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Abstract
We consider the problem of characterising expected
hitting times and hitting probabilities for imprecise
Markov chains. To this end, we consider three distinct
ways in which imprecise Markov chains have been de-
fined in the literature: as sets of homogeneous Markov
chains, as sets of more general stochastic processes,
and as game-theoretic probability models. Our first
contribution is that all these different types of impre-
cise Markov chains have the same lower and upper
expected hitting times, and similarly the hitting proba-
bilities are the same for these three types. Moreover,
we provide a characterisation of these quantities that
directly generalises a similar characterisation for pre-
cise, homogeneous Markov chains.
Keywords: imprecise Markov chain, hitting time, hit-
ting probability, lower and upper expectations

1. Introduction

Markov chains are mathematical models that probabilis-
tically describe the uncertain behaviour of a dynamical
system [19]. We here consider Markov chains that can only
be in a finite number of states, and that can only change
state at discrete steps in time. An important class of infer-
ences for Markov chains are the so called expected hitting
times and hitting probabilities for some subset A of the set
of all states X that the system can be in. Informally, their
aim is to answer the questions “How long will it take until
the system enters a state in A?” and “What is the proba-
bility of ever visiting a state in A?”, respectively. Under
some regularity conditions, closed-form solutions to these
questions are available in the literature [19, 9].

A generalisation of Markov chains that also incorpo-
rates (higher order) uncertainty about one’s knowledge
of the model description itself are imprecise Markov
chains [12, 2, 10, 22, 3, 4, 5, 11, 15]. Their theoretical
foundations are based on the theory of imprecise proba-
bilities [29, 1], and they allow one to incorporate uncer-
tainties about the numerical model parameters as well as
about structural assumptions, like history independence—
the canonical Markov property—and time homogeneity.

However, the generalisation of Markov chains to their
imprecise counterpart is not unambiguous [11]. There are

various ways in which this might be done, and they can
lead to different conclusions for particular inferences of
interest.

On the one hand we have what might be called the “sen-
sitivity analysis” interpretation of an imprecise Markov
chain. Here, one’s model essentially constitutes an en-
tire set of stochastic processes that are all compatible
with one’s assessments about the system’s uncertain be-
haviour. But there are multiple versions of this interpreta-
tion, depending on which models one chooses to include
in this set; for instance, do we only include all (time-
homogeneous) Markov chains that are compatible with
our assessments [12, 2], or do we also include more general
stochastic processes [5, 11]? Each choice has its own mer-
its, depending on the particular situation. Regardless of the
choice that one makes here, inferences for this “sensitivity
analysis” interpretation always consist in computing tight
lower and upper bounds on inferences for all the models
that are included in the chosen set [11].

An entirely different formalisation of imprecise Markov
chains is based on the game-theoretic probability frame-
work that was popularised by Shafer and Vovk [20]. These
models are not necessarily given an interpretation in terms
of compatible “precise” models; rather, this theory of
stochastic processes is based on rational betting behaviour
in repeated games with uncertain outcomes, and naturally
leads to imprecise probabilistic models[3, 15, 6]. The cor-
respondence between this framework and the “sensitivity
analysis” interpretation of imprecise Markov chains was
first explored in [3, 7].

In this present work, we consider the inference prob-
lems of computing lower and upper expected hitting times
and hitting probabilities for an imprecise Markov chain—
regardless of the specific interpretation that one chooses
for these models. In fact, the first of our main results is that
these inferences are the same for all of the different types
of imprecise Markov chains discussed above. Our second
main result is an exact generalisation to the imprecise set-
ting, of a well-known characterisation of these inferences
for precise, time-homogeneous Markov chains.

To the best of our knowledge, this problem has never
been considered in the literature at this level of generality.
The most closely related work that we are aware of is that
of Lopatatzidis et al. [16, 17], who prove similar proper-
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ties for imprecise Markov chains that have the structure of
birth-death chains. Moreover, De Cooman et al. [6] pre-
viously derived a non-linear system describing expected
hitting times, that is similar to our characterisation stated
in Corollary 13.

Some of the lengthier proofs as well as proofs of techni-
cal lemmas had to be omitted from this work because of the
page limit constraint. They are available in the appendix of
an extended version of this work [14].

2. Preliminaries

Throughout, N denotes the natural numbers, and we let
N0 :=N∪{0}. R denotes the real numbers, we define R :=
R∪{+∞}, that is, the reals that are closed above, and we let
R := R∪{−∞,+∞}. The sets R and R are endowed with
the usual (order) topology, and we adopt the convention
that 0 ·+∞ = 0 = 0 ·−∞.

We use X to denote the finite non-empty set of states
that the Markov chain can be in. Without loss of generality,
it can be identified with the set X = {1, . . . ,k} for some
k ∈ N. We use L (X ) to denote the set of real-valued
functions on X . The set L (X ) contains all functions
on X that take values in R . Since X is finite, any f in
L (X ) or L (X ) can be identified with a vector in Rk

or (R)k, respectively. The set L (X ) is endowed with the
supremum norm, i.e. ‖ f‖ := supx∈X | f (x)|, and the corre-
sponding norm topology. L (X ) receives the topology of
pointwise convergence.

For any A ⊂X , we consider the indicator IA of A, de-
fined as IA(x) := 1 if x ∈ A and IA(x) := 0 otherwise. Con-
stant functions on X are simply denoted by their constant
values. Finally, point-wise multiplication of two functions
(i.e. vectors) is denoted by f · g; for example, the term
IAc ·T hP

A in Equation (13) further on denotes the pointwise
multiplication of the functions IAc and T hP

A.

