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1. INTRODUCTION 

Water is an essential (re)source, crucial for all living organisms and numerous human activities 

[1]. Proper functioning of human activities and systems, including food and other industries, 

financial activities, agriculture, etc. requires a healthy and secure water supply [2]. There are 

however significant anthropogenic pressures on this delicate (re)source. Indeed, more than 

30 % of the global fresh water systems is affected by anthropogenic activities within a 

domestic, agricultural and/or industrial context [3]. These anthropogenic activities are a 

consequence of the development of our society and life. Currently, over 100 000 chemical 

substances are marketed in Europe, and the registration and consumption of chemicals are 

still increasing [4]. As a result, natural and anthropogenic substances are continuously 

entering our aquatic environment. The latter include, but not limited to, pesticides, 

pharmaceuticals, personal care products, plasticizers and hormones. Most of these 

compounds are at present unregulated in the water supply context and are therefore 

considered as ‘contaminants of emerging concern’ or CECs. Compounds that can potentially 

interfere with the hormonal system of organisms are also designated as ‘Endocrine Disrupting 

Compounds’ or EDCs.  

Over the past few past decades, the concept of EDCs has risen from total obscurity to nearly 

a household term [5]. In the beginning of the 1940s, ecologists noticed the first abnormal 

reproductive patterns in wildlife studies. In 1962 the book Silent Spring by Rachel Carson was 

essential in awakening both the scientific community as well as the public to the idea that the 

manufactured chemicals, used in our human civilization can cause harm to ecosystems and 

human health. A few years later, the government of the United States founded the National 

Institute of Environmental Health Sciences (NIEHS) (1966) to study how the environment 

affects human health, while the U.S. Environmental Protection Agency (EPA) (1970) started 

to implement regulations to protect the environment and human health. During 1960 to 1970, 

ecologists began to notice unexpected patterns in animals. For example, in the Great Lakes, 

domesticated mink virtually stopped producing pups [6]. In the early 1970s, the artificial 
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estrogen diethylstilbestrol (DES) that was prescribed from 1940 to 1971 to millions of women 

during pregnancy to reduce miscarriage, was identified as transplacental carcinogen. The 

discovery of DES’s tragic legacy was the first time doctors and scientists realized the potential 

for chemicals to cause physical deformities and more subtle health effects which emerged 

many years later in life [7]. In 1972, the U.S. EPA announced that the pesticide dichloro-

diphenyl-trichloroethane (DDT) would be prohibited in the United States. At the same time, 

different researchers raised concerns about environmental contamination from oral 

contraceptives. From then on, the NIEHS held different “Estrogens in the Environment 

meetings”. In 1979 the first one was held in order to frame the larger picture of hormone-

mimics and their health effects. The meeting focussed on identifying the properties and 

diversity of environmental estrogens [8]. The outcome of this meeting was an ecosystem 

model of R. L. Metcalf that could test the environmental effects of several chemicals, currently 

recognised as EDCs. Metcalf’s research demonstrated how chemicals bioaccumulate and 

biodegrade in living organisms [8]. The second “Estrogens in the Environment” meeting in 

1985s emphasized the effect of environmental estrogens on puberty in young children. 

Moreover, the meeting examined the biological actions of estrogen exposure, such as reduced 

sperm counts, testicular cancer, and other negative conditions [9]. As a result of the growing 

awareness of harmful environmental chemicals, abnormal ecological patterns, and increasing 

focus on hormone-like chemicals, scientists from a variety of fields convened at the 

Wingspread Conference in 1991. The latter proved to be a key turning point in the 

development of the field of endocrine disruption. Since then, the terms “endocrine disruption” 

and “endocrine disruptors” were used. This meeting was the inspiration and framework for the 

remarkable research that followed from the 1990s till the early 2000s. For example, studies 

on turtles showed that PCBs, similar to estrogens, can influence the sex of the offspring 

[10,11]. With the development of in vitro screenings [12], the list of EDCs increased rapidly 

from a few pesticides (e.g. chlordecone, methoxychlor, and DDT) and industrial chemicals 

(e.g. PCB), to a variety of new compounds with estrogenic activity that were found in plastics 

[13,14], disinfectants, and personal care products [15]. Studies began to suggest that EDCs 
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could cause health effects even at low doses (e.g. growth), whereas opposite effects were 

observed at high doses [16,17]. As the evidence accumulated on the large picture of EDCs in 

the environment, the third “Estrogens in the Environment meeting” was held in 1994 to explore 

the effects in wildlife and draw linkages between estrogen exposures and human diseases 

[18]. Since 1996, the EDCs have been considered as a global priority. In Weybridge (United 

Kingdom) “the Impact of Endocrine Disruptors on Human Health and Wildlife” was discussed 

the international level by regulatory agencies, national authorities and international agencies 

[5]. In 1999, the European Commission adopted the community strategy for endocrine 

disruptors, which included short, medium and long-term actions. Calls were launched for more 

effective ways to identify EDCs, determine levels of exposure, and keep new EDCs from the 

marketplace. In 2001 (Stockholm convention), persistent organic pollutants were recognised 

as compounds that can cause serious health effects. The World Health Organization outlined 

in 2002 the state of the science on endocrine disruption, discussing the mechanisms of action 

and health effect in animals and humans [19]. In 2009, the Endocrine Society released its first 

scientific statement on EDCs, presenting evidence-based perspectives and identifying areas 

requiring additional research [20], which proved to be a milestone in lending legitimacy to the 

EDC field. Recent consensus and reviews, i.e. report of WHO in 2012 and a 2013 statement 

by European Food Safety Authority, reinforced these statements [21]. In 2015, the Endocrine 

Society issued that the policymakers in the European Union needed to define criteria for 

recognizing EDCs. As a result, in 2016 the European Commission proposed criteria to identify 

EDCs [22]. In parallel with these regulatory developments and further evolving research, the 

term EDCs has been acknowledged in his broadest meaning as a compound that can interfere 

with the function of hormones. An environmental EDC, according to the U.S. EPA, is defined 

as an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, 

or elimination of natural hormones in the body that are responsible for maintenance of 

homeostasis, reproduction, development, and/or behaviour [23]. Currently, the U.S. EPA 

estimates that about 10 000 unique chemicals have a potential endocrine disrupting activity. 

Aquatic organisms are particularly susceptible to EDCs, because their entire life cycles are 
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spent in continuous contact with water [24]. Therefore, the main focus of this work lies on the 

development and application of monitoring strategies for environmental micropollutants in 

aquatic matrices, and especially in seawater, that can potentially interfere with the endocrine 

hormonal system, hereafter thus referred to as EDCs.  

 

2. ENDOCRINE DISRUPTING COMPOUNDS (EDCS) IN THE AQUATIC 

ENVIRONMENT 

2.1. Classification 

2.1.1. Steroid hormones (steroidal EDCs) 

Steroid hormones are extensively used both in human and veterinary medicine for 3 

predominant purposes. First, there is the treatment of diseased living organisms, in which 

corticosteroids play the most important role. Second, steroid hormones are massively used 

for controlling the reproductive cycle and synchronizing oestrus in females. Third, steroid 

hormones can be used albeit illegal as growth promotors in athletes, for meat production 

purposes and/or for enhancing meat quality. Steroid hormones are considered as most critical 

pharmaceuticals posing a risk to the environment, because they are continuously and 

increasingly being used in human and veterinary medicine [25,26]. Furthermore, steroid 

hormones are recognised as the most potent endocrine disrupting compounds (EDCs), due 

to the fact that they can interact at very low concentrations (near 1 ng L-1) with the hormonal 

system of living organisms [27–32]. Interfering steroidal EDCs can have both a natural or 

synthetic origin, but both natural or synthetic analogues can elicit potential negative effects on 

the endocrine system of humans and wildlife.  

The steroidal EDCs, encompassing both natural and synthetic compounds and their 

metabolites, can be sub-classified in the androgens, oestrogens, progestins and 

corticosteroids [33,34]. The androgens, representing the male sex steroids, play a key role in 

reproduction, sexual maturation and differentiation in males. Additionally, androgens generally 



Chapter I - General introduction 

 7 

impact normal human development and physiology [35]. Androgens may also exert anabolic 

effects including an increase of skeletal muscle mass and strength, whereof the mechanisms 

are not yet fully understood [36]. Synthetic androgens are designed towards more selective 

anabolic properties, higher oral bioavailability, optimised pharmacokinetics and/or minimized 

estrogenic side effects [35]. Oestrogens on their hand bring about feminine characteristics, 

controlling the reproductive cycle and pregnancy but may also influence bone, skin, the 

cardiovascular system, and immunity [37,38]. Synthetic oestrogens are generally used as 

ingredients in oral contraceptives. Natural and synthetic oestrogens are suspected to have 

adverse effects on the endocrine system in wildlife [39] and humans [40]. Consequently, 

several studies report an increase in oestrogen-dependent diseases, such as testicular, 

breast, prostate, ovarian and corpus uteri cancers [41,42]. Synthetic progestins, such as 

medroxyprogesterone acetate, norethindrone and norgestrel, are frequently used in 

contraceptive treatments for the promotion of the menstrual cycle, symptom control in 

menopause, and prevention of certain cancer types. Synthetic progestins are often associated 

with oestrogens in contraceptive treatments [43]. Furthermore, progestins control oestrogen-

induced endometrial hyperplasia [44]. Derivatives of progestins, produced through formulation 

(synthetic production) or obtained following extraction of living organisms, such as the teleost 

fish, African cichlid, Atlantic cod, Atlantic salmon, eel, goldfish, Japanese medaka, zebrafish 

and fathead minnow, can show androgenic activity. As a result, they can interact with other 

steroid receptors, such as oestrogen, progestin, androgen, glucocorticoid and the peroxisome 

proliferative-activated receptors, of living organisms [45–47]. As a last sub-class of the 

steroidal EDCS, corticosteroids are anti-inflammatory and immunosuppressant substances, 

with therapeutic usage in a wide range of disorders, such as asthma, rheumatoid disease, 

gastrointestinal, cardiac and skin disorders [48]. 

Generally, steroidal EDCs are excreted by humans and livestock in their native form, as 

conjugates or as specific metabolites [49,50]. EDC metabolites and/or degradation products 

are of equal importance as the parent compounds, because they may behave as antagonists 

and/or agonists of the oestrogen and/or progestagen receptors in hormonal systems [43,51]. 
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The chemical structure of each sub-group of steroidal EDCs studied in this doctoral thesis is 

presented in Figure 1. 

 

Figure 1. The chemical backbone of the different steroidal EDC classes studied in this doctoral thesis. For 
the androgens, oestrogens, progestogens and corticosteroids respectively, β-testosterone, 17α-
ethinylestradiol, medroxyprogesteronacetate and cortisol are depicted. R-groups represent varying 
functional groups or side chains. 

2.1.2. Plasticizers and plastics additives (man-made EDCs) 

Plasticizers and plastics additives are compounds that are used to alter the physical properties 

of plastics in a number of applications, such as packaging, epoxy resins (coatings), building 

materials, children’s toys, thermal printing paper, medical devices, electronics, plastic food 

containers, drinking bottles, eye glass lenses and cosmetics [52]. Commonly used plasticizers 

and plastics additives comprise the phthalates and bisphenol A (BPA) [53,54]. 

Phthalates are the most used plasticizers with as main application the production of polyvinyl 

chloride (PVC) plastics and other non-PVC applications (as mentioned before). In particular 

di-ethyl hexyl phthalate (DEHP) is an exceedingly and widely used one [55]. Phthalates can 

easily migrate from products, during production or use, to the environment, because they are 

not bound covalently and are thus easily lost by a variety of physical processes. Furthermore, 

phthalates are also excreted by humans as a result of direct or indirect contact via food, water, 

dust and consumer products [56,57]. In the human body, phthalates are rapidly metabolised 

through phase I reactions (hydrolysis and subsequent oxidation), followed by phase II 

metabolism and excretion to urine as mono-phthalate esters or conjugates [58]. The low-
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molecular phthalates are metabolised into stable hydrolytic mono-esters (primary 

metabolites). On the other hand, the high-molecular phthalates are metabolised into 

intermediate hydrolytic mono-esters, which are in turn extensively transformed by ω-, (ω − 1)- 

and β-oxidation into oxidative secondary metabolites (i.e. alcohols, ketones and carboxylic 

acids) [59]. Different researchers report that these mono-esters (primary metabolites of 

phthalates) and the secondary oxidation metabolites possess a similar biological activity as 

the parent phthalates [60–62]. On top of that, detected traces of parent phthalates have also 

been used a biomarkers for investigating the exposure of humans [63–67] and aquatic 

organisms [68] to phthalates. 

BPA, characterized by two hydroxyphenyl functionalities, is one of the most highly produced 

bisphenol analogues with over 3 million tons per year [69,70]. The use of BPA in different 

polymer applications, may lead to migration of BPA from polymers into food sources (i.e. food 

and water), and non-food sources (e.g. dust, thermal paper, dental materials, and medical 

devices). Additionally, BPA is frequently used as metal coating to prevent rusting and 

corrosion [71,72]. BPA can leach into liquids through two different processes. First, because 

of its incomplete polymerization during plastic and coating production, residues can diffuse 

into foods and liquids, particularly at higher temperatures [71,73,74]. Second, hydrolysis of the 

polymer catalysed by hydroxide ions (OH-) in aqueous solutions can onset leaching [75], 

leading BPA to end up in lakes or rivers, where it can be accumulated by aquatic organisms. 

Furthermore, exposure to BPA has also been demonstrated in humans following the 

consumption of BPA-based polymer canned food or the food itself [76]. BPA residues have 

been reported in fruits and vegetables, seafood, meat, eggs, milk, honey, and drinking water 

[77]. The predominant sources of exposure to BPA of humans are therefore food and water 

[78]. BPA can also be metabolised by aquatic organisms and humans. BPA is not extensively 

transformed by phase I reactions, but rapidly conjugated with glucuronic acid (phase II 

metabolism) to the non-active BPA-glucuronide and to a lesser extent to BPA-sulphate and 

BPA-chlorate. The formation of BPA conjugates is considered as a detoxification, as only the 

native BPA forms demonstrate estrogenic activity [79,80]. However, a recent study found that 
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conjugated forms of BPA can perturb cellular responses in prolactemia cells [81]. However, 

BPA conjugates can be converted to free BPA by bacterial populations (in WWTPs) through 

the presence of β-glucuronidase and arylsulfatase enzymes [83,84]. Even more, presence of 

β-glucuronidase in lysome and endoplasmatic reticulum membranes (in the human liver and 

the kidney) can reverse detoxification [82,83]. Several studies have demonstrated the 

presence of BPA in human biofluids, such as urine, blood, and amniotic fluid [78,84,85].  

BPA, measured in urine and wastewater treatment plants (WWTPs), has been considered as 

a reliable biomarker for predicting the overall exposure of humans during assessment studies 

[85,86]. The chemical structures of some well-known plasticizers and plastics additives are 

shown in Figure 2. 

 

Figure 2. The chemical backbone of phthalates and (alkyl)phenols as studied in this doctoral thesis. For 
the phthalates, di-ethylhexyl phthalate and for the (alkyl)phenols, 3-trichlorophenol and bisphenol A are 
shown. The presence of one or two R-group(s) depicts the mono- and di-phthalates, respectively. 

2.2. Environmental concentrations and fate 

Figure 3 depicts a summary of the quantitative data published so far on the most frequently 

detected steroidal EDCs, plasticizers and plastics additives in the aquatic environment. This 

literature survey indicates that the occurrence of the above-mentioned compounds (depicted 

in Figure 1 and Figure 2) has been mainly surveyed in fresh water environments, i.e. surface 

water (such as lakes and rivers), ground water, drinking water and wastewater. Steroidal 

EDCs are generally reported in lower concentrations (< 0.1 up to 100 ng L-1) as compared to 

plasticizers and plastics additives in fresh water environments (10 up to 1000 ng L-1). For the 

plasticizers and plastics additives higher concentrations were observed in wastewater and 

Phthalates (Alkyl)phenols
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even in marine waters, although at present only a limited amount of data is available for those 

matrices.  

In surface water, almost all steroidal EDCs, plasticizers and plastics additives have been 

detected (except for norgestrel and di-isonyl phthalate). It is therefore not surprising that 65% 

of the rivers, including important aquatic habitats, are currently classified as moderately to 

highly threatened [87]. In ground and drinking water, several studies on the presence of 

steroidal EDCs [88,89], plasticizers and plastics additives [89–91] have been published so far. 

Furthermore, the detected range of micropollutant concentrations in raw and treated 

wastewater is higher than in surface waters. Although WWTPs offer a major shackle between 

industrial activities and the environment, still quantifiable levels of steroidal EDCs have been 

detected in WWTP effluents [92–100]. Evidently, residual steroidal EDC concentrations can 

leach to other parts of the aquatic environment. Although conjugates of steroidal EDCs have 

been recognized to exert lower biological activities than their native forms, cleavage to free 

steroidal EDCs can occur through bacterial populations (in WWTPs) that are capable of 

producing β-glucuronidase and arylsulfatase enzymes [101,102]. Indeed, the prevalence of 

free steroidal EDCs in treated wastewater and rivers offers an indication that metabolites can 

be converted back into their active form [97,101,103–106]. With respect to the plasticizers and 

plastics additives (except for BPA), almost none of them have been monitored towards their 

removal from wastewater [95,107–110]. It should be noted that di-n-butyl and di-iso-butyl 

phthalate were not simultaneously detected in wastewater and marine water, although both 

were successfully chromatographically separated and analysed with similar detection limits of 

the applied analytical method [69]. Figure 3 demonstrates that, based on the limited data 

available on animal farm wastewater, the use of steroidal EDCs in animal farming activities 

(beef cattle and swine production) also contributes to the contamination of our wastewater 

(detected concentrations up to 1000 ng L-1) [112,113]. Moreover, similar and or even higher 

concentrations were detected in animal farm wastewater in contrast to wastewater originating 

from WWTPs. To the best of the authors’ knowledge, no comparable quantitative information 

is available for the intake of steroidal EDCs by humans and livestock. Nevertheless, a recent 
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study of Adeel et al. (2017) highlighted that the estrogen discharge by livestock is more than 

twice the rate of human discharge [114]. Globally, approximately 21 ton/year of oestrogens 

are discharged into the environment [114]. 

The most frequently reported steroidal EDCs, plasticizers and plastics additives are the 

oestrogens and di-phthalates, whereas data for androgens, progestogens, corticosteroids and 

mono-phthalates are more limited. Scarcity of monitoring data is certainly an issue when it 

comes to the marine environment. Moreover, studies focusing on the fresh water environment, 

primarily map the local anthropogenic contamination. To obtain a better picture on the general 

contamination status, the marine environment should be investigated as well. This was also 

reinforced by the work of Noppe et al (2007) [115]. The latter examined a limited number of 

steroidal EDCs (i.e. α-estradiol, β-estradiol, estrone and ethinylestradiol) in transitional waters, 

i.e. Western Scheldt samples (brackish water). This research detected estrone and β-estradiol 

in the low ng L-1 range in water (not depicted on Figure 3), suggesting that steroidal EDCs 

could have already reached our marine environment. 

However, it should be highlighted, that a larger series of emerging compounds should be 

identified, as the fate of many other steroidal EDCs, plasticizers and plastics additives is still 

poorly known, particularly following WWTP [116] and in the water in general [117].” 

All EDCs will eventually degrade into other, less-well characterised compounds [118]. 

Biological degradation, generated by human, animal and microbial metabolism, will result in a 

wide range of transformation products as well [119]. Briefly, it can be concluded, that the 

marine environment is an important water body that may be suspected to contain numerous 

EDCs and their transformation and degradation products, and this at low ng.L-1 range. The 

evaluation of these EDCs in seawater, is a logic first step to assess how far these compounds 

have already reached our aquatic environment. This stresses the need of monitoring EDC 

residues in the marine waters. Therefore, this doctoral thesis focused on the analysis of EDCs 

in seawater, and not in sediments and biological species. Indeed, EDC residues in the 

environment have gained a growing public and scientific concern in recent years [120]. 

 



Chapter I - General introduction 

 13 

 

Figure 3. Concentrations of steroidal EDCs, plasticizers and plastics additives reported in the aquatic 
environment and presented as box-and-whisker plots and median (line box). The bottom and top of the 
box are the first and third quartiles of the data. Whiskers indicate minima and maxima, covering variability 
outside the upper and lower quartile. Green and red boxplots of panel 2 represent ground and drinking 
water, respectively. Red, green, and blue boxplots of panel 3 represent WWTP influent, WWTP effluent and 
animal farm wastewater, respectively. Only compounds for which more than 10 quantitative data points 
were found in literature, are included in this chart. Data sources: [89,90,109,110,112,113,126–131,91,132–

141,92,142–151,95,152–161,96,162–167,97,99,100,107], from 2000-2015. Single horizontal lines represent 1 
data point. 
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2.3. Legal frameworks and directives 

In response to public awareness and concerns about the health status of our aquatic 

environment, different legal frameworks and directives have been published [121–125], e.g. 

OSPAR (marine convention for the protection from Oslo to Paris), REACH, WFD (Water 

Framework Directive), Norman (directive) and CWA (U.S. Clean Water Act). An overview of 

the most important EDCs (in section 2.2) that are listed by these frameworks and directives 

can be consulted in  

 

Table 1. Table 1 clearly demonstrates that each legal framework and or directive focusses on 

different EDCs, indicating that the current legal framework for the unambiguous identification 

of substances of emerging concern is unharmonized. Indeed, only 17β-estradiol and BPA 

have been included in most legislations and directives.  

In light of this work, the European WFD and the Marine Strategy Framework Directive (MSFD, 

2008/56/CE) were considered the most important. The WFD covers inland surface waters 

(e.g. rivers and lakes), transitional waters (e.g. coastal waters), and groundwater. For the 

marine environment, the MSFD has been established more recently and is closely tied to the 

EU WFD.  

 

The WFD and MFSD overlap on coastal areas, since the WFD considers coastal waters as 

that are located one nautical mile out to sea. The WFD aims to achieve and ensure a “good 

water status” of all European water bodies and to prevent deterioration of the water status by 

2027. The latest list of priority substances of the EU WFD comprises a total of 45 substances. 

For those substances, environmental quality standards (EQSs) are available. When 

exceedance of the EQSs is observed, member states are required to implement operational 

monitoring and to control the discharge and emission of priority substances to the aquatic 

body. Until now, only 17β-estradiol, 17β-ethinylestradiol and diethylhexyl phthalate have been 

included as steroidal EDCs in the European watch list for water quality monitoring. 
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Table 1. Overview of available legal frameworks and directives for EDCs in aquatic matrices. 

EDC OSPAR1 REACH2 WFD3 Norman4 CWA5 
Steroidal EDCs      
17β-estradiol A A A A 

 

estrone A A 
 

A 
 

17β-ethinylestradiol A 
  

 
 

17-caproxyprogesterone A 
  

 
 

17α-estradiol 
   

A 
 

17α-ethinylestradiol A 
 

A A 
 

cholesterol 
   

A 
 

diethylstilbestrol C 
  

A 
 

estriol 
   

A 
 

mestranol 
   

A 
 

prednisolone 
   

A 
 

dexamethasone 
   

A 
 

nandrolone 
   

A 
 

Plasticizers and plastics additives      
bisphenol A B A 

 
A 

 

4-tert-octylphenol 
   

 
 

phenol 
   

 A 
2,4,6-trichlorophenol 

   
 A 

2,4-dichlorophenol 
   

 A 
2,4-dimethylphenol 

   
 A 

butyl benzyl phthalate B A 
 

A A 
di-n-octyl phthalate B 

  
A A 

di-isodecyl phthalate    A  
diisononyl phthalate    A  
di-n-butyl phthalate  A  A A 
diethylhexyl phthalate  A A  A 
diethyl phthalate     A 
dimethyl phthalate    A A 

1 A = warrant further work by OSPAR, B=substances of concern according to OSPAR, but which are adequately addressed 
by EC initiatives or other international forums, C= threat to the marine environment 
2 A = recognised by REACH 
3 A = most priority substances 
4 A = emerging substances 
5 A = recognised as toxic and priority pollutant 
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3. CHEMICAL ANALYSIS OF EDCS IN THE AQUATIC ENVIRONMENT 

In recent years, evolution in analytical instrumentation has resulted in a significant progress in 

the detection of micropollutants in the aquatic environment. Although considerable 

advancements have been achieved on the analytical side, the initial sampling and sample 

preparation steps still leave much to be desired. Within this literature overview, it is not the 

purpose to give a complete compilation of scientific research on the analysis of EDCs. Instead, 

our goal is to discuss the most frequently used extraction procedures and analytical 

instruments that enable the widest detection range of EDCs in the aquatic environment. 

3.1. Sampling and sample preparation procedures 

Sampling of environmental micropollutants encompasses analyte isolation and 

preconcentration. The combination of isolation and preconcentration, whether or not 

performed in one single step, results in two distinct types of aquatic sampling approaches, i.e. 

active and passive sampling. Active sampling – and in particularly the conventional grab 

sampling - requires mechanical work and/or energy in order to pass the contaminants in the 

water phase through an extraction device (appropriate sorbent phase). In the marine 

environment, the water column is commonly sampled using Niskin bottles [168], as depicted 

in Figure 4. Alternatively, passive sampling uses environmental advection and molecular 

diffusion to capture analytes in an extraction device directly exposed to the aquatic 

environment. Passive sampling shows a number of advantages compared to active sampling; 

i.e. less labour intensive (reduced cost) and more sensitive (lower detection limits) as there 

are no limitations with regard to the sample volume [169,170]. Additionally, passive samplers 

are effortless in transport and storage, because the analytes are already enriched on the 

sampler [171]. Nevertheless, there are some drawbacks related to the use of passive 

sampling. Most importantly, the effect of fluctuating environmental conditions on the analyte 

uptake needs to be taken into account [171]. 
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Figure 4. Niskin bottle for sampling the water column at a certain depth. 

 

Corrections for the latter can be made by using suitable performance reference compounds 

(PRCs) for the more non-polar compounds (log P> 4), which are comparable to the use of 

internal standards within active sampling. Moreover, within passive sampling, internal 

standards (or PRCs) are used for correcting the variation of the isolation and preconcentration 

of analytes, while in active samplers this can be used solely for correcting the variation of the 

preconcentration (and also the instrumental variation of the analysis). In addition, the selected 

deuterated standards for both strategies are chosen within the calibration range and covering 

the same polarity range as the envisaged target compounds. 

Nevertheless, for the polar compounds (log P < 4) correcting for environmental fluctuations 

using PRCs is still challenging, and until now limitedly applied in passive sampling [172]. 

Furthermore, only a limited number of standard procedures for mostly non-polar compounds 

are available for passive samplers [173], while for grab sampling a plethora of directives and 

ISO guidelines exist (such as ISO 56667-1). The continuously increasing number of passive 

sampling designs and devices has also resulted in different handling procedures [174]. 

Despite of their individual advantages and disadvantages, using a combination of both 

sampling techniques will offer complementary information about the occurrence of 

contaminants in the water phase. Moreover, passive sampling provides information of 

compounds and levels covering the entire deployment duration (depending on the operation 

mode, further discussed in section 3.1.2.), whereas active samplers only provide information 
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about the total dissolved fraction at one specific point in time, unless of course a more 

elaborate active sampling campaign is designed. Consequently, dynamic concentrations (e.g. 

episodic inputs of contaminants and storms) are likely to be missed unless multiple samples 

are collected [175,176]. Additionally, passive samplers measure the freely dissolved or 

relevant concentration with regard to toxicological effects on biota (bioavailable 

concentration), whereas the measured fraction of active samplers depends on the sample pre-

treatment step and allows quantification of both dissolved and particulate phases of 

contaminants in the water phase. Therefore, passive sampling opens up the opportunity of 

combining chemical analysis and toxicity testing, and thereby, forms the link between levels 

of contamination and their potential risk to the aquatic environment [177,178]. Currently, a 

plethora of extraction procedures are available for both active and passive sampling, as 

depicted in Figure 5. For the extraction of micropollutants from aquatic matrices, the use of 

polymeric materials and sorbents play a fundamental role within active and passive sampling. 

In active sampling, the use of polymeric sorbents is also known as solid-phase extraction 

(SPE). In passive sampling, polymeric devices are increasingly used to accumulate 

contaminants from environmental waters [179]. 

3.1.1. Active sampling 

Following  active sampling, a number of extraction techniques ranging from conventional 

liquid-liquid extraction (LLE), to more contemporary methods based on microextraction, may 

be used (Figure 5). Up to date, SPE is still the most frequently applied sample preparation 

and extraction technique [180,181]. SPE realizes an up-concentration of the analytes, but at 

the same time also produces cleaner extracts facilitating analysis [181]. Furthermore, 

improved retention of emerging compounds was obtained by the use of commercially available 

polymeric sorbents, mostly hydrophilic-hydrophobic balanced materials (e.g. Oasis HLB) and 

octadecyl silica bonded phases [182]. Commercially available polymers are generally suited 

for extracting a selective range of organic compounds, with each possessing a defined range 

of physico-chemical characteristics [183]. 
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Nevertheless, the copolymer of divinylbenzene and N-vinyl pyrrolidone, better known as Oasis 

HLBTM, is currently the most commonly used SPE-sorbent for extracting a physico-chemically 

diverse range of emerging micropollutants [184–188]. Prior to SPE, filtration of samples is 

usually performed to reduce the microbial degradation of analytes and to avoid clogging of 

SPE sorbents [189]. 

 

 

Figure 5. The available sample preparation techniques that have been reported in literature for measuring 
EDCs in aquatic matrices, classified by the sampling technique and the corresponding aquatic fractions. 
The sample preparation techniques highlighted in green are considered to be more environmentally 
friendly as less organic solvent is used during the extraction. 

3.1.1.1. Steroidal EDCs 

Overall, a number of studies have focused on the active sampling of steroidal EDCs in 

freshwater environments and particularly on the presence of oestrogens. Nevertheless, only 

a limited number of steroidal EDCs have been investigated so far, except for one study by 

Vulliet et al. (2011) in which 26 steroidal EDCs were measured simultaneously in surface and 

groundwaters [190]. Even more, the available standardized EPA methodology, for measuring 

steroidal EDCs in drinking water by SPE, includes only 12 steroidal EDCs [191]. Before 

extraction, aquatic samplers are mostly filtered, followed by a pH adjustment step [192–195]. 

The EDC extraction procedures reported so far for steroidal EDCs apply Oasis HLBTM or Strata 

C18 SPE cartridges [190,194]. Upon sample loading, the sorbent materials are washed with 
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aqueous solutions, targeted steroidal EDCs are eluted with organic solvents, solvents are 

evaporated and the residue is reconstituted in a small volume of the appropriate injection 

solvent [196–198]. As many of the steroidal EDCs are present at trace levels in the aquatic 

environment (ng L-1), large volumes of sampled water are usually needed to achieve reliable 

analytical performance [199]. Moreover, a (limited) number of sample precautions should be 

considered in order to avoid sample contamination. Some of the hormone compounds are 

biogenic and can be present on human skin or might be used as personal care products [189]. 

Furthermore, protective gloves must be worn at all times to minimize risk of contamination, 

while the collection of field blanks is essential to monitor for contamination during the sampling 

itself. Especially for quantitative analysis of cholesterol, it is important to avoid laboratory 

tissues or other paper-based products during sampling and extraction, because these 

products might contain cholesterol. More importantly, cholesterol is also present in human 

skin flakes and can even occur at substantial concentrations in both in and out-door dust [200].  

3.1.1.2. Plasticizers and plastics additives 

On top of those parameters of importance as described for the active sampling of steroidal 

EDCs, additional precautions should be taken for reducing systematic errors and false 

positives during active sampling of plasticizers and plastics additives [201,202]. Moreover, 

special attention must be paid to the pre-treatment and storage of samples that will be 

analysed on the presence of plasticizers and plastics additives, in particular phthalates, in 

aquatic matrices as well. It is self-evident that plastic materials should be avoided or screened 

for phthalates in order to minimize or avoid contamination when collecting and preparing 

samples. Even glassware should be cleaned using different solvents, e.g. ultra-pure acetone, 

dichloromethane, hexane and/or methanol, and heated over 400°C for at least 2 - 4 hours 

[203–207]. Following this, glass should be wrapped into calcinated aluminium foil to limit 

photochemical oxidation [203–207]. For active sampling, all sampling materials, including 

bottles, should be cleaned using 0.1 % HCl and Milli-Q water [208,209]. On the sampling site, 

storage containers (bottles) and materials should be rinsed with water from the sampling site 
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itself [210]. After sample collection by means of active sampling, water samples should be 

transferred to the rinsed bottles, and it is suggested to close them off using Teflon caps [110]. 

At present, most of the existing aquatic monitoring studies lack sufficiently specific knowledge 

regarding the suitability of water storage containers for phthalate sampling purposes. An 

overview of the used storage containers (since 2011), with reported phthalate contamination 

status, can be consulted in Table 2. 

Migration of DEP and DEHP have been observed for almost all storage containers although, 

overall, a lot of discrepancies have been reported, with respect to e.g. polyethylene tetra 

phthalate (PET) bottles. More specifically, studies of Dévier et al. (2013) and Amiridou et al. 

(2011) have shown that the storage of samples in PET bottles at different temperatures and 

exposure times did not allow the detection of any of the phthalates of interest [210,213]. This 

is however contradicted by the results of a long-term study (11 months) published by Ustun et 

al. in 2015 [215], which observed that the main reason for phthalate contamination could be 

attributed to exposure time, rather than any other factor such as exposure to light, pH, storage 

temperature, humidity, and the use of additives. Nevertheless, several independent studies 

mention a significant increase in phthalates leaching from the storage container to the sample 

itself as a result of an increased temperature [214], whilst Keresztes (2013) observed leaching 

of phthalates at low sample pHs [212]. In contrast to the latter, several independent 

researchers recommended the acidification of samples for preservation [57].  
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3.1.2. Passive sampling 

Passive sampling techniques have been initially developed as an alternative for overcoming 

the challenges of active sampling, as extensively described under 3.1.1. Passive sampling 

relies on the diffusion of analytes from the aquatic phase to a receiving medium (i.e. passive 

sampling device), which is driven by the difference in chemical potential (described by Fick’s 

first law) [218]. The uptake of analytes can be described by a partitioning process, which is 

assumed to follow first order kinetics. The partitioning process is initiated with a lag phase (not 

depicted in Figure 6), indicating the period of time before the start of the diffusion of the 

analytes towards the  receiving medium, followed by a linear accumulation phase and a 

transition stage, to end with a curvilinear equilibrium stage with the surrounding aquatic 

environment (Figure 6). During the initial linear stage, contaminants sorb at a rate that is 

directly proportional to the aqueous concentration. As shown in Figure 6, passive samplers 

can be operated in the kinetic (linear) or equilibrium mode.  

 

Figure 6. General accumulation profile of an analyte in a passive sampler as a function of time, thereby 
assuming a consistent (fixed) chemical concentration in the aquatic medium, showing the different uptake 
process stages (kinetic, transition and equilibrium), as reported by Smedes and Booij [173]. 

Operation in the equilibrium mode, is typically used to provide a snap shot of the freely 

dissolved concentration, while kinetic samplers are designed to continuously accumulate 

analytes. Using kinetic samplers provides time-integrative organic compound levels (average 

concentrations), thus minimizing the risk of missing episodic inputs and variations [219]. The 

Time
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uptake of analytes depends on the sampler design, the analyte’s physico-chemical properties, 

and environmental variables (e.g. turbulence, temperature and fouling). Until now, a wide 

selection of passive sampling devices has been developed for sampling organic compounds. 

Passive samplers generally use a polymeric receiving phase, which is often combined with a 

limiting diffusion membrane. An overview of the composition of the most frequently applied 

passive samplers is depicted in Table 3. The choice of a specific passive sampler largely 

depends on the compound(s) or chemical class being targeted [220]. For the highly polar (Log 

P < 0) to medium non-polar (4 <log P < 6) compounds, Oasis HLB and Isolute ENV+ have 

been frequently applied as receiving phase in different passive sampling designs [221]. 

The polar organic chemical integrative sampler (POCIS) and Chemcatcher sampler are mostly 

applied for sequestering polar (log P < 4) to semi-polar (log P ≈ 4) compounds [222–224]. 

SDB-RPS disks on their turn can retain ionizable polar (log P < 4) analytes through different 

mechanisms including π-π bonding, hydrogen bonding and Vander Waals and Coulomb 

interactions [225,226]. SDB-XC can be used for sampling more polar non-ionizable 

compounds [226], while C18-disks are more prone to adsorb more hydrophobic compounds. 

For more hydrophobic compounds (log P > 4), semi-permeable membrane devices or single-

phase samplers made of polymers have been proposed, including polydimethylsiloxane 

(PDMS), low-density polyethylene (LDPE) or polyoxymethylene (POM) [227–229]. The 

limiting diffusion membrane that is frequently put in front of the sorptive polymer, has three 

major roles: (1) improvement of sampler selectivity, (2) protection of the disk through 

prevention against biofouling and particle sticking, and (3) as additional mass transfer barrier 

to extend the integrative sampling period of linear uptake by decreasing the sampling rate. A 

variety of membranes have been applied for passive sampling purposes, especially for polar 

compounds. The most commonly used is polyether sulfone (PES).  
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Table 3. Comparison of different passive samplers that have been used for sampling organic 
micropollutants from aquatic matrices [227–230]. 

 Membrane Receiving phase 

Chemcatcher Polyethersulfone  SDB-RPS: Styrene divinylbenzene - reversed phase  sulfonated  

 Polysulfone SDB-XC: Styrene divinylbenzene - exchange 

 Polycarbonate C18 Empore® disks 

 LDPE C18 Empore® disks 

POCIS Polyethersulfone POCIS A: Triphasic sorbent mixture of Isolute ENV+, polystyrene 

divinylbenzene and Ambersorb 1500 or 572 dispersed on S-X3 

Biobeads 

POCIS B: Oasis HLB sorbent 

PDMS - Polydimethylsiloxane 

LDPE - Low-density polyethylene 

POM - Polyoxymethylene 

 

Its popularity can be attributed to its high hydrophilicity (log P of sampled components ranging 

between -2.6 to 5), which can be attributed to the presence of sulfonic acid groups [231,232]. 

Polysulfone membranes have also demonstrated good results for sampling of compounds 

with log P values ranging from 1 to 4 when coupled to SDB-RPS or SDB-XC disks. The use 

of polycarbonate (PC) and LDPE, together with C18-disks, has shown its merits for sampling 

low polarity and neutral organic compounds [233,234]. Next to the surface chemistry of 

membranes, their pore size and thickness are also key parameters in the sampling process. 

Generally, the larger the membrane pore size, the easier organic compounds pass through, 

as indicated by a shorter lag-phase [225,232]. The retention of organic compounds by the 

membrane should be as weak as possible, to allow compounds to easily penetrate through 

the membrane [220].  

3.1.2.1. Steroidal EDCs 

Passive sampling of steroidal EDCs has been mainly investigated for oestrogens, while for 

androgens, progestogens and corticosteroids literature is scarce. SDB-RPS Empore disks 

have been shown suitable for the sequestration of 4 oestrogens and 1 androgen in WWTP 
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influent and effluent. The quantified EDC concentrations in passive samplers were, however, 

several times lower (factor 3 – 10) than those in grab samples. These lower concentrations 

can probably be attributed to the not sufficiently accurate calibration of the passive sampler 

uptake as a result of – but not necessarily limited to – biofouling, low flow rates and/or 

biodegradation [195]. Furthermore, in a different study, Vallejo et al. calibrated POCIS A for 6 

oestrogens, 3 androgens and 1 progestagen. The concentrations determined by active 

sampling were lower (up to a factor of 10) (i.e. for estrone and testosterone) or comparable 

(i.e. for estradiol, ethinylestradiol, estriol and progesterone) than the concentrations obtained 

by POCIS [235]. A similar study by Zhang et al. investigated river water and WWTP effluent 

for 3 oestrogens (i.e. estrone, 17β-estradiol, 17α-ethynylestradiol) using the POCIS B 

configuration with PES and PS membranes [236]. The POCIS sampling rates were 

significantly higher (factor 5 to 10) when using PES instead of PS membranes. Furthermore, 

the sampling rates obtained in the field (Rs ranging between 0.3 and 0.9 L day-1) were 

significantly higher (factor 5 to 10) than those obtained following laboratory calibration (Rs 

ranging between 0.02 and 0.2 L day-1), which is in line with other studies [236,237]. 

Nevertheless, the use of sufficiently long exposure times (longer than 21 days) has been urged 

for monitoring steroidal EDCs in the field when using POCIS samplers [238]. Arditsoglou et al. 

observed that sampling rates for POCIS A and B (see Table 3) were comparable for the 

investigated oestrogens, ranging respectively from 0.11 to 0.21 L day-1 and 0.11 to 0.22 L day-

1. This study also concluded that POCIS provides reasonable estimates as compared to grab 

samples and thus a holistic picture of ambient concentrations of EDCs present in aquatic 

matrices. However, careful interpretation of the estimated concentrations is warranted, 

because environmental conditions (such as salt content, dissolved organic carbon content, 

flow rate, turbulence and pollution impact from different activities) can significantly differ as 

compared to the conditions applied during laboratory calibration studies [239].  
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3.1.2.2. Plasticizers and plastics additives 

Even though passive sampling devices can provide more information on the entire deployment 

duration, only a limited number of passive sampling devices has been investigated for the 

measurement of phthalates in aquatic matrices. Until now, passive sampling techniques have 

only been used for the determination of di-phthalates. Such studies were performed in situ 

over a period of 28 consecutive days, although the exact applications differed in use and 

research goal.  

The goal of a first study, reported by Posada-Ureta et al. (2016), was to calibrate three different 

passive samplers in terms of sampling rates, before deploying them in the aquatic 

environment. Calibration was performed on BBP and DOP, using polydimethylsiloxane stir 

bars (PDMS-stir bars) and PES and POM as receiving phase. They were investigated both 

with and without a membrane-enclosed sorptive coating (MESCO) by means of a dynamic 

continuous flow system, in which a continuous flow was fed to a controlled stirred tank with 

constant water volume. The deployed PDMS, PES and POM sheets without sorptive coating 

membrane enabled the successful determination of sampling rates. No sampling rates could 

be determined for POM when PES was used as receiving phase, while the use of a sorptive 

coating on the PDMS-stir bars resulted in a lack of fit during calibration [240].  

The studies of Alvarez et al. (2014) and Maruya et al. (2014) discuss the direct deployment of 

passive samplers in bays, rivers and lagoons. More specific, the performance of POCIS, 

LDPE, and solid micro-extraction fibres was evaluated in binding DEP (log P = 2.7) and DEHP 

(log P = 7.6) [162,241]. The results demonstrated that only POCIS was able to reach a 

detection frequency exceeding 80% for DEP and DEHP, which is in line with the intended use 

of POCIS for efficient monitoring of both hydrophilic (log P < 3) and hydrophobic (log P > 3) 

compounds. The POCIS polarity duality can be explained by the presence of n-

vinylpyrrolidone moieties on the divinylbenzene sorbent of Oasis HLB™. N-vinylpyrrolidone 

demonstrates a higher affinity for hydrophilic compounds, such as DEP, whereas 

divinylbenzene has a higher affinity for hydrophobic compounds like DEHP. However, the 
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latter three studies lack information on the analyte’s sorption characteristics, including 

sampling rates (Rs) and sampler-water partitioning coefficients (Ksw). 

Ultimately, it can be concluded that research on passive sampling devices so far mainly 

focussed on the monitoring of di-phthalates and their in situ behaviour. Passive sampling of 

primary and secondary phthalates in aquatic matrices has not been investigated yet. Finally, 

it should be noted that caution is warranted to prevent phthalate contamination during the 

deployment of passive samplers. The latter should be cleaned and conditioned with phthalate-

free solvents. The ready to use passive samplers should be stored in Milli-Q water and this in 

an appropriate storage device (Table 2). After retrieval of the passive samplers, they should 

immediately be wrapped into calcinated aluminium foil. 

3.2. Instrumental analysis 

Highly sensitive and reliable analytical methods are needed for the analysis of micropollutants 

in the environment as they tend to prevail at nano levels [242]. Therefore, the use of 

chromatography hyphenated to mass spectrometry seems to be the platform of choice. 

Chromatography is a physical separation technique, whereby compounds selectively 

distribute between a mobile and stationary phase. Based on the physical state of the mobile 

phase, a differentiation between gas (GC) and liquid chromatography (LC) can be made. GC 

is a common type of chromatography applied in analytical chemistry for the separation of 

volatile compounds according to their volatility and polarity. LC enables the efficient separation 

of polar to non-polar compounds. As the before-mentioned EDCs are not sufficiently volatile 

for gas-chromatographic separation, the LC technique has been frequently used. Following 

chromatographic separation, the individual compounds can be detected by mass 

spectrometry. MS generates charged molecules or fragments thereof, after which the intensity 

of the latter ions is employed for sorting and detection, according to their mass-to-charge (m/z) 

ratio. 

The majority of the instrumental methods developed so far, have been established using LC 

coupled to tandem mass spectrometry (LC-MS/MS), particularly using triple quadrupole (QqQ) 
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analyzers [243,244]. (Ultra)-high performance liquid chromatography ((U)-HPLC) coupled to 

tandem mass spectrometry (MS/MS) has shown its merit in meeting the demand for targeted 

residue analysis of organic compounds in aquatic matrices, and in confirming and quantifying 

down to the sub ng L-1 level [245]. In spite of the high selectivity and sensitivity reached, LC-

MS/MS has some limitations regarding analysis of a large number of compounds or multi-

class analysis. In MS/MS methods, the acquisition time of each transition limits the number of 

target analytes that can be analyzed. Despite of the latest evolution of QqQ instruments, 

encompassing low dwell times and allowing notable increases in the number of transitions 

within a run, analysis of thousands of contaminants that may potentially be present in waters 

is not possible using MS/MS detection. 

High-resolution mass spectrometry (HRMS) instruments, such as time-of-flight (TOF) and 

Orbitrap, transcendent this major limitation of targeted MS/MS analysis. HRMS instruments 

provide high-quality throughput by combining sensitive full-scan data with high mass 

resolution, mass accuracy (measured to several decimal) and scanning speed [246]. As a 

result, the current trend in analytical chemistry is to screen and quantify as much as possible 

compounds in one analytical run. This provides considerable information about the occurrence 

of e.g. micropollutants (see section 2.2) and reduces the cost and analysis time [243,247–

249]. Next to the mass spectrometric detection, the chromatographic separation is equally 

important. Indeed, an efficient chromatographic separation is essential to minimize or avoid 

matrix interferences, and to get reliable identification and reproducible results. The use of 

columns containing stationary-phases with particle sizes smaller than conventional high-

performance liquid chromatography (HPLC), has emerged as an innovative powerful 

separation technique, i.e. ultra (U)-HPLC [250]. As a consequence, the system has to be 

designed to resist higher pressures during analysis. Improvement of the chromatographic 

separation towards UHPLC has led to shorter run times, improved sensitivity and better 

chromatographical separation of the analytes. For the investigation of multiple EDCs in the 

aquatic environment, the application of UHPLC-HRMS can play a crucial role [246].  
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3.2.1. Steroidal EDCs 

Analysis of steroidal EDCs has been performed using LC-MS as well as GC-MS [136,251–

255]. Prior to GC-MS analysis, derivatization of the hydroxyl or carbonyl moieties is carried 

out. This is done to enhance the volatility and thermal stability of the steroidal EDCs, and 

reduce the polarity by decreasing dipole-dipole interactions [256]. The most common 

derivatization technique for the steroidal EDCs consists of silylation using N-methyl-N-

trimethylsilyl trifluoroacetamide [189]. Most steroidal EDCs can be analyzed directly, however, 

with LC-based analysis requiring less sample preparation. As a result thereof, LC-MS based 

methods for measuring steroidal EDCs have been increasingly applied, as their application 

does not require derivatization [136,253–255,257,258]. Separation has been regularly 

performed using reversed phased C18-columns. In the context of separating steroidal EDCs, 

the use of biphenyl and phenyl-hexyl columns proved successful. The same was observed in 

clinical applications [198,259]. 

As can be deduced from Table 4, tandem mass spectrometry has been frequently applied 

upon LC separation. In environmental monitoring, electrospray ionization (ESI) has been 

mostly used as an ionisation source for steroidal EDCs, with as monitored ions in the positive 

and negative mode [M+H]+ and [M-H]-, respectively [260]. Other detectors, i.e. diode-array 

and fluorescence, have only rarely been used, due to their minor sensitivity and selectivity 

[100,256,261]. The use of HRMS instruments within environmental monitoring of steroidal 

EDCs has not been reported earlier. Although LC-MS/MS can provide a high analytical 

sensitivity and specificity, the number of compounds that can be measured is limited. Until 

now, for environmental analysis, a maximum of 26 steroidal EDCs could be determined in one 

analytical run.  

3.2.2. Plasticizers and plastics additives 

Until now, the analysis of plasticizers has mostly been performed by GC or LC coupled to MS, 

with a recent trend for LC separation [262]. GC often involves time consuming derivatization 

steps [263] and the analysis of high-molecular phthalates is limited as a result of their 
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intermediate volatility. LC is also more appropriate for analyzing metabolites (such as mono-

phthalates) and degradation products of phthalates [57].  

Therefore, LC-methods for measuring plasticizers have increasingly been used in recent 

years. An overview of the LC-MS methods that are currently available for plasticizers and 

plastics additives is depicted in Table 5. LC separation of plasticizers is generally carried out 

using C18, C12 or C8-silane columns relying on dispersive interaction forces [264]. Shorter chain 

lengths promote the strength of separating phthalate isomers [57]. Tandem mass 

spectrometry, using multiple reaction monitoring (MRM), selected ion monitoring (SIM) or full 

scan events is mainly used to detect separated phthalates (Table 5). The parent phthalates 

are generally detected in the positive ionization mode, while for the primary and secondary 

metabolites, the negative ionization is primarily used. In line with the sampling procedures, 

considerable attention must be paid to the possible occurrence of contamination originating 

from the analytical instrument itself, which is well reported by different technical notes, vendors 

and researchers [265,266]. Generally, contamination in LC systems originates from the used 

solvents and LC parts, such as tubes, injectors, valves, pumping systems and solvent 

degassers. Mass spectrometric contamination has also been observed for DBP, DOP, DEHP 

and DMP [267,268]. Additionally, Verge and Agnes et. al (2002) reported the contamination 

of vacuum o-rings employed in ESI-MS with phthalates [269]. 
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Table 4. Hyphenated LC-based m
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Table 5. LC-M
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4. CONCEPTUAL FRAMEWORK AND OBJECTIVES OF THIS STUDY 

“Nowadays, growing public and scientific concerns exist regarding the widespread occurrence 

of potential EDCs in the aquatic environment. In this context, the most important potential 

EDCs are the steroid hormones (interact at very low concentrations with the hormonal system) 

and plasticizers (extensively used in polymeric products and coatings), which could interfere 

with endocrine systems of living organisms. As shown in section 2.2., until now limited 

knowledge is available on the presence of steroidal EDCs, plasticizers and plastics additives 

in seawater. Nevertheless, the threat of these contaminants to aquatic organisms and thus 

the aquatic ecosystem as a whole can be enormous, as a result of the fact that they are 

continuously exposed [24]. The EDCs prevailing in seawater can potentially be accumulated 

by aquatic organisms, i.e. ranging from lower (e.g. earthworms) to higher organisms (e.g. fish). 

