

Dynamic accelerator provisioning for SSH

tunnels in NFV environments
Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, Mario Pickavet

Ghent University - IMEC, IDLab, Department of Information Technology

Email: gouravprateek.sharma@ugent.be

Abstract. In this demonstration, we present dynamic allocation
of accelerator resources to SSH tunnels in an NFV environment.
In order to accelerate a VNF, its compute-intensive operations are
offloaded to hardware cores running on an FPGA. The CPU
utilization information of VNFs is continuously processed by a
service management component to dynamically decide the suitable
target to run VNF crypto-operations. We also demonstrate
switching between the non-accelerated and hardware-accelerated
SSH-tunnels triggered by a change in the nature of the data traffic
flowing through the tunnel and indicate throughput gains
obtainable in dynamically switching contexts.

Keywords SSH, tunneling, NFV, FPGA, acceleration

I. INTRODUCTION

Traditionally, network services are deployed using
specialized and proprietary hardware boxes known as
middleboxes. Network function virtualization (NFV) aims to
decouple the functionality of these middleboxes from the
underlying hardware so that standard IT virtualization
technologies can be exploited to execute network functions on
general-purpose x86 or ARM servers. NFV has enabled faster
deployment of new network services along with a reduction in
expenditures. Despite all the benefits that NFV offers, it still
faces challenges towards its widespread acceptance. One of the
major challenges is to achieve the same virtual network function
(VNF) performance as offered by its hardware counterpart [1].
To overcome this challenge, the use of hardware accelerators
along with general-purpose processors has been proposed [2, 3].
As NFV aims to decouple network functionality from dedicated
middleboxes, reconfigurable hardware platforms like FPGAs
acting as hardware accelerators are gaining particular attention.
FPGAs offer the best of both worlds, i.e., programmability of
general purpose processors and performance of dedicated
hardware boxes. Therefore, compute-intensive portions of a
network function could be offloaded to accelerators running on
an FPGA.

SSH tunneling service is chosen to show the proof of concept
of hardware acceleration for a virtual customer premise
equipment (vCPE), as an NFV use case. The bandwidth of an
SSH tunnel is limited by the speed with which a CPU can
perform cryptographic operations on data packets. These
operations include bit- and byte-level manipulations like XOR,
byte substitutions and shifting. By utilizing parallelism available
on FPGAs, these operations can be performed much faster on a

hardware platform, in comparison to software executing
sequential instructions on a CPU. Moreover, overall operating
costs can be reduced as FPGAs are more efficient than CPU in
terms of number of operations/Joule of energy spent. However,
effectively integrating accelerator resources and then optimally
allocating them in the NFV environment is still an challenge. As
the resources present on a CPE are limited, a strategy is required
to grant accelerator resources to network functions based on
their real-time resource utilization.

Fig. 1 ETSI NFV reference architecture framework.

Fig. 1 shows the reference NFV architecture proposed by the
ETSI. The key components relevant for our demonstration are
highlighted in blue. The VNF/specific service manager (VNFM
or SSM) is responsible for the life-cycle management, i.e.
starting/stopping, scaling and configuring, of one or more
VNFs. The element management system corresponding to each
VNF and VNF/service managers work together to configure the
application specific parameters of VNFs during its lifetime. In
our demonstration, we show how accelerator resources could be
dynamically activated for VNFs with the help of EMSs and
VNF/service managers.

II. SYSTEM IMPLEMENTATION AND PROCESSES

It is often required to extend network services present inside
a private network of an enterprise to a host located in the public
network. SSH-tunneling is a secure way of communication
between two machines over an untrusted network. An SSH
tunnel works by forwarding packets received at a configured
port on a client machine to a specific port on the destination
server machine (local port forwarding). An SSH-client listening

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/237011417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on a particular port creates a secured encrypted channel to the
SSH-server which in turn forwards the traffic to a port on the
destination machine present in the private network.

In our implementation, we choose Dropbear SSH-client1 as
a network function which along-with the required configuration
are packaged as docker images. An identity file (RSA public
key) required by the SSH-client to authenticate itself to the SSH
server is also present in the docker image.

A. Service Management Processes

The processes involved in the deployment and management
of hardware accelerated VNFs are explained in Fig. 2. First,
component VNFs of the required service are deployed by NFV
orchestrator by delegating resource reservation to the Virtual
Insfrastructure Manangement (VIM) system and then VNF
instantiation task to VNFMs. The orchestrator should ask VIM
to also reserve accelerator resources for specific VNFs, e.g.,
hardware accelerator cores for SSH-client VNFs. Next, each
VNF is polled by the SSM to fetch its resource utilization
information. Based on this information, the SSM logic
determines the suitable candidate VNF for allocating the
accelerator. The SSM logic involves a hysteresis decision loop
with pre-defined upper and lower thresholds for CPU utilization.
Before granting accelerator to a VNF, currently accelerated
VNF is signaled to release the accelerator resource.