2.1. “Measure-Theoretic” Imprecise Markov Chains

In order to discuss the various types of imprecise Markov
chains that arise from the “sensitivity analysis” interpreta-
tion of imprecise probabilities, we need a formalisation of
general (non-Markovian) stochastic processes. We briefly
give the measure theoretic account of this formalisation.

In this framework, the unknown—that is, uncertain—
realisation of the stochastic process is a path, which is
a function ω : N0 →X . We collect all paths in the set
Ω. This set Ω is endowed with a σ -algebra F 1 and aug-
mented to a probability space (Ω,F ,P) with a probability
measure P. A stochastic process is then a family {Xn}n∈N0
of random variables on this probability space, such that

1. Specifically, we assume that F is the σ -algebra generated by the
cylinder sets; this guarantees that all functions that we consider are
measurable.

Xn : ω 7→ ω(n) for all n ∈ N0. However, for ease of nota-
tion and terminology, we will often refer to the measure
P as the stochastic process; different processes then corre-
spond to different measures on the same measurable space
(Ω,F ).

A Markov chain is a stochastic process that satisfies the
Markov condition, which is a conditional independence
relation between the random states that the process obtains.
In particular, a process P is said to be a Markov chain if

P(Xn+1 = xn+1 |X0:n = x0:n) = P(Xn+1 = xn+1 |Xn = xn) ,

for all x0, . . . ,xn,xn+1 ∈X and all n ∈ N0, where we let
X0:n := (X0, . . . ,Xn) and similarly for x0:n. A Markov chain
is called homogeneous if, for all x,y ∈X and all n ∈ N0,

P(Xn+1 = y |Xn = x) = P(X1 = y |X0 = x) . (1)

Any homogeneous Markov chain P is uniquely
characterised—up to its initial distribution P(X0)—
by a transition matrix. A transition matrix T is simply an
|X | × |X | matrix that is row-stochastic, meaning that
for all x ∈X , ∑y∈X T (x,y) = 1 and T (x,y) ≥ 0 for all
y ∈X . Such a transition matrix identifies a homogeneous
Markov chain P (up to its initial distribution) that satisfies

P(Xn+1 = y |Xn = x) = T (x,y) for all x,y ∈X , n ∈ N0.
(2)

Moreover, a transition matrix T can also be interpreted as
a linear operator that maps L (X ) into L (X ), because
we have identified L (X ) with R|X |. For any f ∈L (X )
and x ∈X it then holds that

EP
[

f (Xn+1) |Xn = x
]
= ∑

y∈X
P(Xn+1 = y |Xn = x) f (y)

= ∑
y∈X

T (x,y) f (y) = [T f ] (x),

so we see that T encodes the conditional expectation op-
erator for 1 time step corresponding to a process P that
satisfies (2). Moreover, T can be uniquely extended to an
operator on L (X ), due to the convention that 0 ·+∞ = 0.

We now move on to the characterisation of imprecise
Markov chains. In all cases that we consider here, these
are characterised by a set T of transition matrices. In the
remainder, we will assume that T is non-empty, closed,
convex, and that it has separately specified rows. This
last condition means that if, for all x ∈X , we select any
element Tx ∈ T , there must be some T ∈ T such that
T (x, ·) = Tx(x, ·) for all x ∈ X ; see e.g. [11, Definition
11.6] for further discussion.

An imprecise Markov chain is now a set of stochastic
processes that are in a specific sense “compatible” with
the transition matrices in T . However, there are various
ways how we might construct such a set, which all lead to
different types of imprecise Markov chains.
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Arguably the simplest imprecise Markov chain is the set
PH

T , which is the set of all homogeneous Markov chains
whose characterising transition matrix T is included in
T [12, 2]. Its corresponding lower and upper expectation
operators are defined respectively as

EH
T

[
· | ·
]

:= inf
P∈PH

T

EP
[
· | ·
]

and EH
T

[
· | ·
]

:= sup
P∈PH

T

EP
[
· | ·
]
,

where, for both EH
T [· | ·] and EH

T [· | ·], the first argument
takes functions of the form f : Ω→ R , and the second is a
conditioning event X0:n = x0:n with n ∈ N0.2

Perhaps a less obvious choice is the imprecise Markov
chain P I

T , which is the set of all (potentially non-Markov,
non-homogeneous) stochastic processes for which for all
n ∈ N0 and all x0, . . . ,xn ∈X :

∃T ∈T : ∀y ∈X : P(Xn+1 = y |X0:n = x0:n) = T (xn,y).
(3)

The associated lower and upper expectation operators are

EI
T

[
· | ·
]

:= inf
P∈PI

T

EP
[
· | ·
]

and EI
T

[
· | ·
]

:= sup
P∈PI

T

EP
[
· | ·
]
,

whose domain we take to be the same as that of EH
T [· | ·]

and EH
T [· | ·]. This type of Markov chain is often considered

in the literature [5, 11], and is called an imprecise Markov
chain under epistemic irrelevance.

Next, it will be useful to consider the dual represen-
tation(s) of the set T , given by the lower (resp. upper)
transition operator T (resp. T ). For either domain L (X )
or L (X ), these are (non-linear) operators that map these
function spaces into themselves; they are respectively de-
fined for any element f ∈L (X ) and any x ∈X as[

T f
]
(x) := inf

T∈T

[
T f
]
(x) and

[
T f
]
(x) := sup

T∈T

[
T f
]
(x) .

(4)
Under the stated conditions on T , these operators satisfy
the following useful properties:

Lemma 1 For all f ∈L (X ), there exist T,S ∈T such
that

T f = T f and S f = T f . (5)

Moreover, T and T are continuous operators on L (X ),
and are continuous on L (X ) with respect to non-
decreasing sequences.