The consumption of these higher organisms can result in human exposure to EDCs [270]. 

Despite their known and possibly unknown toxicological effects, limited efforts have been 

made so far to investigate the prevalence of steroidal EDCs, plasticizers and plastics additives 

on a quantitative basis in seawater. As such, the first step, prior to assessing aquatic 

organisms through the food chain, would be to investigate whether or not aquatic organisms 

are exposed to these EDCs in the marine environment. To study the fate, effects, and 

environmental and human risks posed by potential EDCs in aquatic ecosystems, information 

regarding their presence in the marine environment is indeed urgently needed. Therefore, the 

main goal of the present study was to investigate the prevalence of steroidal EDCs, 

plasticizers and plastics additives in the Belgian marine environment, i.e. seawater. 

During this doctoral research, the main focus was to investigate potential EDCs, of which their 

prevalence was not or only limited investigated in the BPNS. Therefore, perfluorinated 

chemicals and organophosphate flame retardants were excluded from this work, as these 

potential EDCs were already investigated in the BPNS [70,71]. Moreover, the study of Wille 

et al. showed that the majority of perfluorinated compounds were not detected [71], while 

flame retardants were extensively detected in the BPNS [70]. The study of the prevalence of 
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steroidal EDCs, plasticizers and plastics additives implies the need for new and reliable 

analytical methods targeting a broad range of EDCs in seawaters and resulted as a 

consequence in the doctoral framework that is depicted in Figure 7. The framework consists 

out of 3 main research chapters, which is preceded by a general introduction and followed by 

a broader discussion on future perspectives. In the introduction (Chapter I), an elaborate 

literature review is presented on the fate of EDCs in water and on the current status of the 

available analytical methodologies for their (active and passive) sampling and instrumental 

analysis. Until present, reports on the analysis of a broad range of EDCs using active and 

passive samplers are scarce. Therefore, Chapter II describes the development and 

validation of new HRMS-based analytical methods for the quantification of a wide range of 

steroidal EDCs, plasticizers and plastics additives in aqueous matrices, i.e. fresh and salt 

water. This second chapter formed the basis for a third chapter, in which the use of a ‘novel’ 

and unexamined sorbent, i.e. hydrophilic DVB, is investigated for passive sampling 

purposes in seawater. The sorption behavior of a large number of emerging compounds is 

investigated in depth. Moreover, chapter III determined the sorbent-water partitioning 

coefficient (Ksw) and the effect of increasing concentration and environmental parameters on 

the Ksw. Chapter IV comprises the application of all newly developed methodologies from 

chapters II and III in the marine environment by performing a field study. Thereby, the status 

of EDC contamination of the Belgian marine environment is described for 2016 and 2017. 

Even more, the potential negative effects of their prevalence and ecotoxicological implications 

are briefly framed. Finally, the overall outcome and results of this doctoral thesis is discussed. 

General conclusions are drawn and future research recommendations are formulated 

(Chapter V).  
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Figure 7. Conceptual framework of this doctoral thesis encompassing general introduction (I), the three 

major research chapters, i.e. (II) active sampling, (III) passive sampling, (IV) field study on EDC 

contamination of the BPNS, and the general discussion and future perspectives (V). 
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1. DEVELOPMENT AND VALIDATION OF AN ULTRA-HIGH 
PERFORMANCE LIQUID CHROMATOGRAPHIC HIGH 
RESOLUTION Q-ORBITRAP MASS SPECTROMETRIC METHOD 
FOR THE SIMULTANEOUS DETERMINATION OF STEROIDAL 
ENDOCRINE DISRUPTING COMPOUNDS IN AQUATIC MATRICES 

 

ABSTRACT 
The lack of adequate strategies for monitoring endocrine disrupting compounds (EDCs) in the 

aquatic environment is emphasized in the European Water Framework Directive. In this 

context, a new UHPLC-HR-Q-Orbirtrap-MS multi-residue method was developed for the 

simultaneous measurement of 70 steroidal EDCs in two aquatic matrices, i.e. sea and fresh 

water. First, an instrumental APCI-UHPLC-HR-Q-Orbitrap-MS was devised for separating and 

detecting the EDC isomers and mass analogues, within 12.5 min per run. Next, an appropriate 

extraction was statistically optimised using a three-strep workflow (95% confidence interval, p 

> 0.05); including fractional factorial resolution IV, simplex lattice, and response surface 

methodological designs. The fitness-for-purpose of the method was demonstrated through 

successful validation at relevant environmental concentrations, i.e. the low nano- and 

picogram range. Method quantification limits ranged for the androgens (n = 33), oestrogens 

(n = 14), progestins (n = 12), and corticosteroids (n = 11) between, respectively, 0.13 and 5.00 

ng L-1, 0.25 and 5.00 ng L-1, 0.13 and 2.50 ng L-1, and 0.50 and 5.00 ng L-1. Good linearity (R2 

³ 0.99) and no lack of fit was observed (95% confidence interval, p > 0.05) for the 70 steroidal 

EDCs. In addition, good recovery (95 – 109 %) and satisfactory repeatability (RSD < 8.5 %, n 

= 18) and reproducibility (RSD < 10.5 %, n = 12) were obtained. Finally, the applicability of the 

multi-residue method was demonstrated by measuring steroidal EDC in 28 sea water samples 

collected from four different locations during fall 2016 and winter 2017. Regarding the sea 

water samples, all the classes were ubiquitously present and included different metabolites, 

transformation product and or degradation products from the parent EDCs (n = 43). 
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1.1 INTRODUCTION 

The abundance of endocrine disrupting compounds (EDCs) in water is detrimental to the 

aquatic environment and its ecological health [1,2], resulting in severe consequences such as 

loss of animal habitats, reduction in biodiversity and intoxication - both acute and chronic - of 

organisms. For example, in case of fish, such as cyprinids and zebra fish, several negative 

effects have been reported. Not only do EDCs, such as the synthetic oestrogen 17a-

ethinylestradiol or the androgen trenbolone, influence the fertility and reproduction capabilities 

of fish, they also impact the gender distribution [3–6]. In spite of the plethora of adverse effects 

that have been observed for many EDCs, only 17b-estradiol and 17b-ethinylestradiol have 

been included in the European watch list for water quality monitoring so far [7]. In order to 

further improve environmental quality standards, other EDCs, which have received little 

attention in the aquatic environment, need to be monitored as was recently recommended by 

Fent et al. (2015) [8]. 

EDCs mainly include steroidal and non-steroidal compounds. The non-steroidal EDCs 

comprise contaminants such as phthalates, phenols, antibiotics and polychlorinated 

biphenyls, whereas the steroidal compound group consists of androgens, oestrogens, 

progestins, and corticosteroids [9]. Due to the fact that steroidal compounds are the most 

potent endocrine disruptors in aquatic systems [10,11], these were the main focus within this 

work. The first steroidal subgroup concerns the androgens, which are the most abundant 

hormones found in effluents of wastewater treatment plants. These hormones originate from 

urinary excretion of humans and animals, whereby their presence is due to their usage for 

therapy and growth treatment [12]. The second steroidal subgroup, i.e. the oestrogens, and in 

particularly 17a-ethinylestradiol, are widely consumed as oral and non-oral contraceptives 

[13]. The third steroidal subgroup, i.e. the progestins, are extensively used for contraception 

and medical treatments and are consumed more than androgens and oestrogens. The last 

subgroup, i.e. the corticosteroids, are used to treat a variety of diseases, such as asthma, 

rheumatism, allergies and inflammation [14].  
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Up to now, studies mainly report on the occurrence of EDCs and related compounds in 

freshwater environments, whereas data for marine environments are relatively scarce [15,16]. 

The fresh water environments that have mainly been monitored for EDCs are riverine water, 

groundwater, drinking water, and wastewater [17–21]. These four major freshwater bodies 

suffer from contamination primarily due to local anthropogenic activities. As a result, only 

information on the occurrences of local EDCs is available [22]. As all water eventually ends 

up in the marine environment and in light of the above-mentioned effects, it is of utter 

importance to map the contamination status of marine waters as well. However, seawater 

analysis is complicated by the fact that EDCs prevail in the marine environment in the low ng 

L-1 range and that each EDC can occur in one or more of the following forms: parent EDCs, 

metabolites, transformation products, and or degradation products [8,23,24]. So far, only three 

EDCs, namely estrone, 17b-estradiol and 17a-estradiol, have been studied in the marine 

environment [16]. 

In this study, a method is presented that allows quantifying 70 target EDCs leaves also the 

possibility to screen for a virtually unlimited number of (un)known compounds in the marine 

environment. To realise this, an appropriate extraction and ultra-high performance liquid 

chromatographic high resolution Q-orbitrap™ mass spectrometric method (UHPLC-HR-Q-

orbitrap™-MS) was developed for EDCs in marine waters. The UHPLC-part enables fast 

simultaneous separation of oestrogens, androgens, progestins and corticosteroids. 

Furthermore, the HRMS allows a reliable, selective and accurate target detection of the 

various EDC classes. The analytical method was validated according to CD 2002/657/EC [25], 

CD 2009/90/EC [26], Eurachem guidelines [27] and review articles [28,29] and eventually 

applied on real environmental samples. 

1.2 MATERIALS AND METHODS 

1.2.1 Chemicals and reagents 

In this study, 70 steroidal EDCs were included (Table 1 and Table A1), which were purchased 

at Steraloids Inc (Newport, RI, USA) and Sigma Aldrich (St. Louis, MO, USA). The selected 
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EDCs were based on relevant literature [15,17–20,30], and covered 4 classes, i.e. 33 

androgens, 14 oestrogens, 12 progestins and 11 corticosteroids. The selected deuterated 

internal standards for each class were purchased at Steraloids (Newport, RI, USA) and Sigma 

Aldrich (St. Louis, MO, USA) and comprised 6 androgens, 5 oestrogens, 4 progestins, and 2 

corticosteroids (Table 1). Primary stock solutions and standard mixtures were prepared in 

methanol, thereby reaching concentrations between 0.01 and 1000 ng µL-1. The solutions 

were stored in dark glass bottles at -20°C. The organic solvents were of optima UPLC-MS 

grade, purchased from Fisher Scientific (Loughborough, UK). Reference seawater was 

prepared according to ASTM D-1141 [19], using inorganic salts supplied by Sigma Aldrich (St. 

Louis, MO, USA), i.e. NaCl, Na2SO4, MgCl.6(H2O), CaCl2.2(H2O), SrCl2.6(H2O), KCl, NaHCO3, 

KBr, H3BO3 and NaF. Ultrapure water was obtained by usage of a purified-water system 

(Millipore). The inorganic salts, used to prepare reference seawater, were supplied by Sigma 

Aldrich (St. Louis, MO, USA). The C18 and H2O-phillic divinylbenzene (DVB) Speedisks were 

purchased from Filterservice (Eupen, Belgium). 

1.2.2 Instrumentation 

The EDCs were chromatographically separated using an UHPLC system, consisting of an 

Ultimate 3000 XRS pumping system, coupled to a Ultimate 3000 RS column compartment 

and autosampler (Dionex, Amsterdam, The Netherlands). Chromatographic separation was 

achieved using reversed phase chromatography with gradient elution. Separation of EDCs 

was carried out using a Hypersil Gold column (1.9 µm, 100 x 2.1 mm) (Intersciences, Louvain-

La-Neuve, Belgium) at a temperature of 45°C. Furthermore, the mobile phase consisted of a 

mixture of water (Eluent A) and methanol (Eluent B) both containing 0.1% formic acid, pumped 

at a flow rate of 0.55 mL min-1.  
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The linear gradient program was as follows: 0 min, 40% B; 0-5.8 min, 40-65% B; 5.8-9.0min, 

65-100% B; 9.0-10.5 min, 100% B; 10.5-10.6 min, 100-40% B; 10.5-12.5 min, 40% B. The 

injection volume was 2 µL. 

The detection of EDCs was carried out using a Q-Exactive™ Benchtop HRMS (Thermo Fisher 

Scientific, San-Francisco, USA) fitted with an atmospheric-pressure chemical ionisation 

(APCI) source. Optimal positive and negative ionisation source working parameters were 

sheath gas flow 33 a.u. (arbitrary units), auxiliary gas flow 15 a.u., sweep gas flow 2 a.u., 

discharge current +/- 4 kV, capillary temperature 250°C, and vapour temperature 250°C. The 

optimal MS parameters of the Q-Exactive™ were S-lens RF-level 70, full-scan events and 

operated in polarity switching mode. Both scans were performed with a resolution of 70 000 

FWHM (Full Width at Half Maximum) at 1 Hz (1 scan per sec) and scan ranges from 60 to 900 

Da. Furthermore, the scans were applied by targeting the automatic gain control (AGC) at 

ultimate mass accuracy (1 x 105 ions) and a maximum injection time of 50 ms. Initial instrument 

calibration was carried out by infusing calibration mixtures for the positive and negative ion 

mode (LTQ Velos ESI positive and negative ion calibration solution, Thermo Fisher Scientific, 

San Francisco, USA). Instrument control and data processing were carried out by Xcalibur 4.0 

software (Thermo Fisher Scientific, San Francisco, USA). 

1.2.3 Sample preparation and extraction 

1.2.3.1 Statistical experimental designs for the optimization 

A three-step statistical workflow, based on experimental designs, was used to efficiently 

optimize sample preparation and extraction [32]. For this purpose, reference seawater [31] 

was used, which was spiked with different amounts of EDCs, according to the optimization 

stage, i.e. to reach 50 ng L-1 for screening (27 experiments); 10 ng L-1 for eluent optimization 

(11 experiments) and 5 ng L-1 for response surface modelling (15 experiments).   

During the screening phase, 13 parameters that could affect the EDC extraction efficiency 

were selected based on literature [16,33–35] and investigated for their effects (Table A2). In 

case of significance, they were retained for further optimization. The significance of these 
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selected variables was determined by using a three-level fractional factorial resolution IV (n = 

27 experiments) experimental design. A second step entailed the optimization of the extraction 

solvent using a simplex lattice mixture design for three variables (the percentage of methanol, 

acetonitrile and water) (n = 10 experiments). A third step consisted of optimizing the selected 

significant variables through response surface modelling (RSM), using a central composited 

faced-centered (CCF) design (n = 11 experiments). 

The software program JMP 12.0 (SAS Institute Inc, Cary, USA) was used to select, evaluate, 

and model the appropriate statistical experimental designs. All models were optimised using 

the summarised normalised area, which was selected to take into account the high number of 

analytes and ensure equal compound contribution. Responses were statistically evaluated by 

one-way analysis of variance (ANOVA) at a confidence interval of 95% (p-value of 0.05). 

Finally, the optimised extraction settings that yielded the highest response were calculated by 

using a generalised reduced gradient non-linear algorithm and RSM. 

1.2.3.2 Final protocol for EDC extraction  

2.5 L grab samples were filtered (Glass Microfibre Filters Whatman™, 0.45µm, 90 x 90 mm), 

acidified with 1 M HCl and stored in dark amber glass bottles at 4 °C. Upon extraction, samples 

were brought to room temperature by vibrating. Thereafter, the pH was adjusted to 7 using 1 

M NaOH and a mixture of deuterated internal standards was spiked (n = 17, 25 µL of 10 ng 

µL-1) to the grab samples. Subsequently, the H2O-phillic DVB sorbents were conditioned with 

20 mL of 5% acetonitrile and 20 mL of ultrapure water under vacuum. Next, the samples were 

drawn through the H2O-phillic DVB Speedisks under vacuum, followed by a washing step with 

20 mL of ultrapure water, upon which a vacuum was applied on the speedisks to remove 

residual water drops. Afterwards, elution was performed by gravity using sequential 5 mL of 

pure acetonitrile and 5 mL of acetonitrile, with the latter being acidified with 0.1% formic acid. 

The combined extracts were vaporized in the Turbovap under a gentle stream of nitrogen at 

a temperature of 50°C until dry. After this, the extract was reconstituted in 150 µL of methanol 
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and ultrapure water (40/60, v/v), centrifuged at 2430 g, and the supernatant was transferred 

into LC-MS glass vial prior to analysis.  

1.2.4 Method validation 

The optimised analytical method was validated on reference seawater in order to evaluate its 

fitness-for-purpose. Currently, no specific criteria for the validation of methods for analysis of 

micropollutants in the marine environment are available. The only European guideline that is 

currently available for analytical evaluation of the water status is CD 2009/90/EC [26], in which 

it is stated that the variation coefficient of the reported concentration must be below 50%. 

Furthermore, it stipulates that the detection limit has to be 30% below the environmental 

quality standard, which is defined by the degree of concentration of a substance that water 

should not exceed to maintain the environmental quality objective. Currently, no environmental 

quality standards are available concerning the occurrence of steroidal EDCs in the marine 

environment. Therefore, stricter guidelines were consulted for additional performance criteria 

in analytical method validation, i.e. CD 2002/657/EC [25], Eurachem guidelines [27] and 

review articles [28,29]. 

Evaluation criteria included the empirical method detection (MDL) and quantification limit 

(MQL), linearity, specificity and selectivity, trueness, and precision. The MDL, MQL and the 

linearity were investigated by constructing three times a 13-point matrix-matched calibration 

curve (0, 0.125, 0.25, 0.50, 0.75, 1.0, 2.5, 5.0, 10, 20, 30, 40 and 50 ng L-1). Furthermore, the 

specificity, selectivity, trueness and precision were examined by spiking the seawater at 1.5, 

2.0 and 2.5 times the MQL-level in sixfold. This procedure was repeated on three different 

days by two different operators. In addition, also 20 blanks, i.e. non-spiked reference 

seawater, were analysed. 

In parallel, a cross-validation on fresh tap water was performed to assess the matrix-versatility 

of the presented method. During this cross-validation, a 13-point matrix-matched calibration 

curve was constructed twice to determine the linearity performance, while the specificity, 
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selectivity, trueness and precision were investigated by enriching the samples with 1.5 times 

the MQL-level (n = 18). 

1.2.5 Application of the analytical method to real samples 

The suitability of the method was evaluated by applying it on grab samples, collected at four 

different locations, i.e. 51.22263°, 2.9357°; 51.340073°, 3.203393°; 51.24683°, 3.113615°; 

and 51.360494°, 3.113615°, in the Belgian Part of the North Sea (BPNS) during two different 

periods of the year, i.e. fall 2016 (November 25th) and winter 2017 (February 2th). More 

specifically, 2.5 L grab samples were taken at a depth of 3 metres, using Niskin bottles [36]. 

Upon arrival in the lab, samples were acidified to pH 3 using 1 M HCl and stored in dark amber 

glass bottles at 4°C prior to extraction. Acidification did not significantly impact the recovery of 

EDCs during extraction optimization. During method optimization, it had been verified that this 

sample acidification did not affect the recovery of EDCs. Additionally, amber glass bottles were 

used as storage device. Previous research demonstrated that glass is the best material for 

storage of aqueous samples for EDC analysis since loss of hydrophobic EDCs was limited to 

1 % or less [37,38]. 

 

1.3 RESULTS AND DISCUSSION 

1.3.1 Method development 

1.3.1.1 Liquid chromatography 

Given the superior performance of UHPLC in terms of chromatographic resolution compared 

to conventional HPLC [39], the UHPLC separation strategy was selected in this work for multi-

EDC profiling. Optimal conditions, relating to the stationary phase, flow rate, mobile phase 

composition, additives, column temperature, and injection volume, were determined by 

studying their impacts on the inter-linked resolution, chromatographic peak shape, and 

interfering background for the 70 targeted analytes. Optimal UHPLC conditions have been 

reported earlier (section 2.2.). 
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Optimization of the UHPLC parameters enabled the separation of 70 target steroidal EDCs 

(Figures A1 – A6), covering a broad polarity range (log P ranging from 0.5 to 7.9, Table A1) 

with retention times ranging from 2.1 to 9.9 min (Table 1). In addition, chiral isomers and mass 

analogues (having overlapping mass extraction windows) were baseline separated, except 

ethylestrenol and 17b-dihydroandrosterone were separated below the 10% valley rule. This is 

exemplified in Figure 1, where 8 compounds with an accurate empirical mass of 271.20498 

Da and 3 ppm mass tolerance were successfully chromatographically separated (Figure 1), 

including the chiral compounds 17 a- and b-trenbolone, as well as the mass analogues 11b-

hydroxyandrosterone, testosterone acetate, chloro-testosterone acetate, 

caproxyprogesterone, testosterone phenylpropionate and testosterone 17b-cypionate. 

Compared to relevant literature [18–20], the overall UHPLC conditions were found to be high 

throughput for the simultaneous separation of 70 target steroidal EDCs in a single injection 

with a total run time of 12.5 min. 

1.3.1.2 Mass spectrometry 

To enable a most reliable and accurate quantification of EDCs, the ionization and mass 

spectrometric parameters were optimised on seawater extracts. For optimisation of the APCI 

ionization parameters (reported in section 2.2) the overall peak intensity of the EDCs was the 

main evaluation criterion. The EDC mass spectra were mainly characterized by the presence 

of the positive pseudo-molecular ion [M+H]+ and or dehydrated positive pseudo-molecular ion 

[M+H-nH2O]+ with n variating between 1 and 2, which has been reported earlier for steroids 

[40]. The most abundant diagnostic ion was selected for identification and quantitation (Table 

1).  
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Figure 1. Chromatographic separation of all EDCs with an m/z of 271.20498 Da (mass tolerance = 3 ppm), 
depicting (a) 17b-trenbolone, (b) 17a-trenbolone, (C) 11b-hydroxyandrosterone, (d) testosterone acetate, 
(e) chlorotestosterone acetate, (f) caproxyprogesterone, (g) testosterone phenylpropionate and (h) 
testosterone 17b-cypionate. 

The other diagnostic ions were used as an additional confirmation tool backing the isotopic 

signature of the target compounds, 13C-isotope. The remaining mass spectrometric 

parameters that were optimized, comprised the resolving power and AGC target. The 

resolving power was determined by a trade-off between the achievable mass accuracy and 

the number of data points across the chromatographic peak. On the one hand, an improved 

mass accuracy (obtained by a higher resolving power) resulted in a better selectivity and thus 

exclusion of isobaric matrix interferences, which contributes towards unequivocal identification 

and accurate quantitation. On the other hand, an increasing resolving power was 

accompanied by less data points across the peak, which resulted in a lack of sensitivity and 

repeatability. Therefore, a resolving power of 70,000 FWHM was selected since it offered a 

compromise between high mass accuracy (mass deviations < 3 ppm) and sufficient data 

points across the chromatographic peaks (> 10) [41]. Furthermore, the optimal AGC target 

was set to 1e5 ions, as this setting displayed the lowest mass deviation (< 3 ppm) at the MQL-

level. 

1.3.1.3 Extraction procedure  

A three-level fractional resolution IV experimental design was used for screening, thereby 

assessing the effect of 13 parameters on the extraction efficiency (Figure 2). Ten parameters 

turned out to be non-significant (p-value > 0.05) for all EDC classes, whereas the remaining 

three parameters were observed to be significant (p-value < 0.05) for at least one of the 

classes. Loading volume was found significant for all classes whereas the solid-phase 

extraction (SPE) elution steps were significant for some classes. More specifically, the 

corticosteroids’ summarised normalised area was significantly affected by the solvent additive, 

whereas this was not the case for the elution solvent. However, the elution solvent had a 

significant effect on the summarised normalised area of the androgens, progestins, and 
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oestrogens. Based on these findings and the different elution solvents reported in literature 

[16,33–35], the elution solvent was further optimized using a simplex lattice mixture design, 

which pointed towards the use of 100% acetonitrile instead of a water-methanol-acetonitrile 

mixture. The better results that were obtained for acetonitrile are in line with literature, because 

acetonitrile enables EDCs that are tightly adsorbed to the sorbent phase to undergo lower 

surface tension/interaction with the sorbent, as such facilitating elution [42]. In a last step, the 

loading volume and solvent additive were optimised using RSM. Hereby, the RSMs suggested 

maximal loading volumes. 

 

Figure 2. T-ratio (measurement for the size of the difference relative to the variation in the experimental 
dataset) effect diagram, illustrating the significance of different extraction parameters for the 4 EDC 
classes on the summarized normalized area. T-ratio effect bars crossing the 95% confidence interval 
(dashed line) indicate a significant effect of the respective parameter in the extraction process. 

Nevertheless, because of clogging of the sorbent phase at this high loading volume, it was 

technically not possibly to exceed 2.5 L. Optimization of the solvent additive demonstrated a 

better overall sensitivity for the corticosteroids in the presence of 0.1% formic acid, whereas 

acid-free solvents favoured the recovery of the androgens, oestrogens and progestins. The 

use of formic acid is assumed to slightly increase the polarity of acetonitrile, which may result 
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in a better elution of the more polar compounds including the corticosteroids. Therefore, to 

efficiently elute the representatives of all EDC classes from the sorbent phase, a sequential 

use of two elution solvents was implemented; i.e. pure and acidified (0.1% formic acid) 

acetonitrile.  

1.3.2 Method validation 

The goal of this work was to develop an analytical methodology that allows the simultaneous 

quantification of 70 different EDC residues in the marine environment. To ensure accurate 

quantification, the analytical method was validated, whereby data on the MDL and MQL, 

specificity, selectivity, linearity, trueness, and precision were generated.  

1.3.2.1 Limits of detection and quantification (MDL and MQL)  

The detection and quantification of EDC residues using HRMS presents new challenges to 

the determination of MDLs and MQLs, as traditionally estimated by theoretical or empirical 

calculations based on signal-to-noise ratios. The signal-to-noise ratios obtained by HRMS are 

mainly of infinite magnitudes, resulting in virtually low detection and quantification limits. To 

deal with these virtual estimations, new strategies are required based on more practical 

criteria. Therefore, the validation criteria stated in CD 2002/657/EC (food safety), CD 

2009/90/EC (water monitoring) and Eurachem 2016 (general guidelines) - for measuring 

residues in the aquatic environment - were combined and refined as was previously described 

by Vergeynst et al. [43], but with usage of an additional criterion, i.e. identity confirmation 

through the 13C-isotope and the 13C/12C-ratio of each target compound at the corresponding 

theoretical MDL.  

The MQLs for the androgens, oestrogens, progestins and corticosteroids ranged from, 

respectively, 0.13 to 5.00 ng L-1, 0.25 to 5.00 ng L-1, 0.25 to 2.50 ng L-1 and 0.50 to 5.00 ng L-

1, whereas the MDLs for all classes ranged from 0.06 to 2.50 ng L-1. Our empirical limits, i.e. 

MDLs and MQLs in seawater (Table 2), are comparable or even lower than the theoretical 

limits achieved in previous studies, using UHPLC-MS/MS (Table 3).   



 Chapter II – Active sampling  

 73 

1.3.2.2 Selectivity 

The specificity and selectivity were evaluated by analysing blank samples as well as samples 

spiked at 1.5 times the MQL (Table A3). As true blanks, reference seawater was used, 

containing no measurable residues of exogenous EDCs at their accurate mass and specific 

retention time. A significant increase was observed at the accurate mass and specific retention 

time when EDCs were added to the blank samples, taking into account a maximal RSD of 

20%. The above-mentioned observations confirmed that the optimised method was selective 

for the 70 target EDCs in the presence of other matrix constituents. Identification was based 

on accurate mass and relative retention time, i.e. the ratio between retention time of the 

analyte and its deuterated internal standard, which ensured the high selectivity of the method. 

In addition, the mass deviation (< 1 ppm) and retention time deviation (< 0.05 min) confirmed 

the instrumental stability (n = 110, time period = 3 days) of the developed UHPLC-HRMS 

method (Table 1).  



 
 

Table	2.	Sum
m
ary	of	the	m

ethod	validation	perform
ance	characteristics	as	determ
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Cs	in	seaw

ater.	
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M

DL 

(ng L
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(ng L
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W
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Androgens 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

M
ethandriol 

101.3 
± 

6.3 
0.06 

0.50 
6.2 

± 
3.0 

3.8 
± 

1.9 
0.9980 

e 
 

17a-trenbolone 
100.0 

± 
7.2 

0.25 
0.50 

5.5 
± 

1.5 
6.8 

± 
2.8 

0.9993 
b 

m
, n 

17b-trenbolone 
101.6 

± 
6.3 

0.25 
0.50 

5.5 
± 

1.5 
6.8 

± 
2.8 

0.9949 
b 

m
, n 

11b-hydroxyandrosterone 
102.5 

± 
9.3 

0.25 
0.50 

7.5 
± 

4.9 
7.9 

± 
5.6 

0.9949 
c 

b, f, o 

Testosterone 17β-cypionate 
108.3 

± 
8.4 

0.13 
0.50 

5.8 
± 

1.2 
8.7 

± 
3.2 

0.9981 
d 

b, c, e, f, h 

17β-dihydroandrosterone 
97.1 

± 
6.2 

0.50 
0.13 

6.2 
± 

0.8 
6.7 

± 
0.7 

0.9903 
e 

 

Androsterone 
100.8 

± 
4.8 

0.25 
0.25 

3.7 
± 

1.3 
4.3 

± 
1.4 

0.9968 
e 

a, b, f, m
, o, q 

19-nortestosterone 
97.4 

± 
5.6 

0.13 
0.75 

4.8 
± 

1.1 
6.3 

± 
2.5 

0.9984 
b 

c, d, e, h, m
 

1,4-Androstadienedione 
97.4 

± 
7.8 

0.06 
0.25 

7.9 
± 

0.6 
7.1 

± 
5.4 

0.9987 
b 

c, d, f, h, l, m
, n, o 

11-ketoetiocholanolone 
98.3 

± 
7.8 

0.13 
0.25 

7.0 
± 

4.0 
7.9 

± 
5.3 

0.9985 
b 

i, j 

Androstenedione 
97.4 

± 
5.7 

0.13 
0.50 

4.3 
± 

1.5 
5.7 

± 
0.8 

0.9995 
b 

c, d, f, l, m
, n, o, q 

M
estanolone 

99.8 
± 

5.8 
0.25 

0.75 
5.0 

± 
0.8 

6.6 
± 

1.3 
0.9965 

e 
i, j 

17a-testosterone 
100.3 

± 
6.4 

0.13 
0.25 

5.4 
± 

2.0 
6.3 

± 
1.9 

0.9975 
d 

c, e, f, h, l, m
, n, o 

17b-testosterone 
98.9 

± 
8.2 

0.06 
0.25 

5.8 
± 

3.0 
9.6 

± 
4.2 

0.9998 
c 

d, e, f, h, l, m
, n, o 

5a-dihydrotestosterone 
98.2 

± 
6.3 

0.25 
0.13 

6.4 
± 

0.6 
6.6 

± 
0.7 

0.9923 
e 

 

19-Norethindron 
98.1 

± 
6.3 

0.50 
1.00 

5.0 
± 

2.3 
7.2 

± 
2.7 

0.9975 
a 

i, j 

M
ethylboldenone 

100.5 
± 

7.9 
0.25 

1.00 
6.9 

± 
2.5 

7.7 
± 

2.6 
0.9985 

a 
b, f 

11-ketotestosterone 
99.6 

± 
8.2 

0.13 
0.25 

6.2 
± 

2.9 
6.9 

± 
3.1 

0.9974 
b 

e 

Form
estane 

100.6 
± 

8.6 
0.13 

0.25 
7.8 

± 
1.8 

8.7 
± 

3.1 
0.9965 

b 
c, d, f, h, l, n, o 

N
orethandrolone 

101.8 
± 

6.9 
0.06 

0.13 
5.8 

± 
2.2 

6.8 
± 

2.7 
0.9962 

e 
d, l 
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Analyte 
Recovery (%

) 
M

DL 

(ng L
-1) 

M
Q

L 

(ng L
-1) 

Repeatability  

RSD (%
) (n=18) 

W
ithin-laboratory  

reproducibility RSD (%
) 

(n=12) 

R
2 

Best IS 
O

ther suitable IS 

M
ethyltestosterone 

98.8 
± 

5.7 
0.13 

0.25 
4.8 

± 
1.2 

6.0 
± 

2.3 
0.9992 

d 
c, d, e, f, g, h, l, m

, n, o 

Trenbolone acetate 
100.6 

± 
5.8 

0.06 
0.50 

4.7 
± 

1.2 
5.9 

± 
3.1 

0.9951 
e 

a 

Ethynyl testosterone 
103.3 

± 
6.9 

0.06 
0.25 

5.5 
± 

2.7 
6.0 

± 
3.2 

0.9987 
d 

a, b, c, d, e, f, g, h, l, m
, n, o, p, q  

Stanozolol 
98.9 

± 
6.6 

1.00 
1.00 

5.3 
± 

2.8 
8.0 

± 
5.7 

0.9977 
e 

b, c, d, f, g, h, l, m
, n, p 

Testosterone acetate 
100.6 

± 
6.1 

0.06 
0.75 

4.7 
± 

1.4 
7.6 

± 
2.8 

0.9983 
f 

l 

Fluoxym
esterone 

102.0 
± 

6.3 
2.50 

5.00 
5.0 

± 
2.0 

6.5 
± 

1.3 
0.9975 

b 
c, d, g, j, o 

Testosterone propionate 
100.4 

± 
6.4 

0.13 
0.25 

5.1 
± 

1.8 
7.2 

± 
2.4 

0.9973 
f 

b, l, n, o 

Chlorotestosteron acetate 
100.6 

± 
5.6 

0.50 
0.50 

3.9 
± 

0.7 
7.1 

± 
3.0 

0.9962 
f 

a, e 

Testosterone benzoate 
102.9 

± 
6.7 

0.50 
0.75 

4.9 
± 

1.9 
8.4 

± 
3.1 

0.9978 
f 

c, d, l, m
 

Testosterone phenylpropionate 
100.8 

± 
6.4 

0.25 
0.75 

5.4 
± 

2.2 
7.0 

± 
2.3 

0.9952 
f 

a, b, c, k, l, n, o, p, q 

19-nortestosterone-17-

decanoate 

102.5 
± 

6.7 
2.50 

2.50 
5.4 

± 
1.9 

7.6 
± 

2.3 
0.9926 

f 
h 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Oestrogens 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

17a-estradiol 
101.6 

± 
7.8 

0.25 
5.00 

7.0 
± 

3.1 
7.1 

± 
3.1 

0.9976 
h 

a, c, d, i, l, n, o, q 

17b-estradiol 
100.9 

± 
8.4 

0.06 
2.50 

7.0 
± 

2.8 
8.9 

± 
4.6 

0.9959 
g 

a, c, d, h, i, l, n, o, q 

Estradiol-17-acetate 
100.4 

± 
7.8 

0.06 
0.75 

6.7 
± 

3.6 
8.0 

± 
5.3 

0.9937 
h 

c, d, f, l, m
, q 

Dienoestrol 
100.3 

± 
7.4 

0.25 
5.00 

6.3 
± 

2.9 
8.4 

± 
5.0 

0.9964 
h 

 

Equilin 
102.0 

± 
7.6 

0.13 
0.25 

6.4 
± 

3.2 
7.8 

± 
4.3 

0.9950 
k 

b, f, m
, o 

Diethylstilbestrol 
101.8 

± 
8.3 

0.25 
0.25 

6.2 
± 

2.7 
10.0 

± 
5.7 

0.9958 
j 

b, c, d, f, m
, o 

Estrone 
102.7 

± 
8.0 

0.06 
0.25 

6.7 
± 

1.8 
8.6 

± 
3.2 

0.9992 
j 

c, d, n, o 

17a-ethinylestradiol 
102.8 

± 
6.2 

2.50 
5.00 

4.7 
± 

1.9 
7.8 

± 
4.2 

0.9958 
j 

i 

a-zearalenol 
101.1 

± 
6.0 

1.00 
2.50 

6.5 
± 

2.7 
8.0 

± 
4.3 

0.9921 
j 

f 

b-zearalenol 
101.4 

± 
2.9 

0.13 
0.75 

6.0 
± 

2.8 
7.6 

± 
3.7 

0.9931 
k 
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Analyte 
Recovery (%

) 
M

DL 

(ng L
-1) 

M
Q

L 

(ng L
-1) 

Repeatability  

RSD (%
) (n=18) 

W
ithin-laboratory  

reproducibility RSD (%
) 

(n=12) 

R
2 

Best IS 
O

ther suitable IS 

a-zeranol 
99.9 

± 
9.0 

0.13 
0.75 

8.1 
± 

2.5 
9.7 

± 
3.9 

0.9947 
i 

b, d, g, j, l, m
, n 

b-zeranol 
101.4 

± 
7.3 

0.13 
0.75 

6.6 
± 

1.8 
7.0 

± 
2.5 

0.9908 
k 

b, d, g, j, l, m
, n 

Gestodene 
103.4 

± 
6.6 

0.25 
0.50 

5.1 
± 

1.9 
7.0 

± 
3.5 

0.9946 
j 

b, c, d, e, h, l, m
, n, p, q 

Estradiol-benzoate 
101.2 

± 
6.1 

1.00 
2.50 

4.9 
± 

0.4 
6.9 

± 
2.2 

0.9941 
h 

e, l, m
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Progestins 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

5α-Pregnan-3α,20β-diol 
101.3 

± 
1.2 

2.50 
2.50 

4.0 
± 

1.2 
5.8 

± 
1.3 

0.9917 
o 

 

N
orgestrel 

101.0 
± 

7.1 
0.06 

0.25 
5.3 

± 
1.0 

6.8 
± 

1.2 
0.9949 

m
 

a, b, c, d, e, f, g, h, l, m
, n, q 

Dihydroprogesterone 
98.3 

± 
8.0 

0.06 
0.25 

6.4 
± 

1.1 
8.1 

± 
2.0 

0.9973 
m

 
b, c, d, f, h, i, j, l, n, o 

Progesterone 
99.0 

± 
8.4 

0.06 
0.50 

6.7 
± 

4.4 
8.8 

± 
5.0 

0.9984 
o 

b, c, l, n 

M
ethylprogesterone 

102.2 
± 

6.2 
0.06 

0.25 
5.5 

± 
1.7 

5.9 
± 

2.1 
0.9961 

o 
a, b, c, d, e, f, h, l, m

, n, p 

17a-hydroxyprogesterone 
100.1 

± 
6.9 

0.13 
0.25 

5.7 
± 

3.1 
6.3 

± 
4.1 

0.9986 
m

 
b, c, d, f, h, l, n, o 

M
egestrol 

101.9 
± 

7.7 
0.75 

1.00 
5.7 

± 
2.1 

8.8 
± 

3.2 
0.9966 

m
 

b, c, d, f, h, j, l, n, o 

M
edroxyprogesterone 

101.2 
± 

4.5 
0.13 

0.50 
4.1 

± 
0.6 

4.7 
± 

1.1 
0.9966 

m
 

b, g, n 

17a-acetoxyprogesterone 
102.5 

± 
5.1 

0.13 
0.50 

4.0 
± 

0.6 
6.4 

± 
2.7 

0.9952 
m

 
a, b, c, d, f, l, n, o, q 

M
egestrol acetate 

101.7 
± 

5.3 
0.50 

0.75 
4.4 

± 
1.2 

4.7 
± 

1.3 
0.9976 

n 
b, d 

M
edroxyprogesterone acetate 

101.5 
± 

3.9 
0.50 

1.00 
3.5 

± 
0.4 

4.0 
± 

0.7 
0.9976 

l 
i, j  

Flugestone acetate 
102.5 

± 
7.2 

0.75 
1.00 

6.2 
± 

2.6 
6.7 

± 
3.1 

0.9969 
m

 
b, c, d, e 

Caproxyprogesterone 
102.0 

± 
6.5 

0.25 
0.75 

4.4 
± 

0.2 
8.5 

± 
2.1 

0.9977 
o 

b, c, d, e, f, l, m
, n 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Corticosteroids 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Prednisone 
103.4 

± 
7.8 

0.25 
0.50 

6.0 
± 

1.8 
7.9 

± 
1.9 

0.9914 
p 

b, c, d, e, h, m
, n 

Corticosterone 
102.0 

± 
5.7 

0.50 
2.50 

5.8 
± 

2.4 
7.4 

± 
3.1 

0.9909 
p 

e 

Cortisone 
101.7 

± 
7.5 

0.13 
2.50 

7.5 
± 

3.8 
10.5 

± 
3.2 

0.9952 
p 

e, l, m
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Analyte 
Recovery (%

) 
M

DL 

(ng L
-1) 

M
Q

L 

(ng L
-1) 

Repeatability  

RSD (%
) (n=18) 

W
ithin-laboratory  

reproducibility RSD (%
) 

(n=12) 

R
2 

Best IS 
O

ther suitable IS 

Prednisolone 
102.8 

± 
9.1 

0.13 
2.50 

7.0 
± 

2.7 
8.2 

± 
1.6 

0.9985 
p 

 

Cortisol 
102.3 

± 
8.4 

0.25 
0.75 

8.3 
± 

5.0 
10.0 

± 
3.9 

0.9926 
p 

c, i, j 

Tetrahydrocortisone 
102.5 

± 
9.7 

0.25 
5.00 

6.5 
± 

2.2 
9.3 

± 
3.1 

0.9985 
p 

 

Corticosterone acetate 
103.0 

± 
5.7 

0.50 
2.50 

4.2 
± 

1.5 
5.5 

± 
2.6 

0.9952 
p 

a, b, c, d, f, I, j, o 

Dexam
ethasone 

103.0 
± 

8.5 
2.50 

2.50 
4.2 

± 
1.5 

5.5 
± 

2.6 
0.9952 

q 
 

Prednisolone acetate 
99.9 

± 
6.9 

5.00 
5.00 

5.8 
± 

1.4 
7.1 

± 
2.0 

0.9906 
p 

 

Cortisone acetate 
101.3 

± 
3.2 

2.50 
2.50 

7.8 
± 

3.1 
7.6 

± 
3.8 

0.9952 
p 

 

Hydrocortisone 21-acetate 
100.0 

± 
8.5 

5.00 
5.00 

6.7 
± 

1.8 
8.7 

± 
4.8 

0.9984 
p 

a, c 
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Table	3.	Com
parison	of	our	new

ly	developed	m
ethod	w

ith	m
ethods	from

	literature	for	m
easurem

ent	of	steroidal	ED
Cs	in	different	aqueous	sam

ples.			

  
This study 

Zhang et al. 2014 
[15] 

Torres et al. 2015 
[17] 

Petrie et al. 2016 
[18] 

Fayad et al. 2013 
[19] 

G
oh et al. 2016  

[20] 
Anum

ol et al. 2015 
[21] 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

M
atrix 

Seaw
ater 

Seaw
ater 

Surface and 
drinking w

ater 
River w

ater 
W

astew
ater 

(effluent) 
W

astew
ater 

Ultrapure w
ater 

M
ethod 

SPE-UHPLC-HRM
S 

SPE-HPLC-M
S/M

S 
SPE-LC-M

S/M
S 

SPE-U
PLC-M

S/M
S 

O
nline-SPE-LC-

M
S/M

S 
O

nline-SPE-LC-
M

S/M
S 

O
nline-SPE-LC-

M
S/M

S 
Chrom

atographic 
colum

n 
Hypersil Gold  

(100 m
m

 x 2.1 m
m

; 
1.9 µm

) 

Therm
o Scientific 

(100 m
m

 x 3 m
m

; 
3.0 µm

)  

Zorbax Eclipse Plus 
(100 m

m
 x 3.0 m

m
; 

3.5 µm
) 

BEH C18 
(150 m

m
 x 1.0 m

m
; 

1.7 µm
) 

Hypersil Gold  
(100 m

m
 x 2.1 m

m
; 

1.9 µm
) 

Accucore 
(100 m

m
 x 4.6 m

m
; 

2.6 µm
) 

Agilent Poreshell 
(50 m

m
 x 2.1 m

m
; 

2.7 µm
) 

Ionization 
APCI 

ESI 
ESI 

ESI 
API 

APCI 
ESI 

M
S device 

Q
-Exactive 

Benchtop 
M

S/M
S Agilent 

Technology 
Agilent 6410 triple 

Q
uad M

S 
Xevo TQ

D triple 
quadrupole 

Q
uantum

 Ultra AM
 

triple quadrupole 
API 4000™

 M
S/M

S 
Agilent 6410 triple 

Q
uad M

S 
Analysis tim

e (m
in) 

12.5 
10 

5 
22.5 

14 
17 

14.5 
Storage device 

Am
ber glass bottles 

Not specified 
Am

ber glass bottles 
Am

ber glass bottles 
Am

ber glass bottles 
Am

ber glass bottles 
Am

ber glass bottles 
Filtration 

0.45 µm
 W

hatm
ann 

glass filter 
0.7 µm

 GF/F 
0.47 µm

 glass filter 
0.7 µm

 GF/F 
0.3 µm

 glass filter 
0.2 µm

 nylon filter  
0.2 µm

 Captiva PES 
filter 

SPE sorbent phase 
H

2 O
-phillic DVB 

O
asis HLB 

O
asis HLB 

O
asis M

CX 
O

asis HLB 
O

asis HLB 
PLRP 

Sam
ple volum

e (L) 
2.5 

8 
0.2 

0.05 
0.01 

0.0025 
0.0017 

Flow
 rate (m

L m
in-1) 

75 
Not specified 

4 
5 

1.5 
0.5-1.0 

1 
Elution solvent 

CH
3 CN, 0.1 %

 CH
2 O

2 

in CH
3 CH 

CH
3 O

H 
CH

3 O
H 

0.6 %
 C

2 H
2 O

2  and 7 
%

 NH
4 O

H in CH
3 O

H 
CH

3 O
H 

0.1 %
 NH

4 O
H in 

CH
3 CN 

CH
3 CN 

Steroidal com
pounds 

70 
4 

5 
3 

8 
9 

2 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Analytes 
M

DL  
(ng L

-1) 
M

Q
L 

(ng L
-1) 

M
DL 

(ng L
-1) 

M
Q

L 
(ng L

-1) 
M

DL  
(ng L

-1) 
M

Q
L 

(ng L
-1) 

M
DL (ng 
L

-1) 
M

Q
L 

(ng L
-1) 

M
DL  

(ng L
-1) 

M
Q

L 
(ng L

-1) 
M

DL  
(ng L

-1) 
M

Q
L 

(ng L
-1) 

M
DL  

(ng L
-1) 

M
Q

L 
(ng L

-1) 
17b-testosterone 

0.06 
0.25 

 
 

0.5 
5 

 
 

 
 

 
 

2.5 
4.4 

19-Norethindrone 
0.50 

1.00 
 

 
 

 
 

 
34 

35 
 

 
 

 

17b-estradiol 
0.06 

2.5 
0.1 

 
0.7 

7 
0.9 

4.48 
21 

36 
 

 
 

 

Equilin 
0.13 

0.25 
 

 
 

 
 

 
 

 
0.44 

1.44 
 

 

Diethylstilbestrol 
0.25 

0.25 
 

 
 

 
 

 
 

 
0.97 

3.7 
 

 

Estrone 
0.06 

0.25 
0.05 

 
0.5 

5 
0.78 

3.92 
16 

30 
0.16 

0.42 
 

 

17a-ethinylestradiol 
2.50 

5.00 
0.3 

 
0.7 

7 
0.98 

4.91 
18 

33 
0.6 

2.6 
 

 

Levonorgestrel 
0.06 

0.25 
 

 
 

 
 

 
18 

50 
 

 
10 

11.6 
Progesterone 

0.06 
0.25 

 
 

0.3 
3 

 
 

8 
21 

 
 

 
 

Cortisone 
0.13 

2.50 
 

 
 

 
 

 
 

 
0.48 

1.04 
 

 

Dexam
ethasone 

2.50 
2.50 

 
 

 
 

 
 

 
 

0.22 
0.61 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

  
 



  

1.3.2.3 Linearity and deuterated internal standards 

Linearity was evaluated by setting up 13-point matrix-matched calibration curves in triplicate, 

with concentration levels ranging from 0 to 50 ng L-1 for the compounds of interest. The 

linearity was analysed by establishing weighted linear regression models. These regression 

models (Table A4) indicated good linearity (R2 ³ 0.99) and no lack of fit (95% confidence 

interval; F-test, p > 0.05) [44]. During the evaluation of the linearity performance, appropriate 

deuterated internal standards were determined for each compound (Table 2), thereby 

pursuing a RSD for the peak area ratio ≤ 20% and a good linearity (R2 > 0.99 and no lack of 

fit). 

1.3.2.4 Trueness and precision  

Trueness and precision were assessed at different levels, which were 1.5, 2.0 and 2.5 times 

the MQL. In absence of certified reference material, trueness was investigated by calculating 

the recovery. For all compounds, the recovery ranged between 97% and 109%, with RSDs 

below 10% (n = 70).  These recoveries are better in comparison to literature, ranging in aquatic 

matrices from 88 to 120% [16,20,45]. 

The precision, covering the repeatability and within-laboratory reproducibility, was in line with 

the Horwitz equation. The RSDs of repeatability and within-laboratory reproducibility ranged, 

respectively, from 3.7 to 8.5% and 3.8 to 10.5% for all compounds (Table 2 and Table A3). 

These values are comparable to the RSDs that have been described in literature for a rather 

limited number of EDCs (Table 3), reporting repeatability RDSs from 4.2 to 8.3% and within-

laboratory reproducibility RSDs from 3.6 to 12.0% [16,20,45]. 

1.3.2.5 Cross validation on freshwater 

A cross-validation on fresh tap water samples was performed to extend the scope of the 

method and indicate its versatility (Table A5). Tap water is known for containing free chlorine, 

and is expected to have different matrix effects [46]. As compared to the performance 

characteristics obtained for seawater, similar results were achieved for fresh tap water. The 
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robustness can be explained by the use of matrix-matched calibration curves and multiple 

suitable deuterated internal standards. Therefore, extending this multi-residue method to more 

complex aquatic matrices such as the influent and effluent of waste water treatment plants, is 

anticipated not to drastically alter its performance characteristics. 

1.3.3 Application to seawater samples 

The suitability of the developed method for target analysis of the 4 EDC subclasses, i.e. 

androgens, oestrogens, progestins and corticosteroids, was proven through the analysis of 28 

seawater samples. The seawater samples were collected from four different locations at the 

BPNS, during two different sampling campaigns, each with four biological/physical replicates. 

The average concentrations of the four replicates are depicted in Table 4. The low standard 

deviations of the four biological/physical replicates confirm the fitness-for-purpose of the 

developed method for quantifying EDC residues in the marine environment. In addition, the 

quantified ranges of EDC-residues in the seawater samples confirm the need of applying 

MQL-levels during validation.  

Regarding the multi-EDC profiling analysis, all the classes were ubiquitously present in the 

seawater samples. Besides the parent EDCs, different metabolites, transformation products, 

and or degradation products of testosterone, estradiol, and progesterone were quantified (i.e. 

dihydro, methyl, acetate, propionate, and benzoate form). The most abundant compounds 

quantified in the seawater samples were the corticosteroids.   



 
 

Table	4.	D
etailed	data	of	the	grab	sam

ples	taken	at	4	different	locations	in	the	BPNS	and	2	different	tim
e	points	(for	each	tim

e	point	and	each	location	investigated	in	
fourfold,	n=4).	Blank	cells	refer	to	concentrations	below

	the	m
ethod	detection	lim

its.	

