

IDLAB – INTERNET TECHNOLOGY AND DATA SCIENCE LAB - IMEC

Aranka Steyaert, Pieter Audenaert and Jan Fostier

ACCURATE DETERMINATION OF NODE AND ARC MULTIPLICITIES IN DE BRUIJN GRAPHS USING CONDITIONAL RANDOM FIELDS

Background

Genome sequencing

- Produces millions of short reads (50-250 bp length).
- Origin in genome sequence unknown.
- ightarrow "billion pieces genomic puzzle"

- Extra difficulty: reads contain errors (1-2%)
- Determine overlap between reads
 - ightarrow all to all comparison inefficient
 - \rightarrow obtain 'k-mers' from all reads: sub-sequences of equal length k
 - count occurrence and occurrence of k-1 overlap

De Bruijn Graph

Representation of the k-mers and their overlap

- **nodes**: k-mers
- **arcs**: overlap of k-1
- **read support**: occurrence of k-mer/overlap in read set
- **multiplicity**: occurrence of k-mer/overlap in original sequence
 - original sequence present as walk through graph
- conservation of flow of multiplicity:

if the full original genome is represented by de Bruijn graph: NODE MULTIPLICITY = ∑ INCOMING ARC MULTIPLICITIES = ∑ OUTGOING ARC MULTIPLICITIES

K-mer spectrum

Histogram of read support of all k-mers
Fit mixture model to these counts
→ One distribution per multiplicity
→ Determine cut-off values and create intervals of multiplicity

Issue: different multiplicity distributions overlap

Motivation

State of the art methods assign multiplicities based on cut-off values in k-mer spectrum Incorporating the conservation of flow of multiplicity property enforces more correct multiplicity assignments

Conditional Random Fields

Probabilistic framework that allows us to combine k-mer spectrum based probabilities with probabilities on neighbourhoods of nodes that enforce the conservation of flow. CRFs are a proved technique in image segmentation to incorporate information

Results

Fraction of correctly assigned multiplicities in the de Bruijn graph (Illumina data, 30x coverage)

	K-mer spectrum	+CRF
S. enterica	89%	95%
P. aeruginosa	80%	98%
B. dentium	81%	97%
E. coli	97%	98%
C. elegans	55%	63%
H. sapiens chr. 21	69%	77%
D. melanogaster	67%	73%

embedded in neighbourhoods of superpixels. A whole spectrum of efficient inference techniques has already been developed.

Contact

f

y

aranka.steyaert@ugent.be www.idlab.ugent.be, www.imec-int.com

Universiteit Gent

@ugent @IDLabResearch

in Ghent University