B. Hardware Accelerator System Design

The original Dropbear implementation utilizes ciphers and
hashes provided by libtomcrypt (cryptographic library), to
en/decrypt and hash data packets. In order to accelerate these
cryptographic operations in dropbear, FPGA based accelerators
are utilized. Dropbear code is patched with accelerator functions
for communication with AES-128 and SHA-256 accelerator
cores. These accelerator cores are based on an open-source
Verilog implementation [4]. The system architecture for
accelerating en/decrypting and hashing using external hardware

1 https://github.com/mkj/dropbear

cores is shown in Fig. 3. For en/decryption, the hardware core is
first initialized by writing keys and initialization vectors into its
memory-mapped registers. Similarly, for hash initialization, the
current hash state is written to SHA- The
initialization is followed by the transfer of plaintext from the
RAM memory to the accelerator core where ciphertext or hash
is calculated. The progress of the core is monitored continuously
by checking pointer
After the processing of the plaintext is complete, ciphertext or
hash is transferred back into the memory. All data transfer tasks
between the memory and accelerator cores are managed by the
direct memory access (DMA) controller present on the ZYNQ
processing system (PS). The hardware design for the AES-128
and SHA-256 accelerators was developed and implemented in
the Vivado environment. A kernel module is used to manage
DMA transfers from the userspace buffers in Dropbear to the
respective cores using zero-copy mechanisms2.

Fig. 3 System design for hardware acceleration of AES128 and
SHA256 .

III. DEMONSTRATION DESCRIPTION

The demonstration is a representation of a scenario wherein
a home-user would like to establish a secure channel to a
machine its office or a data-center. The demonstration setup
consists of a PC acting and a PYNQ board. The docker engine
running on the PYNQ board forms NFVI, VIM is implemented
by docker tools, and VNFs used in the demonstration are docker
containers, each running two applications:

1. Dropbear SSH client (dbclient)

2. Element management (em)

In our setup, the EM is responsible for two tasks: (1) replying to

 inquiry about CPU usage and (2) signaling dbclient on
behalf of SSM to use/release accelerator resources.
The demonstration consists of two parts-- first part outlines the
performance comparison between original, and hardware
accelerated SSH-tunnels and the second part demonstrates

2 https://github.com/jeremytrimble/ezdma

Fig. 2 Sequence diagram showing processes involved in deployment
and management of hardware accelerated VNFs

mechanism for accelerator allocation to VNFs based on their
CPU utilization. The setup for the demonstration is shown in
the Fig. 4.

A. Performance comparison

In the first part, a SSH tunnel is established between the PYNQ
board and the PC by instantiating VNF1 only. As a result of port
forwarding, traffic sent to port X1 on PYNQ is forwarded to port
Y1 on the laptop, where destination server (iperf server) is
listening. An user, simulated by an iperf client, starts sending
traffic to the port X1 on PYNQ board. The peak throughput of
the SSH tunnel is displayed on the screen and top displays CPU
usage of the running SSH-tunnel. Then a curl request is
manually sent to em1 to use the hardware accelerator instead of
CPU. We will observe an improvement of about 40% in the
traffic flowing through the tunnel. Moreover, the CPU
utilization by SSH tunnel running on the PYNQ board also drops
from 99% to 86%.

B. Dynamic accelerator allocation using SSM

In this case, two VNFs with dbclient1 and dbclient2 are
deployed on the PYNQ board resulting in two separate SSH
tunnels, i.e., tunn1 and tunn2 respectively. The second tunnel
acts as a backup secure connection to the destination machine.
CPU usage of both tunnels is continuously monitored and fed to
the SSM running on the PC. Initially, a user creates a traffic with
traffic rate of 10 Mbps is started on tunn1 resulting in the CPU
utilization well below the upper threshold level of 90%. After a
few seconds, traffic on tunn1 is increased such that it is
completely saturated and its CPU usage reaches 99%. As a
consequence, the SSM, via em1, triggers the dbclient1 to use
AES-128 and SHA-256 hardware cores. CPU is therefore
relieved from performing compute-intensive operations and its
utilization drops to about 88%. For demonstrating accelerator
switching, user2 starts sending traffic on the tunn2. This results
in SSM taking accelerator from tunn1 and allocating it to the
tunn2. It can be clearly observed that the peak throughput of the
tunn2 tunnel is increased by about 40%, accompanied by a
reduction in CPU usage. The variation in traffic rate (blue) and

CPU usages (red) of two tunnels is shown in Fig. 5. The peaks
in CPU usage of tunn1 and tunn2 at t = 6s and 18s, respectively,
are processed by the SSM to produce triggers for the two VNFs
to use the accelerator.

IV. CONCLUSION

The challenge of effectively utilizing hardware accelerators in
NFV environments can be addressed by the co-operation
between EMs and the SSM components. SSM is responsible for
the provisioning of accelerator resources to network functions
by taking into account their real-time resource utilization. We
demonstrated this by dynamically activating hardware
accelerator cores for two SSH-tunnels. AES-128 and SHA-256
operations of SSH-tunnels were offloaded to hardware
accelerator cores running on an FPGA resulting in improvement
of their peak throughput and conservation of CPU cycles.

V. ACKNOWLEDGMENT

This work has been performed within the framework of the
NGPaaS project, which is funded by the European Commission
through the Horizon 2020 and 5G-PPP programs.

VI. REFERENCES
[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck and R.

Boutaba, "Network Function Virtualization: State-of-the-Art and
Research Challenges," in IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236-262, Sept. 2015.

[2] Network Function
Virtualization based on FPGAs:A Framework for all-Programmable
network devices arXiv, June 2014.

[3] X.Ge, Y. Liu, D.H.C. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, X. Hu,
OpenANFV: Accelerating network function virtualization with a

consolidated framework in OpenStack 2014 ACM Conference on
Special Interest Group on Data Communication, Aug. 2014.

[4] J. Strombergson. Verilog implementation of the symmetric block cipher
AES and SHA. [Online]. Available: https://github.com/secworks/

Fig. 4 Demonstration setup for dynamic acceleration of SSH tunnels.
Fig. 5 Time variation of CPU usage and throughput values for two SSH
tunnels.

