1) Abstracting from all Non-Sortal types in the diagram;
2) Replicating all properties of these Non-Sortal in the

concrete sortal types that specialize them.



TABLE I
GRAPH-REWRITING RULES FOR ONTOUML MODEL ABSTRACTION

Rule Matching Graph Replacing Graph

R1

R2

R3

R4

More precisely, as demonstrated table I, given a pattern in
which we have zero or more occurrences (symbolized there
as ‘*’) of a relation R’ connecting a non-sortal type NS to
another Endurant type T’ (or to a datatype D’), we replace this
pattern by a structure in which a copy of each R’ is created
connecting each Endurant Type ST’ (direct specializing NS)
to T’ (or D’). The original non-sortal NS is represented in the
replacing structure as a rolename connected to the association
end attached to each ST’. Although it is true that every T’ or
D’ must associate with at least x1 instances of NS, for each of
the specific subtypes ST’, it is not the case that T’ or D’ must
associate with their instances. For this reason, the cardinality
constraint x1 in the original pattern is relaxed to an optional
cardinality constraint (i.e., 0..xn).

For example, in the model of fig. 2, we have two occurrences
of this pattern (highlighted by oval shadows tagged R2). By
applying R2 to that model, we obtain the model of fig. 3.
So, for example, in fig. 3, the property of having a ‘weight’

(R’ above) connects ‘Physical Object’ (NS) to the datatype
‘Weight’(D’ above). This property is then now replicated in the
specific concrete types of physical objects, namely, instances
of ‘Living Person’ (ST1) and ‘Car’ (ST2) (see oval marked
as R2* in fig. 3). Moreover, the rolename ‘Physical Object’
is attached to the association end connected to each of these
sortal types.4 Finally, the minimum cardinality constraint for
each of these association ends are relaxed to zero. After all,
given a particular weight, it is neither necessarily associated
with a ‘Living Person’ nor with a ‘Car’.

C. Abstracting Sortals (R3)

From an ontological point of view, the most important types
of any given domain are the so-called Kinds (also called
Substance Sortals), given that: these are types that provide
a principle for identity, individuation and persistence for their

4This represents that it is qua-physical-object that cars and living people
have weights.



Fig. 2. Model produced as a result of the application of R1 on the model in fig. 1.

Fig. 3. Model produced as a result of the application of R2 on the model in fig. 2.

instances; they classify their instances necessarily, i.e., in all
possible situations (in a modal sense) [12]. As previously
discussed, the objective of the R3 is to (through one or more
iterative application of this rule) abstract from all other sortals
in a model (i.e., subkinds, phases and roles), concentrating the
information about the domain around these kinds.

In summary, as shown by the rewriting scheme of row 3 in
table I, this rule consists of:

1) Eliminating all non-substance sortal types from the
diagram;

2) Moving the properties of these non-substance sortal
types to their sortal supertype, until these properties are
eventually used to characterize the kinds in the model.

More precisely, as demonstrated in table I, given a pattern
in which we have zero or more occurrences (symbolized there
as ‘*’) of a relation R’ connecting a sortal type ST to another
Endurant type T’ (or to a datatype D’), we replace this pattern
by a structure in which a copy of each R’ is created connecting
each sortal type ST’ (direct supertyping ST) to T’ (or D’). The
original sortal ST is represented in the replacing structure as



Fig. 4. Model resulting from the application of R3 on the model in fig. 3.

a rolename connected to the association end attached to each
ST’. Although it is true that instances of ST must be associated
with at least y1 instances of T’ (or D’), it is not the case that
instances of ST’ in general must satisfy the same constraint.
For this reason, the cardinality constraint y1 in the original
pattern is relaxed to an optional cardinality constraint (i.e.,
0..yn).