Grabsam
ples 

Analytical Lim
its 

  
Sam

pling Cam
paign Fall (2016) 

  
Sam

pling Cam
paign W

inter (2017) 

  

M
DL  

(ng L -1) 

M
Q

L  

(ng L -1) 
  

51.2263°, 2.9357° 
51.2468°, 3.1136° 

51.3401°, 3.2003° 
51,3605°, 3.1136° 

 
51.2263°, 2.9357° 

51.2468°, 3.1136° 
51.3401°, 3.2003° 

Androgens 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

17b-trenbolone
 

0.25 
0.50 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

0.91 
± 

0.47 
< M

Q
L 

0.57 
± 

0.19 

11b-hydroxyandrosterone
 

0.25 
0.50 

 
 

 
 

< M
Q

L 
0.63 

± 
0.08 

 
 

 
 

 
 

 
 

 
 

 
 

 
Testosterone cypionate 

0.13 
0.50 

 
 

 
 

 
 

 
1.31 

± 
0.35 

 
 

 
 

 
 

 
 

 
 

 
 

 
A

ndrosterone 
0.25 

0.25 
 

3.63 
± 

0.08 
1.61 

± 
0.74 

3.33 
± 

1.43 
2.57 

± 
0.08 

 
 

 
 

4.41 
± 

0.06 
 

 
 

19-nortestosterone 
0.13 

0.75 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
< M

Q
L 

 
 

 
< M

Q
L 

1,4-A
ndrostadienedione 

0.06 
0.25 

 
1.62 

± 
0.30 

1.16 
± 

0.14 
1.48 

± 
0.52 

1.15 
± 

0.30 
 

0.83 
± 

0.69 
< M

Q
L 

0.28 
± 

0.07 

A
ndrostenedione 

0.13 
0.50 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

< M
Q

L 
< M

Q
L 

< M
Q

L 

M
estanolone 

0.25 
0.75 

 
 

 
 

 
 

 
< M

Q
L 

 
 

 
 

 
 

 
3.34 

± 
0.02 

3.37 
± 

0.01 

17a-testosterone
 

0.13 
0.25 

 
1.10 

± 
0.26 

 
 

 
0.91 

± 
0.30 

0.51 
± 

0.26 
 

0.35 
± 

0.07 
0.34 

± 
0.08 

0.26 
± 

0.02 

5a-dihydrotestosterone
 

 
 

 
1.89 

± 
0.52 

0.50 
± 

0.17 
0.85 

± 
0.23 

0.52 
± 

0.23 
 

< M
Q

L 
3.79 

± 
0.06 

3.79 
± 

0.03 

11-ketotestosterone 
0.13 

0.25 
 

 
 

 
1.44 

± 
0.10 

2.06 
± 

0.56 
 

 
 

 
2.31 

± 
0.28 

0.46 
± 

0.03 
0.52 

± 
0.14 

Form
estane 

0.13 
0.25 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

2.04 
± 

0.61 
0.83 

± 
0.24 

0.69 
± 

0.09 

M
ethyltestosterone 

0.13 
0.25 

 
 

 
 

< M
Q

L 
0.30 

± 
0.07 

 
 

 
 

 
 

 
 

 
 

 
 

 
Ethynyl testosterone 

0.06 
0.25 

 
0.65 

± 
0.05 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

0.32 
± 

0.01 

Testosterone acetate 
0.06 

0.75 
 

1.12 
± 

0.07 
0.95 

± 
0.03 

1.01 
± 

0.05 
0.96 

± 
0.07 

 
< M

Q
L 

< M
Q

L 
< M

Q
L 

Testosterone propionate 
0.13 

0.25 
 

2.69 
± 

1.13 
1.24 

± 
0.09 

1.31 
± 

0.12 
1.26 

± 
1.13 

 
 

 
 

0.48 
± 

0.01 
0.50 

± 
0.02 

Testosterone benzoate 
0.50 

0.75 
 

 
 

 
 

 
 

1.51 
± 

0.24 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Oestrogens 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

17a-estradiol 
0.25 

5.00 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
< M

Q
L 

< M
Q

L 
< M

Q
L 

17b-estradiol 
0.06 

2.50 
 

9.69 
± 

3.96 
6.72 

± 
0.90 

6.40 
± 

0.43 
6.83 

± 
3.96 

 
6.37 

± 
0.09 

 
 

 
7.62 

± 
0.76 

Estradiol-17-acetate 
0.06 

0.75 
 

10.39 
± 

6.89 
2.83 

± 
1.30 

3.04 
± 

1.71 
2.51 

± 
0.67 

 
 

 
 

1.49 
± 

0.32 
2.00 

± 
0.73 

D
ienoestrol 

0.25 
5.00 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
< M

Q
L 

< M
Q

L 

Estrone 
0.06 

0.25 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
1.93 

± 
0.21 

1.90 
± 

0.30 
1.99 

± 
0.46 
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Grabsam
ples 

Analytical Lim
its 

  
Sam

pling Cam
paign Fall (2016) 

  
Sam

pling Cam
paign W

inter (2017) 

  

M
DL  

(ng L -1) 

M
Q

L  

(ng L -1) 
  

51.2263°, 2.9357° 
51.2468°, 3.1136° 

51.3401°, 3.2003° 
51,3605°, 3.1136° 

 
51.2263°, 2.9357° 

51.2468°, 3.1136° 
51.3401°, 3.2003° 

a-zeranol 
0.13 

0.75 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
3.85 

± 
1.08 

3.14 
± 

0.42 
 

 
 

G
estodene 

0.25 
0.50 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1.31 
± 

0.02 

Estradiol-benzoate 
1.00 

2.50 
 

 
 

 
 

 
 

3.54 
± 

0.18 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Progestins 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

N
orgestrel 

0.06 
0.25 

 
 

 
 

 
 

 
0.39 

± 
0.00 

 
 

 
 

 
 

 
 

 
 

1.73 
± 

0.01 

D
ihydroprogesterone 

0.06 
0.25 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
1.92 

± 
0.01 

1.92 
± 

0.01 

Progesterone 
0.06 

0.50 
 

< M
Q

L 
 

 
 

< M
Q

L 
< M

Q
L 

 
 

 
 

0.81 
± 

0.03 
0.73 

± 
0.06 

M
ethylprogesterone 

0.06 
0.25 

 
0.75 

± 
0.54 

 
 

 
< M

Q
L 

< M
Q

L 
 

0.66 
± 

0.01 
0.65 

± 
0.02 

0.67 
± 

0.03 

17a-hydroxyprogesterone
 

0.13 
0.25 

 
 

 
 

0.75 
± 

0.10 
 

 
 

 
 

 
 

 
 

 
1.78 

± 
0.00 

1.79 
± 

0.02 

M
egestrol 

0.75 
1.00 

 
 

 
 

 
 

 
0.41 

± 
0.33 

1.02 
± 

0.33 
 

 
 

 
2.64 

± 
0.01 

 
 

 
M

edroxyprogesterone 
0.13 

0.50 
 

0.84 
± 

0.33 
< M

Q
L 

0.65 
± 

0.19 
0.59 

± 
0.09 

 
0.66 

± 
0.01 

0.65 
± 

0.02 
0.67 

± 
0.03 

17a-acetoxyprogesterone
 

0.13 
0.50 

 
1.20 

± 
0.11 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

2.10 
± 

0.00 

M
egestrol acetate 

0.50 
0.75 

 
< M

Q
L 

< M
Q

L 
< M

Q
L 

< M
Q

L 
 

 
 

 
 

 
 

 
 

 
M

edroxyprogesterone acetate 
0.50 

1.00 
 

1.14 
± 

0.96 
< M

Q
L 

< M
Q

L 
< M

Q
L 

 
 

 
 

 
 

 
 

 
 

Caproxyprogesterone 
0.25 

0.75 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
1.12 

± 
0.23 

 
 

 
0.89 

± 
0.02 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Corticosteroids 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Prednisone 
0.25 

0.50 
 

39.14 
± 

8.90 
13.09 

± 
3.49 

 
 

 
9.17 

± 
8.90 

 
 

 
 

 
 

 
 

 
 

Corticosterone 
0.50 

2.50 
 

4.56 
± 

1.73 
2.48 

± 
0.47 

2.59 
± 

0.47 
3.14 

± 
1.73 

 
 

 
 

< M
Q

L 
< M

Q
L 

Cortisone 
0.13 

2.50 
 

28.18 
± 

17.87 
4.79 

± 
1.72 

6.96 
± 

3.23 
10.02 

± 
17.87 

 
5.51 

± 
0.88 

4.13 
± 

0.31 
4.86 

± 
0.46 

Prednisolone 
0.13 

2.50 
 

 
 

 
15.17 

± 
3.01 

6.36 
± 

1.49 
6.94 

± 
1.72 

 
7.71 

± 
0.90 

 
 

 
6.73 

± 
0.24 

Cortisol 
0.25 

0.75 
 

7.48 
± 

5.62 
0.89 

± 
0.98 

1.18 
± 

0.88 
2.81 

± 
5.62 

 
3.08 

± 
0.15 

2.71 
± 

0.02 
2.72 

± 
0.03 

Tetrahydrocortisone 
0.25 

5.00 
 

< M
Q

L 
< M

Q
L 

< M
Q

L 
< M

Q
L 

 
8.77 

± 
0.67 

 
 

 
 

 
 

Prednisolone acetate 
10.00 

10.00 
 

< M
Q

L 
< M

Q
L 

< M
Q

L 
< M

Q
L 
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1.4 CONCLUSIONS 

A new analytical UHPLC-HR-Q-Orbitrap-MS multi-residue method was developed and 

successfully validated for the simultaneous quantification of 70 EDCs in sea and fresh water 

samples. The empirical MQLs in aquatic matrices for the androgens, oestrogens, progestins, 

and corticosteroids ranged respectively between 0.13 to 5.00 ng L-1, 0.25 to 5.00 ng L-1, 0.13 

to 2.50 ng L-1, and 0.50 to 5.00 ng L-1. These low MQLs have shown to be necessary during 

the environmental application, due to the low concentration levels of EDCs residues.  

The newly developed method may constitute an important tool for the holistic monitoring of 

the EDC contamination of aquatic environments. Moreover, the presented multi-residue 

method covers the most important EDC classes, and therefore fulfils the current lack of 

measuring progestins in environmental matrices. This will lead to a better understanding of 

the ecotoxicological implications of steroidal EDCs in the aquatic environment. Furthermore, 

the developed method offers the opportunity to screen a virtually unlimited number of 

(un)known compounds. Finally, monitoring a broad range of EDCs will contribute to the 

European Water Framework Directive, resulting in better regulations on environmental quality 

standard levels.  
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2 TARGETED QUANTIFICATION AND UNTARGETED SCREENING 
OF ALKYLPHENOLS, BISPHENOL A AND PHTHALATES IN 
AQUATIC MATRICES USING ULTRA-HIGH-PERFORMANCE 
LIQUID CHROMATOGRAPHY COUPLED TO HYBRID Q-
ORBITRAP MASS SPECTROMETRY 

 

ABSTRACT 
Plasticizers and other plastics additives have been extensively used as ingredients of plastics 

and are as a result thereof easily released in the aquatic environment, due to different physical 

diffusion processes. In this context, a dedicated method was developed for the simultaneous 

quantification of 27 known and a virtually unlimited number of unknown alkylphenols, 

Bisphenol A and phthalates in 2 aquatic matrices, i.e. sea- and freshwater. To this extent, a 

novel instrumental HESI-UHPLC-HRMS (heated electro-spray ionization ultra-high 

performance liquid chromatographic high resolution mass spectrometric) method was devised 

for the simultaneous analysis of 7 phenols (i.e. 6 alkylphenols and Bisphenol A) and 20 

phthalates within 10 min. Thereafter, a solid-phase extraction protocol was statistically (95% 

confidence interval, p > 0.05) optimized based on experimental designs. The method was 

proven fit-for-purpose through a successful validation at environmentally relevant nanomolar 

concentrations. Analytical precautions were taken for minimizing false-positive results to 

suppress in-house contamination. The method demonstrated an excellent analytical 

performance across all known plasticizers and plastics additives for sea- and freshwater, 

revealing good linearity (R2 > 0.99, n = 39), stable recoveries (98.5 - 105.8 %), satisfactory 

repeatability (RSD < 8%, n = 54) and reproducibility (RSD < 10%, n = 36). Subsequently, a 

novel analytical strategy was devised for the tentative identification of unknown plasticizers 

and plastics additives using specific in-house determined fragments incorporated in a Python 

code. The applicability of the analytical platform was demonstrated by measuring 24 seawater 

samples. Interestingly, 16 out of 27 known plasticizers, plastics additives and primary 

metabolites could be quantified while the untargeted analysis uncovered 1042 compounds, 
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whereof 5 % (n = 46) could be assigned a plasticizer-plastics additive chemical identity, 

providing evidence for the severe plastic contamination status of our marine environment. 
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2.1 INTRODUCTION 

The amount of plastic waste that enters our ocean is currently estimated at 4.8 to 12.7 million 

tons per year. Even more, this cumulative quantity of plastic waste is predicted to increase by 

an order of magnitude by 2025 [47,48]. As a result of this widespread global contamination of 

plastics in the marine environment, plasticizers and plastics additives are leaching and 

inevitable entering marine waters [49]. Indeed, these compounds can be easily released either 

directly or indirectly, through manufacturing or metabolisation processes as a result of the 

weak physical bonding with plastic polymers. The most common components that have been 

used to alter the physical properties of plastics are alkylphenols (APs), bisphenol A, and 

phthalates (phthalic acid esters, PAEs) [50,51]. APs haven mainly been used in industrial and 

household applications, covering more than 80% of the total alkylphenolic production [52]. For 

Bisphenol A, a production of 6.8 billion kg has been reported in 2013 [53]. PAEs are globally 

synthetized at approximately 6.0 million metric tons per year [54,55]. PAEs are not only used 

as plasticizer in the polymer industry, but are also used to improve the performance quality of 

cosmetics, detergents, adhesives, food package materials, personal care products, 

fragrances, medical devices and lubricants [56,57]. Nowadays, the analysis of APs, Bisphenol 

A and PAEs in the aquatic environment has received relatively little to almost no attention, 

especially in comparison to pesticides and pharmaceuticals [58–61]. Nevertheless, the 

abundance of APs, Bisphenol A and PAEs has recently prompted significant public and mass 

media interest because of severe known and unknown adverse ecological effects, and 

possible impact of indirect exposure to human health. For example, bisphenol A causes 

developmental and reproductive effects in aquatic species, such as zebra fish, frogs and 

swordtail fish [62,63]. In addition, PAEs can cause severe toxic effects in fish, invertebrates 

and amphibians [64]. In zebra fish, low doses of diethylhexyl phthalate (DEHP) mainly interfere 

with steroidogenesis and oocyte growth, while higher doses affect the oocyte maturation [65].  

In adults, the disturbance of sex-hormone levels has been observed at low concentrations of 



 Chapter II – Active sampling  

 87 

di(2-ethylhexl)phthalate, resulting in severe consequences, including infertility, gynecological 

disorder, diabetes type 2 and pregnancy-induced hypertension [61]. 

In spite of the plethora of adverse effects that have been noticed for APs, Bisphenol A, PAEs 

and their metabolites, only a limited number of these compounds have been included in target 

lists by regulatory bodies that are responsible for monitoring water quality status, such as the 

European Watch list, Norman, Reach, Clean Water Act, and OSPAR [7]. In order to further 

improve environmental quality standards (EQS), it is obvious that an increased number of APs 

and PAEs should be included in monitoring programs, warranting the requirement of sensitive 

and reliable analysis methods. 

Up until now, studies have mainly reported the occurrence of intact plasticizers and plastics 

additives in freshwater environments, whereas data for marine environments are rare [66]. 

Investigated fresh water environments for plasticizer contamination include raw wastewater, 

groundwater, riverine water, and drinking water [57,67,68]. These four major freshwater 

bodies receive their contamination load primarily from local anthropogenic activities, resulting 

in a local contamination profile. To acquire a complete overview of the environmental 

contamination with plasticizers and plastics additives, it is evident that the marine environment 

should be monitored as well. Furthermore, metabolite and degradation products should also 

be included in monitoring strategies, since they display similar biochemical activities as their 

parent compounds. At present, only a limited number of studies have reported on the 

determination of phthalate metabolites in the aquatic environment [69,70].  

Therefore, this study presents a new analytical platform for simultaneous quantification of 27 

known plasticizers, i.e. phenols (n = 7, 6 alkylphenols and  Bisphenol A) and PAEs (n = 20, 

11 di-phthalates and 9 mono-phthalates) complemented by an untargeted approach for 

plasticizer metabolite and degradation product detection in the marine environment. To 

establish this innovative platform, a solid-phase extraction (SPE) and ultra-high-performance 

liquid chromatographic high-resolution mass spectrometric method (UHPLC-HRMS) were 

developed and validated for targeted quantification of the selected phenols and PAEs in 

marine waters. The fitness-for-purpose of this method for marine water monitoring (targeted 
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and untargeted) was demonstrated by measuring a number of samples originating from the 

Belgian Part of the North Sea (BPNS). The relevance of samples originating from the BPNS 

is high, as the latter is located near the English Channel, which is known to be world’s busiest 

seaway and is ranked among the most highly affected marine ecosystems on earth [71,72]. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Chemicals and reagents 

In this study, 27 target compounds were considered (Table 5 and Table B1), which were 

purchased from Accustandard (New Have, CT, USA) and Sigma Aldrich (St. Louis, MO, USA). 

The target compounds were selected based on relevant literature, and covered 3 different 

classes, i.e. 7 phenols, 11 di-phthalates and 9 mono-phthalates [73–75]. The selected internal 

deuterated standards comprised of 2 phenols, i.e. 2-chlorophenol-d4 and phenol-d5; and 2 

phthalates, i.e. dicyclohexyl phthalate-3,4,5,6-d4 and diethyl phthalate-3,4,5,6-d4. Primary 

stock solutions and mixed standards, reaching concentrations between 1 and 1000 ng µL-1, 

were prepared in optima grade acetonitrile. The solutions were stored in amber glass bottles 

at -20°C. The organic solvents were of optima UHPLC-MS grade, purchased at Fisher 

Scientific (Loughborough, UK). Reference seawater was prepared according to ASTM D-1141 

[31], using inorganic salts supplied by Sigma Aldrich (St. Louis, MO, USA), i.e. NaCl, Na2SO4, 

MgCl.6(H2O), CaCl2.2(H2O), SrCl2.6(H2O), KCl, NaHCO3, KBr, H3BO3 and NaF. Ultrapure 

water was obtained by usage of a purified-water system (Millipore). 

2.2.2 Instrumentation 

Chromatographic separation of target compounds was executed using a UHPLC system, 

consisting of an UltiMate 3000 XRS pumping system, coupled to an UltiMate 3000 RS column 

compartment and autosampler (Dionex, Amsterdam, The Netherlands). Separation of the 

target compounds was carried out using a Hypersil Gold column (1.9 µm, 100 x 2.1 mm) 

(Thermo Fisher Scientific, San-Fransisco, USA) at a temperature of 45°C based on gradient 
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elution. The mobile phase consisted of a mixture of water (Eluent A) and acetonitrile (Eluent 

B) both containing 0.1% ammonium hydroxide, pumped at a flow rate of 300 µL min-1. The 

linear gradient program was as follows: 0-1 min, 5 % B; 1-2 min, 5-40 % B; 2-2.3 min, 40-90 

% B; 2.3-6.1min, 90-96 % B; 6.1-8 min, 96 % B and 8-10 min, 5 % B. The injection volume 

was 10 µL. Additionally, a Hypersil Gold trap column (1.9 µm, 50 x 2.1 mm) (Thermo Fisher 

Scientific, San-Fransisco, USA) was placed between the UHPLC pump and the injection valve 

for retarding phenols and PAEs originating from the mobile phase and analytical instrument. 

The detection of target compounds was carried out using a Q-Exactive™ Benchtop HRMS 

(Thermo Fisher Scientific, San-Francisco, USA) fitted with a Heated Electrospray Ionization 

(HESI-II) source. Analysis was realized through full-scan events with following optimal 

operating conditions for positive and negative ionization (polarity switching mode); auxiliary 

gas flow 30 arbitary units (a.u.), sweep gas flow 2 a.u., discharge current (-)3.5 kV, capillary 

temperature 250 °C and heater temperature 350 °C. Optimal MS parameters of the Q-

Exactive™ were an S-lens Radio Frequency (RF) level of 70, a resolution of 70,000 FWHM 

(Full Width at Half Maximum) at 1 Hz, and an m/z scan-range of 60 - 900 Da. Moreover, 

balanced scans were applied by targeting the automatic gain control (AGC) to 5e5 ions and a 

maximum injection time of 50 ms. Calibration of the instrument was carried out by infusing 

calibration mixtures for the positive and negative ion mode (LTQ Velos ESI positive and 

negative ion calibration solution, Thermo Fisher Scientific). 

Tentative identification of unknowns, that are related to the backbone of plasticizers and 

plastics additives, was obtained by combining the full-scan events at a resolution of 70,000 

FWHM with an additional Parallel Reaction Monitoring (PRM) HRMS event at a resolution of 

17,500 FWHM and optimal Collision Energy (CE) of 20 eV.  
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2.2.3 Sample preparation and extraction 

2.2.3.1 Statistical experimental designs for the optimization 

A statistical workflow, consisting of 3 experimental designs, was used to efficiently optimise 

sample preparation and solid-phase extraction (SPE) [66]. First, 14 parameters that could 

affect the extraction efficiency were selected based on literature (see Table B2) [76–78]. The 

significant parameters were determined by a three-level fractional factorial resolution IV 

experimental design (n = 18 experiments) and retained for further optimization. Second the 

optimal composition of the solid phase eluents was achieved using a simplex lattice mixture 

design (n = 10 experiments, Table B3) optimizing the percentage of organic solvents, i.e. 

methanol (CH3OH), acetonitrile (CH3CN) and methyl-tert-butylether (C5H12O, MTBE). The 

more apolar solvent metyl-tert-butylether was tested in a later phase, to assure that adding 

this solvent would not improve recovery of the target compounds in line with previous work 

[79,80]. Third, the selected significant parameters were optimised through response surface 

modelling (RSM), using a box-behnken design (n = 15 experiments). All the experiments were 

performed using reference seawater that was spiked with 200 ng L-1 of each target compound 

prior to sample preparation and extraction. The above-mentioned experimental designs were 

selected, evaluated and modelled by JMP 12.0 (SAS Institute Inc, Cary, USA). Moreover, the 

designs were optimised using the summarized normalized area, thereby acknowledging the 

high number of analytes and ensuring equal compound contribution. Appropriate designs were 

selected by maximizing the Chi-efficiency score and minimizing the number of experiments. 

Thereafter, responses were statistically evaluated by one-way analysis of variance (ANOVA) 

at a confidence interval of 95% (p-value < 0.05). Finally, optimal extraction settings, yielding 

the highest response, were calculated using a generalised reduced gradient non-linear 

algorithm and RSM. 
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2.2.3.2 Final protocol 

Grab samples of 0.5 L were acidified to pH 3 using 1 M HCl and stored in dark amber glass 

bottles at 4°C. Upon extraction, samples were brought to room temperature. Afterwards, 

samples were spiked with a mixture of deuterated internal standards, i.e. 100 ng L-1 for the 

deuterated phthalates and 400 ng L-1 for the phenols. Subsequently, Oasis® HLB cartridges 

(6 cc, 500 mg sorbent, 60 µm particle size; Waters) were conditioned with 6 mL 5 % CH3CN 

diluted in ultrapure water and 7 mL ultrapure water under vacuum. Next, samples were drawn 

through the cartridges under vacuum (10 mL min-1), followed by a washing step of 8 mL 

ultrapure water and applying a vacuum (20 min) to remove residual water drops. Afterwards, 

elution was executed by using 9 mL of 0.1% formic acid in CH3CN. The extracts were 

vaporized under a mild stream of nitrogen at a temperature of 40°C until dry. Consequently, 

the extracts were reconstituted in 150 µL of CH3CN/H2O (95/5, v/v), centrifuged at 2430 g. 

Finally, supernatants were transferred into LC-MS vials prior to analysis.  

2.2.4 Method validation 

The optimised UHPLC-HRMS method was validated on reference seawater to evaluate its 

fitness-for-purpose. Currently, there is a lack of specific criteria for validating analytical 

methods for monitoring organic micropollutants in the marine environment. At the time of 

execution, the only available European guideline for evaluating the water status was CD 

2009/90/EC[26], which stipulates that reported concentrations can have a maximal uncertainty 

of 50 % or must be below environmental quality standards (EQS). At present, no EQS are 

available on the abundance of APs, Bisphenol A and PAEs in the aquatic environment, except 

for DEHP [81]. Detection limits should be 30% below the EQS. Therefore, additional 

performance criteria in analytical method validation were consulted as stricter guidelines, i.e. 

CD/2002/657 [44], Eurachem guidelines [27] and review articles [28,29]. The analytical 

evaluation criteria included the empirical method detection (MDL) and quantification limit 

(MQL), linearity, specificity and selectivity, trueness, and precision. The MDL, MQL and 

linearity were examined by establishing a 13-point matrix-matched calibration curve in 
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threefold at relevant environmental concentrations (0, 5, 10, 20, 25, 50, 75, 100, 200, 400, 

600, 800 and 1000 ng L-1). For a limited number of target compounds, i.e. mainly the di-

phthalates (and not the mono-phthalates), concentrations were detected up to 1000 ng L-1 

[73–75]. To evaluate the specificity, selectivity, trueness and precision, seawater was spiked 

at 1.5, 2.0 and 2.5 times the MQL-level in 6-fold. This procedure was repeated on 3 different 

days and by 2 operators. Additionally, 20 non-spiked reference seawater samples were 

analysed as blanks. 

A cross-validation on fresh tap water was performed in parallel to assess the matrix-versatility 

of the presented method. To do this, a 13-point matrix-matched calibration curve was 

constructed twice to investigate linearity. To evaluate the specificity, selectivity, trueness and 

precision, the freshwater samples were spiked by 1.5 times the MQL-level (n = 18). 

2.2.5 Data analysis 

The targeted processing of full-scan data, including identification and quantification of targeted 

compounds, was executed by XCalibur 4.0 software (Thermo Fisher Scientific). Identification 

of a compound was realized by use of the accurate mass of the pseudo-molecular parent ion 

(mass deviation £ 3 ppm), the C isotope pattern and the retention time relative to that of the 

internal standard (deviation £ 2.5%), all being investigated from the corresponding reference 

standard. Compound Discoverer 2.1 (Thermo Fisher Scientific) was applied for the untargeted 

data interpretation, characterizing detected ions in terms of accurate mass (m/z), retention 

time, and peak intensity. Parameters for automated peak alignment, noise removal, peak 

extraction and deconvolution are presented in Table B4. The assignment of characteristic 

fragments to the untargeted data was processed by an own written code in Python (Version 

2.7.), that included the neutral losses and characteristic fragments (mass deviation £ 3 ppm) 

as determined for the APs, Bisphenol A and PAEs. During untargeted screening of seawater 

samples, compounds were tentatively identified using the tier 3 confidence level (according to 

the Chemical Analysis Working Group & Metabolomics Standards Initiative) [82]. 
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2.2.6 Study area and sampling 

The applicability of the SPE followed by UHPLC-HESI-HRMS was demonstrated by 

quantifying grab samples, collected at four different locations; i.e. 51°21'37.78"N; 3° 6'49.01"O 

(MOW1), 51°20'25.68"N; 3°12'12.11"O (HZ), 51°14'48.59"N; 2°55'39.61"O (Akust39) and 

51°13'34.68"N; 2°56'8.00”O (HO), in the Belgian Part of the North Sea (BPNS) during two 

different periods of the year, i.e. winter 2016 (November 25th) and spring 2017 (April 10th). A 

map of the sampling locations can be consulted in Figure A.1. To this end, 0.5 L grab samples 

were taken in threefold at a depth of 3 m, using Niskin bottles [36]. Upon arrival in the lab, 

grab samples were acidified to pH 3 using 1 M HCl and stored in dark amber bottles at 4°C 

prior to extraction. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Method development 

2.3.1.1 Liquid chromatography 

GC generally limits the analysis of higher molecular PAEs (ester side-chains containing more 

than 5 carbons) due to their intermediate volatility (see Table B1). Moreover, time-consuming 

derivatization steps have shifted the analysis of PAEs to LC in recent years, particularly to 

UHPLC. UHPLC has been proposed as a superior technique for profiling multiple phenols and 

PAES as compared to conventional HPLC [83]. In general, UHPLC offers a better resolution 

(5 - fold), speed (10 - fold), sensitivity (analyte specific) and reduced solvent consumption (5-

fold) for analytical determinations as opposed to HPLC [83,84]. Therefore, UHPLC was the 

platform of choice for targeting a broad range of low and high molecular PAEs. UHPLC 

separation methods for PAEs are however scarce [85], and has already been proven to be 

very challenging for AP analysis (because of their high volatility - see Table B1). Hence, the 

optimization of the UHPLC conditions - including stationary phase, flow rate, mobile phase 

composition, additives, column temperature, and injection volume - were studied in detail by 
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evaluating the inter-linked resolution (Rs,minimal = 0.28 and Rs,opitmal = 10.00), 

chromatographically symmetric peak shape (As,minimal = 1.50 and As,optimal = 1.00) and potential 

interfering background of the 27 target analytes. Moreover, interfering background peaks of 

diethyl hexyl and dinonyl phthalate were observed in almost every analytical run (Figure 3). 

Figure 3 depicts the varying area (intensity) of the interfering background peaks (uncoloured 

area of Figure 4) of diethyl hexyl and dinonyl phthalate. Figure 3 depicts the fluctuating area 

(intensity) of the interfering background peaks (not coloured area of Figure 4) of the of diethyl 

hexyl and dinonyl phthalate. Therefore, a number of analytical precautions were taken to 

minimize false positive results and favour reliable quantification. First, a trap column was 

placed between the UHPLC pump and the injection valve for retarding any PAEs and phenol 

contaminations originating from the analytical instrument and eluent. This is exemplified in 

Figure 4, representing the chromatographic delay of the interfering background peaks 

(uncoulored area in Figure 4) of diethyl hexyl and dinonyl phthalate as compared to the target 

analytes (colored area in Figure 4).” Without the use of this trap column, the varying 

background contamination (depicted in Figure 3 for diethyl hexyl and dinonyl phthalate) of the 

analytical instrument and eluent would interfere with the analysis of the compounds of interest 

originating from the samples. Second, the eluent acetonitrile - instead of the conventional 

methanol - was selected to minimize transesterification of target and untargeted PAEs into the 

primary mono-methyl phthalate. Controlling the degree of transesterification results in better 

quantification of target PAEs and identification of untargeted PAEs. Indeed, this 

transesterification has been observed when methanol was combined with formic acid at the 

high prevailing temperatures and voltages of the ionization source [86]. Furthermore, 

instability of the retention times (within a retention time window of 1.5 min) were observed for 

the APs using formic acid because the pH of the mobile phase was near the pKa of the 

compounds. Therefore, ammonium hydroxide was selected as mobile phase additive, having 

the supplementary benefit of an enhanced ionization rate for the alkylphenols. The results of 

UHPLC optimization can be consulted for the standards, blanks and spiked samples in Figures 

B2 – B10. 
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Figure 3. Control chart of the interfering background that was delayed by using a trap column, i.e. (a) di-
ethyl hexyl phthalate and (b) dinonyl phthalate. The dotted line represents the mean, and the grey shaded 
area represents the area between the upper and lower central limit. 
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Figure 4. UHPLC-HRMS chromatograms of the target compounds (coloured) that are separated from the 
interfering background (not coloured), i.e. (a) di-ethyl hexyl phthalate and (b) dinonyl phthalate. 

2.3.1.2 Ionization and full-scan mass spectrometry 

Reliable and accurate quantification was achieved by optimizing the HESI and HRMS 

conditions upon evaluation of the overall peak intensity of the target compounds. The specific 

suspected pseudo-molecular ions for a salt matrix were not observed in full-scan, i.e. adducts 

of [Na]+, [K]+ and [NH4]+ [87]. Instead, the mass spectra of the target compounds were mainly 

characterized in full-scan as [M+H]+, [M+H]+ and [M-H]- for di-phthalates, mono-phthalates 

and phenols, respectively. The abundant pseudo-molecular ions and their corresponding 13C-

isotope were selected for accurate identification and quantification (Table 5). Remaining full-

scan MS parameters, i.e. the resolving power and AGC target, were optimized. The resolving 

power was determined by optimizing the balance between sufficient number of data points 

across the chromatographic peak and a minimal mass deviation. Improving the mass accuracy 

(achieved by a higher resolving power) resulted in a better selectivity and consequently 

exclusion of isobaric matrix interferences, which contributed towards unambiguous 

identification and accurate quantitation. However, increasing the resolving power also resulted 

in less data points across the chromatographic peak, which negatively affected the 

repeatability and sensitivity. Therefore, a resolving power of 70,000 FWHM was retained to 
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acquire sufficient data points across the chromatographic peak ( > 10) but at the same time 

accommodate sufficiently high mass accuracies (mass deviations < 3 ppm) [41]. The optimal 

AGC target was set at 5e5 ions, as this setting demonstrated the lowest mass deviation (< 3 

ppm) at MQL-level. 

2.3.1.3 Extraction procedure 

Preliminary experiments (See Table B4) demonstrated that 2 of the 11 commercially available 

SPE cartridges were appropriate for target compound clean up (i.e. Oasis™ HLB and Strata 

X™, based on the highest recovery, number of analytes, best reproducibility and lowest 

contamination in the blanks). These 2 cartridges were retained for the first step of the three-

step statistical workflow for optimizing the phenol and PAE extraction procedure. 

As described in the material and methods, first, the statistical significance of 14 extraction 

parameters on the phenols (i.e. AP and Bisphenol A) and PAE (i.e. mono- and di-phthalates) 

recovery was determined using a three-level fractional factorial resolution IV experimental 

design (Table B5). Nine parameters were significant (p-value < 0.05) for the di-phthalates, 

whereas for the mono-phthalates and phenols, respectively, 2 and 3 parameters were found 

significant. Significant parameters included filter step, pH, type of cartridge, volume of the 

equilibration solvent, loading volume, wash volume, elution solvent, elution solvent additive, 

volume of the elution solvent and evaporation temperature. The individual significance can be 

consulted in Table B5. After the screening phase, the following significant parameters were 

fixed: pre-treatment, type of cartridge, conditioning solvent, and additive (based on the optima) 

and pH, loading volume and evaporation temperature (based on optima and technical 

limitations). The other significant parameters were optimized in later steps.  

Based on our initial findings and different elution solvents reported in literature [79,88], the 

elution solvent was further optimized in a 2nd step using a simplex lattice mixture design, which 

pointed towards the use of 100 % CH3CN instead of a MTBE-methanol-acetonitrile mixture 

(Figure B.11). This is in line with literature, as CH3CN facilitates the elution of PAEs tightly 

adsorbed to the sorbent phase by undergoing lower surface tension/interactions with the 
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sorbent [54]. Recently Jeong et al. [89] demonstrated that the surface tension/interaction of 

organic compounds to Oasis HLB™ in aquatic matrices is mainly dominated by physisorption 

and enhanced by chemisorption. Chemisorption is mainly driven by π-π interactions between 

the sorbent and the target compounds, due to the aromatic structure of the target compounds. 

This π-π interaction is however impeded when using acetonitrile [90]. 

In the last step, the equilibration, wash and elution volume of solvent were optimized using 

RSM (Figure B.12) for providing maximal extraction efficiency. The final and optimized 

extraction procedures are reported above. 

2.3.1.4 Analytical precautions 

The use of plastic as glass-substitute was tested for the potential contamination with PAEs, 

as recommended in literature [86]. Therefore, a home-made database of 51 PAEs was used 

(Table B7), including potential contaminants that have been reported during quantitative 

analysis [51,91]. No significant difference (p > 0.05) was observed between glass and 

polypropylene micropipette tips, and none of the contaminants from the home-made database 

were detected. A significant loss (p < 0.05) of high molecular PAEs, i.e. diamyl, benzyl butyl, 

dibenzyl, and diisodecyl phthalate, was however observed during the evaporation of the eluent 

in glass, which was not the case for polypropylene falcon tubes (TPP, Switzerland). 

Prospectively, the polypropylene falcon tubes were selected as material of choice. 

2.3.2 Method validation 

2.3.2.1 Limits of detection and quantification (MDL and MQL)  

Determining MDLs and MQLs of target analytes when using HRMS gives rise to new 

challenges. Traditionally, MDLs and MQLs are estimated by theoretical or empirical 

calculations based on signal-to-noise ratios. Signal-to-noise ratios are, however, often of 

infinite magnitude when using HRMS, resulting in virtually infinitely low MDLs and MQLs. 

These unrealistic estimations stress the need of new strategies based on more practical 

criteria. Therefore, validation criteria for measuring emerging micropollutants in the aquatic 
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environment were combined and refined, i.e. CD 2002/657/EC (food safety), CD 2009/90/EC 

(water monitoring) and Eurachem 2016 (general guidelines) as previously described by 

Vergeynst et al. [43]. In brief, the MDL was determined using a multi-injection statistical 

methodology commonly applied for trace analysis. Using the mean value and standard 

deviation of biological replicate extractions provides a statistically valid approach to 

discriminate the differences between a low-level analyte (near MDL) and the combined 

uncertainties in both the analyte and background measurements, and the uncertainty in the 

sampling process. The MDLs, determined by using the latter statistical tool, were practically 

confirmed by spiking reference seawater at MDL level. Thereby, an additional confirmation 

criteria was used for approving the reliability of the MDL, i.e. the presence of the 13C-isotope 

and 13C/12C-ratio of each target compound at the concentration investigated. The presence of 

the 13C-isotope and C13/C12 ratio has been frequently used as an additional confirmatory tool 

in omics studies for enhancing analytical accuracy [92]. Moreover, as long as the 13C-isotope 

with the corresponding 12C-isotope of the target compound is detectable, the presence of the 

compound can be undoubtedly confirmed. If the 13C-isotope is no longer detectable, the 

presence and identity of the target analyte is questionable. The latter criterium was also used 

to fine tune the MDLs. Furthermore, the determination of the 13C/12C-ratio also enables to 

determine the number of carbon atoms present in the target compound. As a consequence, 

matching experimental and theoretical number of carbon atoms of the target compound 

provides sufficient evidence for its presence in aquatic samples and the reliability of the MDLs 

[92]. The MQL on the other hand is regarded as the smallest quantity of a target compound 

that can be detected in a sample with an RSD below 20% of at least 3 independent 

measurements using spiked reference blank samples. This 20% criterium has been indicated 

in many regulations (such as 2002/657/EC, 2009/90/EC and CD 2013/39/EU) as the maximal 

allowed variation that can been considered as reliable [7,26,44]. Ultimately, considering the 

above-mentioned approaches, the MDLs for phenols, di-phthalates and mono-phthalates 

ranged respectively from 10 to 150 ng L-1, 5 to 25 ng L-1 and 5 to 25 ng L-1, whereas the MQLs 

ranged respectively from 25 to 200 ng L-1, 10 to 50 ng L-1 and 10 to 50 ng L-1. The MQLs 
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attained are sufficiently low, based on the only available EQS in literature for DEHP, i.e. 1.3 

µg L-1 in surface waters [93]. 

2.3.2.1.1 Specificity and Selectivity 

No detectable residues of exogenous APs, Bisphenol A and PAEs at their accurate mass and 

specific retention time were observed in reference seawater used as a blank (Table 5 and, 

Figures B5 - B10). Similar conductivity and salinity were noticed between reference and real 

seawater, which can be consulted in Table B8. Spiking the target analytes to the blanks 

resulted in a significant increase, taking into account a maximal RSD of 20% (Table B9), 

confirming the selectivity of the optimised method for the 27 target compounds. The latter were 

identified based on their accurate mass and relative retention time, i.e. the ratio between 

retention time of the analyte and its deuterated internal standard. Moreover, the target low and 

high molecular phthalates were respectively corrected by using the diethyl phthalate-3,4,5,6-

d4 and dicyclohexyl phthalate-3,4,5,6-d4. The specific deuterated internal standard that was 

used for quantification of every target compound can be consulted in Table 5. The observed 

retention time deviations (< 0.05 min) and observed mass deviations (< 1 ppm) confirm the 

excellent instrumental stability for the developed UHPLC-HRMS method. In addition, all 

procedural blanks were in fact fully blank at the retention time of interest of the target peak, 

implying that the analytical precautions (see section 3.1.4.) taken were successful. 

2.3.2.1.2 Linearity 

Weighted linear regression models (Table B10) indicated good linearity (R2 > 0.99) and no 

lack of fit (95% confidence interval, F-test, p-value > 0.05) [44]. 

2.3.2.1.3 Trueness and precision  

The recovery ranged for all compounds between 98.5 and 105.8%, with RSDs below 10% (n 

= 70, independent extractions at 3 different days). These recoveries outperform these reported 

in related literature, ranging in aquatic matrices from 91.8 to 118% [94]. The precision, 

encompassing the repeatability and within-laboratory reproducibility complied to the Horwitz 

equation. The RSDs of repeatability and within-laboratory reproducibility ranged for all the 
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target compounds, respectively, from 1.6 to 9.5% and 2.4 to 9.9% (Table 5 and Table B9). 

Comparing our results to reported literature, recovery and within-laboratory reproducibility 

ranges respectively from 4.1 to 17 % and 4.7 to 12 %, our precision can be considered as 

good [85]. 

2.3.2.2 Cross validation on freshwater 

The scope of the method was extended and versatility was indicated by performing a cross-

validation on fresh tap water samples (Table B11 and Table B12). Tap water was used to 

evaluate whether the presence of e.g. free chlorine affected the method performance because 

of matrix effects [46]. When comparing the performance characteristics of freshwater and 

seawater, similar results were obtained for both matrices. These validation results (inclusive 

cross validation) suggest that the developed analytical method is robust and applicable to a 

broad spectrum of aquatic matrices, ranging from very salty to fresh aquatic water. 

2.3.3 Analytical strategy for the identification of unknown plasticizers 

As the analytical targeted platform was developed on a HR-Q-Orbitrap-analyzer, this also 

enables the detection of untargeted plasticizer degradation products and metabolites. To 

elucidate the typical fragmentation profiles and identify characteristic fragments of both the 

phenols (i.e. alkylphenols and Bisphenol A) and PAEs, the commercially available target 

standards (prepared in ultrapure water) were fragmented at 20 eV, allowing the simultaneous 

detection of the pseudo-molecular ion and its associated fragments. Lower collision energies 

(< 20 eV) resulted in little to no fragmentation of pseudo-molecular ions, whereas higher 

collision energies (> 20 eV) in the absence of the pseudo-molecular ions. 

2.3.3.1 Alkylphenols 

Although no truly specific fragments were detected for the branched alkyl substituted phenols, 

intermediate [M-H-CH3]- and predominant [M-H-CH4]- fragments were observed. The 

observed fragments result from the stepwise loss of a methyl radical (resulting in the 

intermediate fragment) and a hydrogen radical (leading to the predominant fragment) by the 
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branched alkyl substituted phenols. Similar fragments [M-H-CH4]- have also been observed 

for phenols and structurally related compounds when using high resolution mass spectrometry 

[95,96]. For the chlorinated APs though, the neutral loss of HCl was noticed resulting in the 

[M-H-HCl]- fragment. Furthermore, bisphenol A was characterized by the presence of a 

fragment with m/z 133.066 Da, assigned as [M-H-C6H6O]-. This fragment resulted from the 

cleavage of the phenyl-alkyl bond followed by the a-cleavage of the ether group. The above-

mentioned neutral losses and characteristic fragments were in line with previous 

fragmentation studies [55,97] and were included in the Python code for tentative identification 

of unknown AP metabolites or degradation products. 

2.3.3.2 Phthalates  

The typical fragmentation profiles that were obtained for the protonated pseudo-molecular 

PAEs [M+H]+ are summarized in Figure 5. The left branch depicts the characteristic peaks 

associated with the fragmentation of [M+H]+. A first step comprised the elimination of the 

placeholders, i.e. [R1-H] and [R2-H], leading to a McLafferty rearrangement product with m/z 

167.033 Da [98]. Elimination of placeholders has previously been proposed for propyl and 

high molecular esters [99]. The McLafferty rearrangement is followed by the loss of water [-

H2O], resulting in the protonated phthalic anhydride with m/z 149.023 Da. Subsequently, 

carbonyl [-CO] is eliminated leading to the formation of protonated benzoic acid with m/z 

121.029, eventually followed by the loss of oxoketene leading to m/z 65.039. This carbonyl 

loss was not observed for all PAEs. Indeed, for some compounds, the direct generation of m/z 

65.039 occurred. The right branch represents the specific fragments obtained for placeholders 

R1 and R2, which was only observed for high molecular di-phthalates. For this group, one 

placeholder was eliminated, followed by the loss of water, resulting in the remaining 

protonated placeholder. All the afore-mentioned ions (see also Figure 5) were considered 

specific for the PAEs and incorporated in the Python code to enable tentative identification of 

unknown phthalate metabolites and degradation products. The strength of the proposed 
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approach lies within the use of the high resolution (70,000 FWHM) of the MS  and the 

simultaneous detection of 4 different fragmentation ions within a specific ratio. 

 

Figure 5. The observed fragmentation patterns for the phthalates in ultrapure water (R1 and R2 represent 
the placeholders of the plasticizer) at a CE of 20 eV. 

2.3.4 Application to seawater samples 

To demonstrate the applicability of the developed and validated UHPLC-HRMS method, 24 

seawater samples were analyzed in the BPNS, i.e. both targeted quantification and untargeted 

screening for plasticizers was performed. During targeted analysis, 2 APs and 14 PAEs were 

detected (Table 6). The highest concentrations were observed for ethylphenol, methylphenol 

and dibutyl phthalate in the harbor of Oostende (HO). Furthermore, Bisphenol A was not 

detected at any of the locations, although this was expected due to its extensive use in 

products and applications and previous reports on its widespread occurrence in human 

biofluids [100]. In addition to the quantified parent phthalates, also mono-phthalates (i.e. 

primary phthalate metabolites) were ubiquitously detected at all sampling locations. This may 

be attributed to the metabolic transformation (and excretion) from aquatic species or human 

excretion. Since primary phthalate metabolites have been appointed as relevant biomarkers 

for PAE exposure, both in aquatic organisms [101] and humans [102], our results suggest that 

phthalate contamination is widely distributed across different trophic levels. Ultimately, it can 

Protonated 
phthalic anhydride

McLafferty 
rearrangement product

Protonated 
benzoic acid

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1

OR1

OR2

O

O

C+

O

OH

OH

OH

O

O

OH+

O

OH+

CH+

OH+

O

OR1
HO

C+

O

O

OR1



 Chapter II – Active sampling  

 107 

be concluded that, the developed and validated HRMS platform, compared to other aquatic 

screening methodologies [59,103,104], minimized as first the false-positive rate caused by in-

house phthalate contamination both for targeted quantification and unknown screening. 

For unknown screening purposes, data of the full-scan analysis at a resolution of 70,000 

FWHM were subjected to the extraction of relevant unknown components (Compound 

Discoverer 2.1), which resulted in the detection of 1042 unique unknown components for both 

polarity modes combined. To elucidate the chemical identity of these unknowns, each 

extracted component was fragmented by using the PRM scan mode. The generated 

fragments were screened - using our newly written Python code - on their agreement with 

characteristic fragments and neutral losses obtained from the commercially available 

alkylphenols and PAEs (Table B13). In total, 5 % (n = 46) of the unknowns - at the confidence 

level of Tier 3 according to the Chemical Analysis Working Group & Metabolomics Standards 

Initiative [82] - could be tentatively identified as plasticizer, i.e. 7 as phenol and 20 as PAE. 

The following characteristic fragments could be assigned for the phenols: 5 times [M-H-HCl]-, 

3 times [M-H-CH3]- and 13 times [M-H-CH4]-. For the PAEs, the following specific fragments 

were detected for almost every unknown assigned a PAE structure: m/z 167.033, 149.023, 

121.029 and 65.039. The MS/MS spectra can be consulted in Figure A.13. Finally, during 

untargeted screening of seawater samples, all target analytes were detected based on the 

aforementioned ions, confirming that fragmentation occurred similarly in a saline aqueous 

matrix. 
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Table 6. Detailed quantified concentrations with the associated standard deviations in ng L-1 of the grab 
samples taken at 4 different locations in the BPNS (51°21'37.78"N; 3° 6'49.01"O (MOW1), 51°20'25.68"N; 
3°12'12.11"O (HZ), 51°14'48.59"N; 2°55'39.61"O (Akust39) and 51°13'34.68"N; 2°56'8.00”O (HO)) and 2 
different time points (for each time point and each location investigated in threefold, n=3). Only compounds 
with concentrations above the MQL, for at least one of the sampling locations or time points, were 
incorporated in this table. Blank cells refer to concentrations below the method detection limits. 

Grab samples Sampling Winter 2016 Sampling Spring 2017 

 

MOW1 HZ Akust39 HO MOW1 HZ Akust39 HO 

Methylphenol 

  

63 ± 47 215 ± 48 

 

2302 ± 509 

 

6502 ± 1791 

ethylphenol 328 ± 150 1518 ± 113 43 ± 3 2508 ± 243 407 ± 440 112 ± 23 593 ± 345 469 ± 159 

diethyl phthalate 159 ± 3 336 ± 371 

 

235 ± 111 27 ± 3 43 ± 64 56 ± 62 753 ± 95 

dibutyl phthalate 
 

308 ± 297 496 ± 83 2645 ± 250 77 ± 11 791 ± 242 205 ± 35 1502 ± 401 

diamyl phthalate 
    

< MQL < MQL < MQL < MQL 

benzyl butyl phthalate 
    

79 ± 70 105 ± 29 60 ± 91 343 ± 283 

dicyclohexyl phthalate 67 ± 93 
       

dihexyl phthalate 
 

37 ± 9 
   

23 ± 2 
  

dibenzyl phthalate 
 

< MQL < MQL 
    

 
diethylhexyl phthalate 269 ± 151 80 ± 54 66 ± 41 100 ± 71 298 ± 145 524 ± 156 218 ± 55 766 ± 314 

diisodecyl phthalate 

 

< MQL 
  

< MQL 

 

< MQL 108 ± 49 

monomethyl phthalate 235 ± 161 
   

2542 ± 226 158 ± 2 1604 ± 127 < MDL 

monobutyl phthalate 176 ± 23 73 ± 28 53 ± 30 165 ± 28 26 ± 10 109 ± 14 292 ± 37 192 ± 8 

mono-n-pentyl 

phthalate < MQL 

 

< MQL 

 

58 ± 170 25 ± 42 

 

138 ± 100 

monobenzyl phthalate 
       

58 ± 1 

monoethylhexyl 

phthalate 

 

399 ± 98 

  

740 ± 391 674 ± 115 423 ± 53 656 ± 123 

 

2.4 CONCLUSIONS 

A novel analytical SPE-UHPLC-HR-Q-Orbitrap™-MS method was developed and 

successfully validated for the simultaneous detection and quantification of 27 known 

plasticizers and plastics additives in sea and freshwater. Validation demonstrated excellent 

performance, i.e., stable recoveries ranging from 98.5 to 105.8 %, satisfactory repeatability 

(RSD < 8%, n = 54) and reproducibility (RSD < 10%, n = 36). The empirical MQL in aquatic 
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matrices for the phenols, di-phthalates and mono-phthalates ranged respectively from 25 to 

200 ng L-1, 10 to 50 ng L-1 and 10 to 50 ng L-1. These low MQLs for a broad range of physico-

chemical diverse target compounds (log P ranging from 1.1 to 9.9) are vital for the 

environmental application of this novel method. Indeed, the presented analytical method is the 

first fulfilling the current need, i.e. the simultaneous quantification of APs, Bisphenol A, PAEs 

and their primary metabolites at environmental relevant concentrations. The analytical 

platform also enables simultaneous holistic monitoring of unknown plasticizers by making use 

of accurate mass data on known characteristic AP fragments and newly discovered PAE 

fragmentation patterns. Comparing our innovative rapid HRMS platform to other aquatic 

screening methodologies, the developed platform minimized as a first in its kind the false-

positive rate caused by in-house phthalate contamination both for targeted quantification and 

unknown screening. 

