

A multi-method characterization of river-aquifer interaction at the meter-scale: combining field measurements, heat transport modelling and groundwater modelling

Ghysels G.¹, Benoit S.², Awol H., Tolche AD.³, Hermans T.², Nguyen F.^{4,5}, Anibas C.⁶ and Huysmans M.^{1,5}

¹Vrije Universiteit Brussel, Belgium;
²Ghent University, Belgium;
³Haramaya University, Ethiopia;

⁴University of Liège, Belgium; ⁵KU Leuven, Belgium; ⁶UNSW Sydney, Australia

WHAT IS THE INFLUENCE OF RIVERBED HETEROGENEITY ON RIVER-AQUIFER EXCHANGE FLUXES?

- **Groundwater-surface water interaction** at the **Aa River**, Belgium
- Characterization of meter-scale spatial variability of riverbed hydraulic conductivity
- Estimating river-aquifer exchange fluxes from vertical riverbed temperature profiles based on the 1D heat transport equation
- Estimating river-aquifer exchange fluxes with a groundwater flow model (MODFLOW)

Downstream section

Upstream section

RIVERBED HYDRAULIC CONDUCTIVITY (K_H AND K_V)

Analyzed with Bouwer & Rice (1976) & Hvorslev (1951)

HORIZONTAL RIVERBED CONDUCTIVITY

K_h [m/d]

Downstream section

Ghysels et al. (2018), J. Hydrol.

VERTICAL RIVERBED CONDUCTIVITY

METHODOLOGY

VERTICAL RIVERBED TEMPERATURE PROFILES

Analytical solution of Bredehoeft and Papadopulos (1965) for 1D steady-state, vertical, anisothermal heat transport

RESULTS

ESTIMATED RIVER-AQUIFER EXCHANGE FLUXES

SIMULATING RIVER-AQUIFER EXCHANGE IN MODFLOW

RESULTS

SIMULATED FLUXES IN MODFLOW

SIMULATED FLUXES IN MODFLOW

- Riverbed K and flux estimates display **strong spatial variability at meter-scale**
- No clear correlation between riverbed K and vertical flux estimates
- **Riverbeds** are **complex** structures that are characterized by **complex flow fields**
- Lateral fluxes through the river banks and riverbed are an important contributor to total riveraquifer exchange fluxes
- Assumption of strictly vertical fluxes violated near banks

THANK YOU!

QUESTIONS?

CONTACT: GERT.GHYSELS@VUB.BE

Characterizing River-Aquifer Interaction at the Aa River

30-9-2019 | 17