For example, in the model of fig. 3, we have initially three
occurrences of this pattern. By applying R3 to that model,
we obtain the model of fig. 4. So, for example, in fig. 3,
the relation ‘rents’ (R’ above) connects the sortal ‘Personal
Customer’ - a role played by an ‘Adult Living Person’ when
renting a car (ST1) - to another sortal ‘Rental Car’ - a
role played by an ’Available Car’ when being rented by a
customer (ST2). Due to the application of R3, this relation
is then now moved to connect a more abstract supertype
of ‘Personal Customer’ (‘Adult’ - ST ′

1) and a more abstract
supertype of ‘Rental Car’ (‘Available Car’- ST ′

2) (see oval
marked as R3* in fig. 4). Moreover, the rolenames ‘Personal
Customer’ and ‘Rental Car’ are attached to the association
ends connected to ‘Adult’ and ‘Available Car’, respectively.5

Finally, the minimum cardinality constraint for each of these
association ends are relaxed to zero. After all, it is neither the
case that every ‘Adult’ rents at least one car nor the case that
every ‘Available Car’ must be rented. Of course, as illustrated
in R3* in fig. 4, an analogous case can be made for the
abstraction of ‘Corporate Customer’ into the supertyping sortal
‘Organization’.

D. Abstracting Subkind and Phase Partitions (R4)

As previously discussed, phases always appear in ODCMs
as parts of the so-called phase partitions. This is often the case
also with multiple subkinds of a given kind, hence, forming
subkind partitions [13]. Both these partitions define disjoint

5Again, this represents that it is qua-personal customer that an adult
person rents a car and, analogously, it is qua-rental car that an available
car participates in a renting relation with a person.

and complete generalization sets over a common supertype.
The difference between these partitions is the following. Since
phases are anti-rigid types, the phase partitions are dynamic,
i.e., the instances of a phase (e.g., ‘Child’) in a partition (e.g.,
‘developmental stage’) can always possibly (in a modal sense)
move to another phase in the same partition (e.g., ‘Adult’ or
‘Teenager’). In contrast, since subkinds are rigid, instances
of a subkind (e.g., ‘Man’) in a given subkind partition (e.g.,
‘gender’) cannot move to other subkinds in the same partition,
i.e., subkind partitions are static.

Rule 4 is designed to abstract away non-substance sortals in
these partitions by: (i) eventually mo all their propvingerties
to their unique supertyping kind (through one or more iterated
applications of this rule); (ii) represent all leaf types in these
partitions as values in a enumeration datatype eponymous to
that partition. In summary, as shown by the rewriting scheme
of row 4 in table I, this rule consists of:

1) Moving all the properties of a SortalType ST’ partici-
pating in a partition to the common sortal supertype K
in that partition;6

2) Transforming each leaf sortal type ST’ in a partition
into an item in a new enumeration datatype that has the
same name as the partition at hand. This enumeration
is then related to the common immediate supertype in
that partition (K) via a datatype relation DR (navigable
association end in (Onto)UML);

3) If a SortalType being abstract by this rule is already
related to another existing enumeration E’ then all ele-
ments of this enumeration will be included as elements
of the new enumeration E created by this rule.

More precisely, as demonstrated table I, we start with a
pattern in which we have a generalization set GS containing a
number of (all rigid or all anti-rigid) sortal types that share
a common (sortal) supertype SortalType. Then in GS we
have one or more occurrences (symbolized there as ‘+’) of
sortal types SortalTypej as well as zero or more occurrences
(symbolized there as ‘*’) of sortal types SortalTypei and
SortalTypek. We then create an enumeration datatype called
GS such that all sortal types SortalTypej and SortalTypei
appear as elements of the newly created enumeration datatype
GS. As for the sortal types SortalTypek, which are connected
to their own enumeration datatypes, a special treatment is
reserved as explained below. We also create a datatype relation
DR connecting SortalType to GS. Given that the original
generalization set is disjoint and complete, the cardinality con-
strains on the association end connected to GS via DR must be
of exactly 1 (minumum cardinality of 1 due to completeness
and maxinum cardinality of 1 due to disjointness). Iff the
original generalization set GS represents a subkind partition
then the association end connected to enumeration GS via DR

must be declared immutable (readOnly in (Onto)UML) and,
hence, its value must be the same in all possible worlds.7

6Notice that in, this sense, R4 contains a special variant of R3 for
abstracting sortals that are part of a partition.

7Following OntoUML’s grammatical rules, these sortal type partitions are
either exclusively composed of phases or of subkinds.