In conclusion, our newly developed analytical platform, facilitating the monitoring of a broad 

range of known and unknown plasticizers and plastics additives, may contribute to national 

and international legislation, such as the European Water Framework Directive, resulting in 

better regulations on environmental quality standard levels. Even more, holistic environmental 

fingerprinting may also contribute to fundamental insights in ocean health, and potential 

threats on aquatic organisms and humans. 
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ABSTRACT 

Hydrophilic divinylbenzene (DVB) (Bakerbond™) has surfaced as a promising sorbent for 

active sampling of analytes from aqueous matrices over a very broad polarity range. Given 

this, hydrophilic DVB may likewise offer potential for passive sampling, if sorbent-water 

partitioning coefficients (Ksw) were to be available. In this work, static exposure batch 

experiments were performed to quantitatively study the equilibrium sorption of 131 

environmentally relevant organic contaminants (P values ranging from -1.30 to 9.85) on 

hydrophilic DVB. The superior affinity of hydrophilic DVB for compounds with a broad polarity 

range was confirmed by functional FTIR and Raman characterization, demonstrating the 

presence of carboxyl moieties. Concentration effects were studied by increasing compound 

concentrations in mixture experiments, and resulted for the steroidal EDCs in higher Ksw, while 

lower Ksw were obtained for the (alkyl)phenols, personal care products, pesticides, 

pharmaceuticals and phthalates. Nevertheless, Ksw remained constant in said design for 

equilibrium water concentrations at environmentally relevant seawater levels. Analysis of 

thermodynamic parameters (change in enthalpy, entropy and Gibbs free energy) revealed the 

nature of the main partitioning processes. While polar (log P < 4) compounds were mainly 

served by physisorption, non-polar (log P > 4) compounds also exhibited binding by 

chemisorption. In conclusion, this research facilitates the future application of hydrophilic DVB 

for active as well as passive sampling in the analysis of organic contaminants for monitoring 

purposes but also for toxicity testing. 
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1 INTRODUCTION 

The ever-increasing number of emerging contaminants released into our (aquatic) 

environment stresses the need for the deployment of efficient monitoring strategies [1]. In this 

context, the use of polymeric sorbents has surfaced as a highly valuable strategy for active 

and passive sampling of organic compounds from aquatic matrices [2,3]. In active sampling, 

polymeric sorbents are widely used in solid-phase extraction (SPE) cartridges for the 

enrichment of contaminants and/or clean-up of aquatic matrices [2]. In recent years, however, 

the number of publications on the application of polymeric sorbents and materials in passive 

sampling studies is steadily increasing.  

At present, a number of polymeric materials have been applied for the monitoring of emerging 

contaminants using passive sampling based approaches [3,4]. However, most studies focus 

on specific polymeric passive samplers efficiently binding compounds within a specific polarity 

range [5]. In passive sampling, the function of a sampler as an infinite sink is determined by 

the affinity towards the envisaged analytes, which is governed by the polarity, (inversely 

related to log P) and chemical functionalities of both. Indeed, silicones (mainly 

polydimethylsiloxane, PDMS) invoke the uptake of non-polar chemicals (log P > 4) [6,7], while 

Chemcatchers® SDB-RPS (sulfonated divinylbenzene - reversed phase sulfonate) mainly 

accumulate more polar chemicals (log P < 4) and Chemcatchers® C18 sample compounds 

ranging from moderately polar to moderately non-polar, i.e. log P ranging between 0.9 and 5.8 

[8,9]. In this context, the Oasis HLB® co-polymer has gained in popularity and was recently 

incorporated in different POCIS configurations [10,11], as it permits the accumulation of very 

polar to moderately non-polar compounds (log P ranging from -1.6 up to 5) [12]. Its affinity 

towards hydrophobic compounds (log P > 5) however still remains a hurdle [5]. In this work, 

we propose a ‘novel’ sorbent, i.e. hydrophilic DVB, that empowers sampling of non-polar 

compounds while still sufficiently capturing the very polar compounds. To the best of our 

knowledge, the potential of hydrophilic DVB for passive sampling remains unexamined as 

opposed to the frequently applied Oasis HLB® sorbent. Moreover, higher extraction 
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efficiencies were obtained using hydrophilic DVB for non-polar compounds (log P > 4) during 

active sampling as compared to Oasis HLB® [13]. Hence, investigating the underlying 

mechanisms of said hydrophilic DVB sorbent in both active (SPE) and passive sampling 

seems promising. Indeed, there is no information available on the surface chemistry of 

hydrophilic DVB neither on the partitioning behaviour of organic contaminants between water 

and hydrophilic DVB [14]. Furthermore, hydrophilic DVB is commercially available in a robust 

housing, i.e. Bakerbond Speedisks®, which simplifies its application for passive sampling of 

the aquatic environment.  

Therefore, the goal of this work was to investigate the equilibrium sorption behaviour of a 

broad range of aqueous organic contaminants on hydrophilic DVB. The specific objectives 

included (i) revealing the surface chemistry of hydrophilic DVB, (ii) determining the Ksw of a 

mixture of 131 environmentally relevant organic contaminants at field concentrations, (iii) 

examining sorption linearity of the target organic contaminants by increasing compound 

concentrations, and (iv) assessing the impact of relevant environmental parameters (i.e. 

temperature, pH and salinity) on Ksw. Ultimately, this research intends to reveal the underlying 

mechanisms of hydrophilic DVB sorption in active and passive sampling.  

 

2 MATERIALS AND METHODS 

2.1 Chemicals and materials 

In this study, standards of 131 environmentally relevant organic contaminants (log P ranging 

from -1.30 to 9.85) were purchased at Bayer (Germany), Fluka (Belgium), Sigma Aldrich (St. 

Louis, MO, USA), Steraloids Inc (Newport, RI, USA), Lipomed GmbH (Germany), MpBio 

(Belgium) and TRC (Canada), covering 6 major classes, i.e. 4 alkylphenols, 5 personal care 

products, 25 pesticides, 32 pharmaceuticals, 15 phthalates and 50 steroidal endocrine 

disrupting compounds (EDCs). The selected organic contaminants were based on legislative 

frameworks and directives for protecting surface and marine waters, i.e. the U.S. Clean Water 

Act, the EU WFD watchlist, OSPAR, Reach and Norman [15–19]. Primary stock solutions and 
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standard mixtures were prepared in pure methanol (CH3OH) or in a mixture of methanol/water 

(10/90, v/v %) with 0.1% (v/v %) formic acid and 0.1 g L-1 Na2EDTA.2H2O, the latter only for 

pesticides, pharmaceuticals and personal care products, thereby attaining concentrations 

between 0.01 and 1000 ng µL-1. Solutions were stored in dark glass bottles at -20°C. Organic 

solvents were of Optima UPLC-MS grade, purchased from Fisher Scientific (Loughborough, 

UK). The inorganic salts, used to prepare reference seawater, were supplied by Sigma Aldrich 

(St. Louis, MO, USA) and processed according to ASTM D-1141 [20]. The hydrophilic 

divinylbenzene (DVB) Speedisks® and Oasis® HLB cartridges (200 and 500 mg) were 

purchased from Filterservice (Eupen, Belgium) and Waters (Brussels, Belgium), respectively. 

2.2 Static exposure batch experiments 

A classic static exposure batch system, which has previously been applied for passive 

sampling studies [21,22], was established under controlled conditions of continuous stirring 

(100 rpm), temperature (experiment dependent) and absence of light. The latter was applied 

to determine the Ksw of a mixture of the 131 selected contaminants between artificial seawater 

and the hydrophilic DVB sorbent. It was also studied how compound concentration and 

environmental parameters affect the Ksw-values. A schematic representation of the different 

batch experiments is depicted in Figure 1. Aqueous suspensions, containing 25 mg hydrophilic 

DVB L-1 were used in all batch experiments. The sorbent/water-ratio was determined based 

on preliminary experiments. A higher sorbent/water-ratio disabled us to quantify the spiked 

compounds, as aqueous equilibrium concentrations were below the analytical detection limits. 

Compound mixtures were spiked in 1L glass beakers closed with aluminium foil [23] to prevent 

evaporation. At the end of each batch test, the beaker’s content, containing both the aqueous 

and sorbent phases, was filtered over a Whatman GF/D glass fibre filter coupled in series with 

a packed SPE cartridge to extract the analytes from the aqueous phase (see supplementary 

information, Figure C1). The glass fibre filter with sorbent phase and packed SPE cartridge 

were separately eluted and analysed, to provide sorbent and aqueous concentrations, 



 Chapter III – Passive sampling  

 123 

respectively. The subsequent sample preparation and analysis were optimised for the different 

compound groups of interest (see Section 2.3.2). 

To evaluate potential adsorption to glass walls and/or hydrolysis of the spiked compounds 

during the batch experiments, reference glass beakers were included in the experimental set-

up. These reference glass beakers, containing only the initial nominal concentration of the 

compounds and no sorbent, were subjected to similar conditions as beakers containing the 

spiked concentration with sorbents.” 

2.2.1 Experimental determination of Ksw 

The Ksw were determined at neutral pH conditions and at a temperature of 8°C. The spike 

concentration for the target compounds was based on environmentally relevant levels but 

sufficiently high as to enable measurements above the methods’ detection limits after sorbent 

sorption. As such, the initial nominal concentration was set at 1.5 nmol L-1 for each compound. 

The residual concentrations in water and the amounts accumulated by the sorbent were 

measured at 0, 1, 2, 4, 6, 8, 12, 24, 48, 96 and 168h. For each time point, a separate 1L 

beaker was used. 

2.2.2 Partitioning at different compound concentrations 

To investigate the effect of compound concentration on the Ksw, at a contact time of 48h, 

multiple equilibrations were performed under similar conditions at various concentration levels, 

i.e. 0.75, 1.5, 3.0, 6.0, 12, 24 and 48 nmol L-1, This experiment was executed at a water 

temperature of 8°C and under neutral pH conditions.  

2.2.3 Partitioning under different environmental conditions 

To evaluate the impact of varying environmental conditions on the Ksw (48h contact time), 

three parameters were investigated within environmental relevant ranges, i.e. pH, temperature 

and salinity respectively ranging from 5 to 8, from 4 to 16°C, and from 0 to 35 psu. Response 

surface modelling (RSM), and more specifically the Box-Behnken experimental design, 
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enabled to fit quadratic models to the experimental log Ksw, which contained main, quadratic 

and interaction factors related to the selected environmental parameters.  

 

 

Figure 1. Schematic representation of the different experimental conditions used to determine the Ksw. 

The large ticks represent the start and end of the experiments, with the corresponding sampling of water 

and sorbent phase. The small ticks represent intermediate sampling points of water and sorbent phase. 

The ‘h’ corresponds to the contact time in hours. 

2.3 Analytical methods 

2.3.1 Sorbent characterization 

Sorbent characterization was performed to reveal the chemical properties of the hydrophilic 

DVB surface and to compare the latter with the frequently used Oasis HLB®. This was 

achieved by the use of a Thermo Scientific Nicolet iS50 spectrophotometer (Thermo Fisher 

Sicentific, Dublin, Ireland) to obtain the FTIR (Fourier transform infrared), Raman and NIR 

(Near-infrared) spectra within the range of 400 - 4000 cm-1, 400 - 4000 cm-1 and 3000 – 12000 

cm-1, respectively. Other acquisition parameters were: number of scans: 256, number of 

background scans: 256, background gain: 4.0, and resolution: 4.0 (FTIR and NIR) / 8.0 

(Raman). Acquisition was repeated 3 times, and spectral data were averaged prior to further 

data processing. 

3

1. Determination of the Ksw-coefficients

2. Do increasing micropollutant concentrations affect Ksw-coefficients?

3. Do environmental conditions affect Ksw-coefficients?
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2.3.2 Sample analysis 

Organic contaminant quantification in the aqueous and sorbent phases was performed using 

three in-house developed and validated analytical methods, consisting of the appropriate 

extraction followed by an optimized UHPLC-HR-Q-Orbitrap™-MS methodology. 

Chromatographic separation was achieved using reversed phase chromatography with 

gradient elution using a Hypersil Gold column (1.9 µm, 50/100 x 2.1 mm). Analyte detection 

was carried out on a Q-Exactive™ benchtop HRMS (Thermo Fisher Scientific, San-Francisco, 

USA). Details regarding the sample analysis have been published earlier [13,23,24], and only 

the main differences are briefly described in the supplementary information (section A). 

2.4 Data treatment and analysis 

Spectroscopic data were extracted from the FTIR, Raman and NIR using TQ Analyst 8.6.12 

(Thermo Fisher Scientific, Dublin, Ireland). Targeted processing of full-scan data, obtained by 

the Q-Exactive HRMS, including the identification and quantification of target compounds, was 

executed by XCalibur™ 4.0 software (Thermo Fisher Scientific). The software program JMP 

12.0 (SAS Institute Inc, Cary, USA) was used to evaluate and model the appropriate RSM 

design Box-Behnken Design. Graphics were produced by using R (Version 3.4). 

2.4.1 Determination of Ksw 

Ksw were determined using the above-described static exposure design and calculated by the 

respective ratio of the concentration measured in the sorbent (Cs,t; nmol gs
-1) and water (Cw,t; 

nmol L-1) phase at equilibrium (Eq. 1.):  

!"# =
%&,()*+,-.-/0-,1
%2,()*+,-.-/0-,1

         (1) 

[25]. 

2.4.2 Adsorption modelling 

Adsorption isotherms were investigated by applying the Freundlich model (see Eq. 2) [26], 

where qe (nmol gs
-1) is the mass of accumulated compound by the sorbent at equilibrium, 

which equals Cs,t as described under 2.4.1, KF ((nmol gs
-1)/(nmol L-1)n) the Freundlich constant, 
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Ce (nmol L-1) the compound concentration in the water phase at equilibrium, equivalent to Cw,t 

described under 2.4.2, and n the dimensionless Freundlich exponent.  

The thermodynamic parameters [26], i.e. change in Gibbs free energy (DG288,15K), enthalpy 

(DH) and entropy (DS), were determined using the van’t Hoff (see Eq. 3) and change in Gibbs 

free energy equations (see Eq. 4). R represents the universal gas constant (8.314 J K-1 mol-1) 

and T the absolute temperature (K). 

34 = !5647          (2) 

ln:!°< = − ∆?°

@A
+ ∆C°

@
         (3) 

∆DEFF.HIJ = ∆K° − L∆M°        (4) 

 

3 RESULTS AND DISCUSSION 

3.1 Sorbent characterization 

To the best of our knowledge, the surface chemistry of hydrophilic DVB has not been studied 

earlier. This work relied on spectral analysis (i.e. FTIR, Raman and NIR) to unravel surface 

functionalities of hydrophilic DVB. Additionally, the co-polymer poly(divinylbenzene-co-N-

vinylpyrrolidone), also more familiar under the tradename Oasis® HLB, was analysed for 

comparison. FTIR and Raman spectra are presented in Figure 2, whilst NIR spectra can be 

found in supplementary Figure C2. 

Multivariate statistical analysis of the obtained FTIR spectra demonstrated significant 

differences between the two sorbents (p-value < 0.05, R2(X)(cum) = 0.989, R2(Y) = 0.99, 

Q2(cum) = 0.974). The main spectral differences consisted of FTIR peaks at 1642 and 1403 

cm-1 for hydrophilic DVB, and 1684 cm-1 for Oasis® HLB. An FTIR peak at 1642 cm-1 has been 

related to the presence of water adsorbed to amorphous regions of a polymer [27,28], 

suggesting the presence of hydroxyl [-OH] and/or ketone [-C=O] groups. The FTIR peak at 

1403 cm-1 of hydrophilic DVB represents the presence of carboxyl [-COOH] groups [29,30]. 
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For Oasis® HLB, the FTIR peak at 1684 cm-1 corresponds to the amide [C-N] stretching 

vibration of the pyrrolidine ring present in the PVP (poly-N-vinylpyrrolidone) moiety. 

 

Figure 2. Averaged FTIR (A, n = 3 for each sorbent) and Raman (B, n = 3 for each sorbent) spectroscopic 

analysis of hydrophilic DVB (Bakerbond™) (Blue) and Oasis® HLB (red). 
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As no additional peak was observed at 3400 cm-1 and because the FTIR amide peak was 

observed within the 1650 - 1750 cm-1 range, the presence of a tertiary amide was concluded. 

In addition, for both sorbents peaks at 1600 and 1510 cm-1 confirmed the occurrence of 

aromatic hydrocarbons [C=C] belonging to the divinylbenzene co-polymer. Complementary to 

the FTIR spectra, the Raman spectra also provided qualitative and quantitative information on 

the functional groups of the two sorbents (Figure 2). Raman analysis revealed and confirmed 

the presence of carboxyl [-COOH] moieties in the hydrophilic DVB co-polymer, i.e. a peak at 

1409 cm-1 was observed [31]. In addition, the occurrence of the Oasis HLB® vinyl-groups 

[CH2=CH2] was confirmed as we observed a Raman peak at 1229 cm-1. Aside from the Raman 

peaks at 1409 cm-1 and 1229 cm-1, in general, similar spectra were observed for both the 

hydrophilic DVB and Oasis® HLB co-polymers. However, more intense signals were marked 

for the hydrophilic DVB functional groups, revealing a higher degree of cross-linkage and 

functionalisation for hydrophilic DVB as compared to Oasis® HLB, offering an explanation for 

the higher extraction efficiencies for steroidal EDCs, pharmaceuticals, pesticides and personal 

care products that have generally been observed for hydrophilic DVB versus Oasis® HLB 

[13,24]. No significant (p-value < 0.05) differences were observed between the NIR spectra of 

hydrophilic DVB and Oasis® HLB. 

3.2 Equilibrium partitioning between water and hydrophilic DVB 

3.2.1 Mass balances 

The applied analytical methods for the quantification of the 131 organic contamiants studied 

in this work, have been extensively and successfully validated as reported earlier [13,23,24]. 

To assure that decreasing contaminant concentrations measured in the aqueous phase during 

the aforementioned batch tests were merely caused by sorption on the sorbent, mass 

balances were calculated for every contaminant. This was achieved by comparing the initially 

spiked contaminant quantity to the sum of the fractions remaining in the water and sorbent 

phases [32]. Average mass balances (%) and corresponding analytical repeatabilities (% 

RSD) of the different time points in equilibrium (constant Ksw) for each studied contaminant 
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are listed in Table C1. For the (alkyl)phenols, personal care products, pesticides, 

pharmaceuticals, phthalates and steroidal EDCs, averaged class-specific mass balances 

equalled 76±4%, 47±4%, 58±5%, 59±5, 79±4% and 75±9%, while averaged class-specific 

repeatability was calculated to 5%, 9%, 9%, 8%, 5% and 11%, respectively. As repeatabilities 

were better than 15%, it may be concluded that the batch sorption experiments were 

consistent and reproducible.  

From these data, it can also be deduced that all compounds experienced losses (not related 

to sorption) of < 20% after 168h, which can be assigned to adsorption to glass walls and/or 

hydrolysis as was observed by Jeong et al. (2017) [33].  

3.2.2 Determination of the Ksw 

All organic contaminants studied in this work reached sorption equilibrium between 12 and 

24h. The calculated log transformed Ksw are listed for the individual components in Table C2, 

and are depicted per class of compounds in Figure 3. Ksw ranged over more than 3 orders of 

magnitude, from log Ksw 3.81 for nalidixic acid (pharmaceutical) to 6.93 for terbuthylazine 

(pesticide).  

To the best of the author’s knowledge, only one study of Jeong et al. (2017) determined the 

sorption of 28 organic compounds to naked SPE sorbent (i.e. OasisTM HLB) in a static 

exposure design. The log Ksw-values of specific compounds obtained in this study, i.e. 

metoprolol (5.38), isoproturon (6.16), carbamazepine (6.15), flufenacetate (5.92), diuron 

(6.48), atrazine (6.09), sulfamethoxazole (3.96), simazine (5.91) and terbutryn (6.18) are 

comparable (except for sulfamethoxazole) or slightly higher (log Ksw-difference ranged 

between 0.13 and 1.22 log unit), than those reported by Jeong et al. (2017) (5.15; 6.03; 5.64; 

5.23; 5.26; 5.29; 4.44; 5.35 and 5.39, respectively). These data suggest that the investigated 

polar compounds (log P < 4) have a slightly higher sorption tendency (higher Ksw values, 

availability of more divinylbenzene groups (see characterization section 3.1)) to hydrophilic 

DVB as compared to the OasisTM HLB sorbent. This agrees with the functional characterization 

data, which demonstrated that hydrophilic DVB comprises hydrophilic moieties with a higher 
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polarity as does Oasis® HLB (see section 3.1), i.e. carboxyl [-COOH] as opposed to N-

vinylpyrrolidone groups. Comparing hydrophilic DVB to other SPE-based sampling devices 

(with sorbent casing) also corroborates the conclusion that hydrophilic DVB covers a much 

broader polarity range (log P ranging from -1.30 to 9.85) than any previously tested sorbent. 

Ahrens et al. (2015) tested a broad spectrum of organic compounds with log P values ranging 

from -1.7 to 6.9, and this for 5 different polymer-based passive sampling devices, to conclude 

that the sorption of organic compounds to each device was optimal within a specific polarity 

range. Silicone rubbers, Chemcatcher SDB-RPS, Chemcatcher C18, POCIS A and POCIS B, 

effectively sampled organic compounds with log P values ranging respectively from 0.5 to 5.8, 

-1.3 to 4.0, 0.9 to 5.8, -1.6 to 5.5 and -1.6 to 5.5. Since the above-mentioned study used 

different types of limiting membranes, Ksw cannot be compared to our work. Comparing our 

results with the study of Ahrens et al. (2015), however confirms that hydrophilic DVB is a more 

cross-linked and functionalised polymer towards hydrophobic compounds than OasisTM HLB. 

 

Figure 3. The calculated sorbent-water equilibrium partitioning coefficients (Log Ksw) of the different 

classes, i.e. alkylphenols (n=4), personal care products (n=5), pesticides (n=25), pharmaceuticals (n=32), 

phthalates (n=15) and steroidal EDCs (n=50). The batch systems were kept at a constant temperature of 

8°C, pH of 7 and salinity of 35 psu. 
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In line with the ever-increasing number of chemicals that is released into the environment [1], 

several passive sampling-based studies have attempted to mathematically model log Ksw 

using various physico-chemical properties of the compounds under investigation as input 

[7,34–36]. Up until now, log P and molecular weight (MW) have been correlated frequently to 

the log Ksw (r2=0.92, n=65) [7,34,35]. However, using our complete dataset, lack-of-fit (p-value 

< 0.05) between log P or MW and log Ksw was observed. Smedes et al. (2018) observed similar 

findings for the PAHs (polycyclic aromatic hydrocarbons), PCBs (polychlorinated biphenyls) 

and phthalates [37]. Therefore, we evaluated the modelling potential of a number of other 

physico-chemical properties, including Vx (molecular volume), qA- (most negative charge on 

O, N, S, X atoms), Hy (hydrophilic factor), vapor pressure, bioconcentration factor, number of 

carbon atoms, pKa, water solubility and polar surface area. No valid model (R2=0.18, n=115, 

all compounds for which described physico-chemical parameters were available) was 

however obtained for predicting log Ksw with none of the above-mentioned parameters or 

combinations thereof using the complete dataset.  

3.2.3 Do increasing organic contaminant concentrations affect Ksw? 

The influence of dissolved organic contaminant concentrations on their partitioning between 

artificial seawater and hydrophilic DVB was investigated by varying compound concentrations 

while keeping the amount of sorbent constant, as depicted for a selection of compounds in 

Figure 4. Changes in partitioning and surface heterogeneity (reflected by the Freundlich 

exponent, n) were assessed by calculating the Ksw (Eq. 1) and Freundlich isotherms (Eq. 2) 

respectively (Table C3). For the steroidal EDCs, higher dissolved concentrations resulted in 

increased Ksw (n>1), showing that higher initial steroidal EDC concentrations tend to enhance 

sorption capacity. This phenomenon has also been reported for methylene blue and phenol 

[38–41], bearing a similar cyclic aromatic structure as do the steroidal EDCs. For the 

(alkyl)phenols, personal care products, pesticides, pharmaceuticals and phthalates, dissolved 

concentrations exceeding the linear ranges of the isotherms resulted for 95% of the 131 

studied compounds in reduced Ksw (n<1). The latter indicates that partitioning for these groups 



 Chapter III – Passive sampling  

 132 

of organic contaminant depends merely on the available hydrophilic DVB sorption sites. The 

aforementioned findings stress the need to examine the linear range of the partitioning 

isotherms for the different organic contaminants. For more than 75% of the steroidal EDCs 

(n>1) and all the other classes of studied organic contaminants (n<1), linear isotherms were 

observed when Ce was, respectively, lower than 8.5 ng L-1 and 70 ng L-1. The Ce-levels applied 

in our experimental set-up are in the same order of magnitude than seawater concentrations 

recently measured in the Belgian Part of the North Sea for the contaminants studied 

[13,23,24]. 

 

Figure 4. Partitioning isotherms (T = 8°C) for a set of selected compounds representing the 6 different 

classes, i.e. (a) (alkyl)phenols: isopropylphenol, (b) personal care products: methylparaben, (c) pesticides: 

acetamiprid, (d) pharmaceuticals: bezafibrate, (e) phthalates: monomethyl phthalate, and (f) steroidal 

EDCs: 11β-hydroxyandrosterone. 
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3.2.4 Do environmental conditions affect Ksw? 

The dependency of the Ksw on environmental conditions was investigated using the Box-

Behnken RSM design. Temperature, pH and salinity significantly (p < 0.05) impacted the Ksw 

for most of the contaminants. Only for the phthalates and alkylphenols (Tables C4 and C5), 

temperature did not significantly affect Ksw. Overall, the effect of solely temperature on the Ksw 

was more significant as compared to pH and salinity. 

To better understand the nature of the partitioning process upon changing temperature, a 

number of thermodynamic parameters (Figure 5 and Table C6) were calculated using the van’t 

Hoff equation (Eq. 3) and the change in Gibbs free energy (Eq. 4). For all compounds (at fixed 

conditions of pH and salinity), a decrease in log Ksw-values was observed (difference in log 

Ksw ranged between 0.06 and 5.19), when increasing temperature with 12°C (based on 

environmental range) confirming the exothermic nature (DH < 0) of the partitioning process. 

The magnitude of DH indicates the nature of the sorption process; i.e. between 0 and -20 kJ 

mol-1 for physisorption and lower than -100 kJ mol-1 for chemisorption [42,43]. It should be 

noted that there is no sharp boundary between physisorption and chemisorption [44]. The 

largest negative enthalpies were observed for the steroidal EDCs (DK = -114 kJ mol-1), 

followed by DKNOPOQRQP4" = -88 kJ mol-1, DKQRSTRNO47UR"= -56 kJ mol-1,DKN4V"U7QR	XQV4	NVUYZXP"  = -

26 kJ mol-1, DKN4"P[X[Y4" = -25 kJ mol-1 and DKNOQV\QX4ZP[XQR" = -14 kJ mol-1.  

 

Figure 5. Thermodynamic parameters, i.e. change in enthalpy (ΔH), change in entropy (ΔS) and change in 

free Gibbs energy (ΔG) during sorption for the alkylphenols, personal care products, pesticides, 

pharmaceuticals, phthalates and steroidal EDCs. 
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Physisorption indicates to be the main driver for partitioning of personal care products, 

pesticides, pharmaceuticals and alkylphenols, and is dominated by Van der Waals 

interactions. The sorption of phthalates and steroidal EDCs was shown to be driven by a 

combination of physisorption and chemisorption (covalent interactions). For those compounds 

for which partitioning is mainly dominated by physisorption, the sorption process is more 

reversible. This could be useful to perform e.g. passive dosing experiments for toxicity testing 

[45].  

The steroidal EDCs also demonstrated a negative DS (DM"P4VU[YQR	]^%"  = - 23 J mol-1 K-1), 

suggesting no significant alteration of the molecular structure in the sorbed state [46,47], which 

implies that the sorption process is enthalpy-driven. For the other compound classes, less 

negative DH and mainly positive DS values were observed. Vinmonses et al. (2009) suggested 

that positive DS values mark structural changes taking place on the sorbent, and as such 

increase randomized binding during sorption [48]. The magnitude of the negative DG288.15K 

value indicates the spontaneous nature of the equilibrium sorption process, with higher 

negative values marking a more rapid and spontaneous sorption at lower temperatures 

according to Ahmad and Kumar (2010) and Vimonses et al. (2009, while Kebede (2013) report 

stronger bonding at negative DG288.15K values. Our negative DG288.15K  data for the steroidal 

EDCs thus indicate a more rapid, spontaneous and stronger bonding of the latter to the 

sorbent [48–50], offering an explanation for their relatively high log Ksw as compared to the 

other compound classes (Figure 3).  

With respect to the effect of pH, the log Ksw were not significantly (p-value > 0.05) impacted, 

except for 11 out of 131 organic contaminants. No general conclusion can however be drawn 

with relation to the impact of the pH on compound behaviour for all compound groups as the 

chemical speciation of organic molecules in water is governed by both the aqueous pH and 

the compounds’ pKas. Similar results were reported by Stroski et al. (2018), with respect to 

the effect of pH on the sorption of 28 out of 31 pesticides and pharmaceuticals [51]. Only for 

strong cationic (rimantadine and trimethoprim) and strong anionic compounds (i.e. 
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sulfadoxine, sulfamethazine, sulfamethoxazole and clorfibric acid) a pH dependency was 

noticed. An increased pH caused lower (difference in log Ksw ranged between 0.24 and 0.82 

over 3 pH-units) or higher (difference in log Ksw ranged between 0.14 and 0.22 over 3 pH units) 

Ksw for cationic and anionic compounds, respectively. These results are in line with the work 

of Jeong et al. (2017), which reported that pH tendancy can only be predicted for anionic and 

cationic compounds. In the current study, however, this was merely observed for strong 

cationic and anionic compounds, more specifically mecoprop, rimantadine, trimethoprim, 

venlafaxine, sulfadoxin, sulfamethazine, sulfamethoxazole and clofibric acid. 

Different salt concentrations were used to assess the influence of ionic strength on 

partitioning. Altering the salinity did not impact (within the experimentally observed standard 

deviations of the RSM) the Ksw of the steroidal EDCs, phthalates and (alkyl)phenols (p > 0.05). 

For the personal care products, pesticides and pharmaceuticals, the influence of salinity on 

the Ksw was compound specific (difference in log Ksw ranged between 0.01 and 1.16 over 35 

psu units). These findings agree well with previous work, in which it was demonstrated that 

the effect of salinity is compound-specific [21,52]. As salinity is known to impact the ionic 

composition of seawater, it may be anticipated that the sorption process, which is pKa-

dependent is affected by the salinity in a compound-specific way. However, no significant 

relationship between the ionic strength and compound-specific log Ksw value of the 131 

selected organic contaminants was observed for any of the sub-classes and the complete 

dataset. 

 

4 CONCLUSIONS  

For 131 emerging organic contaminants with a log P ranging from -1.3 to 9.85, Ksw describing 

the partitioning between artificial seawater and hydrophilic DVB, were determined. Combining 

measured Ksw and functional characteristics of the hydrophilic DVB sorbent (carboxylic and 

highly cross-linked divinylbenzene moieties) indicate the superior affinity of hydrophilic DVB 

for a broad polarity range of organic compounds as compared to any other sorbent described 
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so far. All studied emerging organic contaminants displayed a linear isotherm at 

environmentally relevant equilibrium water concentration ranges. At higher ranges, possible 

concentration effects were observed for the alkylphenols, personal care products, pesticides, 

pharmaceuticals and phthalates, while this was not the case for the steroidal EDCs. 

Nevertheless, at environmentally relevant concentrations, the sorption of a mixture of 131 

micropollutants was sufficiently linear to provide quantitative results upon environmental 

application of the sorbent. Deeper investigation into the impact of altering environmental 

conditions demonstrated that the log Ksw mainly depended on temperature (log Ksw max, difference 

= 5.19 over 12°C units), while pH (log Ksw max, difference = 0.82 over 3 pH-units) and salinity (log 

Ksw max, difference = 1.16 over 35 psu-units) were less important. The calculated thermodynamic 

parameters proved that the uptake of alkylphenols, personal care products, pesticides and 

pharmaceuticals was mainly dominated by physisorption, while the uptake of phthalates and 

steroidal EDCs was mediated by a combination of physisorption and chemisorption. This 

research offers new perspectives for both active and passive sampling studies, since it 

established that the hydrophilic DVB sorbent is promising for sampling a physico-chemically 

diverse range of organic contaminants from aqueous matrices. 
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IV 

Field study - Active and passive sampling based 
approaches for monitoring endocrine 
disrupting compounds in the Belgian Part of the 
North Sea between 2016 and 2018 
 
 

 

 

 Risk assessment

?

?

Active & passive sampling

Marine biomass pyramid

EDCs?



 Chapter IV – Field study 

 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: 

(1) Huysman S, Vanryckegem F, Moeris S, A.C. De Schamphelaere K, Demestere K, 

Vanhaecke L. – in preparation  



 Chapter IV – Field study 

 143 

ABSTRACT 

In recent years, endocrine disrupting compounds (EDCs) and in particular steroids, 

plastics additives and plasticizers have received an increasing societal and scientific 

interest because of their extensive use and potential biological activity. Nevertheless, 

data on the prevalence of these EDCs in the marine environment are scarce. This 

study presents a complementary approach for evaluating the EDC contamination 

status of the Belgian Part of the North Sea (BPNS), by employing active and passive 

sampling and UHPLC-HRMS analysis. In total, 97 EDCs were measured at 4 locations 

in the BPNS between 2016 and 2018, of which 66±9 compounds were detected during 

each sampling campaign. Thereby, 61±11% and 47±17% of the EDCs were detected 

by active and passive sampling, respectively, with an overlapping coverage of 

31±14%.  

The most frequently detected class of steroidal EDCs comprised the corticosteroids 

with concentrations ranging between 8 and 104 ng L-1. For the plastics additives and 

plasticizers, 4-ethylphenol (0.007 – 6.5 µg L-1), dibutyl phthalate (0.011 – 5.3 µg L-1) 

and di-ethylhexyl phthalate (1.3 - 504 ng L-1) occurred at the highest concentrations. 

Subsequently, the measured EDC concentrations were compared to available 

environmental quality standards (EQS). The highest risk quotients were observed for 

17β-estradiol, while lower risk quotients were noted for diethylhexyl phthalate (DEHP). 
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1 INTRODUCTION 

A plethora of adverse effects have been reported, even at low concentrations (ng L-1), 

upon exposure of aquatic organisms to endocrine disrupting compounds (EDCs) [1–

4]. Steroids, plasticizers and plastics additives are amongst the most important EDC 

groups that have received increasing interest in recent years because of their 

extensive use and proclaimed biological activities. Indeed, it has been demonstrated 

that androgens cause masculinization in fish, e.g. zebrafish and mosquitofish [5,6], 

while oestrogens and progestagens significantly affect fish physiology - e.g. Atlantic 

salmon and sea bass - and may as such compromise reproductive development 

[1,2,7–10]. Another study demonstrated that corticosteroids disturb embryonic 

behaviour of zebrafish [11], whereas Bisphenol A showed to cause developmental and 

reproductive effects in zebra fish, frogs and swordtail fish [12,13]. Finally, also for the 

phthalates, toxic effects were observed in fish, amphibians and invertebrates, ranging 

from the disruption of genetics, hormone regulation, morphology to developmental 

defects [14]. The breath of adverse effects that has been noted for the above-

mentioned EDCs on water-borne organisms urges in depth research into the 

monitoring of EDCs in the aquatic environment, which must be preceded by the 

development of appropriate sampling and analytical tools [15].  

Highly sensitive and reliable analytical instrumental methods are needed for the 

analysis of a wide range of trace organic contaminants in aqueous matrices. The 

majority of the instrumental methods developed so far have been established using 

liquid chromatography (LC) coupled to tandem mass spectrometry (LC-MS/MS), 

particularly using triple quadrupole (QqQ) analysers [16,17]. (Ultra)high-performance 

liquid chromatography (U)-(HPLC) has shown its merits in meeting the demand for an 

efficient separation of a broad range of residues in aquatic matrices [18]. Furthermore, 

shifting from MS/MS to high-resolution mass spectrometry (HRMS) instruments, 

providing high-quality throughput data, high mass accuracy and fast scanning speeds, 
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has increased the number of compounds that can be analysed in 1 run to virtually 

unlimited [19]. Consequently, these analytical instrumental improvements have 

resulted in an increased sensitivity and selectivity, enabling the accurate quantification 

of a wide range of trace organic contaminants in aqueous matrices [20–22]. Despite 

of the considerable advancements on the instrumental side, the initial sampling and 

sample preparation steps that precede the analytical determination, remain crucial for 

the interpretation and biological relevance of the obtained concentrations. 

Conventional sampling techniques, i.e. active (grab) sampling, are limited to a specific 

time and place [23], imposing multiple sampling times to collect representative 

samples. In addition, monitoring studies using active sampling are frequently hindered 

by lack in sensitivity. This may be overcome by collecting large volume samples, of 

several up to 100 L, evidently at the expense of practicality and economics [24]. 

Amongst other available sampling techniques, passive sampling (applying a sampling 

device for a certain period of time directly in the aquatic environment) has surfaced as 

a promising tool, as it allows to extract and preconcentrate a wide range of compounds 

during exposure and provide more information on the  bioavailable fractions. Passive 

sampling also reduces the required number of samples to be analysed and as such 

limits the total analysis cost [25].  

A vast amount of studies have been published reporting on the prevalence of EDCs in 

freshwater bodies, i.e. surface, ground, drinking, and wastewater, with concentrations 

ranging within the ng until µg per liter range [26–30]. In this context, oestrogens and 

di-phthalates have been frequently reported, while data on androgens, progestagens, 

corticosteroids and mono-phthalates are more scarce. Scarcity of monitoring data is 

certainly an issue when it comes to the marine environment. Nevertheless, aquatic 

organisms are particularly susceptible to EDCs, because their entire life cycle is spent 

in continuous contact with the water [31]. Consequently, EDCs may accumulate in 

aquatic organisms throughout different trophic levels. Even more, biomagnification of 

EDCs may occur through the food chain and as such harmful concentrations (0.02 – 
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2.5 ng L-1) may be reached in humans [32,33]. This stresses the need for monitoring 

EDC residues in the marine environment, which is also reflected by growing public and 

scientific concerns [34].  

This work aimed at comparing the above-described sampling strategies, i.e. active and 

passive sampling, for monitoring EDCs in the marine environment of the Belgian Part 

of the North Sea (BPNS). To this end, 97 EDCs were analysed using our in-house 

optimized and successfully validated UHPLC-HRMS-based methods [21,35]. The 

contamination status of the BPNS is generally considered as high, as it is located near 

the English Channel, being one of the busiest seaways and affected marine 

ecosystems worldwide [36,37]. Water samples were collected along the BPNS during 

4 sampling campaigns between 2016 and 2018. Complementarity of the active and 

passive sampling tools is discussed, and detected EDCs concentrations in the BPNS 

were compared to available environmental quality standards (EQS) for estimating the 

risk. 

 

2 MATERIALS AND METHODS 

2.1 Chemicals and reagents 

In this study, 97 target compounds were considered, which were purchased from 

Accustandard (New Have, CT, USA) and Sigma Aldrich (St. Louis, MO, USA). The 

target compounds were selected based on relevant literature [38–47] and covered 6 

classes, i.e. 33 androgens, 14 oestrogens, 12 progestagens, 11 corticosteroids, 5 

(alkyl)phenols and 20 phthalates. The selected internal deuterated standards 

comprised 6 androgens, 5 oestrogens, 4 progestagens, 2 corticosteroids, 2 phenols, 

and 2 phthalates. Primary stock solutions and mixed standards, reaching 

concentrations between 1 and 1000 ng µL-1, were prepared in Optima grade 

acetonitrile (Fisher scientific, Loughborough, UK). The solutions were stored in amber 

glass bottles at -20°C. Organic solvents were of Optima UHPLC-MS grade, purchased 
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at Fisher Scientific (Loughborough, UK). Reference seawater was prepared according 

to ASTM D-1141 [48] using inorganic salts supplied by Sigma Aldrich (St. Louis, MO, 

USA), i.e. NaCl, Na2SO4, MgCl.6(H2O), CaCl2.2(H2O), SrCl2.6(H2O), KCl, NaHCO3, 

KBr, H3BO3 and NaF. Ultrapure water was obtained by usage of a purified-water 

system (Millipore, Sartorius, Germany). 

 
Figure 1. A represents the 4 sampling locations that were monitored in the BPNS, i.e. 
51°21'37.78"N; 3° 6'49.01"O (OZ), 51°20'25.68"N; 3°12'12.11"O (HZ), 51°14'48.59"N; 2°55'39.61"O 
(OO) and 51°13'34.68"N; 2°56'8.00”O (HO). B depicts the Niskin bottles for taking active samples. 
C indicates how the passive samplers were attached to the tripod. 

OO

OZ

A

B C

 

 

OZ 

OO 



 Chapter IV – Field study 

 148 

2.2 Study area and sampling 

Sampling was performed in the BPNS, which is located near the English Channel. An 

overview of the study area and the sampling stations is depicted in Figure 1. Sampling 

of the target compounds was carried out at four locations, i.e. 51.22263°, 2.9357° (HO, 

harbour Oostende); 51.340073°, 3.203393° (HZ, harbour Zeebrugge); 51.24683°, 

3.113615° (OO, open sea Oostende); and 51.360494°, 3.113615° (OZ, open sea 

Zeebrugge). All sampling stations at open sea are located in the active fishing zone 

[49]. Locations at the harbours were representative for their major freshwater inputs, 

whereas the locations at open sea were selected in front of the harbours. The harbour 

stations were sampled directly from the quay, while off-shore stations in the North Sea 

were sampled with the larger research vessel Belgica. Depending on vessel availability 

and weather conditions, four sampling campaigns were carried out: November 2016 – 

February 2017, April – July 2017, October – December 2017 and March – May 2018 

(Table 1). At the beginning of each sampling campaign, generally 3 grab samples 

(active sampling) were taken and 6 passive samplers were deployed. At the retrieval 

of the passive samplers, generally 3 grab samples were taken as well. Detailed 

information on the different sampling locations and type of samplers is depicted in 

Figure 1, and detailed information on the sampling campaigns can be consulted in 

Table 1. 

More specifically, grab samples were taken at a depth of 3 m, using Niskin bottles [50]. 

For the analysis of the steroidal EDCs, (alkyl)phenols and phthalates, a total volume 

of 9 L was needed, comprising 3 replicates. Grab samples were collected in amber 

glass bottles, previously washed with methanol and ultrapure water. Upon arrival in 

the lab, grab samples were filtered (Glass Microfibre Filters Whatman™, 0.45 µm, 90 

x 90 mm), acidified to pH 3 using 1 M HCl, and stored at 4°C prior to extraction.  

For passive sampling, H2O-philic DVB Speedisks™ were used. The latter consist of a 

polytetrafluoroethylene housing enclosing 400 mg hydrophilic DVB sorbent between 
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glass fibre membranes. Prior to deployment, passive samplers were precleaned and 

conditioned with 20 mL of 5% acetonitrile and 20 mL of ultrapure water, and stored in 

ultrapure water. Exposure time was roughly 2 months, details can be consulted in 

Table 1. Passive samplers were all attached in the same direction to a tripod that was 

attached on a buoy for assuring continuous exposure at an identical depth. At the end 

of exposure, each sampler was rinsed with ultra-pure water, wrapped into aluminium 

foil, and stored weatably at 4°C until analysis. Analyses were performed within 3 days 

upon arrival of the samplers at the lab. 

 

Table 1. An overview of the different sampling campaigns (SC). During deployment (D) and 

retrieval (R) of passive samplers (P), active samples were taken. The symbols ✓ and X correspond 

to the availability or absence of samples, respectively. NA (not available) indicates that no data 
are available because the ship broke down at the time for retrieval. 

SC Location Start End D R P 

1 OZ 23/11/2016 06/02/2017 ✓ ✓ ✓ 

 HZ 25/11/2016 02/02/2017 ✓ ✓ ✓ 

 HO 25/11/2016 02/02/2017 ✓ ✓ ✓ 

2 OZ 23/5/2017 14/07/2017 ✓ ✓ ✓ 

 HZ 13/4/2017 20/6/2017 ✓ X X 

 OO 2/5/2017 26/7/2017 ✓ ✓ ✓ 

 HO 13/4/2017 20/6/2017 ✓ ✓ ✓ 

3 OZ 26/10/2017 19/12/2017 ✓ ✓ ✓ 

 HZ 16/10/2017 18/12/2017 ✓ ✓ ✓ 

 OO 26/10/2017 10/4/2018 ✓ ✓ X 

 HO 16/10/2017 18/12/2017 ✓ ✓ ✓ 

4 OZ 29/3/2018 NA ✓ X X 

 HZ 29/3/2018 17/5/2018 ✓ ✓ ✓ 

 OO 29/3/2018 NA ✓ X X 
 HO 29/3/2018 17/5/2018 ✓ ✓ ✓ 
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2.3 Analytical procedures 

2.3.1 Extraction  

2.3.1.1 Active samples 

Prior to extraction, samples were brought to room temperature. Afterwards, samples 

were spiked with a mixture of deuterated internal standards, i.e. 10 ng L-1 for the 

deuterated steroidal EDCs, 100 ng L-1 for the deuterated phthalates, and 400 ng L-1 for 

the deuterated phenols. EDCs were extracted according to two previously published 

protocols, for the steroidal EDCs [21] and the (alkyl)-phenols and phthalates [35], 

respectively. 

For the steroidal EDCs, 2.5 L of sample was adjusted to pH 7 using 1M NaOH. 

Subsequently, H2O-philic DVB sorbents used for solid-phase extraction were 

conditioned with 20 mL of 5% acetonitrile and 20 mL of ultrapure water under vacuum. 

Next, samples (2.5 L) were drawn through H2O-philic DVB Speedisks under vacuum, 

followed by a washing step with 20 mL of ultrapure water, upon which a vacuum was 

applied on the Speedisks to remove residual water drops. Afterwards, elution was 

performed by gravity using sequentially 5 mL of acetonitrile and 5 mL of acetonitrile 

acidified with 0.1% formic acid. The combined extracts were vaporized under a gentle 

stream of nitrogen at a temperature of 50°C until dry. The extract was reconstituted in 

150  µL of methanol and ultrapure water (40/60, v/v), centrifuged at 2430 g, and the 

supernatant was transferred into an LC-MS glass vial prior to analysis. 

For the (alkyl)phenols and phthalates, 0.5 L of sample was used and the pH was kept 

at 3. Subsequently, Oasis® HLB cartridges (6 cc, 500 mg sorbent, 60 µm particle size; 

Waters) were conditioned with 6 mL of 5 % acetonitrile diluted in ultrapure water and 

7 mL of ultrapure water under vacuum. Next, samples (0.5 L) were drawn through the 

cartridges under vacuum (10 mL min-1), followed by a washing step with 8 mL of 

ultrapure water and applying a vacuum (20 min) to remove residual water drops. 

Afterwards, elution was performed by using 9 mL of 0.1% formic acid in acetonitrile. 
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The extracts were vaporized under a mild stream of nitrogen at a temperature of 40°C 

until dry. Extracts were reconstituted in 150 µL of water/acetontrile (5/95, v/v) and 

centrifuged at 2430 g. Finally, supernatants were transferred into LC-MS vials prior to 

analysis. 

2.3.1.2 Passive samplers 

Passive samplers were cleaned from debris and mud with ultrapure water. This was 

followed by a washing step with 20 mL of ultrapure water, during which a vacuum was 

applied on the Speedisks. Elution was performed by gravity using sequentially 5 mL of 

acetonitrile and 5 mL of acetonitrile acidified with 0.1% formic acid. The extracts were 

combined for evaporation and divided in two parts, to allow both to be dried at a 

different temperature. Evaporation was performed at 50 °C for the steroidal EDCs and 

at 40°C  for the (alkyl)phenols and phthalates. Extracts were reconstituted in 75 µL 

water/methanol (40/60, v/v) for the steroidal EDCs, and in 75 µL water/acetonitrile 

(5/95, v/v) for the (alkyl)phenols and phthalates. 

2.3.2 Instrumental analysis 

Quantification of EDCs in extracts obtained from active and passive samplers was 

performed using three in-house developed and validated UHPLC-HR-Q-Orbitrap™-

MS methods. Separation was achieved using reversed phase chromatography with 

gradient elution using a Hypersil Gold column (1.9 µm, 100 x 2.1 mm). For the 

quantification of (alkyl)phenols and phthalates, an additional trap column was used for 

retarding any target contamination originating from the analytical instrument and 

eluent. Analyte detection was carried out on a Q-Exactive™ benchtop HRMS (Thermo 

Fisher Scientific, San-Francisco, USA). Details regarding the instrumental analysis 

have been published earlier, and can be consulted in Chapter II of this doctoral thesis 

[21,22]. 
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2.4 Calculation of water concentration captured by passive samplers 

For equilibrium samplers, the aqueous concentrations (Cw, g L-1) are calculated from 

the accumulated amount of compounds by the passive sampler (Ns, g) divided by the 

sorbent-water partition coefficient (Ksw, L g-1) and mass of the sampler (Ms, g) (see Eq 

1) [51]. 

!" = 	 %&
'&()&

          (1) 

2.5 Ecological risk assessment 

Based on the European Commission Technical Guidance document, the ecological 

risks of EDCs in water samples were assessed by using the risk quotient (RQ) method 

[52,53]. RQs were solely calculated for compounds for which an environmental quality 

standard (EQS) is available. This RQ can be calculated as the quotient of the 

measured environmental concentration (MEC) and the environmental quality standard 

(EQS) (see Eq 2).  

RQ= MEC/EQS         (2) 

The exceedance of the RQ for any specific compound above 1 was considered as a 

risk, while an RQ below or equal to 1 was considered as no risk [54,55]. 