The usefulness of these operators stems from the fact that—
similar to transition matrices for homogeneous Markov
chains—they encode the (1 time step) lower and upper
expectation operators for PH

T and P I
T . That is,[

T f
]
(xn) = EH

T

[
f (Xn+1) |X0:n = x0:n

]
2. We omit a technical discussion about the required measurability and

integrability properties of such f , and use this definition provided
that EP[ f |X0:n] :=

∫
Ω

f (ω)dP(ω |X0:n) is well-defined; see e.g. [24]
for when this is the case. For our present purposes, it suffices to
know that the functions that will be of interest in this work are all
non-negative and measurable, making their expectation well-defined.

= EI
T

[
f (Xn+1) |X0:n = x0:n

]
, (6)

for all f ∈L (X ), all n ∈ N0 and all x0, . . . ,xn ∈X ; and
similarly for the lower expectations and T . Observe that
the left hand side in this expression does not depend on
the states x0:n−1, which can be interpreted as saying that
the (lower and upper) expectations of PH

T and P I
T satisfy

an imprecise Markov property. This explains in particular
why we call P I

T an “imprecise Markov chain”, while it
consists of processes which in general do not themselves
satisfy the Markov property. Moreover, despite the above,
it is worth noting that equality of EH

T [ f (Xn+m) |X0:n] and
EI

T [ f (Xn+m) |X0:n] does not in general hold when m > 1;
see e.g. [15, Example 10].

Finally, we note that in our definition and notation of
the imprecise Markov chains above, we paid no further
attention to the initial models P(X0) of their elements P. If
this were to be of interest, we could specify an imprecise
initial model. That is, we could consider a non-empty set
M of probability mass functions on X , and then include P
in PH

T or P I
T if and only if, in addition to its compatibility

with T as discussed above, it holds that P(X0) ∈M .
However, we purposely restricted the domains of the

corresponding lower and upper expectation operators to
conditioning events of the form X0:n = x0:n, as this will
suffice for all our results. Therefore, as one can easily see,
these lower and upper expectations are invariant under any
particular choice of such an initial model M , which is
why we have omitted any further reference to it for ease of
notation and clarity of exposition.

2.2. Hitting Times and Probabilities

We next introduce the two inferences that are of interest
in this work. The first of these is the expected hitting time
of a set of states A⊂X . The hitting time HA : Ω→ N0∪
{+∞} for this set A is a function defined for all ω ∈Ω as
HA(ω) := inf{t ∈ N0 : ω(t) ∈ A}. The vector of expected
hitting times hP

A ∈L (X ) for a given stochastic process P,
conditional on the starting state X0, is defined for all x ∈X
as

hP
A(x) := EP

[
HA |X0 = x

]
:=
∫

Ω

HA(ω)dP(ω |ω(0) = x) .

Thus, hP
A(x) is the expected number of steps before the

process P reaches any element of A, starting from x.
For the imprecise Markov chains PH

T and P I
T , the

lower expected hitting times are defined respectively as

EH
T

[
HA |X0 = x

]
:= inf

P∈PH
T

hP
A(x) , (7)

and
EI

T

[
HA |X0 = x

]
:= inf

P∈PI
T

hP
A(x) , (8)

with the corresponding upper expected hitting times defined
analogously with suprema.
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The second inference that we are after is the vector of
conditional hitting probabilities pP

A ∈L (X ): the proba-
bilities that the process will eventually visit an element of
A. An explicit way of encoding this inference problem uses
the function GA : Ω→{0,1}, defined for all ω ∈Ω as

GA(ω) := sup{IA
(
ω(t)

)
: t ∈ N0} . (9)

Thus, GA takes the value one on a path ω if this path at
some point in time passes through any of the states in A;
otherwise it takes the value zero. Therefore, clearly, for any
stochastic process P, the hitting probability is given by

pP
A(x) := EP

[
GA |X0 = x

]
:=
∫

Ω

GA(ω)dP(ω |ω(0) = x) .

Correspondingly, the lower hitting probability for the im-
precise Markov chain PH

T is given by

EH
T

[
GA |X0 = x

]
:= inf

P∈PH
T

pP
A(x) , (10)

and similarly for the upper probability and for P I
T .

2.3. “Game-Theoretic” Imprecise Markov Chains

In Section 2.1 we introduced (imprecise) Markov chains
using their “measure-theoretic” formalisation. An entirely
different mathematical framework for describing stochastic
processes—and imprecise Markov chains in particular—is
the “game-theoretic” framework popularised by Shafer and
Vovk [20]. For an in-depth treatise on this formalism, we re-
fer the interested reader to [20, 28, 26]. Explicit discussions
about the connection to the measure-theoretic framework
can be found in references [3, 7, 15].

For our present purposes, we restrict attention to a dis-
cussion of some essential properties of the corresponding
(lower or upper) expectation operators. To this end, it suf-
fices to think of such a game-theoretic model as simply a
different characterisation of the uncertain behaviour of the
dynamical system of interest. And, although this character-
isation is different from the measure-theoretic one, it still
leads to the same inferences in a large number of cases; in
fact, it is one of the aims of this present paper to show that
the expected hitting times and hitting probabilities are the
same for these two different characterisations.

The operators that we will consider in this section are
functionals on functions on paths ω ∈ Ω. We will need a
slight notational digression to introduce these domains. We
let L (Ω) be the set of all functions on Ω that take values
in R. The domains L (Ω) and L (Ω) contain the functions
taking values in R and R, respectively. We also need the
concept of an n-measurable function: this is a function on Ω

whose value f (ω) only depends on the states X0 to Xn. For
any n ∈N, we let Ln(Ω) denote the set of all n-measurable
functions taking values in R. The sets L n(Ω) and L n(Ω)
contain the n-measurable functions taking values in R and
R, respectively.