Moreover, suppose that in the generalization set GS we
have one or more occurrences of a sortal types SortalTypei
bearing a relation relationi to another endurant type
EndurantTypei. In this case, we replace this pattern by
a structure in which a copy of each relationi is created
connecting the common (direct) supertype SortalType in that
partition to EndurantTypei. If there are rolenames connected
to the original sortal SortalTypei, these are represented in the
replacing structure as rolenames connected to the association
end attached to SortalType. Although it is true that instances of
SortalTypei must be associated with at least y1 instances of
EndurantTypei, it is not the case that instances of SortalType
in general must satisfy the same constraint. For this reason,
the cardinality constraint y1 in the original pattern is relaxed
to an optional cardinality constraint (i.e., 0..yn).

Finally, suppose that in the generalization set GS we have
one or more occurrences of a a sortal type SortalTypek
connected by datatype relations Di to respective enumerations
DTk. In this case, we replace this pattern by a structure
in which all elements of each of these DTk are included
as elements of the newly created enumeration datatype GS
aforementioned. The SortalTypek itself is not include as an
item in the enumeration GS.

For example, in the model of fig. 4, we have three oc-
currences of this pattern. By applying R4 to that model, we
obtain the model of fig. 5. So, for example, in fig. 4, we
have the phase partition ‘developmental phase’ connecting the
phases ‘Child’ (SortalTypej1),‘Teenager’ (SortalTypej2)
and ‘Adult’ (SortalTypei) to the sortal (another phase) ’Liv-
ing Person’ (SortalType). As one can observe, in the model of
fig. 5 (see R4* in the lower part of the figure), this configura-
tion is replaced by a structure in which we have, connected to
the common supertype ‘Living Person’, an enumeration named
‘Development Phase’ that contains as members the values
‘Child’, ‘Teenager’ and ‘Adult’. Moreover, since the phase
‘Adult’ (SortalTypei) was originally connected via a ‘rents’
relation (relationi) to the type ‘Car’ (EndurantTypei) then,
in the replacing structure, the relation ‘rents’ is now connected
to the common supertype ‘Living Person’ (with the appropriate
relaxing of cardinality constraints). As one can observe, the
rolename (in this case, ‘Personal Customer’) connected to the
abstracted phase ‘Adult’ is now represented in the association
end of ‘rents’ connected to ‘Living Person’.8

In fig. 5, we also see another matching graph for the
application of R4. In this case, we can apply once more
R4 over the ‘life status’ generalization set (phase partition).
The result of this is depicted in fig. 6. As one can ob-
serve in this figure, a new generalization set termed ‘Life
Status’ is produced including items representing the phase
’Deceased Person’ but also all the items that are members
of the enumeration ‘Developmental Phase’. Following the
aforementioned rules, the latter enumeration is absorbed in the
former. Moreover, following the same rules, the phase ‘Living

8After all, it is as personal customers that living people participate in car
renting relations.

Fig. 5. Model resulting from the application of R4 on the model in fig. 4.

Fig. 6. Model resulting from the application of R4 on the model in fig. 5.

Person’ is not included in this latter enumeration. Finally, since
‘Living Person’ participates as a ‘Personal Customer’ in the
relation ‘rents’ with ‘Car’, in the fig. 6, this relation (with its
corresponding rolenames and relaxed cardinality constraints)
is move to the kind ‘Person’ (the direct supertype of ‘Living
Person’).

The model of fig. 6 is the final result of applying our



ruleset R1-R4 to the original model of fig. 19. In such a
final model, besides enumeration and datatypes, all remaining
classes represent kinds and, hence, the annotations with the
stereotype «kind» can be omitted. Notice that the union
of these three kinds amounts to the objects that are really
considered to exist in this universe of discourse. In other
words, ‘Person’, ‘Organization’ and ‘Car’ tessellate the uni-
verse circumscribed by our conceptualization of the domain.
As such, the final model can be said to represent the essence
of this conceptualization. In fact, we argue that this model
does capture the gist of the semantics of this domain while
(in this case) achieving a compression rate of more than 70%
in relation to the original model of fig.110.

V. COMPUTATIONAL SUPPORT AND EVALUATION

In this section, we describe a tool for Ontology-Based
Model Abstraction implemented according to the graph-
rewriting rules proposed in section IV. This tool was built as a
plug-in for the Menthor Editor [20], an open-source ontology-
driven conceptual modeling platform which incorporates the
theories of the Unified Foundational Ontology (UFO). The tool
supports modeling, verification, validation, and implementa-
tion of OntoUML models.