 

3 RESULTS AND DISCUSSION 

3.1 Distribution of target compounds 

The target compounds that were detected during the 4 sampling campaigns are semi-

quantitatively depicted in Figure 2 for the steroidal EDCs, and in Figure 4 for the 

plastics additives and plasticizers. The full quantitative data can be consulted in Tables 

D1 – D14. All analysed EDC classes were ubiquitously present in the BPNS. The 

steroidal EDCs were mainly observed below 10 ng L-1 (except for corticosteroids) while 

the plastics additives and plasticizers were detected at concentrations ranging 

between 10 and 1000 ng L-1.The most abundant class that was detected during the 
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different sampling campaigns and at the different locations comprised the 

corticosteroids. The natural (i.e. cortisone, cortisol and tetrahydrocortisone) and the 

synthetic corticosteroids (i.e. prednisone, prednisolone and dexamethasone) were the 

most prominently present. The maximal concentrations for the abovementioned 

corticosteroids were 39, 59, 69, 10E10, 8.0 and 21 ng L-1, respectively. The 

unambiguous prevalence of these corticosteroids in the marine BPNS environment 

can be ascribed to their extensive use in human and veterinary medicine as 

therapeutic drugs for the treatment of various inflammatory and autoimmune diseases 

[56]. Different studies have observed that corticosteroids can be directly excreted or 

partially released in the aquatic environment following an incomplete elimination from 

wastewater treatment plants with removal efficiencies ranging between 73 and 99% 

[28,57,58]. Nevertheless, until now the prevalence of corticosteroids had only been 

reported in fresh water environments [57]. Therefore, this study is the first in its kind 

providing evidence that corticosteroids have already reached our marine environment. 

Another important finding pertains to the detection of 5α-dihydrotestosterone in all 

collected grab samples, while this compound was below the method’s detection limit 

in the passive samples. This suggests that the DVB sampler is not able to capture the 

freely dissolved 5α-dihydrotestosterone fraction. 

The prevalence of plastics additives and phthalates (Figure 3) was also clearly 

demonstrated in the BPNS. The analytes 4-ethylphenol, dibutyl phthalate (DBP) and 

di-ethylhexyl phthalate (DEHP) occurred at the highest concentrations in both active 

and passive samples, and this at every sampling location. The maximum detected 

concentrations for the above-mentioned plastics additives and phthalates amounted 

respectively 6.5, 5.3 and 0.7 µg L-1. The occurrence of 4-ethylphenol can originate from 

wastewater treatment plant discharges and anthropogenic activities [59]. The high 

concentrations measured for DBP and DEHP may be caused by extensive industrial 

activities at the harbours or major freshwater inputs from land inwards. 
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Figure 2. Heat map depicting a semi-quantitative overview of the steroidal EDCs measured during 
the different sampling campaigns (SC) and at the 4 studied locations, i.e. open sea Zeebrugge 
(OZ), harbour Oostende (HO), harbour Zeebrugge (HZ) and open sea Oostende (OO). 
Concentrations that were detected below the MQL (method quantification limit) were calculated 
as MQL/2 for visualization. The grey shaded areas correspond to concentrations below the MDL 
(method detection limit). D and R refer to the concentration measured during the deployment (D) 
and retrieval (R) of active samples, while P refers to the concentration measured in passive 
samplers. 
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Figure 3. Heat map depicting a semi-quantitative overview of the plastics additives and plasticizers 
measured during the different sampling campaigns (SC) and at the 4 studied locations, i.e. open 
sea Zeebrugge (OZ), harbour Oostende (HO), harbour Zeebrugge (HZ) and open sea Oostende 
(OO). Concentrations that were detected below the MQL (method quantification limit) were 
calculated as MQL/2 for visualization. The grey shaded areas correspond to concentrations below 
the MDL (method detection limit). D and R refer to the concentration measured during the 
deployment (D) and retrieval (R) of active samples, while P refers to the concentration measured 
in passive samplers. 

Interestingly, concentrations of DBP and DEHP measured at the harbours and open 

sea were of similar order of magnitude, confirming the widespread occurrence of the 

latter phthalates [60–62] and thus the anthropogenic pressure of these contaminants 

at the level of the active fishing zone [49].  

Further, the primary (mono-)phthalate metabolites, monobutyl and mono-ethyl hexyl 

phthalate were ubiquitously present in almost every sampling campaign. This suggests 

that DBP and DEHP have been exposed to aquatic organisms and humans, as the 

primary metabolites are considered as relevant biomarkers for phthalate exposure 

[63,64]. Nevertheless, it should be noted that the described metabolic transformations-
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products are not limited to the above-mentioned primary (mono-)phthalates (Figure 3), 

but only the most abundant ones were here discussed. 

3.2 Comparison of active and passive samples 

The BPNS was monitored by using both an active and a passive sampling approach. 

The overlapping coverage of detected compounds between the different types of 

samplers is depicted in Figure 4. Similarity was only calculated for the sampling 

campaigns containing 1 passive and 2 active samplings (at deployment and retrieval). 

Similar coverage of the detected compounds was observed between the active 

samples that were taken during the same sampling campaign. Moreover, the average 

coverage of the active samples during the deployment and retrieval was 61±11% 

(n=11, with n number of complete sampling campaigns) and 60±12% (n=11) of the 

total number of detected compounds in the sampling campaign, respectively. 

However, an overlap of only 31±14% (n=11) of the compounds was observed between 

the active samples taken during the deployment and retrieval of each sampling 

campaign. This implies that the detected (number of) compounds changed over a 

period of 2 months. 

When comparing the coverage of the above-mentioned two tested sampling strategies, 

it was observed that 61±11% and 47±17% of the detected EDCs were measured by 

active and passive sampling, respectively. Consequently, it can be concluded that the 

highest number of compounds was detected when using active sampling. Both types 

of sampling approaches demonstrated a similarity of 30±15% (n=11) of the detected 

compounds, indicating that both strategies measured a different fraction of the 

contaminants in the aquatic environment. Because of this, employing active and 

Speedisk passive sampling can be considered as complementary tools for evaluating 

the water quality and environmental contamination status. Furthermore, for the 

compounds that were detected using both approaches, lower concentrations were 
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obtained when using passive samples compared to active samples (except for 5α-

dihydrotestosterone, testosterone acetate and equilin). 

 
Figure 4. Venn-diagram depicting the number of compounds that were detected by active and 
passive sampling. During the deployment and retrieval of the passive (P; corresponding to the 
sections 3, 4, 5 and 7) samplers, active samples were taken; referred to as (D; corresponding to 
the sections 1, 4, 6 and 7) and (R; corresponding to the sections 2, 4, 5 and 7). The sampled 
locations were the harbour of Zeebrugge (HZ), Open sea Zeebrugge (OZ), harbour of Oostende 
(HO) and open sea Oostende (OO). Only the sampling campaigns (SC) of which the 3 
measurement, i.e. D, R and P, were available are included. 

Similar results have been reported by Terzopoulou et al. for 38 hydrophilic organic 

compounds, i.e. herbicides, pesticides, pharmaceuticals and phenols (2016) [65]. The 

active/passive concentration ratios are shown in Figure 5. The averaged ratio for the 

steroidal EDCs amounted 5.3. For the plastics additives and plasticizers, this averaged 

ratio amounted 31. Higher ratios were observed for the plastics additives and 

plasticizers than for the steroidal EDCs, as much higher concentrations were detected 

in the active samples for the former. 
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Figure 5. The average concentration ratios of the compounds that were detected in both active 
and passive samples (log scale for the x-axis). For the active concentrations, the average values 
that were obtained within the same sampling campaign were used. 

3.3 Preliminary ecological risk assessment 

The prevalence of the detected EDCs in the BPNS was further interpreted according 

to the RQ approach for those compounds for which an EQS was available. Existing or 

proposed EQS for marine waters of 17β-estradiol, 17α-ethinylestradiol and 

diethylhexyl phthalate (DEHP) are 0.08, 0.007 and 1300 ng L-1, respectively [66–68]. 

The EQS of 17β-estradiol and 17α-ethinylestradiol used the aquatic ecosystem as the 

most sensitive protection goal  and wasderived from a species sensitivity distribution 
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predicted no effect concentration of a mammalian predator via oral exposure) and a 

bioconcentration factor [68]. The RQ of above-mentioned EDCs were calculated for 

each sampling campaign and sampling station using MEC-results of both the active 

and passive sampling approaches (see previous section). The results of the calculated 

RQs are depicted in Figure 6. Lower RQs were generally observed for passive 

samplers in contrast to the active samples. The latter is not surprising, because this 

study has demonstrated that the measured concentrations for passive samplers are 

on average a factor of 5.3 to 31 lower than for active samples. 

Among the studied EDCs, the detected concentrations for 17β-estradiol exceeded in 

almost all samples the proposed EQS. According to the most recent 17β-estradiol EQS 

dossier [66], and supported by the available chronic toxicity data (such as no observed 

effect concentrations, NOEC), it turns out that the most sensitive organisms to 17β-

estradiol are fish [69–72] in contrast to invertebrates [73–76]. For example, exposure 

to 17β-estradiol can pose negative effects in the following fish species: Onchorhynchus 

mykiss (NOECreduced semen volume (35 days of exposure) = 0.5 ng L-1 [71]), Danio rerio 

(NOECreduced egg survival (200 days of exposure) < 5 ng L-1 [70] and NOECsecondary sexual 

characteristics (21 days of exposure) = 5 ng L-1 [69]) and Oryzias latipes (NOECreduced fertility of 

F0 generation (59 days of exposure) = 2.9 ng L-1 [72]). 

The EQS of 17α-ethinylestradiol was not exceeded in the collected samples, except 

for SC3 in Zeebrugge. The potential risk of the measured 17α-ethinylestradiol 

concentration over the different sampling campaigns was, however, not consistently 

observed. 

The EQS of DEHP was only exceeded in active samples (RQ = 2.8) of SC3 in 

Oostende. The calculated RQs of DEHP suggested mainly no risks (RQ < 1) from the 

detected concentration in the BPNS. The absence of risk of DEHP is somewhat 

surprising, as DEHP was the most abundant plasticizer detected (see previous section 

3.2.) and prevailed mainly in the highest concentrations. As a result, it could be 
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hypothesized that no risk may be observed for the other measured di-phthalates in the 

BPNS either (assuming they have similar toxic potencies).  

Finally, it should be noted that the RQ approach only takes the risk of individual 

compounds into account, while aquatic organisms in the BPNS are clearly not being 

exposed to single substances. It can indeed be anticipated that the detected EDCs 

may exert cumulative effects on aquatic organisms [77]. Furthermore, it should be 

noted that our study evaluated only the risks of those compounds for which EQS are 

available. Nevertheless, risks could also be calculated for compounds for which no 

EQS are available, by deriving EQS from ecotoxicological data of fresh- and marine 

waters. However, it should be highlighted that for only a limited number of compounds 

ecotoxicological data are available in ecotoxicological databases, such as the US-EPA 

Ecotox database. 
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4 CONCLUSIONS 

A complementary sampling approach was used to assess the prevalence of 97 steroidal 

EDCs, plastics additives and plasticizers in the BPNS, from 2016 to 2018. Active samplers 

were taken by Niskin bottles, while for the passive samplers hydrophilic DVB Speedisks™ 

were employed. Overall, the detected concentrations for the steroidal EDCs were below 10 

ng L-1, while for the plastics additives and plasticizers concentrations between 10 and 1000 

ng L-1 were observed. Similar concentrations were detected at all sampling locations, i.e. in 

the harbours and at open sea (fishing zone). The corticosteroids were the most abundant 

class of steroidal EDCs found, while dibutyl phthalate and diethylhexyl phthalate were 

detected at all sampling locations. Thereby, 61±11% of the total number of compounds, within 

the same sampling campaign, were detected by active samples, whereas the DVB 

Speedisks™ passive samples covered 47±17%. The concentrations measured when using 

passive samplers were on average a factor of 5.3 (EDCs) to 31 (plastics additives and 

plasticizers) lower than those in active samples.  

Our study demonstrated that the detected concentrations for 17β-estradiol exceeded the EQS 

in almost all samples from the BPNS. For the well-known DEHP no risk was observed, 

although the highest concentrations were detected in contrast to other EDCs. More research 

regarding the ecotoxicological effects of steroidal EDCs, (alkyl)phenols and primary (mono-

)phthalates is advised to enable a more complete risk assessment. Furthermore, research on 

the potential hazards of EDC mixtures is urgently needed in light of the results reported in this 

work. 
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1 RESEARCH POSITION AND RELEVANCE OF THIS THESIS 

This doctoral thesis is embedded in the NewSTHEPS project (www.newstheps.be), focusing 

on New Strategies for monitoring and risk assessment of Hazardous Chemicals in the marine 

Environment with Passive Samplers. NewSTHEPS intends to establish an innovative and 

integrated approach to assess the risks posed by mixtures of micropollutants in the Belgian 

coastal zone, thereby addressing the following specific aims: 

1) To develop a comprehensive multi-method approach to monitor (target analysis) and screen 

(untargeted analysis) a broad range of waterborne pollutants (organic compounds and 

metals); 

2) To apply a unique combination of field and laboratory ecotoxicological and chemical 

techniques to establish the environmental risk of realistic mixtures of contaminants; 

3) To develop and evaluate a framework and toolbox for monitoring the chemical anthropogenic 

pressures on coastal ecosystems. 

The objectives of this doctoral thesis were mainly related to the green section in Figure 1, 

including the development of new analytical multi-class methods for the 

detection/quantification of micropollutants in the BPNS and the use and calibration of passive 

samplers. Because EDCs are an important class of micropollutants posing a potential threat 

but lacking prior assessment for the marine environment, this doctoral thesis mainly focused 

on a number of important EDC groups. Indeed, the prevalence of steroidal EDCs and plastics 

additives and plasticizers has recently gained attention as a result of their frequent use in daily 

life and endocrine disrupting properties towards marine organisms [1–6].  

 

To study and evaluate the fate, effects and risks posed by these EDCs in aquatic ecosystems, 

information regarding their presence in the marine environment is urgently needed. Therefore, 

the main goal of this doctoral thesis was to fill up the important gap in knowledge on integrated 

monitoring approaches of steroidal EDCs, plastics additives and plasticizers in the BPNS. The 
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latter implicates the need for new and reliable analytical methods for the measurement of 

multiple EDC classes in aqueous samples.  

 

 
Figure 1. Schematic overview of the objectives of the NewSTHEPS project (BR/143/A2/NEWSTHEPS). 

 

2 MAIN RESEARCH FINDINGS AND SCIENTIFIC CONTRIBUTIONS OF 

THIS WORK 

The general aim of this doctoral thesis was to study the occurrence of EDCs in the marine 

BPNS environment using both active and passive sampling approaches followed by HRMS-

based instrumentel analysis. The accomplishment of this objective has been extensively 

described in chapters II, III and IV. The main findings are summarized in Figure 2 and will be 

further discussed throughout this chapter (V). 

2.1 Active sampling 

The most frequently reported steroidal EDCs, plastics additives and plasticizers are the 

oestrogens and di-phthalates, whereas data for androgens, progestagens, corticosteroids and 

mono-phthalates are more scarce [7–62].  
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Figure 2. Schematic overview of the main research findings of this PhD study. 

Because of differences in physico-chemical properties and chemical backbone between the 

steroidal EDCs and the plastics additives and plasticizers, two different analytical methods 

making use of solid-phase extraction and UHPLC-HRMS were developed in this work. 

2.1.1 UHPLC-HR-Q-Orbitrap-MS methods development and validation for target EDC 

analysis 

2.1.1.1 Trace quantification of steroidal EDCs 

During this work, a UHPLC-HR-Q-Orbitrap-MS method was developed for the simultaneous 

quantification of 70 steroidal EDCs in two aquatic matrices, i.e. sea and fresh water. Prior to 

the quantification of the analytes, there was a need to separate the isomers and mass 

analogues, as to achieve a reliable quantification. To achieve EDC separation, UHPLC was 
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selected as main technique for enabling superior resolution, chromatographic peak shape and 

baseline separation of analytes. In comparison to classical HPLC, UHPLC has demonstrated 

to provide a higher resolution (5-fold), speed (10-fold), sensitivity (analyte specific) and a 

reduced solvent consumption (5-fold) [63,64]. When comparing the UHPLC optimization step 

in this work to similar studies from literature, it is reasonable to conclude that our methods 

offer a higher throughput (4-fold) for the simultaneous separation of EDCs [17,65,66]. To 

enable a reliable and accurate quantification of the separated EDCs, the ionization and other 

relevant mass spectrometric parameters were optimized on spiked seawater extracts. This 

resulted in high mass accuracies (mass deviation < 3 ppm) at MQL levels. The latter was 

deemed highly important to increase the confidence in identification, as in the marine 

environment it was expected that low ng L-1 concentrations would be detected. Next to the 

UHPLC-HR-Q-Orbitrap-MS method, that was fully optimized to measure residual 

concentrations in the environment, the initial sampling and extraction procedure are also 

known to play an equivalent or even more important role in the ability of detecting residues in 

the marine environment. To tackle the latter, large volume of water samples are usually 

needed [67], followed by an SPE procedure for up-concentrating analytes [68]. In this work, 

the SPE procedure was optimised in a very cost-effective manner by using a three-step 

workflow, including fractional factorial resolution IV (screening), simplex lattice and response 

surface methodological designs. 

Finally, the performance of the optimised SPE-procedure coupled to the instrumental UHPLC-

HR-Q-Orbitrap-MS method was evaluated by an extensive validation, relying on strict criteria, 

i.e. CD 2002/657/EC (food safety) [69], the Eurachem  guidelines [70] and review articles 

[71,72]. Moreover, this validation was performed at environmentally relevant concentrations, 

resulting in very low quantification limits (all below 5 ng L-1) and excellent performance 

characteristics [73]. Consequently, the applicability was demonstrated by measuring steroidal 

EDCS in 28 sea water samples, during which it was shown that many (n=43) steroidal EDCs 

were ubiquitously present at low concentrations (0.28 – 39 ng L-1). This  observation confirmed 

the existing need for an analytical methodology that enables the detection of a broad range of 
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steroidal EDCs at the obtained MQL-levels for environmental purposes. Ultimately, it could be 

concluded that the developed and validated method is fit-for-purpose, which was fundamental 

for the calibration and use of passive sampling-based devices. This was further investigated 

in chapters III and IV. 

2.1.1.2 Detection of plastics additives and plasticizers 

GC generally hampers the analysis of higher molecular phthalates, as a result of their 

intermediate volatility, while this is not the case for LC. As it was the purpose to quantify a 

broad range of plastics additives and plasticizers – not limited to the volatile phthalates – LC 

was the chromatographic platform of choice. Nevertheless, the use of UHPLC for separating 

plastic additives and plasticizers is challenging from an analytical perspective. First, instability 

of retention times was observed for the alkylphenols when formic acid was added to the mobile 

phase. Therefore, ammonium hydroxide was selected as a mobile phase additive, bearing the 

additional benefit of an enhanced ionization rate for the alkylphenols. Second, interfering 

background peaks of diethyl hexyl and dinonyl phthalate were observed in almost every 

analytical run. To solve this, a trap column was placed between the UHPLC pump and the 

injection valve for retarding any potential plastics additive and phthalate contaminations. Third, 

transesterification of di-phthalate to primary monomethyl phthalate was observed when 

methanol was used as a mobile phase. For controlling the degree of transesterification of 

target phthalates and potentially unknown (untargeted) phthalates, acetonitrile was selected 

as the mobile phase. Subsequent to the LC optimization, the ionization and mass 

spectrometric settings were optimised and developed in a similar manner as described under 

2.1.1.1. A similar validation strategy was also applied, as only diethyl phthalate was covered 

by an EQS level in CD 2009/90/EC. Validation likewise provided superior analytical 

performance for all target plasticizers and plastics additives. Consequently, this method was 

applied on 24 seawater samples, clearly demonstrating the presence of mono-phthalates and 

confirming the need for also including transformation products in the analysis. This 

instrumental method formed one of the fundaments for calibrating the passive sampler-based 

devices, as reported in chapters III and IV. 
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2.1.2 Suspect and untargeted analysis using the developed UHPLC-HR-Q-Orbitrap-

MS methods 

The developed and validated multi-residue methods targeting steroidal EDCs, plastics 

additives and plasticizers, described in chapter II, made use of high-end UHPLC-HR-Q-

Orbitrap-MS. This MS technology simultaneously enables to perform suspect and untargeted 

analysis, which can both contribute to further improving water quality monitoring. In the context 

of untargeted analysis, most studies use analytical columns with a length of at least 100 mm 

and maximal particle diameter of 2.5 µm, resulting in an excellent chromatographic resolution 

(narrow peaks) [74]. Also in this work, the use of small particle sizes and a sufficiently high 

length of the UHPLC column both resulted in a reduced plate height of the column [75] and a 

high peak capacity for the separation of the analytes under study. The strength of UHPLC was 

also clearly demonstrated for the steroidal EDCs, as our developed method enabled the 

separation of chiral and mass analogues [73]. In response to the narrow LC-peaks obtained 

in this study, UHPLC was hyphenated to high resolution mass spectrometry, i.e. a Q-Orbitrap 

as is common for untargeted analyses. Indeed, HRMS makes it possible to detect a virtually 

unlimited number of compounds in a single run without preselection. Several studies have 

already demonstrated that thousands of substances may be detected in the aquatic 

environment, with target quantification only covering the tip of the iceberg [36,76,77]. 

Furthermore, HRMS provides reliable detection and quantification of the separated analytes, 

and this with high mass accuracies. For the examined target EDCs (chapter II), high mass 

accuracies (< 3 ppm) were also observed [73,78]. 

The developed and validated UHPLC-HR-Q-Oribtrap-MS methods, described in chapter II, 

meet all the above-mentioned instrumental requirements for performing suspect and 

untargeted analyses [73,79]. Suspect and untargeted analysis, which are mostly executed in 

retrospect, generally rely on accurate mass, retention time and spectral libraries [80–83].  

However, relying merely on these data brings about a certain degree of uncertainty related to 

the component identity, which can be minimized by fragmenting ‘suspect’ or ‘unknown’ 
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compounds. For the plastics additives and plasticizers, an analytical strategy was proposed 

in this work for the tentative identification by using in-house determined fragments 

(incorporated in Python) of compounds, using Tier 3 (according to the Chemical Analysis 

Working Group & Metabolomics Standards Initiative) [84]. 

2.2 Passive sampling using hydrophilic divinylbenzene 

Passive sampling techniques have been initially developed as an alternative for overcoming 

the challenges of active sampling, as extensively described in section 3.1 of chapter I. From 

literature, it has become clear that each commercially available polymeric passive sampler 

only captures a limited range of analytes [85–92]. This is governed by the sampler’s polarity 

and chemical moieties of the sorbent surface, but also by the physico-chemical properties of 

the analytes. The incorporation of the Oasis HLB® co-polymer in different POCIS designs is 

one of the most popular passive sampler devices, as it permits the accumulation of very polar 

to moderately non-polar compounds (log P ranging from -1.6 to 5) [91]. Nevertheless, the 

simultaneous detection of polar and non-polar compounds by one passive sampler seems to 

offer a hurdle so far. This stresses the need for investigating novel passive sampler devices 

that may allow to simultaneously capture both polar and non-polar organic contaminants from 

aquatic matrices.  

In this work, we demonstrated that higher extraction efficiencies were obtained for non-polar 

compounds (log P > 4) with hydrophilic DVB (polymeric sorbent in Speedisks) as compared 

to Oasis® HLB when using both sorbents during SPE clean-up of grab samples [73]. On top 

of that, active sampling of steroidal EDCs demonstrated that a broad polarity range was 

captured by hydrophilic DVB (log P ranging from 0.7 to 9). Therefore, we proposed to use 

hydrophilic DVB as a novel sorbent for passive sampling approaches. A supplementary benefit 

relied on the fact that hydrophilic DVB was incorporated in a robust configuration, i.e. 

Bakerbond Speedisks, which can be directly used as passive sampler devices in the 

environment. To evaluate the potential of hydrophilic DVB for capturing compounds with a 

broad polarity range, we extended – within the NewSTHEPS project – the scope of target 
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compounds towards a more extensive range of emerging contaminants (log P ranging from -

1.3 to 9.85), i.e. personal care products (n=5), pharmaceuticals (n=32), pesticides (n=25), 

steroidal EDCs (n=50), (alkyl)phenols (n=4), and phthalates (n=15). The analysis and 

evaluation of the uptake of personal care products, pharmaceuticals and pesticides was 

executed by Vanryckegem and colleagues at the EnVOC Research Group. Combining the 

experimentally measured equilibrium partitioning coefficients (Ksw) of 131 organic 

contaminants with the functional characteristics (determined via FTIR and NIR) of the 

hydrophilic DVB sorbent, indicated its superiority for capturing organic compounds within the 

aforementioned broad polarity range. In parallel to this study, Vanryckegem et al. 

demonstrated that the Speedisk itself can be applied as an equilibrium passive sampler for 

the same set of emerging organic compounds. The determined Ksw values were used in 

chapter IV to convert the accumulated mass (ng) of organic compounds on the Speediks to 

analyte water concentrations (ng L-1).  

 

2.3 Field study – Screening of the marine environment 

In chapter IV, the two studied sampling approaches, i.e. active and passive sampling, were 

extensively evaluated by application to the marine environment. This approach was excecuted 

in the Belgian Part of the North Sea, for assessing the presence of 70 steroidal EDCs, and 27 

plastics additives and plasticizers. 

The analysis of the active and passive samples resulted in detected concentrations for the 

steroidal EDCs below 10 ng L-1, while for the plastics additives and plasticizers concentrations 

between 10 and 1000 ng L-1 were observed. Comparing our results to concentrations reported 

for other aquatic environments (see Figure 3 of the introduction), it can be concluded that 

similar ranges were detected in the marine environment as previously reported for surface, 

ground and drinking water. Deeper investigation of the EDC sub-classes showed that the 

corticosteroids were the most abundant class of steroidal EDCs, while dibutyl phthalate and 

diethylhexyl phthalate were found at all sampling locations in BPNS, from 2016 to 2018. 
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Comparing the complementarity of active and passive sampling showed that 61±11% of the 

total number of compounds were detected by active samples, whereas the DVB Speedisks™ 

passive samplers covered 47±17%. The overlapping coverage between active and passive 

samples was 31±14%. The concentrations that were detected by using passive samplers were 

on an average a factor of 5.3 (steroidal EDCs) to 31 (plastics additives and plasticizers) lower 

than with active samples. Futhermore, passive samplers can act as “early-warning tool” to 

detect trends in chemical contaminants [93]. Concentrations that are detected outside the 

upper and lower central limits of previous sampling campaigns, can be used to trigger further 

monitoring using the conventional active (grab) sampling. Consequently, passive sampling 

can be recommended, as a complementary tool to improve water quality, in the European 

Commission Guidance document [94] and in Directive 2013/39/EU [95] for the chemical 

monitoring of surface waters. Passive samplers allow the measurement of the dissolved phase 

concentrations of a contaminant [93]. However, for polar to moderately polar organic 

compounds (with log P < 5), the concentration in the water column is not dominated by the 

fraction adsorbed to colloids and particles in water, while this is the case for the more non-

polar compounds [93]. As such, assessing the polar to moderately polar organic compounds 

by using passive sampling in compliance with the EQS of the European Water Framework 

Directive (WFD), can be questioned. Therefore, more research is needed to evaluate how 

reliable the hydrophilic DVB Speedisk is under the WFD for assessing the more polar 

compounds. Finally, the risk quotient approach showed that 17β-estradiol exceeded the EQS 

(RQ > 1) for marine waters, while DEHP didn’t pose a risk (RQ < 1). 
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3 FUTURE RESEARCH RECOMMENDATIONS 

3.1  Untargeted analysis 

3.1.1 Structure elucidation 

A crucial part in HRMS-based untargeted analysis as a novel means to optimize 

environmental monitoring, is the identification of unknowns. In this work, we proposed a new 

strategy for plastics additives and plasticizers identification, relying on class-specific 

fragments. An equivalent analytical strategy could be pursued for the steroidal EDCs. The 

feasibility of this strategy is deemed high, as different studies have demonstrated a correlation 

between the chemical structure and the obtained product ions for analogues of specific 

steroids [96–98]. Indeed, Pozo et al. (2008 and 2009) already reported that the observed 

fragmentation patterns of steroidal EDCs can be considered for structural elucidation [96,98]. 

In addition to the mass spectrometric part, a recent study of Randazzo et al. (2016) 

successfully proposed a tool for predicting the retention time of 91 steroids in reversed-phase 

liquid chromatography in association with experimental MS information. Retention time 

predictions were based on VolSurf+3D molecular descriptors in combination with novel 

stereochemical description of the gonane skeleton of steroidal EDCs (see Figure 3). The 

proposed tool showed a predictive ability (Q2) of 0.92 with and average error of 4.4% [99]. 

Combining characteristic fragmentation patterns and prediction of retention times would allow 

to better unveil the identity of ‘suspect’ and ‘unknown’ compounds during retrospective 

analysis. 

3.1.2 Automatized analysis and processing 

Within this doctoral thesis, the fragmentation of plastics additives and plasticizers was 

executed by using full scan MS in combination with parallel reaction monitoring (PRM) events. 

The latter uses an inclusion list of the parent ions (with their accurate masses and retention 

times), measured in full-scan, for fragmenting ‘unknown’ compounds. This was followed by a 

pre-processing step in Python, which allowed to assign neutral losses and characteristic 
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fragments of the target list to the untargeted data. A more automatized fashion would be 

combining full scan events with data-dependent fragmentation data. Combining those two 

events would bring about the automatic fragmentation of the highest observed peaks at 

specific retention times and accurate masses (without the use of an inclusion list). Using this 

approach, the data evaluation and annotation could then directly be executed by using our in-

house written 

 
Figure 3. Schematic overview depicting the predicted retention times versus the experimental retention 
time (credits belong to Randazzo et al. 2016). 

Python code or other freely available annotation software programs (such as MAGMA) [100]. 

This would provide information more rapidly than with PRM on whether or not  “suspects” or 

“unknowns” would contain an EDC backbone.  

Furthermore, further data processing could comprise peak peaking by using molecular feature 

algorithms, such as Compound Discover ™, Sieve, MZmine and Bioconductor (xcms) (R-

package). Thereby, it should be highlighted that only Bioconductor allows to be integrated in 

a single pipeline together with the above-mentioned backbone-based structural elucidation. 

These algorithms cluster all related MS signals and report them as compounds compiled in a 

large list for further evaluation. Relevant peaks, that are not present in procedural blanks or 

may be associated with existing targets, are selected based on isotopic pattern and intensities 

[101]. For the selected peaks, the most plausible molecular formula can be assigned to by 

using the Seven Golden Rules [102] and GenForm [103]. MS/MS spectral interpretation 

includes the use of on-line databases (MassBank library) and fragmentation platforms (MS 

Linear Solvent Strength

QSRR
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Fragmenter, Mass Frontier and MetFrag). To assess the plausibility of candidates, the QSRR 

retention time prediction model can be applied [104]. To conclude, the above-mentioned 

proposed strategy can be embedded in a wide-scope screening approach aiming at the 

detection and identification of unknown micropollutants and their transformation products 

[105]. 

3.2 Partitioning of organic compounds between water and hydrophilic DVB 

3.2.1 Further investigation of unassessed effects 

The sorption of emerging organic contaminants occurring in aquatic matrices onto hydrophilic 

DVB has shown to be successful, as described in chapter III. Thereby, concentration effects 

were studied by increasing the analyte concentrations in mixture experiments. Furthermore, 

concentrations of mixtures that were tested, within the same batch experiment, were equal-

molar concentrations. Nevertheless, in the environment, contaminants often exist in mixtures 

with other chemicals, as was observed in chapter IV. As a consequence, competition between 

compounds with different concentrations can occur, and affect the Ksw. Thereby, it should be 

highlighted that sorption behaviour in a single-solute and mixture-solute system can also differ 

substantially [106–108]. Compounds that are structurally related can display stronger 

competitive effects [109–112]. Moreover, Xing and Pignatello reported that the existence of 

competitive sorption between organic pollutants and aromatic acids - also called naturally 

occurring compounds - may cause an increasing mobility and bioavailability of anthropogenic 

organic contaminants [113]. For example, the study of Wang et al. (2009) showed that humic 

acids influence the sorption beviour, which was dominated by the molecular size and 

hydrophobicity of the organic pollutants. Another study by Lerman et al. (2013) observed that 

dissolved organic matter can significantly affect the sorptive behaviour of polar organic 

pollutants [114]. 

Next to the to above-mentioned unassessed environmental effects, the design of the passive 

sampler should be further examined as well. Future research shoud investigate the uptake 

behaviour of EDCs onto hydrophilic DVB that is enclosed in different designs. 



 Chapter V – General discussion and future perspectives 

 183 

3.2.2 Stability of emerging organic compounds on Speedisks 

In this study, the stability of EDCs on Speedisks was not investigated. The sequestration of 

analytes onto a solid-phase sorbent prior to freezing can, however, be considered as an 

effective storage and archival option [115]. Indeed, two recent studies reported that 

pharmaceuticals, pesticides and other polar organic compounds are stable on POCIS  during 

a storage period of 20 months and even 6 years [115,116]. Therefore, POCIS can serve as a 

viable archival tool for monitoring programs interested in exploring contaminant discovery on 

original samples at a later date. Furthermore, storage on solid-phase sorbents represents also 

a logistically feasible method, as opposed to the storage of large water-volume samples 

obtained following active sampling. 

Successful sequestration of the emerging organic compounds studied in this work on 

Speedisks can be anticipated, when comparing the sorbent and design of POCIS to that of 

Speedisks. Moreover, sorbent characterisation showed that hydrophilic DVB and Oasis HLB 

comprise different moieties, but at the same time possess a similar spectral profile. The POCIS 

and Speedisk configurations both envelop a robust casing that encloses the sorbent between 

membranes. As a consequence, no physical damage from the freeze/thaw process will occur. 

Water content in the sampler during the freeze/thaw process can result in potential hydrolysis 

and physical damage (sorbent loss during later extraction), which was observed for the o-DGT 

passive sampler [117,118].  

3.3  Field study 

3.3.1 Practical considerations 

To the best of the authors knowledge, no standard operating procedure (SOP) is available at 

present for passive samplers capturing polar compounds. In order to enhance transparent, 

comparable and reliable results, it would be a great merit to the scientific field if a SOP would 

be available. This SOP should encompass sampler deployment, retrieval/recovery, sampler 

storage, cleaning, instrumental analysis, extraction and data processing for specific classes 

(according to polarity). Furthermore, specific guidelines on evaluating the performance of 
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passive samplers, such as mass balances and linearity, would also be welcomed by the 

scientific community [93]. In particular, a guideline that defines a common set of metadata and 

calibration conditions (temperature, water flow, type of exposure system, type of water) 

combined with the obtained sampler calibration parameters would come in handy. This 

information is also required for the assessment of the possible relationship between the 

observed variability, available calibration data and the exposure conditions used during 

calibration [119]. The latter would especially be useful for new passive samplers that are 

introduced or variants on currently used passive samplers. 

3.3.2 Water-based epidemiology 

Water-based epidemiology is a multi-disciplinary domain, as it combines analytical chemistry 

with environmental toxicology, biology, pharmacology, public health, forensics, and so on 

[105]. Most of the studies so far focused on how to calculate drug consumption from 

wastewater analysis [120–122]. Nevertheless, only a few water-based epidemiological studies 

explored the association between the consumption of specific chemicals by a population, 

measured concentrations of metabolites in wastewater, and its health impact [123]. Other 

researchers used the presence of (urine-)biomarkers in wastewater to estimate the human 

population size during epidemiological studies [124,125]. A similar approach could be followed 

in the marine environment for assessing the exposure of organic contaminants to aquatic 

organisms and detecting unique biomarkers. The latter could be executed by performing 

retrospective analysis on the same samples as in chapter IV. 

Another interesting track could be the calculation of product/parent ratios of organic 

compounds [126]. Generally, in human excretion, fixed product/parent ratios of organic 

compounds have been observed. Calculating and comparing the product/parent ratios of 

organic compounds (such as desmethyltramadol) in different aquatic environments could 

provide valuable information on the characteristics of the aquatic environment and any on-

going processes [126]. A stable ratio would allow predicting concentrations of transformation 

products from those of their parents. Nevertheless, unstable ratios can be an indicator for on-
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going processes (such as degradation). For example, effluent of wastewater treatment 

showed higher product/parent ratios of venlafaxine than human excrements, indicating that 

the parent compounds are more vulnerable for degradation in these WWTPs [126]. 

3.3.3 Passive samplers versus biota 

Replacement of chemical monitoring in biota by passive samplers can be envisaged as 

passive samplers reflect the contaminant levels to which biota are exposed in their natural 

environment. Indeed, a long-term observation of passive samplers versus mussels in marine 

waters (Netherlands), demonstrated that similar contaminant trends in time and place/space 

could be observed [127]. Moreover, PDMS was used for the investigation of lipids, chlorinated 

biphenyls and PAHs [127]. Nevertheless, the uptake of contaminants by aquatic organisms 

has some drawbacks, as this is mostly dependent on the aquatic species (geographical 

dependence), growth stage of organisms, and variation in metabolism of aquatic organisms 

[128]. As a consequence, comparing the bioavailable concentration in biota on different 

locations could result in a discrepancy with respect to the accumulated emerging organic 

compounds. Therefore, the use of passive samplers could comprise a better and more reliable 

comparison of measured contaminants [129]. On top of that, it should be noted that passive 

samplers offer a more ecological and ethical solution for providing information on the 

contamination status of aquatic environments. Furthermore, the analysis of biota is very cost-

intensive and requires extensive clean-up steps to obtain sufficient selectivity towards the 

target compounds [130]. 

3.3.4 Risk assessment of unassessed EDCs  

The risk assessment of organic contaminants in the marine environment suffers from a 

number of limitations. First, as already highlighted in chapter IV, ecotoxicity data for marine 

organisms are limited. Secondly, the potential effects of organic contaminant mixtures, 

especially at low concentrations, is very arduous to assess and as such hardly examined. In 

the environment, aquatic organisms are not exposed to a single compound, but to a mixture 
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of organic contaminants [131]. Thirdly, only few studies take into account the presence of 

transformation products [132,133].  

The above-mentioned issues can be addressed by using Speedisks, that were deployed in 

the environment, as passive dosing devices in lab toxicity tests. Moreover, the use of 

hydrophilic DVB Speedisks as passive dosers could provide a direct estimation of the potential 

toxicity to aquatic organisms. Indeed, passive samplers can be flexibly applied for testing the 

soluble fraction of contaminants, for performing concentration-response experiments, and for 

in depth investigating of the toxicity of chemical mixtures [134]. In contrast to classical bio-

testing assessments, no cofounding effects of co-solvents on aquatic organisms will occur 

[135,136] and/or result in compound losses [137]. As a consequence, it is also expected that 

passive dosing will break through as a promising and widely applicable technique, as it 

enables the toxicity assessment of a huge number of organic contaminants in a cost-effective 

manner.  
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APPENDIX A - DEVELOPMENT AND VALIDATION OF AN ULTRA-HIGH 
PERFORMANCE LIQUID CHROMATOGRAPHIC HIGH RESOLUTION Q-
ORBITRAP MASS SPECTROMETRIC METHOD FOR THE SIMULTANEOUS 
DETERMINATION OF STEROIDAL ENDOCRINE DISRUPTING COMPOUNDS IN 
AQUATIC MATRICES 
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Figure	A1.	U

H
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R-Q
-Orbitrap-M
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atogram

s	of	the	androgens	included	in	this	m
ethod	(part	I),	i.e.	(a)	m

ethandriol,	(b)	17 b-trenbolone,	(c)	17 a-trenbolone,	(d),	11 b-
hydroxyandrosterone,	(e)	testosterone	17 b-cypionate,	(f)	ethylestrenol,	(g)	17 b-dihydroandrosterone,	(h)	androsterone,	(i)	epi-androsterone,	(j)19-nortestosterone,	(k)	3 a-
androstanediol	and	(l)	3 b-androstanediol.	
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Figure	A2.	U
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s	of	the	androgens	included	in	this	m
ethod	(part	II),	i.e.	(a)	androstenedione,	(b)	m

estanolone,	(c)	17 b-testosterone,	(d)	17 a-
testosterone,	(e)	5 a-	diydrotestosterone,	(f)	norethindrone,	(g)	m

ethylboldenone,	(h)11-ketotestosterone,	(i)	form
estane,	(j)	norethandrolone,	(k)	m

ethyltestosterone	and	(L)	trenbolone	
acetate.	
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Figure	A3.	U
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s	of	the	androgens	included	in	this	m
ethod	(part	III),	i.e.	(a)	ethynyl	testosterone,	(b)	stanozolol,	(c)	testosterone	acetate,	(d)	

fluoxym
esterone,	(e)	testosterone	propionate,	(f)	chlorotestosterone	aceate,	(h)	testosterone	benzoate	and	(i)	19-nortestosterone-17-decanoate,	and	oestrogens	(part	I),	i.e.	(j)	17 b-

estradiol,	(k)	17 a-estradiol	and	(l)	estradiol-17-acetate.	



 
203 

	
Figure	A4.	U
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atogram

s	of	the	oestrogens	included	in	this	m
ethod	(part	II),	i.e.	(a)	dienoestrol,	(b)	equilin,	(c)	diethylstilbestrol,	(d)	estrone,	(e)	17 a-

ethinylestradio,	(f)	 b-zearalenol,	(g)	 a-zearalenol,	(h)	 b-zeranol,	(i)	 a-zeranol,	(j)	gestodene,	(k)	estradiol-benzoate,	and	progestins,	i.e.	(l)	5 a-pregnan-3 a,20 b-diol.	
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Figure	A5.	U
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atogram

s	of	the	progestins	included	in	this	m
ethod,	i.e.	(a)	norgestrel,	(b)	dihydroprogesterone,	(c)	progesterone,	(d)	m

ethylprogesterone,	(e)	
17 a-hydroxyprogesterone,	(f)	m

egestrol,	(g)	m
edroxyprogesterone,	(h)17 a-acetoxyprogesterone,	(i)	m

egestrol	acetate,	(j)	m
edroxyprogesterone	acetate,	(k)	flugestone	acetate	and	(l)	

caproxyprogesterone.	
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Figure	A6.	U
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S	chrom
atogram

s	of	the	corticosteroids,	i.e.	(a)	prednisone,	(b)	corticosterone,	(c)	cortisone,	(d)prednisolone,	(e)	tetrahydrocortisone,	(f)	cortisol,	(g)	
corticosterone	acetate,	(n)	dexam

ethasone,	(i)	prednisolone	acetate,	(j)	hydrocortisone	21-acetate.	
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Table	A1.	The	target	ED
C	com

pounds	including	CAS	num
ber,	m

olecular	m
ass	(g	m

ol -1),	pK
a,	log	P,	w

ater	solubility	(m
g	L

-1),	vapor	pressure	(Torr)	and	bioconcentration	
factor	(L	kg

-1)	at	a	tem
perature	of	25°C	and	pH
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B
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facto
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 kg
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A
ndrogens 

 
 

 
 

 
 

 

M
ethandriol 

521-10-8 
304.47 

15.01 ± 0.70 
4.328 ± 0.303 

4.60E+00 
3.25E-09 

1.15E+03 

17a-trenbolone 
80657-17-6 

270.37 
14.73 ± 0.40 

2.316 ± 0.350 
1.20E+01 

1.09E-11 
1.51E+02 

17b-trenbolone 
10161-33-8 

270.37 
14.73 ± 0.40 

3.169 ± 0.401 
1.20E+01 

1.09E-11 
1.51E+02 

11b-hydroxyandrosterone 
57-61-4 

306.44 
14.62 ± 0.70 

1.972 ± 0.333 
1.20E+02 

3.51E-10 
1.86E+01 

Testosterone 17b-cypionate 
58-20-8 

412.60 
- 

6.608 ± 0.295 
4.50E-02 

3.78E-11 
6.20E+04 

17β-dihydroandrosterone 
1852-53-5 

292.46 
 15.07 ± 0.70 

 4.394 ± 0.268 
4.10E+00 

1.27E-08 
1.29E+03 

Androsterone 
53-41-8 

290.44 
15.15 ± 0.60 

3.932 ± 0.325 
7.30E+00 

1.50E-08 
5.74E+02 

19-nortestosterone 
434-22-0 

274.40 
15.06 ± 0.40 

2.898 ± 0.263 
2.40E+01 

2.25E-09 
9.38E+01 

1,4-Androstadienedione 
897-06-3 

284.39 
- 

 2.623 ± 0.412 
3.40E+01 

9.62E-08 
5.80E+01 

11-ketoetiocholanolone 
739-27-5 

304.42 
15.07 ± 0.60 

1.894 ± 0.398 
1.10E+02 

3.97E-10 
1.62E+01 

Androstenedione 
63-05-8 

286.41 
- 

2.717 ± 0.340 
5.78E+01 

1.20E-07 
6.84E+01 

M
estanolone 

521-11-9 
304.47 

15.15 ± 0.60 
4.313 ± 0.351 

4.90E+00 
1.16E-08 

1.12E+03 

17a-testosterone 
481-30-1 

288.42 
15.06 ± 0.60 

3.179 ± 0.277 
2.00E+01 

2.60E-09 
1.53E+02 

17b-testosterone 
58-22-0 

288.42 
15.06 ± 0.60 

3.179 ± 0.277 
2.00E+01 

2.60E-09 
1.53E+02 

5a-dihydrotestosterone 
521-18-6 

290.44 
15.08 ± 0.60 

3.932 ± 0.325 
7.30E+00 

1.50E-08 
5.74E+02 

19-N
orethindron 

68-22-4 
298.42 

13.09 ± 0.40 
2.858 ± 0.320 

3.00E+01 
7.22E-10 

8.76E+01 
M

ethylboldenone 
72-63-9 

300.44 
15.12 ± 0.60 

3.465 ± 0.382 
1.40E+01 

1.87E-09 
2.53E+02 

11-ketotestosterone 
564-35-2 

302.41 
14.79 ± 0.60 

1.296 ± 0.470 
2.50E+02 

4.30E-11 
5.69E+00 

Form
estane 

566-48-3 
302.41 

9.31 ± 0.60 
1.785 ± 0.342 

1.20E+02 
4.91E-11 

1.34E+01 
N

orethandrolone 
52-78-8 

302.45 
15.13 ± 0.40 

3.778 ± 0.278 
9.40E+00 

7.11E-10 
4.45E+02 

M
ethyltestosterone 

58-18-4 
302.45 

15.13 ± 0.60 
3.559 ± 0.303 

1.40E+01 
2.28E-09 

2.98E+02 

Trenbolone acetate 
10161-34-9 

312.40 
- 

4.019 ± 0.407 
3.10E+00 

1.26E-09 
6.67E+02 

Ethynyl testosterone 
434-03-7 

312.45 
13.10 ± 0.60 

 3.139 ± 0.349 
2.40E+01 

7.59E-10 
1.43E+02 
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 kg
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Stanozolol 
10418-03-8 

328.49 
15.15 ± 0.60 

5.410 ± 0.330 
1.10E+00 

1.89E-10 
7.61E+03 

Testosterone acetate 
434-03-7 

330.46 
13.10 ± 0.60 

3.139 ± 0.349 
2.40E+01 

7.59E-10 
1.43E+02 

Fluoxym
esterone 

76-43-7 
336.44 

13.40 ± 0.70 
2.269 ± 0.404 

4.40E+01 
5.50E-11 

3.12E+01 
Testosterone propionate 

911657-75-5 
402.52 

- 
4.392 ± 0.334 

1.30E+00 
6.27E-11 

1.28E+03 

C
hlorotestosteron acetate 

855-19-6 
364.91 

- 
4.606 ± 0.298 

1.00E+00 
1.52E-08 

1.86E+03 

Testosterone benzoate 
42723-70-6 

392.53 
- 

5.993 ± 0.292 
9.00E-02 

5.20E-11 
2.11E+04 

Testosterone phenylpropionate 
1255-49-8 

420.58 
- 

6.286 ± 0.298 
5.00E-02 

5.16E-12 
3.52E+04 

19-nortestosterone-17-decanoate 
360-70-3 

428.65 
- 

7.939 ± 0.273 
1.95E-02 

1.30E-11 
6.36E+05 

O
estrogens 

 
 

 
 

 
 

 

17a-estradiol 
57-91-0 

272.38 
10.27 ± 0.60 

4.146 ± 0.250 
3.00E+00 

9.82E-09 
8.33E+02 

17b-estradiol 
50-28-2 

272.38 
10.27 ± 0.60 

4.146 ± 0.256 
3.00E+00 

9.82E-09 
8.33E+02 

Estradiol-17-acetate 
1743-60-8 

314.42 
10.26 ± 0.60 

5.111 ± 0.267 
6.90E-01 

9.88E-09 
4.51E+03 

D
ienoestrol 

84-17-3 
266.33 

9.21 ± 0.15 
4.920 ± 0.309 

5.60E+00 
8.07E-07 

3.23E+03 

Equilin 
474-86-2 

268.35 
10.11 ± 0.40 

2.271 ± 0.414 
2.00E+01 

4.76E-09 
6.89E+01 

D
iethylstilbestrol 

56-53-1 
268.29 

10.18 ± 0.26 
5.330 ± 0.300 

6.70E+00 
3.29E-07 

6.62E+03 

Estrone 
53-16-7 

270.37 
10.25 ± 0.40 

3.624 ± 0.369 
5.70E+00 

1.54E-08 
3.35E+02 

17a-ethinylestradiol 
57-63-6 

296.40 
10.24 ±0.60 

4.106 ± 0.315 
3.90E+00 

3.74E-09 
7.78E+02 

a-zearalenol 
36455-72-8 

320.38 
7.61 ± 0.60 

4.168 ± 0.790 
1.90E+03 

3.40E-15 
1.14E+02 

b-zearalenol 
71030-11-0 

320.38 
7.61 ± 0.60 

4.168 ± 0.790 
1.90E+03 

3.40E-15 
1.14E+02 

a-zeranol 
26538-44-3 

322.40 
8.08 ± 0.60 

3.085 ± 0.359 
5.50E+02 

4.16E-14 
1.74E+03 

b-zeranol 
42422-68-4 

322.40 
8.08 ± 0.60 

3.085 ± 0.359 
5.50E+02 

4.16E-14 
1.74E+03 

G
estodene 

60282-87-3 
310.43 

12.16 ± 0.40 
2.022 ± 0.436 

9.00E-01 
1.66E-10 

2.03E+01 

Estradiol-benzoate 
50-50-0 

376.49 
15.06 ± 0.40 

 5.095 ± 0.360 
1.50E-01 

4.08E-12 
4.39E+03 

 
 

 
 

 
 

 
 

Progestins 
 

 
 

 
 

 
 

5a-Pregnan-3α,20β-diol 
21152-50-1 

480.64 
-3.50 ± 0.18 

5.448 ± 0.492 
1.80E+03 

1.00E+00 
- 
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A
n

alyte 
C

A
S

 n
u

m
b

er 
M

o
lecu

lar 

m
ass (g

 m
o

l -1) 

p
K

a 
L

o
g

 P
 

W
ater so

lu
b

ility 

(m
g

 L
-1) 

V
ap

o
r P

ressu
re 

(T
o

rr) 

B
io

co
n

cen
tratio

n
 

facto
r (L

 kg
-1) 

N
orgestrel 

797-63-7 
312.45 

13.09 ± 0.40 
3.368 ± 0.325 

1.70E+01 
2.32E-10 

2.14E+02 

D
ihydroprogesterone 

165036-75-9 
348.48 

14.54 ± 0.70 
0.561 ± 0.301 

9.40E+02 
7.65E-14 

1.57E+00 

Progesterone 
57-83-0 

314.60 
- 

3.827 ± 0.282 
9.40E+00 

3.44E-08 
4.47E+02 

M
ethylprogesterone 

896438-14-5 
450.57 

3.09 ± 0.70 
5.209 ± 0.605 

5.90E+02 
5.05E-16 

1.62E+00 

17a-hydroxyprogesterone 
68-96-2 

330.46 
13.03 ± 0.60 

3.040 ± 0.362 
2.40E+01 

2.37E-11 
1.20E+02 

M
egestrol 

3562-63-8 
342.47 

13.00 ± 0.70 
3.225 ± 0.410 

1.80E+01 
4.15E-12 

1.66E+02 

M
edroxyprogesterone 

520-85-4 
344.49 

13.03 ± 0.70 
3.576 ± 0.365 

1.20E+01 
1.43E-11 

3.07E+02 

17a-acetoxyprogesterone 
302-23-8 

372.50 
- 

3.638 ± 0.435 
7.80E+00 

9.34E-10 
3.43E+02 

M
egestrol acetate 

595-33-5 
384.51 

- 
3.748 ± 0.465 

6.50E+00 
2.10E-10 

4.16E+02 

M
edroxyprogesterone acetate 

71-58-9 
344.49 

- 
4.174 ± 0.438 

3.70E+00 
5.44E-10 

8.75E+02 

Flugestone acetate 
2529-45-5 

406.49 
13.09 ± 0.70 

2.816 ± 0.494 
1.10E+01 

2.72E-13 
8.13E+01 

C
aproxyprogesterone 

630-56-8 
428.60 

- 
5.676 ± 0.435 

4.10E-01 
1.40E-11 

1.21E+04 

C
orticosteroids 

 
 

 
 

 
 

 

Prednisone 
53-03-2 

358.43 
12.36 ± 0.60 

1.566 ± 0.793 
1.00E+02 

1.51E-15 
9.12E+00 

C
orticosterone 

50-22-6 
346.46 

12.98 ± 0.10 
 1.952 ± 0.399 

9.70E+01 
2.07E-13 

1.79E+01 

C
ortisone 

53-06-5 
360.44 

12.37 ± 0.60 
1.433 ± 0.662 

1.40E+02 
2.96E-15 

7.23E+00 

Prednisolone 
50-24-8 

360.44 
12.47 ± 0.70 

1.635 ± 0.526 
1.00E+02 

2.13E-15 
1.03E+01 

C
ortisol 

50-23-7 
362.46 

12.47 ± 0.70 
1.762 ± 0.471 

9.40E+01 
3.44E-15 

1.29E+01 
Tetrahydrocortisone 

53-05-4 
364.48 

12.38 ± 0.70 
2.109 ± 0.568 

6.20E+01 
4.00E-14 

2.36E+01 

C
orticosterone acetate 

1173-26-8 
388.50 

14.48 ± 0.70 
 2.308 ± 0.464 

4.70E+01 
5.14E-14 

3.35E+01 

D
exam

ethasone 
50-02-2 

392.46 
12.13 ± 0.70 

2.033 ± 0.573 
3.50E+01 

2.81E-15 
2.07E+01 

Prednisolone acetate 
52-21-1 

402.48 
12.41 ± 0.70 

2.256 ± 0.581 
3.10E+01 

7.36E-16 
3.05E+01 

C
ortisone acetate 

50-04-4 
402.48 

12.32 ± 0.60 
2.054 ± 0.707 

4.40E+01 
9.94E-16 

2.14E+01 

H
ydrocortisone 21-acetate 

50-03-3 
404.50 

12.42 ± 0.70 
 2.383 ± 0.533 

2.80E+01 
1.08E-15 

3.81E+01 
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Table	A2.	Screening	param
eters	w

ith	their	specific	ranges	for	the	optim
ization	of	the	extraction	of	ED

Cs	from
	seaw

ater.	Param
eters	are	listed	in	the	order	that	they	occur	

during	execution	of	the	extraction	procedure.		