A game-theoretic upper expectation operator is now
a specific R-valued functional EV

[· | ·] [26, Definition 2],
where the first argument takes values in L (Ω) and the
second is an event of the form X0:n = x0:n.

To specify such a game-theoretic upper expectation
operator, one needs to provide a family of operators
Qs : L (X )→ R indexed by situations s ∈ S∪{�}, with
S := {x0:n ∈X n+1 : n ∈N0}. Furthermore, for every situa-
tion s ∈ S∪{�}, Qs should satisfy the following axioms:

E1. Qs(c) = c for all c ∈ R;

E2. Qs( f +g)≤ Qs( f )+Qs(g) for all f ,g ∈L (X );

E3. Qs(λ f ) = λQs( f ) for all positive λ ∈ R and all non-
negative f ∈L (X );

E4. if f ≤ g then Qs( f )≤ Qs(g) for all f ,g ∈L (X ).

Crucially, every such family leads to a unique correspond-
ing game-theoretic upper expectation operator EV

[· | ·]. Un-
fortunately, however, explaining how this works requires
quite some technical machinary, including the notion of a
supermartingale. Since we believe this would be too much
of a digression, we prefer to refer the interested reader to
appendix A, and here content ourselves with describing
some of its properties.

A first important property is that every Qs can be in-
terpreted as a local uncertainty model associated with the
situation s. In particular, for s = x0:n, we have that

EV
[ f (Xn+1) |X0:n = x0:n] = Qx0:n

( f ) , (11)

for any f ∈L (X ). Similarly, the operator Q� describes
the uncertainty about the initial state. Note however that,
analogous to our discussion for measure-theoretic impre-
cise Markov chains, we have restricted the domain of
EV

[· | ·] to be conditional on X0:n. Here too, as we explain
in Appendix A, this implies that the initial model—Q�,
in this case—has no effect on our operator. For ease of
notation, we will therefore make no further reference to it,
and will henceforth specify EV

[· | ·] by providing a family
of operators

{
Qs
}

s∈S, without Q�.
We next remark that the axioms E1–E4 can be recog-

nised as being analogous to familiar properties of coherent
lower previsions [29, 18]. The following result essentially
shows that the upper expectation operator EV

[· | ·] induced
by local models that satisfy these properties, inherits these
properties on the global domain L (Ω). It also provides
some properties for the conjugate game-theoretic lower
expectation operator, defined as EV[· | ·] :=−EV

[−· | ·].

Proposition 2 [26, Proposition 13] Let EV
[· | ·] be a game-

theoretic upper expectation operator. Then for all f ,g ∈
L (Ω), all λ ∈ R with λ ≥ 0, and all n ∈ N0:
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1. EV
[ f +g |X0:n]≤ EV

[ f |X0:n]+EV
[g |X0:n]

3

2. EV
[λ f |X0:n] = λEV

[ f |X0:n]

3. f ≤ g ⇒ EV
[ f |X0:n]≤ EV

[g |X0:n]

and, moreover,

4. for all x0, . . . ,xn ∈X ,

inf
ω∈Γ(x0:n)

f (ω)≤ EV[ f |X0:n = x0:n]

≤ EV
[ f |X0:n = x0:n]≤ sup

ω∈Γ(x0:n)

f (ω)

with Γ(x0:n) :=
{

ω ∈Ω
∣∣∀t ∈ {0, . . . ,n} : ω(t) = xt

}
5. EV

[ f +µ |X0:n] = EV
[ f |X0:n]+µ for all µ ∈ R.

With the general framework of game-theoretic upper ex-
pectation operators in place, we now move on to discussing
two specific kinds of such operators, that will be particu-
larly important in the remainder of this work. The first are
those that correspond to a precise stochastic process P in
the measure-theoretic sense.

Proposition 3 Let P be a stochastic process as in Sec-
tion 2.1, and consider the family

{
Qs
}

s∈S defined for all
f ∈L (X ), all n ∈ N0, and all x0, . . . ,xn ∈X as

Qx0:n
( f ) := EP

[
f (Xn+1) |X0:n = x0:n

]
.

Then the operators in
{

Qs
}

s∈S satisfy E1–E4, and therefore
determine a unique corresponding game-theoretic upper
expectation operator.

We will denote this game-theoretic upper expectation op-
erator as EV

P [· | ·], and the conjugate game-theoretic lower
expectation operator as EV

P [· | ·].
Our next result establishes that these game-theoretic op-

erators agree with the measure-theoretic expectation EP on
all n-measurable real-valued functions.

Proposition 4 Let P be a stochastic process as in Sec-
tion 2.1 and let EV

P [· | ·] and EV
P [· | ·] be its game-theoretic

lower and upper expectation operators. Then for all n∈N0,
all x0, . . . ,xn ∈ X , and all fm ∈ Lm(Ω) with m ∈ N, it
holds that

EV
P [ fm |X0:n] = EV

P [ fm |X0:n] = EP[ fm |X0:n] .

The second type of game-theoretic expectation operator
in which we are interested, is that corresponding to an
imprecise Markov chain.

3. If f +g and EV
[ f |X0:n]+EV

[g |X0:n] are well-defined; the ambiguity
of ∞+−∞ makes formalising this property a bit cumbersome.

Proposition 5 Let T be a non-empty, closed, and convex
set of transition matrices that has separately specified rows,
let T be the corresponding upper transition operator as in
Section 2.1, and consider the family

{
Qs
}

s∈S defined for
all f ∈L (X ), all n ∈ N0, and all x0, . . . ,xn ∈X as

Qx0:n
( f ) :=

[
T f
]
(xn). (12)

Then the operators in
{

Qs
}

s∈S satisfy E1–E4, and therefore
determine a unique corresponding game-theoretic upper
expectation operator.