In this plug-in, by employing the explicitly defined MOF
metamodel on which this editor is based, we have manage
to implement a set of transformations that automatically gen-
erate different abstractions of OntoUML models following
our proposed rule set. For instance, as one can observe in
fig. 7, the tool can generate model abstractions corresponding
to steps of the abstraction process, i.e., models resulting from
the application of R1 (equivalent to fig.2), R2 (equivalent to
fig.3, R3 (equivalent to fig.4) and R4 (equivalent to fig.5 and
fig.6).

We have tested the tool against a number of models from the
OntoUML model repository. These models vary in terms of
size and setting in which they were produced (i.e., whether
produced in an industrial or governmental setting, or in
an academic environment). Moreover, they cover a variety
of domains ranging from Biodiversity (OpenBio) and Heart
Electrophysiology (ECG) to Optical Networks (G.805) and
Governamental Organizations (MPOG). For a discussion about
the OntoUML model repository and these particular models,
the reader should refer to [22].

Table II reports on the result of these tests. The table
includes a column reporting on the size of the original models

9In UML, navigable association ends are semantically equivalent to at-
tributes. For this reason, this model is equivalent to a model in which
the navigable associations connecting the types (kinds) Person, Car and
Organization to the respective datatypes and enumerations are represented
as attributes of these kinds. The alternative model consists of these three
kinds occupying the center of the diagram while datatypes and enumerations
can be left as secondary notational elements represented in the border of the
diagram. This alternative visualization can, in principle, improve even further
the presentation of the abstracted model. However, it is important to highlight
that this move does not constitute a transformation, given that the models are
equivalent. We refrain from further entertaining this possibility here.

10We calculate this compression rate by comparing the sums of all classes
and relations present in the original model with the analogous sum in the
abstracted one.

Fig. 7. Screenshot of the implementation at the rule selection.

in terms of the total sum of modeling elements. It also contains
the compression rates for each of these models achieved by
applying the proposed abstraction rule set. As one can observe,
the latter range from 47,22% to 85,48%. Moreover, we also
recorded the execution time for the largest of these models,
namely, OntoBio (with 274 model elements) and for an even
larger syntactically created model (with 777 model elements).
In a MacBook Intel Core i5 2.3GHz with 4GB of RAM, the
entire rules set was executed for these models in 3.061 seconds
and 19.11 seconds, respectively.

TABLE II
TESTING THE PLUG-IN ON A DIVERSE SET OF ONTOUML MODELS

Model
#Modeling
Elements
(Original)

Compression Rate of
the Abstracted

Model

Cloud
Vulnerability 83 72,28%

ECG 49 60%
G.805 139 85,48%
MPOG 15 51,35%

Normative
Acts 64 62,14%

OpenBio 274 75,56%
Open

Provenance 34 47,22%

OpenFlow 20 70,83%
PAS 77 76 61,39%

Software
Requirements 23 59%

VI. COMPARISON TO RELATED WORK

The results presented in this paper complement the re-
search in [9] as part of a general program of Ontology-Based
Complexity Management of Large and Complex Conceptual
Models. Whilst that work addresses the problem of model
clustering by viewpoint extraction, here we focus on model
abstraction, i.e., on a particular type of model summarization.
In that sense, the approaches in the literature that are more



similar to the one presented here are the ones of Lozano et al.
[15], [16] and Egyed [6], [7].

As previously discussed, the method of Lozano et al.
only deals with viewpoint selection, thus, not providing any
mechanism for abstraction. Moreover, the selection of views is
largely dependent on the selection of focal concepts provided
by the user. In particular, given the large degree of propaga-
tion of their rules throughout the model, the resulting views
themselves might end up having a level of complexity that is
similar to the original model. For instance, if for the model in
fig.1 the user selects ‘Car Rental’ as a focal type, the resulting
summarized model will contain all elements of the original
model with the exceptions of the types ‘Physical Object’ and
‘Ownership’ (as well as the mediation and derived relation
around it), and the datatype ‘Weight’.