P
aram

eters 
T

yp
e 

U
n

it 
 

R
an

g
es 

 

L
o

w
er level (-1) 

C
en

tral level (0) 
U

p
p

er level (+
1) 

Pretreatm
ent 

C
ategorical 

/ 
W

hatm
an filter 

/ 
N

o filter 

pH
 adjustm

ent sam
ple 

C
ontinuous 

/ 
3.0 

5.5 
8.0 

SPE-cartridge 
C

ategorical 
/ 

H
2 O

 phillic D
VB 

Speedisk 
/ 

C
18  Speedisk 

Volum
e conditioning 

C
ontinuous 

m
L 

20 
/ 

40 

Volum
e equilibration 

C
ontinuous 

m
L 

20 
/ 

40 
Loading volum

e 
C

ontinuous 
m

L 
1000 

/ 
2500 

W
ash volum

e 
C

ontinuous 
m

L 
20 

/ 
40 

D
ry tim

e 
C

ontinuous 
m

in 
5 

/ 
20 

Elution solvent 
C

ategorical 
/ 

M
eC

N
 

/ 
M

eO
H

 

Solvent additive 
C

ategorical 
/ 

0.1%
 FA 

Absent 
0.1%

 N
H

4 O
H

 

Elution volum
e 

C
ontinuous 

m
L 

5 
/ 

10 
Evaporation tem

perature 
C

ontinuous 
°C

 
30 

/ 
50 

C
entrifuging 

C
ategorical 

ag 
0 

/ 
2430 
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Table	A3.	D
etailed	results	of	the	m

ethod	validation	for	ED
Cs	in	seaw

ater.	

Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

Androgens 
 

 
 

 
 

 
 

M
ethandriol 

0.75 
103.1 ± 9.8 

0.06 
0.50 

9.5 
3.8 

0.9980 

 
1.00 

101.1 ± 5.7 
 

 
5.6 

5.6 
 

 
1.25 

99.8 ± 3.5 
 

 
3.5 

1.9 
 

17b-trenbolone 
0.75 

100.9 ± 7.0 
0.25 

0.50 
7.0 

9.6 
0.9993 

 
1.00 

98.6 ± 5.4 
 

 
5.5 

6.8 
 

 
1.25 

100.5 ± 4.0 
 

 
4.0 

4.0 
 

17a-trenbolone 
0.75 

102.8 ± 13.4 
0.25 

0.50 
7.0 

9.6 
0.9949 

 
1.00 

100.3 ± 4.8 
 

 
5.5 

6.8 
 

 
1.25 

101.6 ± 4.6 
 

 
4.0 

4.0 
 

11b-hydroxyandrosterone 
0.75 

102.8 ± 13.4 
0.25 

0.50 
13.1 

14.3 
0.9949 

 
1.00 

100.3 ± 4.8 
 

 
4.8 

4.8 
 

 
1.25 

101.6 ± 4.6 
 

 
4.5 

4.5 
 

Testosterone 17β-cypionate 
0.75 

109.9 ± 7.8 
0.13 

0.50 
7.1 

11.8 
0.9981 

 
1.00 

107.3 ± 5.3 
 

 
4.9 

8.9 
 

 
1.25 

107.6 ± 5.7 
 

 
5.3 

5.4 
 

17β-dihydroandrosterone 
0.75 

95.3 ± 6.8 
0.13 

0.50 
7.0 

7.3 
0.9903 

 
1.00 

97.2 ± 6.4 
 

 
6.2 

6.7 
 

 
1.25 

98.9 ± 5.3 
 

 
5.5 

6.0 
 

Androsterone 
0.38 

103.7 ± 5.4 
0.25 

0.25 
5.2 

5.5 
0.9968 

 
0.50 

99.0 ± 3.1 
 

 
3.1 

4.7 
 

 
0.63 

99.7 ± 2.7 
 

 
2.7 

2.8 
 

19-nortestosterone 
1.13 

96.4 ± 5.7 
0.13 

0.75 
5.9 

7.8 
0.9984 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

 
1.50 

98.1 ± 4.8 
 

 
4.9 

7.7 
 

 
1.88 

97.6 ± 3.6 
 

 
3.7 

3.4 
 

1,4-Androstadienedione 
0.38 

95.0 ± 8.0 
0.06 

0.25 
8.4 

13.2 
0.9987 

 
0.50 

98.2 ± 8.0 
 

 
8.1 

5.0 
 

 
0.63 

99.1 ± 7.1 
 

 
7.2 

3.1 
 

11-ketoetiocholanolone 
0.38 

97.9 ± 10.8 
0.13 

0.25 
11.0 

13.6 
0.9985 

 
0.50 

97.6 ± 6.8 
 

 
7.0 

7.2 
 

 
0.63 

99.3 ± 3.0 
 

 
3.0 

3.0 
 

Androstenedione 
0.75 

94.3 ± 4.0 
0.13 

0.50 
4.3 

6.6 
0.9995 

 
1.00 

99.5 ± 5.8 
 

 
5.8 

5.1 
 

 
1.25 

98.4 ± 2.8 
 

 
2.8 

5.3 
 

M
estanolone 

1.13 
99.9 ± 5.8 

0.25 
0.75 

5.8 
7.9 

0.9965 

 
1.50 

98.8 ± 4.7 
 

 
4.8 

6.5 
 

 
1.88 

100.7 ± 4.3 
 

 
4.3 

5.4 
 

17b-testosterone 
0.38 

96.8 ± 7.5 
0.13 

0.25 
7.7 

7.7 
0.9975 

 
0.50 

101.3 ± 4.6 
 

 
4.5 

7.0 
 

 
0.63 

102.9 ± 4.2 
 

 
4.1 

4.1 
 

17a-testosterone 
0.38 

97.0 ± 8.4 
0.06 

0.25 
8.7 

14.4 
0.9998 

 
0.50 

98.0 ± 6.3 
 

 
5.8 

7.9 
 

 
0.63 

101.7 ± 4.6 
 

 
2.8 

6.5 
 

5a-dihydrotestosterone 
0.38 

96.8 ± 6.9 
0.13 

0.25 
7.1 

7.3 
0.9923 

 
0.50 

98.3 ± 6.3 
 

 
6.1 

6.4 
 

 
0.63 

99.4 ± 5.8 
 

 
5.9 

6.0 
 

19-Norethindron 
1.50 

95.4 ± 7.2 
0.50 

1.00 
7.6 

10.1 
0.9975 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

 
2.00 

98.9 ± 3.1 
 

 
3.1 

6.6 
 

 
2.50 

100.1 ± 4.4 
 

 
4.4 

4.9 
 

M
ethylboldenone 

1.50 
99.2 ± 9.2 

0.25 
1.00 

9.3 
10.1 

0.9985 

 
2.00 

101.3 ± 7.2 
 

 
7.1 

8.2 
 

 
2.50 

100.9 ± 4.3 
 

 
4.3 

4.9 
 

11-ketotestosterone 
0.38 

97.9 ± 8.3 
0.13 

0.25 
8.5 

8.9 
0.9974 

 
0.50 

101.3 ± 7.2 
 

 
7.1 

8.5 
 

 
0.63 

99.5 ± 2.9 
 

 
2.9 

3.4 
 

Form
estane 

0.38 
99.3 ± 9.5 

0.13 
0.25 

9.5 
8.3 

0.9965 

 
0.50 

100.2 ± 8.0 
 

 
8.0 

12.0 
 

 
0.63 

102.4 ± 6.2 
 

 
6.0 

5.9 
 

N
orethandrolone 

0.19 
104.7 ± 5.9 

0.06 
0.13 

5.6 
8.7 

0.9962 

 
0.25 

100.4 ± 8.0 
 

 
8.0 

7.9 
 

 
0.31 

100.4 ± 3.7 
 

 
3.7 

3.7 
 

M
ethyltestosterone 

0.38 
97.6 ± 5.9 

0.13 
0.25 

6.1 
8.4 

0.9992 

 
0.50 

98.1 ± 4.4 
 

 
4.5 

5.7 
 

 
0.63 

100.6 ± 3.8 
 

 
3.8 

3.9 
 

Trenbolone acetate 
0.75 

103.4 ± 6.2 
0.06 

0.50 
6.0 

9.5 
0.9951 

 
1.00 

100.5 ± 4.2 
 

 
4.2 

4.4 
 

 
1.25 

97.8 ± 3.7 
 

 
3.8 

3.9 
 

Ethynyl testosterone 
0.38 

106.9 ± 8.5 
0.06 

0.25 
7.9 

9.1 
0.9987 

 
0.50 

102.3 ± 6.0 
 

 
5.9 

6.0 
 

 
0.63 

100.7 ± 2.6 
 

 
2.6 

2.8 
 

Stanozolol 
1.50 

99.1 ± 8.0 
1.00 

1.00 
8.0 

13.9 
0.9977 



 
213 

Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

 
2.00 

97.1 ± 5.1 
 

 
5.3 

7.5 
 

 
2.50 

100.5 ± 2.5 
 

 
2.5 

2.5 
 

Testosterone acetate 
1.13 

100.3 ± 6.4 
0.06 

0.75 
6.3 

10.0 
0.9983 

 
1.50 

99.7 ± 3.8 
 

 
3.8 

8.3 
 

 
1.88 

101.7 ± 3.9 
 

 
3.9 

4.5 
 

Fluoxym
esterone 

7.50 
102.8 ± 7.5 

2.50 
5.00 

7.3 
7.4 

0.9975 

 
10.00 

102.3 ± 3.6 
 

 
3.6 

7.1 
 

 
12.50 

100.8 ± 4.0 
 

 
4.0 

5.0 
 

Testosterone propionate 
0.38 

98.8 ± 6.6 
0.13 

0.25 
6.7 

9.0 
0.9973 

 
0.50 

102.3 ± 5.7 
 

 
5.5 

8.0 
 

 
0.63 

100.0 ± 3.2 
 

 
3.2 

4.5 
 

Chlorotestosteron acetate 
0.75 

98.9 ± 4.1 
0.50 

0.50 
4.2 

9.5 
0.9962 

 
1.00 

102.7 ± 4.5 
 

 
4.4 

8.2 
 

 
1.25 

100.1 ± 3.1 
 

 
3.1 

3.7 
 

Testosterone benzoate 
1.13 

104.6 ± 7.1 
0.50 

0.75 
6.8 

11.5 
0.9978 

 
1.50 

101.8 ± 4.9 
 

 
4.8 

8.3 
 

 
1.88 

102.2 ± 3.2 
 

 
3.1 

5.4 
 

Testosterone phenylpropionate 
1.13 

100.8 ± 7.9 
0.25 

0.75 
7.8 

8.7 
0.9952 

 
1.50 

100.7 ± 4.9 
 

 
4.9 

8.0 
 

 
1.88 

100.8 ± 3.7 
 

 
3.6 

4.4 
 

19-nortestosterone-17-decanoate 
3.75 

102.3 ± 7.2 
2.50 

2.50 
7.0 

9.3 
0.9926 

 
5.00 

102.6 ± 6.1 
 

 
6.0 

8.5 
 

 
6.25 

102.7 ± 3.4 
 

 
3.3 

5.0 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

Oestrogens/Estranes 
 

 
 

 
 

 
 

17b-estradiol 
7.50 

100.9 ± 8.5 
0.25 

5.00 
8.4 

9.0 
0.9976 

 
10.00 

102.2 ± 9.3 
 

 
9.1 

8.7 
 

 
12.50 

101.7 ± 3.6 
 

 
3.5 

3.5 
 

17a-estradiol 
3.75 

100.0 ± 10.2 
0.06 

2.50 
10.2 

14.0 
0.9959 

 
5.00 

100.8 ± 5.7 
 

 
5.7 

7.4 
 

 
6.25 

101.8 ± 5.3 
 

 
5.2 

5.2 
 

Estradiol-17-acetate 
1.13 

98.9 ± 10.7 
0.06 

0.75 
10.8 

14.1 
0.9937 

 
1.50 

101.5 ± 5.1 
 

 
5.1 

5.5 
 

 
1.88 

100.8 ± 4.2 
 

 
4.1 

4.5 
 

Dienoestrol 
7.50 

99.6 ± 8.8 
0.25 

5.00 
8.8 

13.0 
0.9964 

 
10.00 

99.0 ± 7.0 
 

 
7.1 

9.2 
 

 
12.50 

102.3 ± 3.1 
 

 
3.1 

3.0 
 

Equilin 
0.38 

105.1 ± 9.7 
0.13 

0.25 
9.3 

10.5 
0.9950 

 
0.50 

99.3 ± 6.8 
 

 
6.9 

10.1 
 

 
0.63 

101.5 ± 3.1 
 

 
3.0 

2.9 
 

Diethylstilbestrol 
0.38 

102.4 ± 9.6 
0.25 

0.25 
9.3 

13.3 
0.9958 

 
0.50 

102.2 ± 5.5 
 

 
5.4 

13.4 
 

 
0.63 

100.8 ± 4.0 
 

 
4.0 

3.4 
 

Estrone 
0.38 

103.0 ± 8.7 
0.06 

0.25 
8.4 

11.8 
0.9992 

 
0.50 

102.5 ± 6.8 
 

 
6.7 

8.5 
 

 
0.63 

102.7 ± 5.0 
 

 
4.9 

5.4 
 

 
 

 
 

 
 

 
 

17a-ethinylestradiol 
7.50 

102.5 ± 6.6 
2.50 

5.00 
6.5 

11.8 
0.9958 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

 
10.00 

102.7 ± 4.9 
 

 
4.8 

8.0 
 

 
12.50 

103.1 ± 2.9 
 

 
2.8 

3.5 
 

b-zearalenol 
3.75 

106.3 ± 9.4 
1.00 

2.50 
8.9 

12.6 
0.9921 

 
5.00 

101.6 ± 7.2 
 

 
7.1 

7.4 
 

 
6.25 

95.4 ± 2.4 
 

 
3.6 

4.1 
0.9931 

a-zearalenol 
1.13 

101.6 ± 8.9 
0.13 

0.75 
8.8 

11.0 
 

 
1.50 

101.9 ± 6.0 
 

 
5.9 

8.2 
 

 
1.88 

100.7 ± 3.2 
 

 
3.2 

3.6 
 

b-zeranol 
1.13 

98.1 ± 9.4 
0.13 

0.75 
9.5 

14.0 
0.9947 

 
1.50 

99.9 ± 9.7 
 

 
9.7 

8.5 
 

 
1.88 

101.8 ± 5.3 
 

 
5.2 

6.5 
 

a-zeranol 
1.13 

101.8 ± 8.6 
0.13 

0.75 
8.5 

9.1 
0.9908 

 
1.50 

101.1 ± 6.6 
 

 
6.5 

7.7 
 

 
1.88 

101.4 ± 5.0 
 

 
4.9 

4.2 
 

Gestodene 
0.75 

106.6 ± 7.1 
0.25 

0.50 
6.7 

9.8 
0.9946 

 
1.00 

101.2 ± 5.6 
 

 
5.5 

8.0 
 

 
1.25 

102.3 ± 3.1 
 

 
3.0 

3.1 
 

Estradiol-benzoate 
3.75 

103.5 ± 5.4 
1.00 

2.50 
5.2 

8.7 
0.9941 

 
5.00 

100.2 ± 5.1 
 

 
5.1 

7.6 
 

 
6.25 

99.9 ± 4.4 
 

 
4.4 

4.4 
 

Progestins 
 

 
 

 
 

 
 

5α-Pregnan-3α,20β-diol 
3.75 

101.1 ± 5.6 
2.50 

2.50 
5.2 

7.2 
0.9917 

 
5.00 

101.8 ± 4.2 
 

 
3.9 

5.2 
 

 
6.25 

101.0 ± 3.2 
 

 
2.9 

4.9 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

N
orgestrel 

0.38 
100.8 ± 6.5 

0.06 
0.25 

6.5 
8.0 

0.9949 

 
0.50 

102.4 ± 4.9 
 

 
4.8 

6.6 
 

 
0.63 

99.9 ± 4.6 
 

 
4.6 

5.7 
 

Dihydroprogesterone 
0.38 

96.5 ± 7.1 
0.06 

0.25 
7.4 

10.0 
0.9973 

 
0.50 

98.6 ± 6.5 
 

 
6.6 

8.3 
 

 
0.63 

99.7 ± 5.3 
 

 
5.3 

6.0 
 

Progesterone 
0.75 

93.7 ± 11.0 
0.06 

0.50 
11.7 

14.0 
0.9984 

 
1.00 

102.3 ± 5.4 
 

 
5.3 

8.4 
 

 
1.25 

101.0 ± 3.2 
 

 
3.2 

4.0 
 

M
ethylprogesterone 

0.38 
103.2 ±7.5 

0.06 
0.25 

7.3 
8.1 

0.9961 

 
0.50 

103.0 ± 5.4 
 

 
5.2 

5.7 
 

 
0.63 

100.4 ± 3.9 
 

 
3.9 

4.0 
 

17a-hydroxyprogesterone 
0.38 

96.8 ± 8.8 
0.13 

0.25 
9.1 

11.0 
0.9986 

 
0.50 

102.6 ± 4.9 
 

 
4.8 

4.4 
 

 
0.63 

100.9 ± 3.1 
 

 
3.1 

3.6 
 

M
egestrol 

1.50 
101.0 ± 8.0 

0.75 
1.00 

7.9 
12.1 

0.9966 

 
2.00 

105.4 ± 5.7 
 

 
5.4 

8.5 
 

 
2.50 

99.4 ± 3.7 
 

 
3.7 

5.7 
 

M
edroxyprogesterone 

0.75 
101.7 ± 4.8 

0.13 
0.50 

4.8 
5.9 

0.9966 

 
1.00 

100.7 ± 3.8 
 

 
3.8 

4.4 
 

 
1.25 

101.1 ± 3.6 
 

 
3.6 

3.7 
 

17a-acetoxyprogesterone 
0.75 

103.3 ± 4.4 
0.13 

0.50 
4.3 

8.5 
0.9952 

 
1.00 

103.4 ± 4.5 
 

 
4.4 

7.4 
 

 
1.25 

100.9 ± 3.4 
 

 
3.4 

3.4 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

M
egestrol acetate 

1.13 
101.3 ± 5.8 

0.50 
0.75 

5.7 
5.5 

0.9976 

 
1.50 

102.2 ± 4.3 
 

 
4.2 

5.5 
 

 
1.88 

101.7 ± 3.4 
 

 
3.4 

3.2 
 

M
edroxyprogesterone acetate 

1.50 
102.1 ± 3.9 

0.50 
1.00 

3.8 
4.4 

0.9976 

 
2.00 

101.7 ± 3.8 
 

 
3.7 

4.3 
 

 
2.50 

100.6 ± 3.0 
 

 
3.0 

3.2 
 

Flugestone acetate 
1.50 

101.1 ± 7.5 
0.75 

1.00 
7.4 

8.1 
0.9969 

 
2.00 

105.5 ± 8.6 
 

 
8.0 

8.9 
 

 
2.50 

101.0 ± 3.3 
 

 
3.2 

3.1 
 

Caproxyprogesterone 
1.13 

102.0 ± 4.7 
0.25 

0.75 
4.6 

10.8 
0.9977 

 
1.50 

102.0 ± 4.4 
 

 
4.3 

8.0 
 

 
1.88 

101.9 ± 4.4 
 

 
4.3 

6.6 
 

Corticosteroids 
 

 
 

 
 

 
 

Prednisone 
0.75 

104.6 ± 8.2 
0.25 

0.50 
7.8 

10.1 
0.9914 

 
1.00 

104.3 ± 6.4 
 

 
6.1 

6.7 
 

 
1.25 

101.4 ± 4.2 
 

 
4.2 

7.0 
 

Corticosterone 
3.75 

100.3 ± 8.0 
0.50 

2.50 
8.0 

10.8 
0.9909 

 
5.00 

104.1 ± 6.5 
 

 
6.2 

6.7 
 

 
6.25 

101.7 ± 3.4 
 

 
3.3 

4.8 
 

Cortisone 
3.75 

95.9 ± 11.4 
0.13 

2.50 
11.9 

13.6 
0.9952 

 
5.00 

106.6 ± 6.3 
 

 
5.9 

10.6 
 

 
6.25 

102.7 ± 4.9 
 

 
4.8 

7.3 
 

 
 

 
 

 
 

 
 

Prednisolone 
3.75 

103.5 ± 9.8 
0.13 

2.50 
9.5 

9.6 
0.9985 
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Analyte 
Nom

inal concentration 

 (ng L -1) 

Recovery (%
) 

M
DL (ng L -1) 

M
QL (ng L -1) 

Repeatability 

RSD (%
) (n = 18) 

W
ithin-laboratory reproducibility 

RSD (%
) (n = 12) 

Linearity 

R
2 

 
 

 
 

 
 

 
 

 
5.00 

103.7 ± 7.7 
 

 
7.4 

8.5 
 

 
6.25 

101.2 ± 4.3 
 

 
4.2 

6.4 
 

Cortisol 
1.13 

99.7 ± 13.6 
0.25 

0.75 
13.7 

14.3 
0.9926 

 
1.50 

104.6 ± 7.6 
 

 
7.3 

8.8 
 

 
1.88 

102.7 ± 4.0 
 

 
3.9 

6.8 
 

Tetrahydrocortisone 
7.50 

102.0 ± 9.2 
0.25 

5.00 
9.0 

11.6 
0.9985 

 
10.00 

101.2 ± 5.3 
 

 
5.2 

10.4 
 

 
12.50 

104.3 ± 5.5 
 

 
5.3 

5.8 
 

Corticosterone acetate 
3.75 

106.6 ± 6.1 
0.50 

2.50 
5.7 

8.4 
0.9952 

 
5.00 

101.0 ± 4.2 
 

 
4.2 

4.6 
 

 
6.25 

101.3 ± 2.8 
 

 
2.8 

3.5 
 

Dexam
ethasone 

3.75 
106.6 ± 6.1 

2.50 
2.50 

5.7 
8.4 

0.9952 

 
5.00 

101.0 ± 4.2 
 

 
4.2 

4.6 
 

 
6.25 

101.3 ± 2.8 
 

 
2.8 

3.5 
 

Prednisolone acetate 
5.00 

97.5 ± 5.2 
5.00 

5.00 
5.3 

8.5 
0.9906 

 
10.00 

101.5 ± 7.5 
 

 
7.4 

8.0 
 

 
15.00 

100.7 ± 4.8 
 

 
4.8 

4.8 
 

Cortisone acetate 
3.75 

101.0 ± 11.5 
2.50 

2.50 
11.3 

11.4 
0.9952 

 
5.00 

102.6 ± 6.6 
 

 
6.4 

7.4 
 

 
6.25 

100.4 ± 5.6 
 

 
5.6 

3.9 
 

Hydrocortisone 21-acetate 
5.00 

99.1 ± 8.3 
5.00 

5.00 
8.3 

13.7 
0.9984 

 
10.00 

99.6 ± 7.0 
 

 
7.0 

8.1 
 

 
15.00 

101.3 ± 4.8 
 

 
4.7 

4.2 
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Table	A4.	Calibration	equations	for	the	target	ED
Cs	in	sea	and	fresh	w

ater,	obtained	by	w
eighted	linear	regression.	

Analyte 
Seaw

ater 
  

Fresh w
ater 

  
Equation 

Dynam
ic range  

(ng L -1) 
  

  
Equation 

Dynam
ic range  

(ng L -1) 

Androgens 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
ethandriol 

y = 
-1.14E-01 

+ 
8.62E-02 

x 
0.00 - 50.00 

 
y = 

2.96E-02 
+ 

5.67E-02 
x 

0.00 - 50.00 

17a-trenbolone 
y = 

-8.45E-02 
+ 

1.87E-01 
x 

0.00 - 50.00 
 

y = 
-3.73E-02 

+ 
1.88E-01 

x 
0.00 - 40.00 

17b-trenbolone 
y = 

-1.85E-02 
+ 

7.05E-02 
x 

0.00 - 50.00 
 

y = 
2.96E-02 

+ 
5.67E-02 

x 
0.00 - 40.00 

11b-hydroxyandrosterone 
y = 

-6.99E-02 
+ 

1.22E-01 
x 

0.00 - 40.00 
 

y = 
-4.44E-02 

+ 
6.79E-02 

x 
0.00 - 40.00 

Testosterone 17b-cypionate 
y = 

-6.29E-02 
+ 

1.41E-01 
x 

0.00 - 40.00 
 

y = 
-2.79E-02 

+ 
6.19E-02 

x 
0.00 - 40.00 

17β-dihydroandrosterone 
y = 

-2.08E-02 
+ 

1.66E-01 
x 

0.00 - 50.00 
 

y = 
-5.31E-02 

+ 
1.43E-01 

x 
0.00 - 40.00 

Androsterone 
y = 

8.06E-02 
+ 

1.08E-01 
x 

0.00 - 50.00 
 

y = 
-4.27E-02 

+ 
1.03E-01 

x 
0.00 - 40.00 

19-nortestosterone 
y = 

-1.78E-01 
+ 

2.00E-01 
x 

0.00 - 50.00 
 

y = 
-6.35E-02 

+ 
1.86E-01 

x 
0.00 - 50.00 

1,4-Androstadienedione 
y = 

-7.73E-02 
+ 

1.49E-01 
x 

0.00 - 50.00 
 

y = 
-1.21E-01 

+ 
1.29E-01 

x 
0.00 - 40.00 

11-ketoetiocholanolone 
y = 

-1.67E-02 
+ 

1.41E-01 
x 

0.00 - 50.00 
 

y = 
-6.99E-02 

+ 
1.57E-01 

x 
0.00 - 40.00 

Androstenedione 
y = 

-2.50E-02 
+ 

1.91E-01 
x 

0.00 - 50.00 
 

y = 
3.39E-02 

+ 
1.67E-01 

x 
0.00 - 40.00 

M
estanolone 

y = 
1.72E-01 

+ 
1.28E-01 

x 
0.00 - 50.00 

 
y = 

1.43E-01 
+ 

9.73E-02 
x 

0.00 - 40.00 

17a-testosterone 
y = 

-8.33E-02 
+ 

3.49E-01 
x 

0.00 - 50.00 
 

y = 
-7.84E-03 

+ 
2.83E-01 

x 
0.00 - 50.00 

17b-testosterone 
y = 

2.55E-01 
+ 

2.63E-01 
x 

0.00 - 40.00 
 

y = 
-2.50E-02 

+ 
3.01E-01 

x 
0.00 - 40.00 

5a-dihydrotestosterone 
y = 

-2.28E-01 
+ 

1.35E-01 
x 

0.00 - 50.00 
 

y = 
-7.38E-02 

+ 
1.58E-01 

x 
0.00 - 50.00 

19-Norethindron 
y = 

-1.09E-01 
+ 

1.97E-01 
x 

0.00 - 50.00 
 

y = 
-5.91E-02 

+ 
1.79E-01 

x 
0.00 - 40.00 

M
ethylboldenone 

y = 
-4.52E-02 

+ 
1.09E-01 

x 
0.00 - 40.00 

 
y = 

-4.80E-02 
+ 

1.19E-01 
x 

0.00 - 40.00 

11-ketotestosterone 
y = 

9.67E-03 
+ 

1.10E-01 
x 

0.00 - 50.00 
 

y = 
3.97E-02 

+ 
1.09E-01 

x 
0.00 - 40.00 

Form
estane 

y = 
3.35E-04 

+ 
5.91E-02 

x 
0.00 - 50.00 

 
y = 

6.24E-03 
+ 

8.68E-02 
x 

0.00 - 40.00 
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Analyte 
Seaw

ater 
  

Fresh w
ater 

  
Equation 

Dynam
ic range  

(ng L -1) 
  

  
Equation 

Dynam
ic range  

(ng L -1) 

N
orethandrolone 

y = 
2.90E-01 

+ 
4.97E-01 

x 
0.00 - 40.00 

 
y = 

2.06E-01 
+ 

5.80E-01 
x 

0.00 - 40.00 

M
ethyltestosterone 

y = 
-1.26E-02 

+ 
1.72E-01 

x 
0.00 - 50.00 

 
y = 

-8.99E-03 
+ 

1.51E-01 
x 

0.00 - 40.00 

Trenbolone acetate 
y = 

4.25E-01 
+ 

2.70E-01 
x 

0.00 - 50.00 
 

y = 
-7.87E-02 

+ 
1.68E-01 

x 
0.00 - 50.00 

Ethynyl testosterone 
y = 

-3.20E-01 
+ 

5.55E-01 
x 

0.00 - 50.00 
 

y = 
-1.84E-01 

+ 
3.94E-01 

x 
0.00 - 50.00 

Stanozolol 
y = 

-3.98E-02 
+ 

9.98E-01 
x 

0.00 - 50.00 
 

y = 
-1.26E-01 

+ 
1.34E-01 

x 
0.00 - 40.00 

Testosterone acetate 
y = 

-2.38E-01 
+ 

2.51E-01 
x 

0.00 - 40.00 
 

y = 
-9.19E-03 

+ 
2.36E-01 

x 
0.00 - 40.00 

Fluoxym
esterone 

y = 
-1.20E-01 

+ 
7.83E-02 

x 
0.00 - 50.00 

 
y = 

-4.61E-02 
+ 

7.76E-02 
x 

0.00 - 40.00 

Testosterone propionate 
y = 

-1.43E-01 
+ 

2.60E-01 
x 

0.00 - 50.00 
 

y = 
-6.13E-02 

+ 
2.08E-01 

x 
0.00 - 40.00 

Chlorotestosteron acetate 
y = 

-4.64E-02 
+ 

1.43E-01 
x 

0.00 - 50.00 
 

y = 
-7.00E-02 

+ 
1.28E-01 

x 
0.00 - 50.00 

Testosterone benzoate 
y = 

-1.46E-01 
+ 

1.43E-01 
x 

0.00 - 50.00 
 

y = 
-1.15E-01 

+ 
9.83E-02 

x 
0.00 - 50.00 

Testosterone phenylpropionate 
y = 

-4.19E-02 
+ 

1.16E-01 
x 

0.00 - 50.00 
 

y = 
-2.73E-01 

+ 
1.31E-01 

x 
0.00 - 50.00 

19-nortestosterone-17-decanoate 
y = 

6.19E-02 
+ 

4.92E-02 
x 

0.00 - 40.00 
 

y = 
-7.24E-02 

+ 
3.69E-02 

x 
0.00 - 50.00 

Oestrogens 
 

 
 

 
 

 
 

 
 

 
 

 
 

17a-estradiol 
y = 

-3.14E-01 
+ 

1.59E-01 
x 

0.00 - 50.00 
 

y = 
-1.57E-01 

+ 
1.49E-01 

x 
0.00 - 50.00 

17b-estradiol 
y = 

1.33E-01 
+ 

1.19E-02 
x 

0.00 - 50.00 
 

y = 
-4.81E-02 

+ 
1.58E-02 

x 
0.00 - 50.00 

Estradiol-17-acetate 
y = 

-3.64E-02 
+ 

7.57E-02 
x 

0.00 - 40.00 
 

y = 
-7.39E-02 

+ 
6.80E-02 

x 
0.00 - 40.00 

Dienoestrol 
y = 

-1.23E-02 
+ 

2.24E-01 
x 

0.00 - 50.00 
 

y = 
4.39E-02 

+ 
2.34E-01 

x 
0.00 - 40.00 

Equilin 
y = 

2.57E-01 
+ 

9.68E-02 
x 

0.00 - 50.00 
 

y = 
-5.91E-02 

+ 
1.09E-01 

x 
0.00 - 40.00 

Diethylstilbestrol 
y = 

3.03E-01 
+ 

9.21E-02 
x 

0.00 - 50.00 
 

y = 
-6.18E-02 

+ 
1.08E-01 

x 
0.00 - 40.00 

Estrone 
y = 

-1.05E-02 
+ 

2.29E-01 
x 

0.00 - 50.00 
 

y = 
-2.17E-01 

+ 
2.68E-01 

x 
0.00 - 50.00 

17a-ethinylestradiol 
y = 

-1.63E-01 
+ 

1.24E-01 
x 

0.00 - 50.00 
 

y = 
-2.27E-01 

+ 
1.22E-01 

x 
0.00 - 50.00 

a-zearalenol 
y = 

-5.68E-02 
+ 

1.05E-01 
x 

0.00 - 50.00 
 

y = 
1.49E-01 

+ 
1.29E-01 

x 
0.00 - 50.00 
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Analyte 
Seaw

ater 
  

Fresh w
ater 

  
Equation 

Dynam
ic range  

(ng L -1) 
  

  
Equation 

Dynam
ic range  

(ng L -1) 

b-zearalenol 
y = 

-4.72E-01 
+ 

9.21E-02 
x 

0.00 - 50.00 
 

y = 
1.40E+00 

+ 
4.26E-02 

x 
0.00 - 50.00 

a-zeranol 
y = 

-1.89E-02 
+ 

1.33E-01 
x 

0.00 - 50.00 
 

y = 
6.75E-01 

+ 
1.75E-01 

x 
0.00 - 50.00 

b-zeranol 
y = 

-2.11E-04 
+ 

9.80E-02 
x 

0.00 - 50.00 
 

y = 
3.97E-02 

+ 
1.09E-01 

x 
0.00 - 50.00 

Gestodene 
y = 

2.27E-02 
+ 

5.32E-01 
x 

0.00 - 40.00 
 

y = 
-5.08E-01 

+ 
7.10E-01 

x 
0.00 - 50.00 

Estradiol-benzoate 
y = 

-6.25E-02 
+ 

2.89E-01 
x 

0.00 - 50.00 
 

y = 
-1.70E-01 

+ 
2.32E-01 

x 
0.00 - 40.00 

Progestins 
 

 
 

 
 

 
 

 
 

 
 

 
 

5α-Pregnan-3α,20β-diol 
y = 

-1.20E-01 
+ 

3.92E-02 
x 

0.00 - 50.00 
 

y = 
-2.26E-02 

+ 
3.01E-02 

x 
0.00 - 50.00 

N
orgestrel 

y = 
-1.82E-01 

+ 
5.45E-01 

x 
0.00 - 50.00 

 
y = 

-2.66E-01 
+ 

6.26E-01 
x 

0.00 - 40.00 

Dihydroprogesterone 
y = 

-1.59E-01 
+ 

2.76E-01 
x 

0.00 - 40.00 
 

y = 
-1.52E-01 

+ 
3.27E-01 

x 
0.00 - 40.00 

Progesterone 
y = 

-4.90E-01 
+ 

7.11E-01 
x 

0.00 - 50.00 
 

y = 
-4.84E-01 

+ 
5.18E-01 

x 
0.00 - 40.00 

M
ethylprogesterone 

y = 
-8.28E-01 

+ 
8.22E-01 

x 
0.00 - 50.00 

 
y = 

-4.38E-02 
+ 

4.50E-01 
x 

0.00 - 40.00 

17a-hydroxyprogesterone 
y = 

-1.09E-01 
+ 

2.05E-01 
x 

0.00 - 40.00 
 

y = 
-1.79E-01 

+ 
2.51E-01 

x 
0.00 - 40.00 

M
egestrol 

y = 
-2.39E-01 

+ 
1.96E-01 

x 
0.00 - 40.00 

 
y = 

-6.85E-02 
+ 

2.07E-01 
x 

0.00 - 40.00 

M
edroxyprogesterone 

y = 
-7.93E-02 

+ 
2.13E-01 

x 
0.00 - 50.00 

 
y = 

-1.55E-01 
+ 

2.50E-01 
x 

0.00 - 50.00 

17a-acetoxyprogesterone 
y = 

-3.27E-01 
+ 

1.93E-01 
x 

0.00 - 50.00 
 

y = 
-4.33E-02 

+ 
1.68E-01 

x 
0.00 - 40.00 

M
egestrol acetate 

y = 
-1.04E-01 

+ 
1.75E-01 

x 
0.00 - 50.00 

 
y = 

-7.87E-02 
+ 

1.68E-01 
x 

0.00 - 50.00 

M
edroxyprogesterone acetate 

y = 
-2.49E-02 

+ 
8.58E-02 

x 
0.00 - 50.00 

 
y = 

-5.75E-02 
+ 

7.95E-02 
x 

0.00 - 40.00 

Flugestone acetate 
y = 

-7.73E-02 
+ 

7.47E-02 
x 

0.00 - 50.00 
 

y = 
-1.59E-01 

+ 
1.02E-01 

x 
0.00 - 50.00 

Caproxyprogesterone 
y = 

-3.02E-01 
+ 

2.99E-01 
x 

0.00 - 40.00 
 

y = 
-1.43E-01 

+ 
1.66E-01 

x 
0.00 - 40.00 

Corticosteroids 
 

 
 

 
 

 
 

 
 

 
 

 
 

Prednisone 
y = 

-1.19E-01 
+ 

1.68E-02 
x 

0.00 - 50.00 
 

y = 
6.51E-02 

+ 
1.28E-02 

x 
0.00 - 50.00 

Corticosterone 
y = 

-7.88E-02 
+ 

2.83E-02 
x 

0.00 - 40.00 
 

y = 
-9.33E-04 

+ 
3.37E-02 

x 
0.00 - 40.00 
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Analyte 
Seaw

ater 
  

Fresh w
ater 

  
Equation 

Dynam
ic range  

(ng L -1) 
  

  
Equation 

Dynam
ic range  

(ng L -1) 

Cortisone 
y = 

-2.11E-03 
+ 

9.16E-03 
x 

0.00 - 40.00 
 

y = 
3.86E-02 

+ 
1.60E-02 

x 
0.00 - 40.00 

Prednisolone 
y = 

-6.76E-02 
+ 

1.38E-02 
x 

0.00 - 50.00 
 

y = 
-5.73E-04 

+ 
1.19E-02 

x 
0.00 - 50.00 

Cortisol 
y = 

-3.45E-03 
+ 

1.02E-02 
x 

0.00 - 50.00 
 

y = 
5.77E-03 

+ 
1.47E-02 

x 
0.00 - 50.00 

Tetrahydrocortisone 
y = 

-8.35E-02 
+ 

4.30E-02 
x 

0.00 - 50.00 
 

y = 
8.43E-03 

+ 
4.04E-02 

x 
0.00 - 40.00 

Corticosterone acetate 
y = 

-8.32E-03 
+ 

2.89E-02 
x 

0.00 - 50.00 
 

y = 
-3.25E-02 

+ 
3.97E-02 

x 
0.00 - 50.00 

Dexam
ethasone 

y = 
-1.21E-01 

+ 
1.37E-02 

x 
0.00 - 50.00 

 
y = 

-2.21E-03 
+ 

9.50E-03 
x 

0.00 - 40.00 

Prednisolone acetate 
y = 

-4.36E-02 
+ 

1.38E-01 
x 

0.00 - 50.00 
 

y = 
-1.76E-02 

+ 
2.17E-02 

x 
0.00 - 50.00 

Cortisone acetate 
y = 

8.09E-02 
+ 

5.88E-04 
x 

0.00 - 50.00 
 

y = 
5.09E-03 

+ 
2.33E-02 

x 
0.00 - 50.00 

Hydrocortisone 21-acetate 
y = 

-1.52E-02 
+ 

2.26E-02 
x 

0.00 - 50.00 
 

y = 
-1.20E-01 

+ 
2.54E-02 

x 
0.00 - 50.00 
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Table	A5.	Summary	of	results	for	the	cross-validation	on	fresh	water.	

Analyte Recovery (%) Limits 
 

Precision Linearity 

    

MDL  

(ng L-1) 

MQL  

(ng L-1) 

Repeatability 

RSD (%) 
R2 

Androgens 
       

Methandriol 99.3 + 5.8 0.13 0.50 5.5 0.9972 

17a-trenbolone 95.1 + 4.7 0.25 0.50 5.0 0.9984 

17b-trenbolone 101.8 + 2.4 0.25 0.50 2.4 0.9974 

11b-hydroxyandrosterone 100.7 + 2.4 0.25 0.50 2.4 0.9983 

Testosterone cypionate 100.4 + 4.1 0.25 0.50 4.1 0.9922 

17β-dihydroandrosterone 98.2 + 5.3 0.13 0.50 5.8 0.9974 

Androsterone 99.0 + 2.0 0.25 1.00 2.0 0.9919 

19-nortestosterone 98.2 + 4.3 0.13 1.00 5.0 0.9927 

1,4-Androstadienedione 102.1 + 6.5 0.13 0.50 5.4 0.9940 

11-ketoetiocholanolone 100.2 + 6.9 0.13 0.50 6.8 0.9974 

Androstenedione 96.5 + 6.1 0.25 0.50 5.8 0.9937 

Mestanolone 97.7 + 8.5 0.50 1.00 8.7 0.9917 

17a-testosterone 100.4 + 3.1 0.13 0.25 3.1 0.9946 

17b-testosterone 98.1 + 1.9 0.06 0.25 2.0 0.9970 

5a-dihydrotestosterone 99.2 + 5.8 0.13 0.25 4.8 0.9987 

19-Norethindron 99.5 + 6.1 0.50 0.75 6.3 0.9968 

Methylboldenone 97.3 + 8.2 0.50 1.00 7.8 0.9952 

11-ketotestosterone 103.7 + 4.5 0.13 0.50 4.9 0.9992 

Formestane 99.3 + 9.0 0.25 1.00 9.2 0.9903 

Norethandrolone 97.3 + 2.2 0.06 0.13 2.3 0.9969 

Methyltestosterone 100.2 + 2.6 0.13 0.25 2.6 0.9953 

Trenbolone acetate 100.0 + 1.7 0.25 0.75 1.7 0.9967 

Ethynyl testosterone 102.8 + 5.8 0.13 0.50 4.9 0.9937 

Stanozolol 99.2 + 4.4 1.00 2.50 4.4 0.9930 

Testosterone acetate 98.8 + 6.7 0.13 0.75 6.9 0.9947 

Fluoxymesterone 102.5 + 3.7 0.50 1.00 3.6 0.9942 

Testosterone propionate 99.0 + 4.0 0.13 0.25 4.1 0.9946 

Chlorotestosteron acetate 100.2 + 8.4 0.25 0.75 8.4 0.9963 

Testosterone benzoate 99.4 + 2.5 0.50 0.75 2.5 0.9900 

Testosterone phenylpropionate 96.0 + 6.8 0.25 0.75 7.1 0.9902 

19-nortestosterone-17-decanoate 99.1 + 2.4 2.50 5.00 2.4 0.9956 

Oestrogens 
       

17a-estradiol 99.1 + 3.7 0.75 0.75 3.8 0.9964 
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Analyte Recovery (%) Limits 
 

Precision Linearity 

    

MDL  

(ng L-1) 

MQL  

(ng L-1) 

Repeatability 

RSD (%) 
R2 

17b-estradiol 98.0 + 7.2 0.13 0.25 5.2 0.9345 

Estradiol-17-acetate 96.4 + 5.5 0.50 1.00 5.7 0.9920 

Dienoestrol 99.3 + 1.6 0.25 1.00 1.6 0.9960 

Equilin 100.0 + 5.4 0.13 0.25 4.9 0.9945 

Diethylstilbestrol 98.3 + 2.8 0.25 5.00 2.8 0.9947 

Estrone 101.9 + 4.6 0.13 0.50 5.2 0.9965 

17a-ethinylestradiol 103.8 + 7.2 2.50 5.00 7.6 0.9983 

a-zearalenol 101.9 + 2.9 0.25 5.00 2.8 0.9970 

b-zearalenol 102.4 + 2.0 0.13 0.75 2.1 0.9921 

a-zeranol 102.7 + 1.8 0.13 0.75 1.8 0.9928 

b-zeranol 106.9 + 8.7 5.00 5.00 11.2 0.9903 

Gestodene 97.0 + 7.0 0.50 2.50 7.2 0.9967 

Estradiol-benzoate 95.0 + 9.2 1.00 1.00 9.7 0.9921 

Progestins 
       

5α-Pregnan-3α,20β-diol 96.6 + 8.0 2.50 5.00 8.3 0.9914 

Norgestrel 99.2 + 2.2 0.06 0.25 2.2 0.9954 

Dihydroprogesterone 101.6 + 3.2 0.13 0.50 3.1 0.9970 

Progesterone 97.3 + 2.6 0.06 0.50 2.7 0.9978 

Methylprogesterone 103.6 + 4.9 0.06 0.25 4.7 0.9977 

17a-hydroxyprogesterone 98.5 + 2.5 0.13 0.50 2.5 0.9940 

Megestrol 97.6 + 6.7 0.25 0.50 6.8 0.9923 

Medroxyprogesterone 99.8 + 2.4 0.25 0.50 2.4 0.9941 

17a-acetoxyprogesterone 93.0 + 5.2 0.13 1.00 5.3 0.9926 

Megestrol acetate 96.8 + 4.8 0.25 0.75 4.9 0.9978 

Medroxyprogesterone acetate 100.6 + 3.2 0.50 0.75 4.8 0.9987 

Flugestone acetate 103.2 + 8.1 0.75 1.00 7.6 0.9901 

Caproxyprogesterone 98.9 + 3.8 0.25 0.75 3.3 0.9928 

Corticosteroids 
       

Prednisone 103.4 + 3.9 0.13 0.25 3.8 0.9935 

Corticosterone 101.9 + 4.3 0.25 0.75 4.2 0.9927 

Cortisone 103.8 + 4.5 0.25 5.00 4.3 0.9969 

Prednisolone 99.7 + 2.6 0.25 0.50 2.2 0.9904 

Cortisol 98.3 + 3.1 0.25 2.50 2.6 0.9979 

Tetrahydrocortisone 107.2 + 6.8 0.25 0.50 5.3 0.9977 

Corticosterone acetate 100.2 + 3.4 2.50 2.50 3.8 0.9969 

Dexamethasone 97.9 + 8.1 2.50 5.00 8.2 0.9996 
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Analyte Recovery (%) Limits 
 

Precision Linearity 

    

MDL  

(ng L-1) 

MQL  

(ng L-1) 

Repeatability 

RSD (%) 
R2 

Prednisolone acetate 98.0 + 8.0 2.50 2.50 8.3 0.9907 

Cortisone acetate 101.5 + 1.7 0.06 0.50 1.6 0.9906 

Hydrocortisone 21-acetate 98.0 + 6.7 5.00 5.00 5.8 0.9947 
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APPENDIX B - TARGETED QUANTIFICATION AND UNTARGETED 
SCREENING OF ALKYLPHENOLS, BISPHENOL A AND PHTHALATES 
IN AQUATIC MATRICES USING ULTRA-HIGH-PERFORMANCE LIQUID 
CHROMATOGRAPHY COUPLED TO HYBRID Q-ORBITRAP MASS 
SPECTROMETRY 
 

 

  

Figure B1. The 4 sampling locations that were monitored in the BPNS during the winter of 2016 and spring 
2017, i.e. 51°21'37.78"N; 3° 6'49.01"O (MOW1), 51°20'25.68"N; 3°12'12.11"O (HZ), 51°14'48.59"N; 2°55'39.61"O 
(Akust39) and 51°13'34.68"N; 2°56'8.00”O (HO). 
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Figure B2. UHPLC-HR-Q-Orbitrap-MS chromatograms of the instrumental method at 10 ng on column for each 
target compound (PART I), i.e. 2-methyl phenol (a), 4-ethyl phenol (b), 4-isopropyl phenol (c), 4-chloro-3-
methylphenol (d), 2,5-dichlorophenol (e), 3,6,6-trichlorophenol (f), Bisphenol A (g), dimethyl phthalate (h), 
diethyl phthalate (i) and dibutyl phthalate (j). 
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Figure B3. UHPLC-HR-Q-Orbitrap-MS chromatograms of the instrumental method at 10 ng on column for each 
target compound (PART II), i.e. diamyl phthalate (a), benzyl butyl phthalate (b), dicyclohexyl phthalate (c), 
dihexyl phthalate (d), dibenzyl phthalate (e), diethylhexyl phthalate (f), dinonyl phthalate (g), diisodecyl 
phthalate (h), monomethyl phthalate (i) and monoethyl phthalate (j). 