We will denote this game-theoretic upper expectation op-
erator as EV

T [· | ·], and the conjugate game-theoretic lower
expectation operator as EV

T [· | ·].
Since the right-hand side of Equation (12) does not de-

pend on x0:(n−1), it follows from Equation (11) that the
induced game-theoretic upper expectation operator satisfies
an imprecise Markov property that is entirely similar to that
in Equation (6). It is for that reason that we call EV

T [· | ·]
and EV

T [· | ·] the upper and lower expectation operator of a
“game-theoretic imprecise Markov chain”.

The following property shows that the operator EV
T [· | ·]

provides a lower bound for the operators EV
P [· | ·] whose

characterising measure-theoretic process P is compatible
with T . Similarly, EV

T [· | ·] provides an upper bound.

Proposition 6 For all f ∈ L (Ω), all n ∈ N0 and all
x0, . . . ,xn ∈X , we have that

EV
T [ f |X0:n = x0:n]≤ inf

P∈PI
T

EV
P [ f |X0:n = x0:n]

and
sup

P∈PI
T

EV
P [ f |X0:n = x0:n]≤ EV

T [ f |X0:n = x0:n].

Finally, we will need the following continuity property;
here and in what follows, we consider L (Ω) to be endowed
with the topology of pointwise convergence:

Proposition 7 Consider a non-decreasing sequence
{ fm}m∈N in L (Ω) such that fm ∈Lm(Ω) for all m ∈ N
and limm→+∞ fm = f ∈L (Ω). Then for all n ∈N0 and all
x0, . . . ,xn ∈X it holds that

EV[ f |X0:n = x0:n] = lim
m→+∞

EV[ fm |X0:n = x0:n]

and
EV

[ f |X0:n = x0:n] = lim
m→+∞

EV
[ fm |X0:n = x0:n].

3. Characterisation and Invariance
With the various definitions of imprecise Markov chains
in place, we now move on to characterising their (lower
and upper) expected hitting times and probabilities, and
showing that these are the same for all of the different types
of models that we discussed above. We start this discussion
with our result for the hitting times, in Section 3.1. The re-
sults for the hitting probabilities are largely analogous from
a technical point of view, and are presented in Section 3.2.
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3.1. Lower and Upper Expected Hitting Times

The starting point for our results in this section is the fol-
lowing well-known characterisation of the expected hitting
times of a (precise) homogeneous Markov chain:

Lemma 8 ([19] Theorem 1.3.5) Consider a homoge-
neous Markov chain P with transition matrix T . Its vec-
tor of expected hitting times hP

A ∈L (X ) is the minimal
non-negative solution to

hP
A = IAc + IAc ·T hP

A , (13)

where Ac =X \A, and minimality means that hP
A(x)≤ g(x)

for all x ∈X , for any non-negative g ∈L (X ) that also
satisfies (13).

Inspired by this result, we introduce a recursive scheme
that essentially iterates an imprecise version of Equa-
tion (13). To this end, let h(0)A := h

(0)
A := IAc and, for all

n ∈ N0, define

h(n+1)
A := IAc + IAc ·T h(n)A (14)

and
h
(n+1)
A := IAc + IAc ·T h

(n)
A . (15)

We will see in Lemma 9 below that these functions can be
given a clear interpretation. To this end, for all n ∈ N0, let
H(n)

A : Ω→{0, . . . ,n+1} be defined for all ω ∈Ω as

H(n)
A (ω) :=

{
HA(ω) if HA(ω)≤ n, and
n+1 otherwise.

Thus, H(n)
A (ω) is the number of steps until A was visited on

the path ω , provided that this happened in at most n steps;
otherwise its value is fixed to be n+1. The aforementioned
interpretation now goes as follows:

Lemma 9 For all n ∈ N0 it holds that

h(n)A = EV
T

[
H(n)

A |X0
]

and h
(n)
A = EV

T

[
H(n)

A |X0
]
.

Moreover, it clearly holds that limn→+∞ H(n)
A = HA. The

next result tells us that the equalities in Lemma 9 con-
tinue to hold as we pass to this limit; therefore, we can use
the above recursive scheme to compute the (lower and up-
per) expected hitting times for a game-theoretic imprecise
Markov chain:

Proposition 10 EV
T

[
HA |X0

]
= h∗A := limn→+∞ h(n)A and

EV
T

[
HA |X0

]
= h

∗
A := limn→+∞ h

(n)
A .

Proof Each H(n)
A is n-measurable and the sequence H(n)

A
is non-decreasing. Therefore, using Lemma 9 and Propo-
sition 7, the limit h∗A exists and equals EV

T

[
HA |X0

]
. The

proof for h
∗
A is completely analogous.

In a similar manner, we can use these functions H(n)
A

to establish that the game-theoretic hitting times corre-
sponding to a (precise) stochastic process P, agree with the
measure-theoretic expected hitting times of this process;
this property allows us to relate the quantities obtained
under the two different frameworks that we are using.

Lemma 11 Let P be any measure-theoretic stochastic
process. Then EV

P [HA |X0] = EV
P [HA |X0] = EP[HA |X0].

Proof Note that each H(n)
A is n-measurable, that the se-

quence H(n)
A is non-decreasing and non-negative, and that

limn→+∞ H(n)
A = HA. Hence, using Proposition 7, Proposi-

tion 4, and the continuity of EP[· | ·] with respect to point-
wise converging non-decreasing non-negative sequences
(Lebesgue’s monotone convergence theorem), we find that

EV
P [HA |X0] = lim

n→+∞
EV

P [H
(n)
A |X0]

= lim
n→+∞

EP[H
(n)
A |X0] = EP[HA |X0] .

