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Abstract. In this demonstration, we present  dynamic allocation 
of accelerator resources to SSH tunnels in an NFV environment. 
In order to accelerate a VNF, its compute-intensive operations are 
offloaded to hardware cores running on an FPGA. The CPU 
utilization information of VNFs is continuously processed by a 
service management component to dynamically decide the suitable 
target to run VNF crypto-operations. We also demonstrate 
switching between the non-accelerated and hardware-accelerated 
SSH-tunnels triggered by a change in the nature of the data traffic 
flowing through the tunnel and indicate throughput gains 
obtainable in dynamically switching contexts. 
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I. INTRODUCTION 

Traditionally, network services are deployed using 
specialized and proprietary hardware boxes known as 
middleboxes. Network function virtualization (NFV) aims to 
decouple the functionality of these middleboxes from the 
underlying hardware so that standard IT virtualization 
technologies can be exploited to execute network functions on 
general-purpose x86 or ARM servers. NFV has enabled faster 
deployment of new network services along with a reduction in 
expenditures. Despite all the benefits that NFV offers, it still 
faces challenges towards its widespread acceptance. One of the 
major challenges is to achieve the same virtual network function 
(VNF) performance as offered by its hardware counterpart [1]. 
To overcome this challenge, the use of hardware accelerators 
along with general-purpose processors has been proposed [2, 3]. 
As NFV aims to decouple network functionality from dedicated 
middleboxes, reconfigurable hardware platforms like FPGAs 
acting as hardware accelerators are gaining particular attention. 
FPGAs offer the best of both worlds, i.e., programmability of 
general purpose processors and performance of dedicated 
hardware boxes. Therefore, compute-intensive portions of a 
network function could be offloaded to accelerators running on 
an FPGA.  

SSH tunneling service is chosen to show the proof of concept 
of hardware acceleration for a virtual customer premise 
equipment (vCPE), as an NFV use case. The bandwidth of an 
SSH tunnel is limited by the speed with which a CPU can 
perform cryptographic operations on data packets. These 
operations include bit- and byte-level manipulations like XOR, 
byte substitutions and shifting. By utilizing parallelism available 
on FPGAs, these operations can be performed much faster on a 

hardware platform, in comparison to  software executing 
sequential instructions on a CPU. Moreover, overall operating 
costs can be reduced as FPGAs are more efficient than CPU in 
terms of number of operations/Joule of energy spent. However, 
effectively integrating accelerator resources and then optimally 
allocating them in the NFV environment is still an challenge. As 
the resources present on a CPE are limited, a strategy is required 
to grant accelerator resources to network functions based on 
their real-time resource utilization. 

 

Fig. 1 ETSI NFV reference architecture framework. 
 

Fig. 1 shows the reference NFV architecture proposed by the 
ETSI. The key components relevant for our demonstration are 
highlighted in blue. The VNF/specific service manager (VNFM 
or SSM) is responsible for the life-cycle management, i.e. 
starting/stopping, scaling and configuring,  of one or more 
VNFs. The element management system corresponding to each 
VNF and VNF/service managers work together to configure the 
application specific parameters of VNFs during its lifetime. In 
our demonstration, we show how accelerator resources could be 
dynamically activated for VNFs with the help of EMSs and 
VNF/service managers. 

II. SYSTEM IMPLEMENTATION AND PROCESSES 

It is often required to extend network services present inside 
a private network of an enterprise to a host located in the public 
network. SSH-tunneling is a secure way of communication 
between two machines over an untrusted network. An SSH 
tunnel works by forwarding packets received at a configured 
port on a client machine to a specific port on the destination 
server machine (local port forwarding). An SSH-client listening  
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on a particular  port creates a secured encrypted channel to the  
SSH-server which in turn forwards the traffic to a port on the 
destination machine present in the private network. 

In our implementation, we choose Dropbear SSH-client1 as 
a network function which along-with the required configuration 
are packaged as docker images. An identity file (RSA public 
key) required by the SSH-client to authenticate itself to the SSH 
server is also present in the docker image. 

A. Service Management Processes 

The processes involved in the deployment and management 
of hardware accelerated VNFs are explained in Fig. 2. First, 
component VNFs of the required service are deployed by NFV 
orchestrator by delegating resource reservation to the Virtual 
Insfrastructure Manangement (VIM) system and then VNF 
instantiation task to VNFMs. The orchestrator should ask VIM 
to also reserve accelerator resources for specific VNFs, e.g., 
hardware accelerator cores for SSH-client VNFs. Next, each 
VNF is polled by the SSM to fetch its resource utilization 
information. Based on this information, the SSM logic 
determines the suitable candidate VNF for allocating the 
accelerator. The SSM logic involves a hysteresis decision loop 
with pre-defined upper and lower thresholds for CPU utilization. 
Before granting accelerator to a VNF, currently accelerated 
VNF is signaled to release the accelerator resource.  