The approach of Egyed does provide both viewpoint selec-
tion and abstraction, i.e., the produced viewpoints are abstrac-
tions of the original fragments of the model. In particular, they
are abstractions hiding elements in the paths connecting focal
elements of the original model selected by the user. Like in
the previous approach, the results produced by Egyed’s method
are partial models. In contrast, our method supports views that
cover the entire scope of the underlying conceptualization.
As such, our abstracted models can support not only the
activities that are normally supported by model summarization
(e.g., model understanding, consistency checking11and reverse
engineering [7]) but also activities such as high-level appraisal
of conceptual models (e.g., domain ontologies) in large model
repositories. For example, as discussed by [23], an approach
that affords ‘glancing’ over complex models in large reposito-
ries can support users in making well-informed decision about
which model should be more suitable for reuse.

Finally, regarding the abstraction of conceptual models,
we believe our approach offers two additional benefits when
compared to the one proposed by Egyed: (i) simplicity of
the abstraction rule set; (ii) determinism in producing the
abstracted model.

Regarding (i), our proposal is constituted by 4 graph-
rewriting rules. In contrast, in [7], Egyed proposes a set of
121 patterns, 92 of which are abstractions-generating rules.
The main reason why we manage to rely on such a reduced
set of rules is by leveraging on the highly-structured syntax of
OntoUML models. Due to the ontological foundations behind
the language, its modeling elements combine in very specific
ways forming modeling patterns.12. In constrast, because of its
ontological neutrality [12], UML elements can be combined
in large variety of ways.

11For example, OntoUML is supported by an approach of model validation
and anti-pattern detection by visual simulation [2], [22]. Two limitations of
that approach are: the computational complexity of the simulation process
- which relies on constraint satisfaction over a SAT solver; the cognitive
tractability of the model instances generated by these simulations. We believe
that the approach proposed here can be used to address both of these problems.

12In fact, as formally demonstrated in [33], OntoUML is a pattern language
and its modeling primitives are actually design patterns representing the
multiple micro-theories of the UFO foundational ontology

Also due to these ontological foundations, our approach
can rely on well-demarcated differences between the multiple
types of types (e.g., kinds, phases, roles, etc.) that can occur
in OntoUML models, as well as on their different levels
of ontological significance. This feature of the language has
been systematically exploited, for example, in the rationale
defining the order of application of our proposed rules R1-
R4 (see section IV). In Egyed’s approach, instead, there is no
predefined order constraining the application of his rules. As a
consequence, the user must reason with a multitude of possible
sequences of applications, each of which can create rather
different results. For instance, if we apply his approach to the
model of fig. 1 and select as focus types both ‘Person’ and
‘Car’ we can produce both a model consistuted by ‘Person’,
‘Personal Customer’ and ‘Car’ but also an alternative model
constituted by Person’, ‘Car’ and ‘Rental Car’, depending on
the selection of rules to be applied and the order in which
they are applied.13 In the case of large conceptual models,
the number of alternative strategies for the application of
these 92 rules explodes. Besides the inherent complexity, this
introduces a second drawback in the approach, namely, the
non-determinism of the produced models (point ii above).

The resulting viewpoints produced by Egyed’s approach
depend on a number of factors that are extrinsic to the
model itself. As previously discussed, these factors include:
the particular selection of focal types provided by the user; the
particular selection of rules and their ordering in the process.
A third type of factor is what Egyed calls ‘model ambiguities’
and these are related to the defesability of inferences produced
by some of his rules. In contrast, our method always produces
deterministic results and, for this reason, it can be fully
automated. As observed by Egyed himself [7]: “given the large
and complex nature of models, semi-automated abstraction can
become very costly...[and it is not] computing time but human-
intervention [that] constitutes key complexities in dealing with
these large models.”

VII. FINAL CONSIDERATIONS

In this paper, we propose an approach for model abstraction
of conceptual models based on the ontologically well-founded
semantics of the modeling language OntoUML. The main
contribution of the work is to present a set of graph-rewriting
rules and their definitions. These rules can automatically pro-
duce abstracted global versions of complex conceptual models,
while simultaneously preserving the essential concepts of the
model and their semantic relevance. By leveraging on the
ontological semantics of OntoUML, the approach produces a
version of the original model that is reduced to a small number
of elements, in essence, the (ontologically fundamental and
cognitively salient) Kinds of things that exist in that domain.