The proof for EV
P [HA |X0] is completely analogous.

We now need one more property before we can state our
first main result. Since the sequence H(n)

A is non-decreasing,
it follows from Proposition 2 together with Lemma 9 that
the sequences h(n)A and h

(n)
A are also non-decreasing. Hence,

using the continuity of T with respect to non-decreasing
sequences in L (X )—see Lemma 1—we find that

h∗A = lim
n→+∞

(
IAc + IAc ·T h(n)A

)
= IAc + IAc ·T h∗A . (16)

So, h∗A is a fixed-point of the iterative scheme (14). Simi-
larly, h

∗
A is a fixed-point of (15).

By combining Equation (16) with the properties of game-
theoretic expectation operators and the known characterisa-
tion for precise, homogeneous Markov chains in Lemma 8,
we can now derive the following remarkable consequence;
it states that the (lower and upper) expected hitting time
for any type of imprecise Markov chain is obtained by a
homogeneous Markov chain that is compatible with it. Con-
sequently, the (lower and upper) expected hitting times are
the same for all types of imprecise Markov chains!

Theorem 12 There exists a P ∈PH
T such that

EV
T

[
HA |X0

]
=EI

T

[
HA |X0

]
=EH

T

[
HA |X0

]
=EP

[
HA |X0

]
.

(17)
Moreover, there exists a P ∈PH

T , such that

EV
T

[
HA |X0

]
=EI

T

[
HA |X0

]
=EH

T

[
HA |X0

]
=EP

[
HA |X0

]
.

(18)

Proof From the fixed-point claim (16) and the reachability
property (5), we find a T ∈T such that

h∗A = IAc + IAc ·T h∗A . (19)
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Using (2), we find a homogeneous Markov chain P with
transition matrix T , and clearly P ∈PH

T . It remains to
show that (17) holds for this P.

Since h∗A satisfies (19), it clearly is a solution to (13).
Hence, by Lemma 8 and Proposition 10, it holds that

EP
[
HA |X0

]
≤ h∗A = EV

T

[
HA |X0

]
.

Conversely, we infer from Proposition 6 and Lemma 11
that

EV
T

[
HA |X0

]
≤ inf

Q∈PI
T

EV
Q
[
HA |X0

]
= inf

Q∈PI
T

EQ
[
HA |X0

]
= EI

T

[
HA |X0

]
≤ EH

T

[
HA |X0

]
≤ EP

[
HA |X0

]
,

where the last two inequalities hold since P ∈PH
T ⊆P I

T .
The proof for the upper expected hitting time is far more

tedious; it can be found in Reference [14].

We want to stress how powerful this result is: no matter
what kind of imprecise generalisation of a Markov chain
one wishes to use, the corresponding expected hitting time
will always be the same (provided the regularity conditions
of the set T are satisfied). This is not only powerful from a
theoretical point of view; numerically, it allows one to use
algorithms for computing (lower and upper) expectations
of, say, a game-theoretic model, even when the model that
one is using is a set of homogeneous Markov chains.

We conclude this section with the following characteri-
sation of the lower and upper expected hitting times of an
arbitrary imprecise Markov chain; note that this is a direct
generalisation of Lemma 8.

Corollary 13 Consider an imprecise Markov chain with
lower transition operator T and upper transition operator
T . Its vector of lower expected hitting times hA ∈L (X )
is the minimal non-negative solution to

hA = IAc + IAc ·T hA , (20)

and its vector of upper expected hitting times hA ∈L (X )
is the minimal non-negative solution to

hA = IAc + IAc ·T hA . (21)

Proof Due to Theorem 12, the lower expected hitting time
is the same for every type of imprecise Markov chain; let
hA := EH

T

[
HA |X0

]
= EV

T

[
HA |X0

]
be this lower expected

hitting time. That hA satisfies (20) is immediate from Propo-
sition 10 and (16). That it is non-negative follows from the
non-negativity of HA.

It remains to show that it is the minimal solution. So,
let gA ∈L (X ) be any non-negative solution of (20), and
suppose ex absurdo that gA(x)< hA(x) for some x ∈X .

From (20) and (5), we find a T ∈T such that

gA = IAc + IAc ·T gA . (22)

Using (2), we find a homogeneous Markov chain P with
transition matrix T , and clearly P ∈PH

T . By Lemma 8
and (22) we conclude that

hP
A(x)≤ gA(x)< hA(x) = EH

T

[
HA |X0 = x

]
,

which yields a contradiction using (7).
The proof of the corresponding statement for the upper

expected hitting time is a bit more tedious; it can be found
in Reference [14].

3.2. Lower and Upper Hitting Probabilities

We now move on to study the (lower and upper) hitting
probabilities of an imprecise Markov chain. Both the dis-
cussion and the technical results largely mirror that of the
hitting times in Section 3.1. We again start with a well-
known characterisation for (precise) homogeneous Markov
chains:

Lemma 14 ([19] Theorem 1.3.2) Consider a homoge-
neous Markov chain P with transition matrix T . Its vector
of hitting probabilities pP

A ∈ L (X ) is the minimal non-
negative solution to

pP
A = IA + IAc ·T pP

A . (23)

Once more, we proceed by defining a recursive scheme
that is inspired by this characterisation: we let p(0)A :=
p(0)A := IA and, for all n ∈ N0, we define

p(n+1)
A := IA + IAc ·T p(n)A (24)

and
p(n+1)

A := IA + IAc ·T p(n)A . (25)

In order to give these functions a clear interpretation, we
require some auxiliary functions. For all n ∈ N0, we let
G(n)

A : Ω→{0,1} be defined for all ω ∈Ω as

G(n)
A (ω) := sup

{
IA
(
ω(t)

)
: t ∈ {0, . . . ,n}

}
.