 
Figure B4. UHPLC-HR-Q-Orbitrap-MS chromatograms of the instrumental method at 10 ng on column for each 
target compound (PART III), i.e. monobutyl phthalate (a), mono-n-pentyl phthalate (b), monocyclohexyl 
phthalate (c), monohexyl phthalate (d), monobenzyl phthalate (e), monoethylhexyl phthalate (f) and mono-
isonyl phthalate (g). 
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Figure B5. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART I), i.e. 2-methyl phenol (a), 4-ethyl 
phenol (b), 4-isopropyl phenol (c), 4-chloro-3-methylphenol (d) and 2,5-dichlorophenol (e). NL represents the 
noise level. 
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Figure B6. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART II), i.e. 3,4,6-trichlorophenol (a), 
Bisphenol A (b), dimethyl phthalate (c), diethyl phthalate (d) and dibutyl phthalate (e). NL represents the noise 
level. 
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Figure B7. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART III), i.e. diamyl phthalate (a), benzyl 
butyl phthalate (b), dicyclohexyl phthalate (c), dihexyl phthalate (d) and dibenzyl phthalate (e). NL represents 
the noise level. 
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Figure B8. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART IV), i.e. diethylhexyl phthalate (a), 
dinonyl phthalate (b), diisodecyl phthalate (c), monomethyl phthalate (d) and mo-noethyl phthalate (e). NL 
represents the noise level. 
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Figure B9. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART V), i.e. monobutyl phthalate (a), 
mono-n-pentyl phthalate (b), monocyclohexyl phthalate (c), monohexyl phthalate (d) and monobenzyl 
phthalate (e). NL represents the noise level. 

 

Figure B10. UHPLC-HR-Q-Orbitrap-MS chromatograms of the blank (left) and spiked reference seawater (right) 
after the optimised extraction procedure at 1.5 times the MQL-level (PART VI), i.e. monoethylhexyl phthalate 
(f) and mono-isonyl phthalate (g). NL represents the noise level. 
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Figure B11. Ternary plot showing the optimal SPE eluent composition according to the simplex lattice design. 
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Figure B12. Response surface plots showing the highest response during SPE optimization according to the box-behnken 
design. 
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Figure B13. Selected MS/MS spectra obtained by performing the fragmentation of identifier (ID) 79 and 446, which shows 
the specific characteristic fragments for phthalates. 
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Table B1. The target AP and PAE compounds including CAS number, molecular mass (g mol-1), pKa, log P, water 
solubility (mg L-1), vapor pressure (Torr) and bioconcentration factor (L kg-1) at a temperature of 25°C and pH 7 
(data obtained from csifinder.cas.org). 

Compound CAS  
number 

Molecular 
mass 

pKa Log P Water 
solubility 

Vapor 
Pressure 

Bioconcentra
tion 

Phenols 
       

2-methyl phenol 106-44-5 108.14 10.21 ± 0.13 2.066 ± 0.192 2.20E+04 2.11E-01 2.19E+01 
4-ethylphenol 123-07-9 122.16 10.26 ± 0.13 2.576 ± 0.192 6.00E+03 8.28E-02 5.34E+01 
4-isopropyl phenol 99-89-8 136.19 10.19 ± 0.13 2.986 ± 0.200 2.00E+03 1.47E-01 1.09E+02 
4-chloro-3-
methylphenol 

59-50-7 142.58 9.63 ± 0.18 2.894 ± 0.223 9.80E+02 3.35E-02 9.29E+01 

2,5-dichlorophenol 583-78-8 163.00 7.53 ± 0.1 3.025 ± 0.237 4.70E+02 1.06E-01 9.06E+01 
3,4,6-trichlorophenol 88-06-2 197.45 6.59 ± 0.23 3.769 ± 0.327 9.30E+01 1.77E-02 1.21E+02 
Bisphenol A 65-85-0 228.29 4.2 ± 0.1 1.559 ± 0.206 5.60E+03 1.22E-02 1.00E+00 
Di-phthalates 

       

Dimethyl phthalate 131-11-3 194.18 - 1.695 ± 0.253 2.50E+03 3.31E-03 1.14E+01 
Diethyl phthalate 84-66-2 222.24 - 2.714 ± 0.253 5.30E+02 1.67E-03 6.80E+01 
Dibutyl phthalate 84-74-2 278.34 - 4.752 ± 0.254 2.50E+01 1.08E-04 2.41E+03 
Diamyl phthalate 131-18-0 306.40 - 5.771 ± 0.254 5.80E+00 2.80E-05 1.43E+04 
Benzyl butyl phthalate 85-68-7 312.36 - 4.910 ± 0.266 7.50E+00 7.09E-07 3.17E+03 
Dicyclohexyl phthalate 84-61-7 330.42 - 5.639 ± 0.257 3.20E+00 1.87E-07 1.14E+04 
Dihexyl phthalate 84-75-3 334.45 - 6.790 ± 0.254 1.40E+00 6.93E-06 8.51E+04 
Dibenzyl phthalate 523-31-9 346.38 - 5.067 ± 0.353 2.10E+00 4.90E-09 4.18E+03 
Diethylheyxl phthalate 117-81-7 390.56 - 8.516 ± 0.261 1.10E-01 3.95E-06 1.00E+06 
Dinonyl phthalate 84-76-4 418.61 - 9.847 ± 0.254 2.50E-02 8.72E-08 1.00E+06 
Diisodecyl phthalate 26761-40-0 446.66 - - - - - 
Mono-phthalates 

       

Monomethyl phthalate 4376-18-5 180.16 3.32 ± 0.1 1.130 ± 0.230 5.60E+03 7.39E-05 1.00E+00 
Monoethyl phthalate 2306-33-4 194.18 3.32 ± 0.1 1.639 ± 1.639 2.70E+03 3.53E-05 1.00E+00 
Monotbutyl phthalate 131-70-4 222.24 3.38 ± 0.36 2.658 ± 2.658 6.70E+02 6.40E-06 1.00E+00 
Mono-n-pentyl phthalate 24539-56-8 236.26 3.38 ± 0.36 3.168 ± 0.231 3.50E+02 2.53E-06 1.00E+00 
Monocyclohexyl pht. 7517-36-4 248.27 3.29 ± 0.36 3.102 ± 0.233 3.00E+02 1.82E-07 1.00E+00 
Monohexyl phthalate 24539-57-9 250.29 3.39 ± 0.36 3.677 ± 0.231 2.00E+02 9.66E-07 1.00E+00 
Monobenzyl phthalate 2528-16-7 256.25 3.37 ± 0.36 2.816 ± 0.246 2.50E+02 1.48E-08 1.00E+00 
Monoethylhexyl 
phthalate 

4376-20-9 278.34 3.37 ± 0.36 4.451 ± 0.235 7.80E+01 2.03E-07 1.57E+00 

Mono-isonyl phthalate 68515-53-7 - - - - - - 
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Table B2. Screening parameters with their specific ranges for the optimization of the extraction of APs and PAEs 
from seawater. Parameters are listed in the order that they occur during execution of the extraction procedure. 

Parameters Type of 
variable Unit 

 Ranges  
Lower level (-1) Central level (0) Upper level (+1) 

Pretreatment Categorical / Filter / No filter 
pH adjustement 
sample 

Continue / 3.0 5.5 8.0 

SPE-cartridge Categorical / Oasis™ HLB / Strata X™ 
Conditioning solvent 
solvent 

Categorical / 5% CH3CN / 5% CH3OH 

Volume conditioning 
solvent 

Continue mL 3 4.5 6 

Volume equilibration Continue mL 3 7.5 12 
Loading volume Continue mL 500 750 1000 
Wash volume Continue mL 3  7.5 12 
Dry time Continue min 5 12.5 20 
Elution solvent Categorical / CH3CN / CH3OH 
Solvent additive Categorical / 0.1 % CH2O2 Absence 0.1 % NH4OH 
Elution volume Continue mL 2 7 12 
Evaporation 
temperature 

Continue °C 30 40 50 

Centrifugation Categorical g 0 1214 2429 
 

Table B3. Simplex lattice mixture design that was used for optimizing the optimal composition of the solid phase 
eluent. 
 
Experiment # CH3OH (%) C5H12O (%) CH3CN (%) 
1 100 - - 
2 33 - 66 
3 66 33 - 
4 - - 100 
5 - 33 66 
6 33 66 - 
7 33 33 33 
8 - 66 33 
9 66 - 33 
10 - 100 - 
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Table B4. Frequency table (percentage (%)) of the different SPE cartridges that were preliminary screened by eluting 
the target compounds by using respectively 3 mL methanol and 3 mL acetonitrile. Each cartridge was tested in 
replicate. The number represents the frequency of the target compound that was detected in the extract with the 
corresponding SPE cartridge. 
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Average Phenols 61.9 95.2 52.4 95.2 23.8 76.2 52.4 23.8 4.8 9.5 

2-methylphenol 66.7 100.0 33.3 100.0 0.0 100.0 100.0 0.0 0.0 0.0 

4-ethylphenol 66.7 100.0 33.3 100.0 33.3 100.0 0.0 0.0 0.0 0.0 

4-isopropyl phenol 66.7 100.0 33.3 100.0 33.3 100.0 0.0 0.0 0.0 0.0 

4-chloro-3-methylphenol 33.3 66.7 66.7 66.7 33.3 33.3 0.0 0.0 0.0 0.0 

2,5-dichloro phenol 66.7 100.0 100.0 100.0 0.0 100.0 100.0 66.7 0.0 66.7 

3,4,6-trichlorophenol 66.7 100.0 0.0 100.0 0.0 0.0 66.7 0.0 0.0 0.0 

Bisphenol A 66.7 100.0 100.0 100.0 66.7 100.0 100.0 100.0 33.3 0.0 

Average Di-phthalates 66.7 97.0 84.9 97.0 93.9 90.9 60.6 51.5 9.1 18.2 

Dimethyl phthalate 100.0 100.0 66.7 100.0 33.3 100.0 100.0 100.0 33.3 100.0 

Diethyl phthalate 100.0 100.0 66.7 100.0 100.0 66.7 0.0 0.0 0.0 0.0 

Dibutyl phthalate 33.3 66.7 66.7 100.0 100.0 66.7 100.0 0.0 0.0 0.0 

Diamyl phthalate 66.7 100.0 100.0 100.0 100.0 100.0 66.7 66.7 0.0 0.0 

Benzyl butyl phthalate 66.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 33.3 100.0 

Dicyclohexyl phthalate 66.7 100.0 100.0 100.0 100.0 100.0 0.0 33.3 0.0 0.0 

Dihexyl phthalate 100.0 100.0 100.0 100.0 100.0 100.0 66.7 100.0 33.3 0.0 

Dibenzyl phthalate 33.3 100.0 66.7 66.7 100.0 66.7 0.0 0.0 0.0 0.0 

Diethylhexyl phthalate 33.3 100.0 66.7 100.0 100.0 100.0 66.7 66.7 0.0 0.0 

Dinonyl phthalate 66.7 100.0 100.0 100.0 100.0 100.0 66.7 66.7 0.0 0.0 

Diisodecyl phthalate 66.7 100.0 100.0 100.0 100.0 100.0 100.0 33.3 0.0 0.0 

Average Mono-phthalates 40.7 92.6 88.9 96.3 11.1 51.9 70.4 88.9 29.6 33.3 

Monomethyl phthalate 33.3 100.0 100.0 100.0 0.0 33.3 100.0 66.7 33.3 33.3 

Monoethyl phthalate 33.3 100.0 100.0 100.0 0.0 33.3 100.0 66.7 33.3 33.3 

Monobutyl phthalate 66.7 100.0 100.0 100.0 66.7 100.0 0.0 66.7 33.3 33.3 

Mono-n-pentyl phthalate 33.3 100.0 100.0 100.0 0.0 100.0 100.0 100.0 33.3 33.3 

Monocyclohexyl phthalate 33.3 100.0 100.0 100.0 0.0 33.3 0.0 100.0 33.3 33.3 

Monohexyl phthalate 33.3 100.0 100.0 100.0 0.0 100.0 100.0 100.0 33.3 33.3 

Monobenzyl phthalate 33.3 100.0 33.3 100.0 0.0 0.0 100.0 100.0 33.3 33.3 

Monoethylhexyl phthalate 66.7 66.7 66.7 100.0 0.0 33.3 33.3 100.0 0.0 33.3 

Mono-isonyl phthalate 33.3 66.7 100.0 66.7 33.3 33.3 100.0 100.0 33.3 33.3 
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Table B5. The p-values of the F-test representing the significance of the screened parameters.  

Parameters Total Di-phthalates Mono-phthalates (Alkyl)phenols 

Pretreatment 0.0831 0.0097 0.1753 0.0989 

pH adjustment sample 0.0359 0.0124 0.0416 0.0339 

SPE-cartridge 0.0308 0.0280 0.0412 0.0214 

Conditioning solvent 0.21272 0.2313 0.2469 0.1173 

Volume conditioning solvent 0.2103 0.0908 0.1480 0.6537 

Volume equilibration 0.0626 0.0159 0.1168 0.0836 

Loading volume 0.0759 0.0085 0.3079 0.3541 

Wash volume 0.1708 0.0345 0.2467 0.0739 

Dry time 0.1070 0.1359 0.2059 0.0553 

Elution solvent 0.0452 0.0082 0.8920 0.0415 

Solvent additive 0.5070 0.0319 0.2924 0.1583 

Elution volume 0.0437 0.0187 0.3090 0.0217 

Evaporation temperature 0.1405 0.0854 0.5929 0.0515 

Centrifugation 0.6135 0.0172 0.1777 0.1142 

 
Table B6. Main parameter settings that were applied during untargeted data processing for extraction of features 
from full-scan MS data, using Compound Discoverer 2.1 software. 

Parameter Setting 
Maximum retention time shift 0.2 min 
Intensity threshold 2 000 000 au  
m/z step size 5 ppm 
Retention time width 1 min 
Number of scans across a peak 7 
Minimum signal to noise ratio 10 
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Table B7. Database of 36 di-phthalates and 15 mono-phthalates. 

Compound CAS-number Structural 
formula 

Molecular mass 
(g.mol-1) 

Exact mass 
(m/z) 

2-ethyl-5-hydroxy-hexyl phthalate 40321-99-1 C16H22O5 294.34 294.14618 
Benzylbutylphthalate 85-68-7 C19H20O4 312.36 312.13561 
Bis(2-ethoxyethyl) phthalate 605-54-9 C16H22O6 310.34 310.14109 
Bis(2-methoxyethyl) phthalate 117-82-8 C14H18O6 282.29 282.10979 
Bis(2-n-butoxyethyl) phthalate 117-83-9 C20H30O6 366.45 366.20369 
Bis(4-methyl-2-pentyl) phthalate 84-63-9 C20H30O4 334.45 334.21386 
Butyl cyclohexyl phthalate 84-64-0 C18H24O4 304.38 304.16691 
Butyl decyl phthalate 89-19-0 C22H34O4 362.50 362.24516 
Di-amyl-phthalate (Di-n-pentyl phthalate) 131-18-0 C18H26O4 306.40 306.18256 
Di-iso-butyl-phthalate 84-69-5 C16H22O4 278.34 278.15126 
Di-n-butylphthalate 84-74-2 C16H22O4 278.34 278.15126 
Di-n-hexyl phthtlate 84-75-3 C20H30O4 334.45 334.21386 
Di-n-octylphthalate (Di(1-octyl) phthalate) 117-84-0 C24H38O4 390.56 390.27646 
Di-nonyl phthalate 84-76-4 C26H42O4 418.61 418.30776 
Di(2-ethylhexyl) phthalate 117-81-7 C24H38O4 390.56 390.27646 
Diallyl phthalate 131-17-9 C14H14O4 246.26 246.08866 
Dibenzyl phthalate 523-31-9 C22H18O4 346.38 346.11996 
Dicyclohexyl phthalate 84-61-7 C20H26O4 330.42 330.18256 
Diethyl phthalate 84-66-2 C12H14O4 222.24 222.08866 
Diisodecyl phthalate 26761-40-0 C28H46O4 446.66 446.33906 
Diisoheptyl phthalate 90937-19-2 C22H34O4 362.50 362.24516 
Diisohexyl phthalate 71850-09-4 C20H30O4 334.45 334.21386 
Diisononyl phthalate 68515-48-0 C26H42O4 418.61 418.30776 
Diisotridecyl phthalate 36901-61-8 C34H58O4 530.82 530.43296 
Diisoundecyl phthalate 96507-86-07 C30H50O4 474.72 474.37036 
Dimetylphthalate 131-11-3 C19H10O4 194.18 302.05736 
Dipropyl phthalate 131-16-8 C14H18O4 250.29 250.11996 
Ditridecyl phthalate 119-06-2 C34H58O2 530.82 498.44313 
Diundecyl phthalate 3648-20-2 C30H50O4 474.72 474.37036 
Diisopentyl phthalate 605-50-5 C18H26O4 306.40 306.18256 
Dioctyl tetraphthalate 6422-86-2 C24H38O4 390.56 390.27646 
Butylbenzyl phthalate 111357-64-3 C19H20O4 312.36 312.13561 
Dipropyl heptyl phthalate 53306-54-0 C28H46O4 446.66 446.33906 
Butyl octyl phthalate 84-78-6 C20H30O4 334.45 334.21386 
Diheptyl phthlate 3648-21-3 C22H34O4 362.50 362.24516 
Diisooctyl phthalate 27554-26-3 C24H38O4 390.56 390.27646 
Mono-2-ethyl-5-carboxypentyl phthalate 40809-41-4 C16H20O6 308.33 308.12544 
Mono-2-ethyl-5-oxo-hexyl phthalate 40321-98-0 C16H20O5 292.33 292.13053 
Mono-cyclohexyl phthalate 7517-36-4 C14H16O4 248.27 248.10431 
Mono-ethyl phthalate 2306-33-4 C10H10O4 194.18 194.05736 
Mono-isobutyl phthalate 308333-53-5 C12H14O4 222.24 222.08866 
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Compound CAS-number Structural 
formula 

Molecular mass 
(g.mol-1) 

Exact mass 
(m/z) 

Mono-n-butyl phthalate 131-70-4 C12H14O4 222.24 222.08866 
Mono-n-pentyl phthalate 24539-56-8 C13H16O4 236.26 236.10431 
Mono(2-ethylhexyl) phthalate 4376-20-9 C16H22O4 278.34 278.15126 
Mono(3-carboxypropyl) phthalate 66851-46-5 C12H12O6 252.22 252.06284 
Monobenzyl phthalate 2528-16-7 C15H12O4 256.25 256.07301 
Monohexyl phthalate 24539-57-9 C14H18O4 250.29 250.11996 
Monoisopropyl phthalate 35118-50-4 C11H12O4 208.21 208.07301 
Monomethyl phthalate 4376-18-5 C9H8O4 180.16 180.04171 
Monooctyl phthalate 5393-19-1 C16H22O4 278.34 278.15126 
n-Octyl n-decyl phthalate 119-07-3 C20H42O4 418.61 346.30776 

 
 
Table B8. Comparison between the conductivity and salinity of real (Spring 2017) and reference seawater samples. 

 Conductivity (mS cm-1) Salinity (PSU) 
51°20'25.68"N; 3°12'12.11"O (HZ) 52.22 32.98 
51°13'34.68"N; 2°56'8.00”O (HO) 49.85 31.55 
51°14'48.59"N; 2°55'39.61"O 
(Akust39) 51.03 32.60 
Reference seawater 54.78 35.11 
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 T
able B

9. D
etailed results of the m

ethod validation for phenols, B
isphenol A

 and phthalates in seaw
ater, i.e. the recovery (n=54), lim

its (n=39) and repeatability 
(n=54) and w

ithin-laboratory reproducibility (n=18). 

C
om

pound 
 

R
ecovery (%

) 
L

im
its (ng L

-1) 
Precision (%

) 
L

inearity 

 

N
om

inal concentration  
(ng L

-1) 
 

 
 

M
D

L
 

M
Q

L
  

R
epeatibility 

R
SD

 (%
) 

W
ithin-laboratory 

reproducibility R
SD

 (%
) 

R
2 

(A
lkyl)phenols 

 
 

 
 

 
 

 
 

 
2-m

ethyl phenol 
150.0 

104.1 
± 

7.4 
75 

100 
7.1 

11.3 
0.9922 

 
200.0 

99.7 
± 

1.1 
 

 
1.1 

4.1 
 

 
250.0 

100.2 
± 

2.5 
 

 
2.5 

2.5 
 

4-ethylphenol 
75.0 

103.1 
± 

8.3 
25 

50 
8.0 

8.3 
0.9936 

 
100.0 

103.3 
± 

1.8 
 

 
1.7 

2.9 
 

 
125.0 

100.3 
± 

0.4 
 

 
0.4 

3.4 
 

4-isopropyl phenol 
300.0 

103.4 
± 

2.4 
150 

200 
2.3 

6.0 
0.9910 

 
400.0 

104.3 
± 

2.6 
 

 
2.5 

2.0 
 

 
500.0 

99.7 
± 

0.2 
 

 
0.2 

3.3 
 

4-chloro-3-
m

ethylphenol 
37.5 

100.7 
± 

7.2 
10 

25 
6.9 

7.2 
0.9941 

 
50.0 

99.2 
± 

4.5 
 

 
4.1 

4.9 
 

 
62.5 

101.3 
± 

3.2 
 

 
3.0 

4.5 
 

2,5-dichlorophenol 
75.0 

107.3 
± 

8.4 
25 

50 
7.9 

8.6 
0.9905 

 
100.0 

103.8 
± 

2.2 
 

 
2.1 

2.7 
 

 
125.0 

99.9 
± 

0.6 
 

 
0.6 

9.7 
 

3,4,6-trichlorophenol 
37.5 

109.6 
± 

3.4 
25 

25 
3.1 

3.5 
0.9916 

 
50.0 

102.3 
± 

3.2 
 

 
3.1 

2.2 
 

 
62.5 

100.6 
± 

1.2 
 

 
1.2 

1.4 
 

B
isphenol A

 
75.0 

102.5 
± 

6.2 
25 

50 
6.1 

6.6 
0.9944 

 
100.0 

101.5 
± 

8.3 
 

 
8.1 

8.7 
 

 
125.0 

101.3 
± 

8.8 
 

 
1.3 

8.8 
 

D
i-phthalates 

 
 

 
 

 
 

 
 

 
D

im
ethyl phthalate 

75.0 
101.6 

± 
14.0 

25 
50 

13.8 
11.2 

0.9912 

 
100.0 

107.4 
± 

4.4 
 

 
4.1 

9.5 
 

 
125.0 

108.5 
± 

0.7 
 

 
0.7 

7.0 
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C
om

pound 
 

R
ecovery (%

) 
L
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N
om
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R
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R
SD

 (%
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W
ithin-laboratory 

reproducibility R
SD

 (%
) 

R
2 

D
iethyl phthalate 

75.0 
104.6 

± 
8.7 

25 
50 

8.3 
10.3 

0.9933 

 
100.0 

109.8 
± 

10.1 
 

 
9.2 

9.8 
 

 
125.0 

101.1 
± 

5.5 
 

 
5.4 

6.7 
 

D
ibutyl phthalate 

15.0 
101.5 

± 
6.8 

5 
10 

6.7 
11.5 

0.9911 

 
20.0 

95.6 
± 

5.2 
 

 
5.4 

10.2 
 

 
25.0 

105.9 
± 

1.8 
 

 
1.7 

8.0 
 

D
iam

yl phthalate 
37.5 

98.7 
± 

11.2 
5.0 

25 
13.4 

12.1 
0.9961 

 
50.0 

99.2 
± 

8.1 
 

 
8.2 

7.7 
 

 
62.5 

112.6 
± 

9.7 
 

 
7.0 

9.5 
 

B
enzyl butyl 

phthalate 
37.5 

104.0 
± 

12.9 
10 

25 
11.2 

11.4 
0.9968 

 
50.0 

97.8 
± 

7.4 
 

 
7.5 

10.0 
 

 
62.5 

105.4 
± 

4.7 
 

 
4.5 

7.4 
 

D
icyclohexyl phtalate 

30.0 
103.0 

± 
6.2 

10 
20 

6.0 
5.8 

0.9962 

 
40.0 

102.6 
± 

5.5 
 

 
5.3 

6.7 
 

 
50.0 

101.2 
± 

3.9 
 

 
3.8 

5.9 
 

D
ihexyl phthalate 

30.0 
107.2 

± 
11.1 

10 
20 

10.4 
11.3 

0.9983 

 
40.0 

105.0 
± 

4.8 
 

 
4.5 

5.4 
 

 
50.0 

104.1 
± 

6.0 
 

 
5.7 

6.3 
 

D
ibenzyl phthalate 

30.0 
103.0 

± 
3.7 

10 
20 

5.1 
7.0 

0.9972 

 
40.0 

102.9 
± 

8.6 
 

 
8.4 

10.1 
 

 
50.0 

102.9 
± 

8.1 
 

 
7.9 

8.8 
 

D
iethylheyxl 

phthalate 
37.5 

101.1 
± 

7.2 
20 

25 
7.2 

9.1 
0.9953 

50.0 
108.6 

± 
3.8 

 
 

6.5 
8.1 

 
62.5 

107.8 
± 

6.5 
 

 
3.8 

5.9 
 

D
inonyl phthalate 

37.5 
105.2 

± 
10.9 

25 
25 

10.4 
8.5 

0.9952 

 
50.0 

104.0 
± 

4.8 
 

 
4.6 

9.5 
 

 
62.5 

106.3 
± 

2.7 
 

 
2.5 

4.5 
 

D
iisodecyl phthalate 

112.5 
105.2 

± 
6.5 

50 
75 

6.2 
10.9 

0.9954 

 
150.0 

100.5 
± 

1.6 
 

 
1.6 

8.1 
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R
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187.5 

102.1 
± 

3.5 
 

 
3.4 

9.0 
 

M
ono-phthalates 

 
 

 
 

 
 

 
 

 
M

onom
ethyl 

phthalate 

37.5 
104.2 

± 
10.5 

20 
25 

10.1 
12.5 

0.9904 

50.0 
99.1 

± 
5.4 

 
 

5.4 
10.9 

 

 
62.5 

100.4 
± 

3.2 
 

 
3.2 

6.2 
 

M
onoethyl phthalate 

37.5 
99.2 

± 
12.0 

20 
25 

12.1 
13.0 

0.9943 

 
50.0 

100.0 
± 

2.6 
 

 
2.6 

2.6 
 

 
62.5 

99.1 
± 

0.7 
 

 
0.7 

0.7 
 

M
onobutyl phthalate 

37.5 
96.7 

± 
3.4 

5 
25 

3.4 
4.8 

0.9989 

 
50.0 

98.5 
± 

2.7 
 

 
2.7 

2.8 
 

 
62.5 

100.4 
± 

1.3 
 

 
1.3 

1.8 
 

M
ono-n-pentyl 

phthalate 

37.5 
103.7 

± 
11.0 

20 
25 

10.6 
12.0 

0.9914 

50.0 
101.5 

± 
10.7 

 
 

10.5 
11.4 

 

 
62.5 

102.6 
± 

1.9 
 

 
1.9 

5.7 
 

M
onocyclohexyl 

phthalate 
15.0 

99.3 
± 

11.5 
5 

10 
11.6 

12.3 
0.9963 

20.0 
99.2 

± 
6.6 

 
 

6.7 
8.9 

 
25.0 

99.0 
± 

2.7 
 

 
2.8 

2.6 
 

M
onohexyl phthalate 

37.5 
105.4 

± 
7.5 

20 
25 

7.1 
12.3 

0.9938 

 
50.0 

103.4 
± 

4.7 
 

 
4.5 

6.1 
 

 
62.5 

101.2 
± 

3.5 
 

 
3.4 

3.8 
 

M
onobenzyl phthalate 

15.0 
99.0 

± 
6.0 

5 
10 

6.0 
4.4 

0.9949 

 
20.0 

96.7 
± 

5.1 
 

 
5.3 

3.9 
 

 
25.0 

100.4 
± 

2.0 
 

 
2.0 

2.0 
 

M
onoethylhexyl 

phthalate 
75.0 

104.0 
± 

6.6 
25 

50 
7.9 

6.3 
0.9960 

100.0 
100.7 

± 
4.8 

 
 

4.8 
3.8 

 
125.0 

100.6 
± 

3.4 
 

 
3.3 

3.4 
 

M
ono-isonyl 

phthalate 
37.5 

103.5 
± 

4.9 
20 

25 
4.7 

9.1 
0.9978 

50.0 
102.4 

± 
2.4 

 
 

2.4 
5.0 

 
62.5 

102.0 
± 

1.7 
 

 
1.7 

3.7 
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Table B10. Calibration equations for phenols, Bisphenol A and phthalates in fresh water, obtained by weighted linear 
regression. SD representing the standard deviation (n = 3) of the intercept and the slope, and P-value of the lack-of-fit test. 

  Intercept (SD)  Slope (SD)  p-value Dynamic 
range (ng L-1) 

(Alkyl)phenols 
  

 
  

 
 

 
 

2-methyl phenol y= -1.00E-01 (6.24E-03) + 3.86E-03 (2.01E-04) x 0.9960 75-1000 

4-ethylphenol y= 6.29E-01 (4.58E-02) + 2.09E-02 (3.06E-03) x 0.7995 10-1000 

4-isopropyl phenol y= -5.25E-01 (4.65E-02) + 2.22E-02 (2.80E-03) x 0.8830 150-1000 

4-chloro-3-methylphenol y= 8.67E-02 (1.76E-03) + 1.30E-01 (1.31E-02) x 0.7329 10-1000 

2,5-dichlorophenol y= 4.42E-01 (1.08E-02) + 2.69E-02 (1.08E-03) x 0.9990 25-1000 
3,4,6-trichlorophenol y= 4.39E-01 (6.75E-03) + 4.55E-02 (3.71E-03) x 0.7000 10-1000 

Bisphenol A y= 2.62E-01 (5.00E-03) + 1.49E-02 (6.17E-04) x 0.9970 25-1000 

Di-phthalates 
  

 
  

 
 

 
 

Dimethyl phthalate y= -1.04E-01 (2.64E-03) + 6.33E-03 (1.20E-04) x 1.0000 25-1000 
Diethyl phthalate y= 1.07E+00 (4.08E-02) + 4.08E-02 (2.98E-03) x 0.8389 25-1000 

Dibutyl phthalate y= 1.06E+01 (6.16E-01) + 1.16E-01 (3.03E-03) x 1.0000 5-1000 

Diamyl phthalate y= 1.48E-01 (2.73E-03) + 7.89E-02 (1.71E-03) x 0.9500 5-1000 

Benzyl butyl phthalate y= 4.40E-01 (1.64E-02) + 8.09E-02 (2.04E-03) x 1.0000 10-1000 

Dicyclohexyl phthalate y= 3.79E-01 (8.50E-03) + 3.30E-01 (6.03E-03) x 1.0000 10-1000 
Dihexyl phthalate y= 1.88E-01 (3.11E-03) + 5.26E-02 (9.87E-04) x 1.0000 10-1000 

Dibenzyl phthalate y= 1.59E+00 (2.99E-02) + 2.43E-01 (4.58E-03) x 0.9500 10-1000 

Diethylheyxl phthalate y= 6.12E+00 (3.69E-01) + 2.35E-01 (7.53E-03) x 0.9990 20-1000 

Dinonyl phthalate y= 2.39E+00 (1.86E-01) + 6.05E-02 (3.77E-03) x 0.9670 25-1000 

Diisodecyl phthalate y= 3.25E-01 (3.90E-02) + 3.96E-02 (5.96E-03) x 0.9998 50-1000 
Mono-phthalates 

  
 

  
 

 
 

 

Monomethyl phthalate y= -7.46E-02 (2.09E-03) + 1.04E-02 (3.09E-04) x 0.9974 20-1000 

Monoethyl phthalate y= -1.04E-01 (4.18E-03) + 6.32E-03 (2.37E-04) x 0.9990 20-1000 

Monotbutyl phthalate y= 3.98E-01 (3.63E-02) + 1.23E-01 (3.24E-03) x 0.9990 5-1000 

Mono-n-pentyl phthalate y= 4.99E-02 (2.33E-03) + 1.57E-02 (8.72E-04) x 0.9950 20-1000 
Monocyclohexyl 
phthalate 

y= -7.52E-01 (3.10E-02) + 3.75E-02 (1.89E-03) x 0.9999 5-1000 

Monohexyl phthalate y= 4.20E-02 (3.10E-03) + 7.63E-03 (3.98E-04) x 0.9880 20-1000 

Monobenzyl phthalate y= -8.15E-01 (4.00E-02) + 4.17E-02 (2.32E-03) x 0.8569 5-1000 

Monoethylhexyl phthalate y= 1.40E-01 (9.75E-03) + 5.84E-03 (4.44E-04) x 0.8810 25-1000 

Mono-isonyl phthalate y= 1.40E-01 (1.17E-02) + 5.85E-03 (3.24E-04) x 0.6426 20-1000 
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Table B11. Calibration equations for the target APs and PAEs in fresh water, obtained by weighted linear regression. SD 
representing the standard deviation (n = 3) of the intercept and the slope, and P-value of the lack-of-fit test. 

  Intercept (SD)  Slope (SD)  p-value Dynamic 
range (ng L-1) 

(Alkyl)phenols 
  

 
  

 
 

 
 

2-methyl phenol y= 2.18E-01 (1.13E-02) + 2.72E-03 (1.01E-02) x 0.9761 50-1000 

4-ethylphenol y= 8.02E-02 (5.02E-03) + 5.48E-03 (1.11E-02) x 0.7116 25-1000 

4-isopropyl phenol y= -5.35E-02 (4.21E-03) + 4.71E-03 (6.26E-03) x 0.7329 150-1000 

4-chloro-3-methylphenol y= -4.69E-01 (8.46E-03) + 2.89E-02 (4.24E-02) x 0.7256 20-1000 

2,5-dichlorophenol y= -2.32E-01 (5.51E-03) + 8.31E-03 (7.79E-03) x 0.8292 25-1000 
3,4,6-trichlorophenol y= 6.13E-01 (8.48E-03) + 2.26E-02 (4.60E-02) x 0.6300 20-1000 

Bisphenol A y= -1.18E-01 (1.92E-03) + 2.72E-03 (4.87E-03) x 0.9172 10-1000 

Di-phthalates 
  

 
 

  
 

  
Dimethyl phthalate y= 1.63E-02 (3.93E-04) + 6.14E-03 (2.84E-04) x 0.9400 25-1000 
Diethyl phthalate y= 5.82E-01 (2.09E-02) + 3.69E-02 (4.21E-02) x 0.8221 10-1000 

Dibutyl phthalate y= 4.63E+00 (2.62E-01) + 5.27E-02 (1.12E-01) x 0.8400 5-1000 

Diamyl phthalate y= 2.46E-02 (4.20E-04) + 3.88E-02 (4.96E-04) x 0.8075 5-1000 

Benzyl butyl phthalate y= 1.30E-01 (4.41E-03) + 2.83E-02 (3.23E-03) x 0.9600 5-1000 

Dicyclohexyl phthalate y= 5.49E-02 (1.12E-03) + 1.43E-01 (9.82E-04) x 0.8400 10-1000 
Dihexyl phthalate y= -2.51E-01 (3.86E-03) + 2.98E-02 (4.53E-03) x 0.8700 10-1000 

Dibenzyl phthalate y= -7.38E-01 (1.37E-02) + 8.24E-02 (1.28E-02) x 0.8360 10-1000 

Diethylheyxl phthalate y= 1.16E+00 (6.91E-02) + 1.09E-01 (3.44E-02) x 0.9091 20-1000 

Dinonyl phthalate y= 2.78E-01 (1.94E-02) + 2.04E-02 (1.68E-02) x 0.9573 25-1000 

Diisodecyl phthalate y= 2.23E-02 (2.24E-03) + 1.91E-02 (3.32E-03) x 0.9798 25-1000 
Mono-phthalates 

  
 

 

  
 

  
Monomethyl phthalate y= 2.91E-03 (6.94E-05) + 3.64E-05 (8.03E-05) x 0.9874 25-1000 

Monoethyl phthalate y= 1.63E-02 (5.50E-04) + 5.41E-03 (5.44E-04) x 0.9091 20-1000 

Monotbutyl phthalate y= 1.68E-01 (1.50E-02) + 2.23E-02 (4.38E-03) x 0.9291 10-1000 

Mono-n-pentyl phthalate y= 1.26E-02 (5.00E-04) + 4.60E-02 (5.80E-04) x 0.9055 25-1000 
Monocyclohexyl 
phthalate 

y= -1.46E+00 (5.41E-02) + 
8.51E-02 (6.30E-02) 

x 
0.8899 5-1000 

Monohexyl phthalate y= 1.25E-02 (8.45E-04) + 1.20E-02 (5.98E-04) x 0.8694 20-1000 

Monobenzyl phthalate y= -1.11E+00 (5.28E-02) + 7.88E-02 (5.69E-02) x 0.7198 5-1000 

Monoethylhexyl phthalate y= -2.16E-01 (1.43E-02) + 8.15E-03 (1.54E-02) x 0.7577 25-1000 

Mono-isonyl phthalate y= -6.63E-02 (5.23E-03) + 3.76E-03 (3.24E-03) x 0.5334 25-1000 
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Table B12. Summary of results for the cross-validation in freshwater, i.e. the recovery (n=18), limits 
(n=18) and repeatability (n=18) and within-laboratory reproducibility (n=18).  

Compound Recovery (%) Limits Precision (%) Linearity 

  MDL  
(ng L-1) 

MQL  
(ng L-1) Repeatibility RSD (%) R2 

(Alkyl)phenols      
2-methyl phenol 105.2 ± 14.7 50 100 14.0 0.9921 

4-ethylphenol 104.2 ± 7.4 25 50 7.1 0.9940 

4-isopropyl phenol 100.9 ± 8.8 150 200 8.8 0.9928 

4-chloro-3-methylphenol 102.3 ± 3.4 20 25 3.1 0.9978 

2,5-dichlorophenol 102.5 ± 2.7 25 25 2.7 0.9999 

3,4,6-trichlorophenol 109.0 ± 4.0 20 25 3.7 0.9971 

Bisphenol A 100.7 ± 10.7 10 25 10.9 0.9921 

Di-phthalates      
Dimethyl phthalate 101.1 ± 13.3 25 50 13.2 0.9925 

Diethyl phthalate 107.1 ± 8.1 10 25 7.6 0.9905 

Dibutyl phthalate 95.1 ± 11.2 5.0 10.0 11.8 0.9961 

Diamyl phthalate 102.1 ± 13.1 5 25 12.8 0.9930 

Benzyl butyl phthalate 109.1 ± 11.6 5 25 10.6 0.9976 

Dicyclohexyl phthalate 99.2 ± 11.7 10 20 1.7 0.9995 

Dihexyl phthalate 106.1 ± 12.2 10 20 11.5 0.9961 

Dibenzyl phthalate 103.7 ± 2.2 10 25 2.6 0.9995 

Diethylheyxl phthalate 97.2 ± 7.2 20 25 9.2 0.9990 

Dinonyl phthalate 106.9 ± 8.4 25 50 7.8 0.9947 

Diisodecyl phthalate 107.1 ± 5.7 25 50 5.3 0.9997 

Mono-phthalates      
Monomethyl phthalate 102.9 ± 8.4 25 50 8.2 0.9964 

Monoethyl phthalate 99.3 ± 7.9 20 25 7.9 0.9905 

Monotbutyl phthalate 99.0 ± 2.7 10 25 2.8 0.9992 

Mono-n-pentyl phthalate 100.1 ± 13.7 25 50 13.7 0.9924 

Monocyclohexyl phthalate 98.8 ± 3.4 5 10 3.4 0.9947 

Monohexyl phthalate 101.2 ± 14.7 20 25 14.5 0.9961 

Monobenzyl phthalate 100.4 ± 4.7 5 10 4.7 0.9971 

Monoethylhexyl phthalate 103.8 ± 5.4 25 50 5.2 0.9912 

Mono-isonyl phthalate 104.0 ± 8.8 25 25 8.4 0.9966 

 
  



Appendices 

 249 

Table B13. The tentatively identified unknowns that are assigned to the backbone of plasticizers, with 
m/z 167.033, 149.023, 121.029 and 65.039 as characteristic fragments for the phthalates. ID represents 
the identifier or the unknown compound. 

Type of 
plasticizer 

ID Molecular mass 
(g.mol-1) 

tr 
(min) 

Assignment 

(Alkyl)phenols 9 472.216 5.75 [M-H-CH4]- 
 14 394.239 6.27 [M-H-CH4]- 
 16 460.144 5.40 [M-H-CH4]- 
 54 200.050 2.37 [M-H-CH4]-, [M-H-CH3]- 
 84 401.180 5.34 [M-H-CH4]- 
 87 461.143 5.45 [M-H-CH4]- 
 95 325.200 5.23 [M-H-CH4]- 
 106 532.183 5.82 [M-H-CH4]- 
 113 473.217 5.93 [M-H-CH4]- 
 194 211.938 0.67 [M-H-HCl]- 
 344 150.067 2.04 [M-H-CH3]- 
 409 350.231 5.80 [M-H-CH4]- 
 445 509.194 5.78 [M-H-HCl]- 
 485 395.242 6.38 [M-H-CH4]- 
 540 508.193 7.55 [M-H-HCl]- 
 619 201.054 2.38 [M-H-CH3]- 
 818 888.578 9.44 [M-H-HCl]- 
 911 245.226 7.15 [M-H-CH4]- 
 959 289.916 1.58 [M-H-HCl]- 
 1002 107.047 7.55 [M-H-CH4]- 
Phthalates 20 278.152 5.22 All characteristic fragments 
 38 398.241 5.44 All characteristic fragments 
 51 197.120 4.97 All characteristic fragments 
 79 390.277 7.02 All characteristic fragments 
 86 398.241 5.68 All characteristic fragments 
 117 309.170 4.77 All characteristic fragments 
 142 418.308 6.95 All characteristic fragments 
 143 278.152 5.66 All characteristic fragments 
 159 390.277 6.68 All characteristic fragments 
 188 148.110 2.74 All characteristic fragments, except 

167.033 
 200 166.006 1.21 All characteristic fragments 
 242 148.075 9.81 All characteristic fragments, except 

167.033 
 301 197.120 5.12 All characteristic fragments 
 334 279.155 5.33 All characteristic fragments 
 342 148.016 5.25 All characteristic fragments, except 

167.033 
 446 277.896 3.63 All characteristic fragments 
 454 330.202 4.43 All characteristic fragments 
 484 206.874 5.19 All characteristic fragments 
 615 191.131 6.62 All characteristic fragments 
 659 239.085 4.32 All characteristic fragments 
 665 183.162 4.74 All characteristic fragments 
 670 391.280 6.47 All characteristic fragments 
 759 154.063 4.48 All characteristic fragments, except 

167.033 
 879 222.166 4.82 All characteristic fragments 
 968 148.016 1.86 All characteristic fragments, except 

167.033 
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APPENDIX C – HYDROPHILIC DIVINYLBENZENE FOR 
EQUILIBRIUM SORPTION OF EMERGING ORGANIC 
CONTAMINANTS IN AQUATIC MATRICES 
 

Sorbent and water analysis 
Details regarding to the sample analysis (SPE-LC-Orbitrap HRMS) have been 

published earlier (Huysman et al., 2019, 2017; Vanryckeghem et al., 2019), and 

here only the main differences are briefly described: 

i) Pharmaceuticals, pesticides and personal care products were 

extracted with Oasis® HLB cartridges (6cc, 200mg). Elution was 

performed with 5 mL of CH3OH/CH3CN (50/50, v/v %). 

Chromatographic separation was achieved by UHPLC using 

CH3OH and H2O both acidified with 0.1% and 0.01% formic acid for 

the positive and negative ionisation mode, respectively. Ionisation 

was performed using a heated electrospray ionisation (HESI) 

source operating in full-scan mode for both modes. 

ii) Steroidal EDCs were extracted by using hydrophilic DVB cartridges. 

Elution was performed using sequential 5 mL of pure CH3CN and 5 

mL of CH3CN, with the latter being acidified with 0.1% formic acid. 

The analytes were separated by UHPLC using CH3OH and H2O, 

both containing with 0.1 % formic acid. The ionization was realised 

by heated electrospray chemical ionization, and determined by full-

scan events in positive and negative ionization mode. 

iii) Phthalates and alkylphenols were extracted using Oasis® HLB 

cartridges (6cc, 500mg). Elution was executed by using 9 mL of 

0.1% formic acid in CH3CN. The analytes were chromatographically 

separated using CH3CN/H2O, both containing 0.1 % NH4OH. The 

ionization was realised by heated electrospray ionization, and 

determined by full-scan events in both the positive and negative ion 

mode. 
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Figure C1. Schematic overview of the sorbent and water analysis. During step 1 a glass fibre filter 
was used, in step 2 the most suitable cartridge (red colored) for each group of organic 
contaminants was used (see specifications in table under the schematic overview). The yellow 
dots and yellow colored area represent the hydrophilic DVB sorbent that was used in the 
experiments. 

 

 
Figure C2. The averaged NIR spectra (n=3) of hydrophilic DVB (blue) and Oasis™ HLB(red).  
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Table C1. The average mass balance (%) and the corresponding analytical repeatability (% 
RSDs) of each organic contaminants studied. 

Compound Mass balance Repeatability Number of  

 Average (%) SD (%) (% RSD) datapoints 

(alkyl)phenols 
   

 
2,5-dichlorophenol 78  2  3  8 
bisphenol A 85 5  5  8 
isopropylphenol 76 5 6 5 
trichlorophenol 76  4  5  8 
personal care products 

   
 

DEET 52  7  14  7 
ethylparaben 42  4  9  6 
methylparaben 44  5  10  3 
piperonylbutoxide 115  9  8  6 
propylparaben 49  6  11  7 
pesticides 

   
 

acetamiprid 49  8  16  8 
alachlor 60  4  6  6 
atrazine 57  3  6  7 
chlorfenvinphos 63  3  5  8 
chloridazon 43  8  19  8 
clothianidin 47  6  13  8 
dichlorophenoxyacetic acid 62  2  4  8 
dimethoate 46  6  13  7 
dinoseb 79  12  15  6 
diuron 47  5  10  7 
flufenacet 57  4  6  7 
imidacloprid 42  8  18  8 
irgarol 58  3  6  6 
isoproturon 52  6  12  7 
linuron 47  5  10  6 
mecoprop 64  2  3  8 
methiocarb 55  4  6  6 
metolachlor 58  3  6  6 
pirimicarb 50  3  5  7 
quinoxyfen 113  10  8  5 
simazine 47  4  9  7 
terbuthylazine 51  2  5  5 
terbutryn 57  2  3  6 
thiacloprid 53  5  10  4 
thiamethoxam 49  3  6  5 
pharmaceuticals 

   
 

alprazolam 65  7  10  8 
amitriptyline 57  3  6  6 
azithromycin 63  7  11  5 
bezafibrate 58  4  7  8 
bisoprolol 56  6  11  8 
carbamazepine 51  6  11  8 
chloramphenicol 55  8  14  8 
chlorfibric acid 59  2  3  8 
clarithromycin 73  10  14  8 
diazepam 60  4  6  7 
diclofenac 68  5  7  7 
efavirenz 47  5  10  6 
enrofloxacin 65  2  4  8 
flumequine 65  1  2  8 
fluoxetine 53  3  5  6 
ifosfamide 54  4  7  8 
indomethacin 47  7  16  7 
ketoprofen 57  3  6  7 
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Compound Mass balance Repeatability Number of  

 Average (%) SD (%) (% RSD) datapoints 

metoprolol 54  7  13  8 
moxifloxacin 79  5  7  2 
nalidixic acid 64  2  3  8 
nevirapine 49  10  20  8 
oseltamivir ethylester 61  5  8  8 
paroxetine 49  4  8  6 
propranolol 51  5  10  8 
rimantadine 57  4  7  7 
sarafloxacin 65  2  3  7 
sulfadoxin 58  1  2  6 
sulfamethazine 57  3  6  7 
sulfamethoxazole 62  4  6  6 
tetracycline 67  5  7  2 
trimethoprim 52  7  14  6 
phthalates 

   
 

benzylbutyl phthalate 82  4  5  7 
diamyl phthalate 83  5  7  7 
dibutyl phthalate 70  2  3  7 
dicyclohexyl phthalate 67  3  5  6 
diethyl phthalate 72  3  5  8 
diethylheyl phthalate 92  2  2  3 
dihexyl phthalate 71  3  5  3 
dimethyl phthalate 78  4  6  8 
dinonyl phthalate 80  7  8  6 
monobenzyl phthalate 85  1  1  8 
monocyclohexyl phthalate 80  4  5  8 
monoethyl phthalate 88  8  9  7 
monohexyl phthalate 83  4  5  8 
monomethylphthalate 85  7  8  6 
mono-n-pentyl phthalate 76  5  7  8 
steroidal EDCs 

   
 

1,4-androstadienedione 78  13  17  8 
11-ketoetiocholanolone 90  17  19  6 
11-ketotestosterone 73  8  11  7 
5α-dihydrotestosterone 71  10  14  7 
11β-hydroxyandrosterone 96  18  19  8 
17α-acetoxyprogesterone 77  5  7  8 
17α-hydroxyprogesterone 72  8  11  8 
17α-testosterone 88  3  4  7 
17α-trenbolone 83  13  16  7 
17β-testosterone 67  5  8  7 
17β-trenbolone 70  15  21  7 
19-Norethindron 69  4  6  8 
19-nortestosterone 72  3  4  8 
α-zearalenol 79  4  5  7 
α-zeranol 65  1  2  2 
β-zearalenol 71  3  4  5 
β-zeranol 72  10  14  6 
androstenedione 88  17  20  8 
androsterone 77  9  12  6 
caproxyprogesterone 70  4  6  6 
chlorotestosteron acetate 72  10  14  6 
cortisol 82  7  9  6 
cortisone 94  11  12  8 
dexamethasone 80  5  6  5 
dienoestrol 91  6  6  8 
diethylstilbestrol 72  12  17  6 
epi-androsterone 73  11  15  6 
estrone 60  8  14  8 
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Compound Mass balance Repeatability Number of  

 Average (%) SD (%) (% RSD) datapoints 

ethynyl testosterone 72  2  2  6 
flugestone acetate 65  7  10  7 
fluoxymesterone 89  7  8  6 
gestodene 65  3  5  5 
medroxyprogesterone 65  3  5  5 
medroxyprogesterone acetate 60  2  4  6 
megestrol 70  6  8  7 
megestrol acetate 68  6  8  6 
mestanolone 88  8  9  7 
methylboldenone 67  2  3  7 
methylprogesterone 65  5  7  6 
norethandrolone 65  3  5  5 
norgestrel 65  5  7  6 
prednisolone 73  8  10  8 
prednisone 88  9  10  8 
progesterone 65  5  7 4 
stanozolol 80 7 9 6 
testosterone phenylpropionate 75 8 10 7 
testosterone acetate 72 6 8 6 
testosterone benzoate 72 8 11 7 
testosterone propionate 67 11 16 6 
trenbolone acetate 82 8 10 7 
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Table C2. The calculated sorbent-water equilibrium partitioning coefficients (log Ksw) with their 
corresponding standard deviations (SD). n represents the number of datapoints originating from 
time points after which equilibrium was established. Log P represents the polarity index of the 
compound. 