13Notice that, for example, that by selecting ‘Living Person’ and ‘Car’ as
focus types, one can even produce a view including only as types ‘Living
Person’,‘Personal Customer’ and ‘Car’, i.e., a model without an identity-
providing kind for the instances of ‘Person’. Such a view would be problematic
from an ontological point of view [12].



In an extension of this paper, we shall formally implement
a specification of this rule set using the approach employed
in [33] (a Single-Pushout Graph Transformation system and
the GROOVE tool). The idea is to use an automated tool
support to prove the consistency and completeness of the rule
set. Moreover, we intend to extend this ruleset to address
additional OntoUML constructs (e.g., events, part-whole re-
lations, multi-level modeling structures). Although the ones
dealt with here amount to the most used constructs in the
language,14 in certain domains, specific kinds of constructs
can play a fundamental role (e.g., partonomies in biomedical
applications, events in historical models, multi-level modeling
in product design).

As a second contribution, the paper also presents a fully
implemented plug-in tool for a Model-Based OntoUML Editor
that automates these rules. Despite the encouraging results of
the tests performed with this plug-in, we intend to subject
it to a more comprehensive and systematic series of tests.
Moreover, despite the empirical demonstration of performance
scalability with these tests, we shall provide a formal proof of
the complexity of the algorithm implemented therein. As an
ultimate goal of this project, we intend to develop a version of
the tool that supports not only the compression of models but
also their ‘unfolding’ back to its original form (i.e., round-trip
operations of model abstraction and refinement). The idea is
to fully implement a notion of Ontological Zoom that would
allow users to interact with models and their parts in different
levels of abstraction (each level corresponding to the result of
a transformation using each of the rules proposed here).

In order to properly evaluate the cognitive effectiveness of
these contributions, we are already in the process of designing
a series of empirical studies. The core focus concerns speed
and accuracy of obtaining information from the model, as well
as balancing this (hypothesized) improvement with the model’s
information loss.

REFERENCES

[1] Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented
model automatic clustering. Data & Knowledge Engineering 20(2), 87–
117 (1996)

[2] Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Validat-
ing modal aspects of ontouml conceptual models using automatically
generated visual world structures. J. UCS 16(20), 2904–2933 (2010)

[3] Bodart, F., Patel, A., Sim, M., Weber, R.: Should optional properties
be used in conceptual modelling? A theory and three empirical tests.
Information Systems Research 12(4), 384–405 (2001)

[4] Brasileiro et al.: Applying a multi-level modeling theory to assess
taxonomic hierarchies in wikidata. In: 25th International Conference on
World Wide Web (WWW). pp. 975–980 (2016)

[5] Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual
schema analysis: Techniques and applications. ACM Trans. Database
Syst. 23(3), 286–333 (Sep 1998)

[6] Egyed, A.: Semantic abstraction rules for class diagrams. In: Automated
Software Engineering, 2000. Proceedings ASE 2000. The Fifteenth IEEE
International Conference on. pp. 301–304. IEEE (2000)

[7] Egyed, A.: Automated abstraction of class diagrams. ACM Transactions
on Software Engineering and Methodology 11(4), 449–491 (2002)

14This is demonstrated, for example in [24] by an analysis of an OntoUML
model repository with circa 56 models in a variety of domains.

[8] Egyed, A.: Compositional and relational reasoning during class abstrac-
tion. In: International Conference on the Unified Modeling Language.
pp. 121–137. Springer (2003)

[9] Figueiredo, G., Duchardt, A., Hedblom, M.M., Guizzardi, G.: Breaking
into pieces: An ontological approach to conceptual model complexity
management. In: IEEE 12th International Conference on Research
Challenges in Information Science. pp. 1–10. IEEE (2018)

[10] Francalanci, C., Pernici, B.: Abstraction levels for entity-relationship
schemas. In: International Conference on Conceptual Modeling. pp.
456–473. Springer (1994)

[11] Guarino, N., Guizzardi, G.: ’We need to discuss the relationship’: Revis-
iting relationships as modeling constructs. In: Intl. Conf. on Advanced
Information Systems Engineering. pp. 279–294. Springer (2015)

[12] Guizzardi, G.: Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology (2005)

[13] Guizzardi, G.: Ontological meta-properties of derived object types.
In: 24th International Conference on Advanced Information Systems
Engineering (CAiSE). pp. 318–333 (2012)