B. Hardware Accelerator System Design 

The original Dropbear implementation utilizes ciphers and 
hashes provided by libtomcrypt (cryptographic library), to 
en/decrypt and hash data packets. In order to accelerate these 
cryptographic operations in dropbear, FPGA based accelerators 
are utilized. Dropbear code is patched with accelerator functions 
for communication with AES-128 and SHA-256 accelerator 
cores. These accelerator cores are based on an open-source 
Verilog implementation [4]. The system architecture for 
accelerating en/decrypting and hashing using external hardware 

                                                           
1 https://github.com/mkj/dropbear 

cores is shown in Fig. 3. For en/decryption, the hardware core is 
first initialized by writing keys and initialization vectors into its 
memory-mapped registers. Similarly, for hash initialization, the 
current hash state is written to SHA- The 
initialization is followed by the transfer of plaintext from the 
RAM memory to the accelerator core where ciphertext or hash 
is calculated. The progress of the core is monitored continuously  
by checking pointer
After the processing of the plaintext is complete, ciphertext or 
hash is transferred back into the memory. All data transfer tasks 
between the memory and accelerator cores are managed by the 
direct memory access (DMA) controller present on the ZYNQ 
processing system (PS). The hardware design for the AES-128 
and SHA-256 accelerators was developed and implemented in 
the Vivado environment. A kernel module is used to manage 
DMA transfers from the userspace buffers in Dropbear to the 
respective cores using zero-copy mechanisms2. 

 

Fig. 3 System design for hardware acceleration of AES128 and 
SHA256 . 

III. DEMONSTRATION DESCRIPTION 

The demonstration is a representation of a scenario wherein 
a home-user would like to establish a secure channel to a 
machine its office or a data-center. The demonstration setup 
consists of a PC acting and a PYNQ board. The docker engine 
running on the PYNQ board forms NFVI, VIM is implemented 
by docker tools, and VNFs used in the demonstration are docker 
containers, each running two applications: 

1. Dropbear SSH client (dbclient) 

2. Element management (em) 

 
In our setup, the EM is responsible for two tasks: (1) replying to 

 inquiry about CPU usage and (2) signaling dbclient on 
behalf of SSM to use/release accelerator resources.  
The demonstration consists of two parts-- first part outlines the 
performance comparison between original, and hardware 
accelerated SSH-tunnels and the second part demonstrates 

2 https://github.com/jeremytrimble/ezdma 

Fig. 2 Sequence diagram showing processes involved in deployment 
and management of hardware accelerated VNFs 



mechanism for accelerator allocation to VNFs based on their 
CPU utilization. The setup for  the demonstration is shown in 
the Fig. 4. 

A. Performance comparison 

In the first part, a SSH tunnel is established between the PYNQ 
board and the PC by instantiating VNF1 only. As a result of port 
forwarding, traffic sent to port X1 on PYNQ is forwarded to port 
Y1 on the laptop, where destination server (iperf server) is 
listening. An user, simulated by an iperf client, starts sending 
traffic to the port X1 on PYNQ board. The peak throughput of 
the SSH tunnel is displayed on the screen and top displays CPU 
usage of the running SSH-tunnel. Then a curl request is 
manually sent to em1 to use the hardware accelerator instead of 
CPU. We will observe an improvement of about 40% in the 
traffic flowing through the tunnel. Moreover, the CPU 
utilization by SSH tunnel running on the PYNQ board also drops 
from 99% to 86%. 

B. Dynamic accelerator allocation using SSM 

In this case, two VNFs with dbclient1 and dbclient2 are 
deployed on the PYNQ board resulting in two separate SSH 
tunnels, i.e., tunn1 and tunn2 respectively. The second tunnel 
acts as a backup secure connection to the destination machine. 
CPU usage of both tunnels is continuously monitored and fed to 
the SSM running on the PC. Initially, a user creates a traffic with 
traffic rate of 10 Mbps is started on tunn1 resulting in the CPU 
utilization well below the upper threshold level of 90%. After a 
few seconds, traffic on tunn1 is increased such that it is 
completely saturated and its CPU usage reaches 99%.  As a 
consequence, the SSM, via em1, triggers the dbclient1 to use 
AES-128 and SHA-256 hardware cores. CPU is therefore 
relieved from performing compute-intensive operations and its 
utilization drops to about 88%. For demonstrating accelerator 
switching, user2 starts sending traffic on the tunn2. This results 
in SSM taking accelerator from tunn1 and allocating it to the 
tunn2. It can be clearly observed that the peak throughput of the 
tunn2 tunnel is increased by about 40%, accompanied by a 
reduction in CPU usage. The variation in traffic rate (blue) and  

 
CPU usages (red) of two tunnels is shown in Fig. 5. The peaks 
in CPU usage of tunn1 and tunn2 at t = 6s and 18s, respectively, 
are processed by the SSM to produce triggers for the two VNFs 
to use the accelerator. 

IV. CONCLUSION 

The challenge of effectively utilizing hardware accelerators in 
NFV environments can be addressed by the co-operation 
between EMs and the SSM components. SSM is responsible for 
the provisioning of accelerator resources to network functions 
by taking into account their real-time resource utilization. We 
demonstrated this  by dynamically activating hardware 
accelerator cores for two SSH-tunnels. AES-128 and SHA-256 
operations of SSH-tunnels were offloaded to hardware 
accelerator cores running on an FPGA resulting in improvement 
of their peak throughput and conservation of CPU cycles. 
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Fig. 4 Demonstration setup for dynamic acceleration of SSH tunnels. 
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