Thus G(n)
A takes the value one on ω if ω visits A in the first n

steps; otherwise it takes the value zero. The aforementioned
interpretation now goes as follows:

Lemma 15 For all n ∈ N0 it holds that

p(n)A = EV
T

[
G(n)

A |X0
]

and p(n)A = EV
T

[
G(n)

A |X0
]
.

Moreover, we again clearly have that limn→+∞ G(n)
A = GA.

As the following result tells us, the equalities in Lemma 15
continue to hold as we pass to this limit; so, the above
recursive scheme can be used to compute the (lower and
upper) hitting probabilities for a game-theoretic imprecise
Markov chain:
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Proposition 16 EV
T

[
GA |X0

]
= p∗A := limn→+∞ p(n)A and

EV
T

[
GA |X0

]
= p∗A := limn→+∞ p(n)A .

Proof First, we remark that each G(n)
A is n-measurable

and that the sequence G(n)
A is non-decreasing. Therefore,

using Lemma 15 and Proposition 7, the limit p∗A exists
and equals EV

T

[
GA |X0

]
. The proof for p∗A is completely

analogous.

We can also use these functions G(n)
A to establish a con-

nection between the game-theoretic hitting probabilities
corresponding to a (precise) stochastic process P, and the
measure-theoretic hitting probabilities of this process:

Lemma 17 Let P be any measure-theoretic stochastic
process. Then EV

P [GA |X0] = EV
P [GA |X0] = EP[GA |X0].

Proof Completely analogous to the proof of Lemma 11.

Since each p(n)A , p∗A ∈L (X ) is bounded—this follows
from the boundedness of GA and each G(n)

A , together
with Lemma 15, Proposition 16, and Proposition 2—
continuity of T on L (X ) immediately yields the fixed-
point property of the iterative scheme (24):

p∗A = lim
n→+∞

(
IA + IAc ·T p(n)A

)
= IA + IAc ·T p∗A . (26)

Similarly, p∗A is a fixed-point of the scheme (25). We again
conclude that the lower and upper hitting probabilities are
the same for all types of imprecise Markov chains:

Theorem 18 There exists a P ∈PH
T such that

EV
T

[
GA |X0

]
=EI

T

[
GA |X0

]
=EH

T

[
GA |X0

]
=EP

[
GA |X0

]
.

(27)
Moreover, it holds that4

EV
T

[
GA |X0

]
= EI

T

[
GA |X0

]
= EH

T

[
GA |X0

]
. (28)

Proof The proof for the lower hitting probability is com-
pletely analogous to the proof of the lower expected hit-
ting time in Theorem 12, only relying on Lemma 14 in-
stead of Lemma 8; on the fixed-point property (26) instead
of (16); on Proposition 16 instead of Proposition 10; and
on Lemma 17 instead of Lemma 11. The proof for the up-
per hitting probability is again far more tedious and can be
found in Reference [14].

We close with a characterisation of the lower and up-
per hitting probabilities for an arbitrary imprecise Markov
chain, that directly generalises Lemma 14.

4. But note that the upper hitting probability is not necessarily reached
by any P ∈PH

T .

Corollary 19 Consider an imprecise Markov chain with
lower transition operator T and upper transition operator
T . Its vector of lower hitting probabilities pA ∈L (X ) is
the minimal non-negative solution to

pA = IA + IAc ·T pA , (29)

and its vector of upper hitting probabilities pA ∈L (X ) is
the minimal non-negative solution to

pA = IA + IAc ·T pA . (30)

Proof The proof for pA is completely analogous to the
proof of hA in Corollary 13. The proof for pA is again
different, and can be found in Reference [14].

4. Summary and Discussion

We have studied lower and upper expected hitting times
and probabilities for imprecise Markov chains. To this end,
we considered three different ways in which an imprecise
Markov chain might be defined: as a set of precise, homoge-
neous Markov chains; as a set of precise but general (non-
Markovian) stochastic processes; and as a game-theoretic
model with imprecise local models. We have shown that
these quantities of interest are the same for all these types
of imprecise Markov chains. Moreover, we have presented
characterisations of these quantities that are direct gen-
eralisations of their well-known counterparts for precise
homogeneous Markov chains.

One unexplored line of research would be to investigate
the connections of these results to the theory of Markov
Decision Processes (MDPs) [8]. In an MDP, the aim is to
choose, at each point in time n ∈ N0, an action an from an
admissible action set An(xn) that determines the transition
probabilities P(Xn+1 = xn+1 |Xn = xn). If we interpret the
choice of these actions in our current context as a selection
T ∈T , then the connection between MDPs and the theory
of imprecise Markov chains becomes intuitively clear. It is
worth mentioning that this connection has been known for
a while—see, e.g., the introductions of [27, 13]—yet an im-
portant semantic difference has always been the goal with
which actions are selected. In an imprecise Markov chain,
we optimise over T in order to compute bounds on infer-
ential quantities of interest; the goal is the quantification of
uncertainty. In contrast, in an MDP, the intended outputs
are typically the optimal actions themselves, which are se-
lected to optimise a given utility function that is typically
interpreted as an operational reward. However, as it pertains
to the results in this current work, in Corollaries 13 and 19
the characterising equations that we have derived are very
reminiscent of the equations of optimality that one often
encounters in the theory of MDPs, and it would be very
interesting to see if this connection could be formalised.
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Finally, we hope in future work to derive efficient algo-
rithms for numerically computing the inferences that we
have discussed, and aim to also extend our results to the set-
ting of imprecise continuous-time Markov chains [23, 13].