[14] Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards
ontological foundations for conceptual modeling: The Unified Founda-
tional Ontology (UFO) story. Applied Ontology 10(3-4), 259–271 (2015)

[15] Lozano, J., Carbonera, J., Abel, M., Pimenta, M.: Ontology view extrac-
tion: an approach based on ontological meta-properties. In: Tools with
Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference
on. pp. 122–129. IEEE (2014)

[16] Lozano, J., Carbonera, J.L., Abel, M.: A novel approach for extracting
well-founded ontology views. In: JOWO@ IJCAI (2015)

[17] Macnamara, J.T., Macnamara, J., Reyes, G.E.: The logical foundations
of cognition. No. 4 in Vancouver Studies in Cognitive Science, Oxford
University Press on Demand (1994)

[18] Moody, D.L., Flitman, A.: A methodology for clustering entity relation-
ship models: a human information processing approach. In: International
Conference on Conceptual Modeling. pp. 114–130. Springer (1999)

[19] Moody, D.L., Flitman, A.R.: A decomposition method for entity rela-
tionship models: A systems theoretic approach. In: ICSTM (2000)

[20] Moreira, J.L.R., Sales, T.P., Guerson, J., Braga, B.F.B., Brasileiro, F.,
Sobral, V.: Menthor editor: An ontology-driven conceptual modeling
platform. In: JOWO@ FOIS (2016)

[21] Recker, J., Rosemann, M., Green, P.F., Indulska, M.: Do ontological
deficiencies in modeling grammars matter? MIS Quarterly 35(1), 57–79
(2011)

[22] Sales, T.P., Guizzardi, G.: Ontological anti-patterns: Empirically uncov-
ered error-prone structures in ontology-driven conceptual models. Data
& Knowledge Engineering 99, 72–104 (2015)

[23] Tartir, S., Arpinar, I.B.: Ontology evaluation and ranking using ontoqa.
In: Proceedings of the International Conference on Semantic Computing.
pp. 185–192. ICSC ’07, IEEE (2007)

[24] Teixeira, M.G.: An ontology-based process for domain-specific visual
language design. Federal University of Espirito Santo, Brazil/Ghent
University, Belgium (Double Degree) (2016)

[25] Tzitzikas, Y., Hainaut, J.L.: How to tame a very large er diagram (using
link analysis and force-directed drawing algorithms). In: International
Conference on Conceptual Modeling. pp. 144–159. Springer (2005)

[26] Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking rdf schema
elements (and its application in visualization). J. UCS 13(12), 1854–
1880 (2007)

[27] Verdonck, M., Gailly, F.: Insights on the use and application of ontology
and conceptual modeling languages in ontology-driven conceptual mod-
eling. In: International Conference on Conceptual Modeling. pp. 83–97.
Springer (2016)

[28] Verdonck et al.: Comparing traditional conceptual modeling with
ontology-driven conceptual modeling: An empirical study. Information
Systems (2018)

[29] Villegas Niño, A.: A Filtering Engine for Large Conceptual Schemas.
PhD Thesis. Universitat Politècnica de Catalunya (2013)

[30] Wieringa, R., de Jonge, W., Spruit, P.: Using dynamic classes and role
classes to model object migration. TAPOS 1(1), 61–83 (1995)

[31] Xu, F.: From lot’s wife to a pillar of salt: Evidence that physical object
is a sortal concept. Mind & Language 12(3-4), 365–392 (1997)

[32] Xu, F., Carey, S.: Infants metaphysics: The case of numerical identity.
Cognitive psychology 30(2), 111–153 (1996)

[33] Zambon, E., Guizzardi, G.: Formal definition of a general ontology
pattern language using a graph grammar. In: Federated Conference on
Computer Science and Information Systems. pp. 1–10 (2017)


	Introduction
	Complexity Management of Conceptual Models
	A Brief Introduction to UFO and OntoUML
	Abstraction Rules
	Abstracting Relators (R1)
	Abstracting Non-Sortals (R2)
	Abstracting Sortals (R3)
	Abstracting Subkind and Phase Partitions (R4)

	Computational Support and Evaluation
	Comparison to Related Work
	Final Considerations
	References