Appendix A. Introduction to Game-theoretic
Upper Expectations

For readers that would like to have a better understand-
ing of game-theoretic upper expectations, and how they
are derived from the local models Qs, this appendix pro-
vides a brief introduction to the game-theoretic probability
framework of Shafer and Vovk [20, 21].

Rather than using transition probabilities to describe
the uncertain behaviour of a process, they assume that,
for every situation s ∈ S∪{�}, we are given an operator
Qs : L (X )→ R that satisfies E1–E4. As we have already
mentioned in Section 2.3, these operators can be tought of
as the local uncertainty models of the process. Quite con-
veniently, as we have for example seen in Propositions 3
and 5, such a local model can be a linear expectation oper-
ator corresponding to a probability mass function on X ,
or un upper envelope of a set of such linear expectation
operators (provided the corresponding set of probability
mass functions is closed and convex). In the game-theoretic
framework, however, these local models will typically be
interpreted as representing the bets that a subject is will-
ing to offer to others. To do this, a function f (Xn+1), with
f ∈L (X ) and n ∈ N0, is regarded as a bet that yields a
(possibly negative) uncertain reward f (x) if Xn+1 = x.5 The
adopted interpretation for the local model Qx0:n

is then that
conditional on the fact that he observed X0:n = x0:n, the sub-
ject is willing to offer the bet f (Xn+1), for any f ∈L (X )
such that Qx0:n

( f )≤ 0. Axioms E1–E4 can then be regarded
as constraints on what it means to offer bets rationally. In
the same way, the operator Q�(·) : L (X )→ R represents
bets on the initial state X0 that the subject is willing to offer.

The idea is now to combine all these local bets to obtain
a global uncertainty model EV

[ · | ·] that extends the infor-
mation that is gathered in the local models. This is achieved
using the concept of a supermartingale.

Formally, we define a supermartingale M to be an
extended real-valued map on S∪ {�} that is uniformly
bounded below, i.e. there is a real c such that M (s)≥ c for
all s ∈ S∪{�}, and that satisfies Qs(M (s ·))≤M (s) for
all s ∈ S∪{�}. Here, we used M (s ·) to denote the func-
tion in L (X ) that takes the value M (sx) for each x ∈X .
Indeed, M is uniformly bounded below, so M (s ·) will
only take values in R . The key property here is that a super-
martingale M should satisfy Qs(M (s ·))≤M (s) for all
s ∈ S∪{�}, which essentially states that M represents a

5. Note that the reward associated with these bets may also be equal to
+∞. In that case, it is not immediately clear how we should interpret
these bets. This topic is for instance discussed in [25].

possible way to take the subject up on the bets that he is of-
fering. Indeed, if, for the sake of simplicity, we assume that
M (s) is real, then it follows from the constant additivity of
Qs—see [26, Proposition 1]—that Qs(M (s ·))≤M (s) is
equivalent to Qs(M (s ·)−M (s))≤ 0, which implies that
our subject is willing to offer the bet M (s ·)−M (s). In
this way, it becomes clear that M describes a possible evo-
lution of a person’s capital when he is gambling according
to the bets offered by our subject. For a given choice of
local models {Qs}s∈S and Q�, we will use Mb to denote
the corresponding set of all such supermartingales.

Consider now any f ∈ L (Ω) and s = x0:n ∈ S. The
global (game-theoretic) upper expectation of f conditional
on s is then defined by

EV
[ f |s] := inf{M (s) : M ∈Mb and liminfM ≥s f},

where liminfM ≥s f is taken to mean that for ev-
ery path ω = z0z1 . . .zn . . . ∈ Ω such that z0:n = x0:n,
liminfm→+∞ M (z0:m)≥ f (ω).

An intuitive meaning can be given to these upper expec-
tations if we interpret f ∈L (Ω) as an uncertain reward
that depends on the path ω ∈ Ω that is taken by the pro-
cess. In particular, the game-theoretic upper expectation
EV

[ f |s ] can then be interpreted as the infimum starting
capital M (s) that is needed in order to guarantee that, by
starting in the situation s = x0:n and then gambling against
the subject in an appropriate (and allowed) way, we can
be sure to (eventually) end up with a capital that is larger
than the reward that is associated with f , in the sense that
this will be true for every path ω = z0z1 . . .zn . . . ∈Ω such
that z0:n = x0:n. In other words, if we are in the situation
X0:n = x0:n, then any capital α larger than EV

[ f |s ] should
be worth more to us than the uncertain reward f , because
we can bet with α to (eventually) obtain a reward that is
guaranteed to be higher than f . We can therefore regard
EV

[ f |s ] as a lower bound on these capitals α .
As can be expected from this interpretation, the upper

expectation EV
[ f |s ] does not depend on the chosen initial

model Q�, thereby justifying our claim in Section 2.3. The
following result formalizes this.

Proposition 20 For any f ∈L (X ) and s ∈ S, the upper
expectation EV

[ f |s ] does not depend on the choice of Q�.

Finally, we want to add that the global game-theoretic up-
per expectation operator EV

[ · | · ] can also be characterised
in a completely different way, without the use of game-
theoretic concepts such as supermartingales. Indeed, in
[25], it is shown that this operator is the most conservative—
so least informative—upper expectation that is consistent
with the local uncertainty models and satisfies a number of
basic rationality axioms.

For more information on the subject of game-theoretic
probabilities, we refer the interested reader to the textbooks
of Shafer and Vovk [20, 21].
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