Compound Log Ksw n Log P 

 Average SD   

(alkyl)phenols 
   

 
2,5-dichlorophenol 4.91  0.76 4 3.03 
bisphenol A 5.82 0.35 4 1.56 
isopropylphenol 5.32 0.22 4 2.99 
trichlorophenol 4.14 0.61 4 3.69 
personal care products 

   
 

DEET 5.87  0.42  4 2.02 
ethylparaben 5.93  0.37 5 2.47 
methylparaben 5.53 0.23 4 1.96 
piperonylbutoxide 5.95  0.17 2 4.75 
propylparaben 5.95 0.80 2 3.04 
pesticides 

   
 

acetamiprid 5.55  0.12 5 0.80 
alachlor 5.69  0.80 3 3.52 
atrazine 6.09  0.26 6 2.61 
chlorfenvinphos 6.03  0.51 5 3.81 
chloridazon 5.10  0.15 4 1.14 
clothianidin 5.08  0.10 4 0.70 
dichlorophenoxyacetic acid 4.89 0.83 2 2.81 
dimethoate 5.10 0.12 5 0.78 
dinoseb 6.01 0.48 4 3.56 
diuron 6.48 0.16 4 2.68 
flufenacet 5.92  0.14 6 3.20 
imidacloprid 5.38 0.17 6 0.57 
irgarol 6.31  0.24 6 3.26 
isoproturon 6.16 0.24 6 2.89 
linuron 6.63 0.49 4 3.20 
mecoprop 4.69 0.12 5 3.13 
methiocarb 5.06 0.27 2 2.92 
metolachlor 5.95 0.20 6 3.13 
pirimicarb 5.73  0.18 6 1.70 
quinoxyfen 5.74  - 1 4.66 
simazine 5.91 0.25 5 2.18 
terbuthylazine 6.93 0.27 6 3.40 
terbutryn 6.18  0.62 5 3.74 
thiacloprid 6.08 0.20 6 1.26 
thiamethoxam 4.89 0.11 5 - 0.13 
pharmaceuticals 

   
 

alprazolam 5.53  0.25 5 2.12 
amitriptyline 6.20 0.17 5 4.92 
azithromycin 4.56 0.26 6 4.02 
bezafibrate 5.49  0.08 7 2.50 
bisoprolol 5.27 0.24 6 1.87 
carbamazepine 6.15 0.17 6 2.45 
chloramphenicol 5.42 0.12 5 1.14 
clorfibric acid 4.27 0.06 4 2.43 
clarithromycin 4.90 0.25 6 3.16 
diazepam 6.03 0.14 5 2.82 
diclofenac 6.06 0.14 2 4.51 
efavirenz 6.00 0.24 5 4.60 
enrofloxacin 5.74 0.40 3 2.31 
flumequine 4.36 0.13 5 1.60 
fluoxetine 4.02 0.09 5 4.05 
ifosfamide 6.10 0.14 6 0.86 
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Compound Log Ksw n Log P 

 Average SD   

indomethacin 4.88 0.10 6 4.27 
ketoprofen 5.37 0.07 6 3.12 
metoprolol 5.38 0.19 6 1.88 
moxifloxacin 4.35 0.21 5 2.90 
nalidixic acid 3.81 0.09 6 1.59 
nevirapine 5.69 0.19 6 2.50 
oseltamivir ethylester 4.88 0.03 6 1.71 
paroxetine 6.25 0.37 6 3.60 
propranolol 6.17 0.19 6 3.48 
rimantadine 5.19 0.09 6 3.60 
sarafloxacin 4.20 0.13 5 1.07 
sulfadoxin 4.14 0.19 5 0.70 
sulfamethazine 4.66 0.12 5 0.89 
sulfamethoxazole 3.96 0.38 5 0.89 
tetracycline 3.91 0.30 6 -1.30 
trimethoprim 5.69 0.17 6 0.91 
phthalates 

   
 

benzylbutyl phthalate 5.43 0.55 4 4.91 
diamyl phthalate 5.36 0.07 4 5.77 
dibutyl phthalate 5.41 0.40 4 4.75 
dicyclohexyl phthalate 5.54 0.74 4 6.64 
diethyl phthalate 5.46 0.56 5 2.71 
diethylheyl phthalate 5.15 0.39 3 8.52 
dihexyl phthalate 5.55 0.97 4 6.79 
dimethyl phthalate 5.62 0.27 6 1.70 
dinonyl phthalate 4.65 - 1 9.85 
monobenzyl phthalate 6.67 0.35 5 2.82 
monocyclohexyl phthalate 6.44 0.36 3 3.10 
monoethyl phthalate 5.60 0.22 4 1.64 
monohexyl phthalate 5.70 0.19 2 3.68 
monomethylphthalate 5.72 0.61 4 1.13 
mono-n-pentyl phthalate 6.23 0.61 3 3.17 
steroidal EDCs 

   
 

1,4-androstadienedione 5.48 0.18 4 2.62 
11-ketoetiocholanolone 6.38 0.06 2 1.30 
11-ketotestosterone 5.51 0.32 5 1.30 
5α-dihydrotestosterone 5.95 0.08 2 1.79 
11β-hydroxyandrosterone 5.80 0.66 4 1.97 
17α-acetoxyprogesterone 5.38 0.15 4 3.64 
17α-hydroxyprogesterone 5.73 0.61 4 3.64 
17α-testosterone 6.86 1.14 2 3.18 
17α-trenbolone 5.49 0.16 4 2.32 
17β-testosterone 5.22 0.07 2 3.18 
17β-trenbolone 5.39 0.21 4 2.32 
19-norethindron 5.96 0.87 3 2.89 
19-nortestosterone 5.72 0.28 6 2.90 
α-zearalenol 5.43 0.18 4 4.17 
α-zeranol 5.86 0.44 4 3.09 
β-zearalenol 5.77 - 1 4.18 
β-zeranol 5.62 0.48 5 3.09 
androstenedione 6.38 0.06 4 2.72 
androsterone 5.57 0.36 4 3.93 
caproxyprogesterone 5.89 0.36 4 5.68 
chlorotestosteron acetate 6.13 0.51 4 4.61 
cortisol 5.32 0.64 4 1.76 
cortisone 4.97 0.01 2 1.43 
dexamethasone 5.56 0.34 4 2.03 
diethylstilbestrol 6.03 - 1 5.33 
epi-androsterone 6.24 0.15 2 3.93 
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Compound Log Ksw n Log P 

 Average SD   

estrone 6.39 0.53 2 3.62 
ethynyl testosterone 6.18 0.10 2 3.14 
flugestone acetate 6.26 0.31 2 2.82 
fluoxymesterone 5.63 0.53 2 2.27 
gestodene 5.82 0.41 5 2.02 
medroxyprogesterone 5.62 0.29 4 3.58 
medroxyprogesterone acetate 5.64 0.34 4 4.17 
megestrol 5.51 0.32 3 3.23 
megestrol acetate 5.92 0.86 4 3.75 
mestanolone 5.89 0.61 4 4.13 
methylboldenone 5.62 0.24 3 3.47 
methylprogesterone 5.62 0.29 4 5.21 
norethandrolone 6.09 1.14 4 3.78 
norgestrel 5.60 0.09 4 3.37 
prednisolone 6.02 0.22 2 1.64 
prednisone 5.81 - 1 1.57 
progesterone 5.84 0.58 4 3.83 
stanozolol 5.96 0.34 5 5.41 
testosterone phenylpropionate 6.34 - 1 6.29 
testosterone acetate 5.66 0.42 4 3.14 
testosterone benzoate 6.52 0.54 3 6.00 
testosterone propionate 6.01 0.52 3 4.39 
trenbolone acetate 4.97 - 1 4.02 
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Table C3. The calculated Freundlich coefficients (KF) and exponents (n) with their corresponding 
standard deviation (SD) and significance (p-value). The p-value represents the goodness-of-fit 
through the Freundlich model. The Asterix(*) corresponds to compounds that could not be 
calculated, because concentrations were detected below detection limits, resulting in in lack-of 
data points for constructing a Freundlich model. T, pH and S corresponds to temperature, 
acidity and salinity, respectively. 

  Freundlich coefficient Freundlich exponent (n) 

Compound 

Model 

p-value KF SD p-value n SD p-value 

(alkyl)phenols        
2,5-dichlorophenol*        
bisphenol A 0.11852 2.72E+04 4.05E+00 0.00010 0.27 0.14 0.118515 
isopropylphenol 0.01153 1.29E+03 2.04E+00 0.00011 0.54 0.14 0.011526 
trichlorophenol 0.00127 2.43E+01 1.21E+00 0.01456 0.77 0.12 0.001273 
personal care products        
DEET 0.00043 3.95E+03 1.33E+00 0.00000 0.62 0.08 0.000429 
ethylparaben 0.00030 6.54E+03 8.31E-01 0.00000 0.49 0.04 0.000301 
methylparaben 0.00012 2.65E+03 9.37E-01 0.00000 0.51 0.05 0.000123 
piperonylbutoxide 0.28958 2.88E+04 5.28E+00 0.07301 0.44 0.22 0.289584 
propylparaben 0.02972 3.01E+04 4.31E-01 0.00594 0.37 0.02 0.029716 
pesticides        
acetamiprid 0.00023 2.16E+03 1.12E+00 0.00000 0.54 0.06 0.000228 
alachlor 0.08505 5.33E+03 3.85E+00 0.01415 0.59 0.18 0.085049 
atrazine 0.00055 4.58E+03 1.31E+00 0.00000 0.60 0.08 0.000552 
chlorfenvinphos 0.08138 2.16E+04 3.20E+00 0.00541 0.48 0.14 0.081379 
chloridazon 0.00019 1.42E+03 1.04E+00 0.00000 0.52 0.05 0.000192 
clothianidin 0.00016 1.10E+03 1.03E+00 0.00000 0.52 0.05 0.000161 
dichlorophenoxyacetic acid 0.00164 5.55E+02 1.57E+00 0.00010 0.49 0.08 0.001643 
dimethoate 0.00051 1.16E+03 1.33E+00 0.00002 0.54 0.07 0.000512 
dinoseb 0.00468 1.64E+04 1.30E+00 0.00007 0.43 0.06 0.004682 
diuron 0.00013 9.17E+03 8.10E-01 0.00000 0.52 0.05 0.000134 
flufecet 0.00169 3.42E+03 2.04E+00 0.00003 0.66 0.11 0.001688 
imidacloprid 0.00017 1.92E+03 1.12E+00 0.00000 0.54 0.05 0.000172 
irgarol 0.00283 4.91E+03 1.93E+00 0.00002 0.71 0.13 0.002832 
isoproturon 0.00075 5.42E+03 1.35E+00 0.00000 0.57 0.08 0.000753 
linuron 0.01539 2.86E+04 1.66E+00 0.00011 0.44 0.09 0.015391 
mecoprop 0.00131 6.84E+02 1.68E+00 0.00011 0.55 0.08 0.001307 
methiocarb 0.22513 3.51E+04 3.21E+00 0.04294 0.41 0.15 0.225128 
metolachlor 0.00145 3.23E+03 1.90E+00 0.00002 0.67 0.11 0.001454 
pirimicarb 0.00043 1.74E+03 1.51E+00 0.00002 0.72 0.09 0.000430 
quinoxyfen*        
simazine 0.00018 3.75E+03 1.04E+00 0.00000 0.56 0.06 0.000180 
terbuthylazine 0.00076 6.87E+03 1.35E+00 0.00000 0.65 0.09 0.000756 
terbutryn 0.01763 7.25E+03 2.60E+00 0.00019 0.64 0.16 0.017627 
thiacloprid 0.00012 5.03E+03 9.52E-01 0.00000 0.55 0.05 0.000122 
thiamethoxam 0.00088 9.72E+02 1.50E+00 0.00004 0.51 0.07 0.000881 
pharmaceuticals        
alprazolam 0.00069 8.57E+02 1.64E+00 0.00007 0.73 0.10 0.000685 
amitriptyline 0.00280 3.90E+03 2.05E+00 0.00003 0.71 0.13 0.002799 
azithromycin 0.00002 6.95E+01 8.03E-01 0.00019 0.87 0.05 0.000017 
bezafibrate 0.00058 1.66E+03 1.73E+00 0.00004 0.65 0.08 0.000582 
bisoprolol 0.00015 4.30E+02 1.38E+00 0.00008 0.80 0.08 0.000151 
carbamazepine 0.00021 4.81E+03 1.06E+00 0.00000 0.58 0.06 0.000212 
chloramphenicol 0.00006 1.43E+03 9.72E-01 0.00000 0.61 0.05 0.000061 
clofibric acid 0.00110 2.62E+02 1.41E+00 0.00021 0.55 0.08 0.001100 
clarithromycin 0.00013 3.25E+02 1.43E+00 0.00016 0.76 0.07 0.000128 
diazepam 0.00187 2.16E+03 1.95E+00 0.00005 0.72 0.12 0.001869 
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  Freundlich coefficient Freundlich exponent (n) 

Compound 

Model 

p-value KF SD p-value n SD p-value 

diclofenac 0.00126 1.08E+04 1.48E+00 0.00000 0.43 0.07 0.001264 
efavirenz*        
enrofloxacin 0.00002 1.12E+02 7.23E-01 0.00004 0.73 0.05 0.000018 
flumequine 0.00007 9.90E+01 7.66E-01 0.00007 0.64 0.05 0.000070 
fluoxetine 0.00143 2.84E+03 1.95E+00 0.00003 0.74 0.12 0.001435 
ifosfamide 0.00035 6.80E+02 1.34E+00 0.00004 0.60 0.07 0.000351 
indomethacin 0.01271 7.27E+03 2.22E+00 0.00010 0.46 0.11 0.012708 
ketoprofen 0.00055 1.57E+03 1.50E+00 0.00002 0.60 0.08 0.000545 
metoprolol 0.00021 8.34E+02 1.27E+00 0.00002 0.69 0.07 0.000208 
moxifloxacin 0.00002 1.26E+02 7.42E-01 0.00004 0.70 0.05 0.000022 
nalidixic acid*        
nevirapine 0.00028 1.61E+03 1.32E+00 0.00001 0.67 0.07 0.000276 
oseltamivir ethylester 0.00007 2.67E+02 1.14E+00 0.00008 0.78 0.07 0.000070 
paroxetine 0.00325 5.99E+03 2.30E+00 0.00003 0.70 0.13 0.003245 
propranolol 0.00095 3.62E+03 1.64E+00 0.00001 0.68 0.10 0.000950 
rimantadine 0.00005 6.43E+02 8.68E-01 0.00000 0.67 0.05 0.000049 
sarafloxacin 0.00002 1.49E+02 7.25E-01 0.00002 0.68 0.04 0.000017 
sulfadoxin 0.01135 6.11E+02 2.25E+00 0.00051 0.42 0.11 0.011352 
sulfamethazine 0.00091 8.52E+02 1.57E+00 0.00006 0.53 0.08 0.000913 
sulfamethoxazole 0.01530 1.77E+02 1.71E+00 0.00105 0.40 0.11 0.015299 
tetracycline 0.00012 4.83E+00 5.21E-01 0.09322 1.04 0.10 0.000124 
trimethoprim 0.00028 1.62E+03 1.13E+00 0.00000 0.62 0.07 0.000280 
phthalates        
benzylbutyl phthalate 0.03349 4.17E+03 4.47E+00 0.00109 0.46 0.16 0.033486 
diamylphthalate 0.07303 5.54E+03 4.83E+00 0.00114 0.41 0.18 0.073032 
dibutyl phthalate 0.00128 4.86E+03 1.86E+00 0.00001 0.44 0.07 0.001284 
dicyclohexylphthalate 0.14100 6.02E+03 5.98E+00 0.00270 0.37 0.21 0.141002 
diethyl phthalate 0.23295 1.77E+03 7.64E+00 0.02451 0.60 0.45 0.232949 
diethylhexyl phthalate 0.19759 3.70E+00 3.47E+00 0.83908 1.20 0.81 0.197588 
dihexyl phthalate 0.06720 4.16E+03 5.21E+00 0.00217 0.43 0.18 0.067198 
dimethyl phthalate 0.00652 1.61E+03 2.45E+00 0.00020 0.62 0.14 0.006519 
dinonyl phthalate 0.01965 3.99E-02 -5.31E+00 0.43501 1.55 0.46 0.019645 
monobenzyl phthalate 0.00559 1.25E+03 6.02E+00 0.01446 1.15 0.25 0.005588 
monocyclohexyl phthalate 0.79206 1.35E+04 3.71E+00 0.00045 0.04 0.14 0.792062 
monoethyl phthalate 0.00866 2.09E+03 2.42E+00 0.00014 0.55 0.13 0.008658 
monohexyl phthalate 0.78958 5.74E+04 3.85E+00 0.00087 0.03 0.11 0.789581 
monomethyl phthalate 0.00569 3.20E+03 2.01E+00 0.00015 0.50 0.09 0.005688 
mono-n-pentyl phthalate 0.91805 3.23E+04 4.12E+00 0.00034 0.01 0.14 0.918054 
steroidal EDCs        
1,4-androstadienedione 0.03303 1.51E+02 3.01E+00 0.02214 1.62 0.51 0.033025 
11-ketoetiocholanolone 0.00229 7.28E+01 1.29E+00 0.00343 2.52 0.36 0.002289 
11-ketotestosterone 0.00249 4.88E+01 1.41E+00 0.00954 1.89 0.28 0.002494 
5α-dihydrotestosterone 0.00334 2.19E+01 1.51E+00 0.05251 1.94 0.31 0.003342 
11β-hydroxyandrosterone 0.00077 3.50E+01 9.97E-01 0.00531 2.07 0.22 0.000775 
17α-acetoxyprogesterone 0.00099 1.71E+01 1.01E+00 0.02564 2.06 0.24 0.000985 
17α-hydroxyprogsterone 0.00499 3.74E+01 1.68E+00 0.02766 2.10 0.38 0.004995 
17α-testosterone 0.00204 3.15E+01 1.28E+00 0.01545 2.09 0.29 0.002038 
17α-trenbolone 0.00032 3.62E+01 8.03E-01 0.00222 1.97 0.17 0.000321 
17β-testosterone 0.00727 1.29E+02 1.76E+00 0.00432 1.82 0.36 0.007266 
17β-trenbolone 0.00376 3.41E+01 1.43E+00 0.01921 2.14 0.35 0.003760 
19-norethindrone 0.00099 7.58E+01 1.12E+00 0.00192 2.17 0.25 0.000991 
19-nortestosterone 0.00118 1.82E+02 1.20E+00 0.00060 1.39 0.17 0.001180 
α-zearalenol 0.00401 9.06E+00 1.48E+00 0.22786 1.90 0.32 0.004013 
α-zeranol 0.00698 3.69E+02 1.77E+00 0.00103 1.74 0.34 0.006981 
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  Freundlich coefficient Freundlich exponent (n) 

Compound 

Model 

p-value KF SD p-value n SD p-value 

β -zearalenol*        
β-zeranol 0.00027 1.01E+01 6.13E-01 0.01955 2.85 0.24 0.000275 
androstenedione 0.00168 7.19E+01 1.19E+00 0.00264 2.51 0.33 0.001681 
androsterone 0.06724 1.42E+02 4.12E+00 0.06079 1.59 0.64 0.067240 
caproxyprogesterone 0.00083 4.36E+02 1.00E+00 0.00009 1.53 0.17 0.000828 
chlorotestosterone acetate 0.00698 1.24E+03 1.24E+00 0.00006 1.26 0.25 0.006978 
cortisol 0.01711 7.47E+02 3.05E+00 0.00336 0.90 0.23 0.017109 
Cortisone*        
dexamethasone 0.00130 4.09E+02 1.55E+00 0.00053 1.21 0.15 0.001305 
diethylstilbestrol*        
epi-androsterone 0.00048 1.29E+00 6.90E-02 0.71570 2.62 0.16 0.000477 
estrone 0.00201 3.03E+01 1.45E+00 0.02531 1.84 0.26 0.002005 
ethynyl testosterone 0.01314 3.19E+02 1.95E+00 0.00178 1.48 0.35 0.013144 
flugestone acetate*        
fluoxymesterone 0.00950 6.82E+01 2.27E+00 0.02715 1.65 0.35 0.009504 
gestodene 0.01586 1.08E+03 1.88E+00 0.00035 1.02 0.25 0.015862 
medroxyprogesterone 0.00075 1.02E+02 1.01E+00 0.00077 1.73 0.19 0.000750 
Medroxyprogesterone acetate        
megestrol 0.00873 1.19E+02 1.96E+00 0.00719 1.97 0.41 0.008727 
megestrol acetate 0.00056 9.68E+01 9.47E-01 0.00066 1.94 0.19 0.000563 
mestanolone 0.05399 1.44E+03 2.52E+00 0.00080 0.77 0.28 0.053992 
methylboldenone 0.00262 3.41E+01 1.59E+00 0.02725 1.85 0.28 0.002619 
methylprogesterone 0.00106 3.32E+02 8.57E-01 0.00007 2.25 0.26 0.001061 
methyltestosterone 0.00044 1.45E+02 9.37E-01 0.00033 1.85 0.17 0.000443 
norethandrolone 0.00715 6.08E+01 1.87E+00 0.01734 2.35 0.46 0.007154 
norgestrel 0.00231 2.60E+02 1.24E+00 0.00041 1.55 0.23 0.002314 
prednisolone 0.03379 6.36E+02 3.87E+00 0.00945 0.99 0.31 0.033791 
progesterone 0.00971 2.02E+02 1.92E+00 0.00313 2.02 0.43 0.009709 
stanozolol 0.00391 1.40E+03 1.10E+00 0.00003 1.33 0.22 0.003909 
testosterone acetate 0.00487 6.96E+01 1.58E+00 0.00772 2.43 0.43 0.004869 
testosterone benzoate 0.00887 4.81E+03 1.58E+00 0.00004 0.80 0.17 0.008870 
testosterone propionate 0.00131 6.54E+02 1.02E+00 0.00006 1.67 0.21 0.001312 
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Table C
4. The statistical evaluation of the response surface m

odelling (R
SM

) encom
passing the significance of the interaction term

s. The A
sterix(*) corresponds to 

com
pounds that could not be calculated, because concentrations w

ere detected below
 detection lim

its, resulting in in lack-of data points for constructing a 
reliable B

ox-B
ehnken design. T, pH
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perature, acidity and salinity, respectively. 
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RSM

 
p-value of the coefficients 
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Table C
5. The coefficients of the obtained response surface m

odels. The A
sterix(*) corresponds to com

pounds that could not be calculated, because 
concentrations w

ere detected below
 detection lim

its, resulting in in lack-of data points for constructing a reliable B
ox-B

ehnken design. T, pH
 and S corresponds to 

tem
perature, acidity and salinity, respectively. 
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Summary 

Table C6. The calculated thermodynamic parameters, i.e. change in enthalpy DH (kJ/mol) , entropy DS 
(J/mol/K) and free Gibbs energy DG288.15K (kJ/mol) (n=number of available data-points during sorption for the 
calculations). The Asterix(*) corresponds to compounds that could not be calculated, because 
concentrations were detected below detection limits, resulting in in lack-of data points for constructing a 
reliable Box-Behnken design. T, pH and S corresponds to temperature, acidity and salinity, respectively. 

 DH288.15 (kJ/mol) DS (J/mol/K) DG288.15K (kJ/mol) 
Compound Mean SD n Mean SD n Mean SD n 
alkylphenols          
2,5-dichloro phenol -71.4 55.1 2 -2.5 23.2 2 -70.7 55.1 2 
bisphenol A -39.8  1 12.4  1 -43.4  1 
isopropyl phenol -52.2  1 5.2  1 -53.7  1 
trichlorophenol -61.7 24.4 2 -12.2 9.6 2 -58.2 24.4 2 
personal care products          
DEET -51.6 12.5 2 -17.2 5.5 2 -46.6 12.5 2 
ethylparaben -32.9 13.8 2 -8.5 5.8 2 -30.5 13.8 2 
methylparaben*          
piperonylbutoxide -13.6  1 -0.4  1 -13.5  1 
propylparaben*          
pesticides          
acetamiprid -36.9 40.2 2 12.0 16.9 2 -40.4 40.2 2 
alachlor*          
atrazine -8.2 58.5 2 24.5 24.8 2 -15.2 58.5 2 
chlorfenvinphos -13.7  1 -0.6  1 -13.5  1 
chloridazon -46.8 37.8 2 7.4 15.9 2 -48.9 37.8 2 
clothianidin -56.3 38.1 2 2.9 15.9 2 -57.1 38.1 2 
dichlorophenoxyacetic acid -34.6 7.8 2 -10.4 3.2 2 -31.6 7.8 2 
dimethoate -60.5 38.2 2 1.0 16.0 2 -60.8 38.2 2 
dinoseb -29.0 7.7 2 -7.3 3.3 2 -26.9 7.7 2 
dinuron -22.3 37.2 2 19.3 15.9 2 -27.9 37.2 2 
diuron -14.7 46.1 2 22.5 19.6 2 -21.2 46.1 2 
flufenacet -11.7 57.7 2 23.3 24.5 2 -18.4 57.7 2 
imidacloprid -40.9 38.0 2 10.2 16.0 2 -43.8 38.0 2 
irgarol -2.6 37.2 2 27.4 15.8 2 -10.5 37.2 2 
isoproturon -1.3 57.3 2 27.6 24.3 2 -9.2 57.3 2 
mecoprop -38.9 54.8 2 9.6 23.0 2 -41.7 54.8 2 
methiocarb -17.6  1 -2.1  1 -17.0  1 
metolachlor -5.7 67.3 2 25.5 28.5 2 -13.0 67.3 2 
pirimicarb -14.8 62.8 2 21.3 26.6 2 -20.9 62.8 2 
quinoxyfen*          
simazine -27.8 43.6 2 15.9 18.5 2 -32.4 43.6 2 
terbuthylazine -9.2 50.8 2 24.4 21.6 2 -16.3 50.8 2 
terbutryn -5.6 36.7 2 26.1 15.6 2 -13.1 36.7 2 
thiacloprid -19.9 45.4 2 20.1 19.2 2 -25.7 45.4 2 
thiamethoxam -54.4 38.3 2 3.5 16.0 2 -55.4 38.3 2 
pharmaceuticals          
alprazolam 26.6 64.1 2 39.0 27.0 2 15.4 64.1 2 
amitriptyline -1.0 5.4 2 27.9 2.1 2 -9.1 5.4 2 
azithromycin -29.0 24.1 2 11.1 10.2 2 -32.2 24.1 2 
bezafibrate -16.1 95.3 2 20.7 40.5 2 -22.1 95.3 2 
bisoprolol -6.7 49.1 2 24.7 20.6 2 -13.8 49.1 2 
carbamazepine -7.4 56.0 2 25.2 23.8 2 -14.6 56.0 2 
chloramphenicol -10.4 58.4 2 23.2 24.7 2 -17.1 58.4 2 
clorfibric acid -20.9 0.1 2 -4.7 0.1 2 -19.5 0.1 2 
clarithromycin -7.1 58.0 2 24.5 24.4 2 -14.2 58.0 2 
diazepam -8.5 59.6 2 24.6 25.3 2 -15.6 59.6 2 
diclofenac -12.0 85.4 2 22.8 36.4 2 -18.5 85.4 2 
efavirenz*          
enrofloxacin -9.6  1 0.2  1 -9.7  1 
flumequine -10.4 12.1 2 0.0 5.4 2 -10.4 12.1 2 
fluoxetine -14.0  1 -1.1  1 -13.7  1 
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 DH288.15 (kJ/mol) DS (J/mol/K) DG288.15K (kJ/mol) 
Compound Mean SD n Mean SD n Mean SD n 
Ifosfamide -28.2 47.4 2 14.6 19.9 2 -32.4 47.4 2 
indomethacin*          
ketoprofen -4.7 84.3 2 25.3 35.6 2 -12.0 84.3 2 
metoprolol -3.8 35.5 2 25.7 14.9 2 -11.3 35.5 2 
moxifloxacin -12.7  1 -1.2  1 -12.4  1 
nalidixic acid -21.9 7.8 2 16.6 4.2 2 -26.7 7.8 2 
nevirapine -19.9 63.3 2 19.4 26.8 2 -25.5 63.3 2 
oseltamivir ethylester -12.3 56.8 2 21.7 24.0 2 -18.5 56.8 2 
paroxetine -15.3  1 -1.5  1 -14.9  1 
propranolol -5.6 6.4 2 26.0 2.6 2 -13.1 6.4 2 
rimantadine -32.6 10.0 2 12.7 4.2 2 -36.3 10.0 2 
sarafloxacin -15.3 5.4 2 20.1 2.0 2 -21.1 5.4 2 
sulfadoxin -10.0 39.9 2 22.4 16.1 2 -16.5 39.9 2 
sulfamethazine -25.5 35.3 2 16.2 14.6 2 -30.2 35.3 2 
sulfamethoxazole -47.1 2.8 2 6.1 2.4 2 -48.9 2.8 2 
tetracycline -9.4  1 -0.2  1 -9.3  1 
trimethoprim -18.5 35.6 2 19.8 15.2 2 -24.2 44.9 2 
phthalates          
benzyl butyl phthalate -142.9  1 -32.9  1 -133.4  1 
diamyl phthalate -130.0  1 -27.2  1 -122.1  1 
dibutyl phthalate -44.5 20.3 2 8.4 7.3 2 -31.8 -47.0 2 
dicyclohexyl phthalate -139.7 37.4 2 -31.4 14.8 2 -68.6 -130.6 2 
diethyl phthalate -75.8 46.1 2 -4.3 19.1 2 -49.2 -74.6 2 
diethylheyxl phthalate -109.7 18.2 2 -19.5 10.3 2 -51.9 -104.1 2 
dihexyl phthalate -124.7  1 -23.5  1 -117.9  1 
dimethyl phthalate -98.2 46.5 2 -13.7 20.3 2 -94.2 488.9 2 
dinonyl phthalate*          
monobenzyl phthalate -94.6  1 -9.1  1 -92.0  1 
monocyclohexyl phthalate -20.6 192.8 2 18.0 85.4 2 -25.7 184.7 2 
monoethyl phthalate -41.1  1 10.9  1 -44.2  1 
monohexyl phthalate -96.7 64.7 2 -11.9 25.4 2 -0.1 64.7 2 
monomethyl phthalate -120.6 70.1 2 -23.2 28.7 2 -0.1 70.1 2 
Mono-n-pentyl  phthalate -51.6  1 5.6  1 -53.2  1 
steroidal EDCs          
1,4-androstadienedione -156.5 133.9 3 -41.4 57.8 3 -144.6 133.9 3 
11-keteotiocholanolone -80.8 34.4 3 -8.9 14.7 3 -78.3 34.4 3 
11-ketotestosterone -114.4 42.8 3 -23.2 18.3 3 -107.7 42.8 3 
5α -dihydrotestosterone -107.3 46.5 3 -20.0 19.9 3 -101.5 46.5 3 
11β-hydroxyandrosterone -137.9 77.4 3 -33.9 33.7 3 -128.2 77.4 3 
17α-acetoxyprogesterone -124.2 55.5 3 -27.0 23.9 3 -116.5 55.5 3 
17α-hydroxyprogesterone -118.6 58.8 3 -24.9 25.2 3 -111.4 58.8 3 
17α-testosterone -170.2 7.2 3 -46.1 3.9 3 -156.9 7.2 3 
17α-trenbolone -17.0 136.2 3 17.9 57.6 3 -22.2 136.2 3 
17β-testosterone -116.3 47.9 3 -23.9 20.6 3 -109.4 47.9 3 
17β-trenbolone -103.7 36.9 3 -18.5 15.7 3 -98.4 36.9 3 
19-norethindron -115.3 50.3 3 -23.4 21.9 3 -108.5 50.3 3 
19-nortestosterone -54.3 104.9 3 2.5 45.0 3 -55.1 104.9 3 
α-zearalenol -116.7 61.7 3 -23.9 26.5 3 -109.8 61.7 3 
α-zeranol -40.9 21.9 3 7.6 9.1 3 -43.1 21.9 3 
β-zearalenol          
β-zeranol -26.4 19.7 3 14.4 8.1 3 -30.6 19.7 3 
androstenedione*          
androsterone*          
caproxyprogesterone -108.0 78.3 3 -21.6 33.7 3 -101.8 78.3 3 
chlorotestosteron acetate -110.2 42.7 3 -22.2 17.7 3 -103.8 42.7 3 
cortisol -105.1 62.9 3 -18.7 27.4 3 -99.7 62.9 3 
cortisone*          
dexamethasone*          
dienostrol*          
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 DH288.15 (kJ/mol) DS (J/mol/K) DG288.15K (kJ/mol) 
Compound Mean SD n Mean SD n Mean SD n 
diethylstilbestrol*          
epi-androsterone*          
Estrone -131.5 70.6 3 -31.0 30.5 3 -122.6 70.6 3 
ethinyl testosterone -95.3 27.6 3 -14.8 11.9 3 -91.1 27.6 3 
flugestone acetate -84.1 26.8 3 -8.8 12.3 3 -81.5 26.8 3 
fluoxymesterone -123.4 47.0 3 -26.8 20.4 3 -115.6 47.0 3 
gestodene -193.6 46.0 3 -57.5 19.4 3 -177.0 46.0 3 
medroxyprogesterone -135.3 37.6 3 -32.0 16.4 3 -126.0 37.6 3 
medroxyprogesterone acetate -148.3 84.7 3 -37.5 36.3 3 -137.4 84.7 3 
megestrol -159.2 59.6 3 -42.5 26.1 3 -146.9 59.6 3 
megestrol acetate -143.0 96.8 3 -35.5 41.8 3 -132.8 96.8 3 
mestanolone -199.6 35.2 3 -60.5 14.8 3 -182.2 35.2 3 
methylboldone -130.5 48.9 3 -29.8 21.0 3 -121.9 48.9 3 
methylprogesterone -96.2 52.5 3 -15.8 22.4 3 -91.6 52.5 3 
norethandrolone -102.4 41.2 3 -17.8 17.7 3 -97.3 41.2 3 
norgestrel -101.6 33.6 3 -17.4 14.6 3 -96.6 33.6 3 
prednisolone -123.4 76.2 3 -26.5 32.9 3 -115.7 76.2 3 
prednisone*          
progesterone -148.8 80.9 3 -38.3 34.7 3 -137.7 80.9 3 
stanozolol*          
testosterone 
phenylpropionate*          

testosterone acetate -96.2 52.5 3 -15.8 22.4 3 -91.6 52.5 3 
testosterone benzoate -9.2 23.3 3 20.4 10.3 3 -15.1 23.3 3 
testosterone propionate -149.1 22.0 3 -39.4 9.9 3 -137.7 22.0 3 
testosterone acetate          
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APPENDIX D - ACTIVE AND PASSIVE SAMPLING BASED 
APPROACHES FOR MONITORING ENDOCRINE DISRUPTING 
COMPOUNDS IN THE BELGIAN PART OF THE NORTH SEA 
BETWEEN 2016 AND 2018 
 
Table D1. Overview of the quantitative results obtained in samples from SC1, collected at open sea 
Zeebrugge (OZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=4 and npassive=6) indicate the average concentration and 
the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency (%). 
< MQL refers to concentrations below the method quantification limit. Blank cells refer to concentrations 
below the method detection limit. 

 
D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
Methandriol 

         

17α-trenbolone 
         

17β-trenbolone 
   

0.3 0.1 100 1.0 1.3 67 

11β-hydroxyandrosterone 
         

Testosterone 17β-cypionate 
         

17β-dihydroandrosterone 
         

Androsterone 2.6 0.1 75 4.4 0.1 50 2.4 0.5 100 

19-nortestosterone 
   

< MQL 
 

75 0.8 0.7 67 

1,4-Androstadienedione 1.2 0.3 75 0.2 0.1 100 1.1 0.7 100 

11-ketoetiocholanolone 
         

Androstenedione 
   

< MQL 
 

100 0.4 0.2 83 

Mestanolone 
   

3.3 0.0 50 0.4 0.0 83 

17α-testosterone 0.5 0.3 100 0.3 0.1 100 0.3 0.1 83 

17β-testosterone 
         

5α-dihydrotestosterone 0.5 0.2 100 2.9 1.8 100 1.3 1.0 67 

Norethindron 
         

Methylboldenone 
         

11-ketotestosterone 
   

0.5 0.0 100 2.8 2.9 67 

Formestane 
   

0.8 0.2 100 4.1 4.1 100 

Norethandrolone 
      

0.7 0.2 67 

Methyltestosterone 
      

0.9 0.1 67 

Trenbolone acetate 
      

0.4 0.2 67 

Ethynyl testosterone 
      

0.1 0.0 67 

Stanozolol 
         

Testosterone acetate 0.9 0.0 75 < MQL 
 

100 1.8 1.0 67 

Fluoxymesterone 
         

Testosterone propionate 1.3 1.1 100 0.5 0.0 75 0.3 0.2 67 

Chlorotestosteron acetate 
         

Testosterone benzoate 
      

0.2 0.1 67 

Testosterone phenylpropionate 
      

0.2 0.0 50 

19-nortestosterone-17-decanoate 
         

17α-estradiol 
   

< MQL 
 

75 
   

17β-estradiol 6.8 4.0 75 6.8 4.0 100 
   

Estradiol-17-acetate 2.5 0.7 75 1.5 0.3 100 0.2 0.1 67 

Dienoestrol 
   

< MQL 
 

100 
   

Equilin 
      

2.2 0.2 67 

Diethylstilbestrol 
         

Estrone 
   

1.9 0.3 75 
   

17a-ethinylestradiol 
         

α-zearalenol 
         

β-zearalenol 
         

α-zeranol 
   

3.1 0.4 75 
   

β-zeranol 
         

Gestodene 
         

Estradiol-benzoate 
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D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
5α-Pregnan-3α,20β-diol 

         

Norgestrel 
         

Dihydroprogesterone 
   

1.9 0.0 100 
   

Progesterone <MQL 
 

100 0.8 0.0 100 0.1 0.0 50 

Methylprogesterone 1.0 0.3 100 0.7 0.0 100 0.8 0.5 83 

17α-hydroxyprogesterone 
   

1.8 0.0 75 
   

Megestrol 
   

2.6 0.0 100 0.6 0.2 67 

Medroxyprogesterone 0.6 0.1 75 0.7 0.0 100 0.9 0.6 83 

17α-acetoxyprogesterone 
         

Megestrol acetate < MQL 
     

2.0 
 

17 

Medroxyprogesterone acetate < MQL 
        

Flugestone acetate 
      

0.5 0.1 67 

Caproxyprogesterone 
   

0.9 
 

25 1.1 0.8 83 

Prednisone 9.2 8.9 100 
   

1.5 0.6 83 

Corticosterone 3.1 1.7 100 < MQL 
 

100 
   

Cortisone 10.0 17.9 100 4.1 0.3 100 0.7 0.1 83 

Prednisolone 6.9 1.7 100 
   

26.5 28.7 83 

Cortisol 2.8 5.6 100 2.7 0.0 50 
   

Tetrahydrocortisone < MQL 
 

100 7.7 
 

25 20.9 27.6 67 

Corticosterone acetate 
         

Dexamethasone 
      

8.5 6.1 67 

Prednisolone acetate < MQL 
        

Cortisone acetate 
      

6.7 5.4 83 

Hydrocortisone 21-acetate 
      

12.7 9.1 67 

2-methyl phenol 
         

4-ethylphenol 328.0 150.0 100 407.0 440.0 100 16.7 12.6 67 

4-isopropyl phenol 
         

4-chloro-3-methylphenol 
         

2,5-dichloro phenol 
         

3,4,6-trichlorophenol 
         

Bisphenol A 
         

Dimethyl phthalate 
         

Diethyl phthalate 159.0 3.0 100 27.0 3.0 100 
   

Dibutyl phthalate 
   

77.0 11.0 100 12.1 5.8 83 

Diamyl phthalate 
         

Benzyl butyl phthalate 
   

79.0 70.0 100 5.3 1.0 83 

Dicyclohexyl phthalate 67.0 93.0 100 
      

Dihexyl phthalate 
         

Dibenzyl phthalate 
      

6.9 0.1 67 

Diethylheyxl phthalate 269.0 151.0 100 298.0 145.0 100 2.2 1.4 67 

Dinonyl phthalate 
      

14.2 9.1 67 

Diisodecyl phthalate 
   

< MQL 
 

100 8.1 1.5 67 

Monomethyl phthalate 235.0 161.0 100 2545.0 226.0 100 38.4 54.2 50 

Monoethyl phthalate 
      

2.1 1.2 67 

Monobutyl phthalate 176.5 23.0 100 
      

Mono-n-pentyl  phthalate < MQL 
 

100 58.0 170.0 100 
   

Monocyclohexyl phthalate 
         

Monohexyl phthalate 
      

18.7 6.2 83 

Monobenzyl phthalate 
      

2.1 1.2 67 

Monoethylhexyl phthalate 
   

740.0 391.0 
 

37.5 21.0 67 
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Table D2. Overview of the quantitative results obtained in samples from SC2, collected at open sea 
Zeebrugge (OZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration and 
the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency (%). 
< MQL refers to concentrations below the method quantification limit. Blank cells refer to concentrations 
below the method detection limit. 

 
D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
Methandriol 

      
17.3 7.9 100 

17α-trenbolone 1.2 0.2 67 
      

17β-trenbolone 0.8 0.0 100 
      

11β-hydroxyandrosterone 3.3 1.7 100 0.4 0.2 67 
   

Testosterone 17β-cypionate 
         

17β-dihydroandrosterone 
         

Androsterone 63.9 21.8 100 2.6 0.6 100 
   

19-nortestosterone < MQL 
 

33 
      

1,4-Androstadienedione 0.8 0.0 100 1.2 0.0 67 
   

11-ketoetiocholanolone 1.8 1.3 100 
   

1.0 0.3 100 

Androstenedione 0.9 0.2 100 
      

Mestanolone 
         

17α testosterone 0.3 0.2 100 0.5 0.2 100 
   

17β-testosterone 
         

5α-dihydrotestosterone < MQL 
 

100 0.4 0.2 100 
   

Norethindron 1.1 0.8 67 
      

Methylboldenone 1.7 
 

33 
      

11-ketotestosterone 2.7 0.2 100 
      

Formestane 3.7 1.4 100 
      

Norethandrolone 1.0 0.3 100 
      

Methyltestosterone 1.7 
        

Trenbolone acetate 2.0 1.5 100 
      

Ethynyl testosterone 0.6 0.1 100 
   

0.7 0.2 100 

Stanozolol 
         

Testosterone acetate 0.6 0.4 100 0.9 0.0 100 3.9 1.6 100 

Fluoxymesterone 
         

Testosterone propionate 
   

1.6 0.4 100 
   

Chlorotestosteron acetate 
         

Testosterone benzoate 1.2 0.0 100 
      

Testosterone 
phenylpropionate 

1.0 0.9 67 
   

0.2 0.1 100 

19-nortestosterone-17-
decanoate 

         

17α-estradiol 
         

17β-estradiol 
   

6.2 1.3 67 30.9 5.4 100 

Estradiol-17-acetate 
   

2.7 1.1 100 
   

Dienoestrol 
   

< MQL 
 

67 
   

Equilin 
      

22.1 4.7 100 

Diethylstilbestrol 
         

Estrone 1.4 0.9 67 
      

17α-ethinylestradiol 
         

α-zearalenol 3.9 1.3 100 
      

β-zearalenol 2.7 1.5 67 
      

α-zeranol 3.2 0.3 67 
      

β-zeranol 5.3 1.0 67 
      

Gestodene 1.5 0.6 67 
      

Estradiol-benzoate 
         

5α-Pregnan-3α,20β-diol 
         

Norgestrel 0.9 0.1 67 
   

1.6 0.4 100 

Dihydroprogesterone 
         

Progesterone 0.6 0.3 100 
   

0.5 0.1 100 

Methylprogesterone 0.8 0.8 67 1.1 0.3 100 
   

17α-hydroxyprogesterone 1.3 0.3 67 
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D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
Megestrol 7.7 

 
33 

      

Medroxyprogesterone 1.9 0.5 67 0.6 0.0 67 
   

17α-acetoxyprogesterone 2.2 0.7 67 
      

Megestrol acetate 
         

Medroxyprogesterone acetate 2.8 1.6 67 
      

Flugestone acetate 2.6 0.9 67 
   

0.4 0.2 100 

Caproxyprogesterone 
         

Prednisone 10.9 5.2 67 7.5 
 

33 5.7 2.4 100 

Corticosterone 27.7 3.9 67 2.3 1.5 67 
   

Cortisone 9.5 11.7 67 
   

4.0 2.0 100 

Prednisolone 29.6 40.2 67 
      

Cortisol 6.5 5.9 67 3.9 
 

33 2.7 1.5 100 

Tetrahydrocortisone 
   

2.5 0.0 100 
   

Corticosterone acetate < MQL 
 

67 
      

Dexamethasone 54.5 1.5 67 
      

Prednisolone acetate 
         

Cortisone acetate 
      

174.6 24.8 100 

Hydrocortisone 21-acetate < MQL 
 

100 
      

2-methyl phenol 
         

4-ethylphenol 433.9 250.6 67 280.1 381.2 100 23.5 7.0 100 

4-isopropyl phenol 
      

84.5 7.3 67 

4-chloro-3-methylphenol 
         

2,5-dichloro phenol 
         

3,4,6-trichlorophenol 
         

Bisphenol A 
      

21.8 4.7 67 

Dimethyl phthalate 
         

Diethyl phthalate 
   

923.2 837.4 67 
   

Dibutyl phthalate 1866.7 411.6 100 542.0 805.6 100 14.8 3.3 100 

Diamyl phthalate 
         

Benzyl butyl phthalate 56.6 23.8 100 79.4 69.8 100 5.7 1.4 100 

Dicyclohexyl phthalate 132.4 
 

33 
      

Dihexyl phthalate 152.1 183.8 67 
      

Dibenzyl phthalate 
         

Diethylheyxl phthalate 269.1 150.5 67 298.3 144.7 100 0.5 0.2 50 

Dinonyl phthalate 
         

Diisodecyl phthalate 
      

9.7 1.0 83 

Monomethyl phthalate 2329.8 1583.4 67 2542.4 222.7 67 
   

Monoethyl phthalate 
         

Monobutyl phthalate 
   

26.0 10.0 100 
   

Mono-n-pentyl  phthalate 577.2 320.3 67 170.2 137.6 67 
   

Monocyclohexyl phthalate 
         

Monohexyl phthalate 
      

15.1 3.8 67 

Monobenzyl phthalate 56.7 17.4 67 
      

Monoethylhexyl phthalate 
   

739.9 391.1 100 14.5 5.6 100 

 

 

  



Appendices 

 278 

Table D3. Overview of the quantitative results obtained in samples from SC3, collected at open sea 
Zeebrugge (OZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6)  ndicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 
D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
Methandriol 

         

17α-trenbolone 0.8 0.2 67 0.8 0.3 67 
   

17β-trenbolone 1.0 0.6 67 1.5 0.2 67 
   

11β-hydroxyandrosterone 0.9 0.4 100 0.6 0.1 67 
   

Testosterone 17β-cypionate 
         

17β-dihydroandrosterone 1.7 0.4 67 
      

Androsterone 
         

19-nortestosterone 4.5 0.5 100 2.6 0.7 100 
   

1,4-Androstadienedione 
         

11-ketoetiocholanolone 
      

< MQL 
 

100 

Androstenedione < 
MQL 

 
100 0.6 0.3 67 

   

Mestanolone 
         

17α-testosterone 2.8 0.6 100 2.3 0.4 100 
   

17β-testosterone 
         

5α-dihydrotestosterone < 
MQL 

 
100 < MQL 

 
100 

   

Norethindron 
   

4.4 2.7 100 
   

Methylboldenone 2.3 0.2 67 
      

11-ketotestosterone 0.2 0.1 100 
      

Formestane 
   

22.5 3.6 100 
   

Norethandrolone 
         

Methyltestosterone 0.9 0.2 67 0.6 0.1 67 
   

Trenbolone acetate 
         

Ethynyl testosterone 0.6 0.0 67 0.8 0.1 67 
   

Stanozolol 
         

Testosterone acetate 
   

1.5 0.6 67 
   

Fluoxymesterone 
         

Testosterone propionate 0.7 0.2 67 1.3 0.4 67 1.1 0.1 67 

Chlorotestosteron acetate 0.6 0.0 67 
      

Testosterone benzoate 1.3 0.1 67 1.3 0.1 67 0.1 0.0 67 

Testosterone phenylpropionate 0.8 0.5 100 18.8 19.
9 

100 0.5 0.7 67 

19-nortestosterone-17-decanoate 
         

17α-estradiol < 
MQL 

 
100 

      

17β-estradiol 8.4 2.7 100 85.0 5.2 100 
   

Estradiol-17-acetate 1.5 0.6 67 21.7 4.6 100 
   

Dienoestrol 
   

< MQL 
 

67 
   

Equilin 
      

0.8 0.3 50 

Diethylstilbestrol 
         

Estrone 
         

17α-ethinylestradiol 
   

< MQL 
 

67 
   

α-zearalenol 
         

β-zearalenol 
         

α-zeranol < 
MQL 

 
67 < MQL 

 
67 

   

β-zeranol 
   

< MQL 
 

67 
   

Gestodene 
         

Estradiol-benzoate < 
MQL 

 
100 

      

5α-Pregnan-3α,20β-diol 
         

Norgestrel 0.5 0.1 67 
      

Dihydroprogesterone 0.8 0.0 100 0.8 0.0 67 
   

Progesterone 7.9 2.5 100 7.4 1.6 100 0.1 0.0 67 
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D 

  
R 

  
P 

  
 

Av SD DF Av SD DF Av SD DF 
Methylprogesterone 

   
1.2 0.2 67 0.3 0.1 67 

17α-hydroxyprogesterone 
   

11.2 2.3 100 1.4 0.2 67 

Megestrol 1.4 0.1 100 1.4 0.1 100 
   

Medroxyprogesterone 0.3 0.2 100 1.2 0.3 67 0.1 0.1 50 

17α-acetoxyprogesterone 1.8 0.1 100 2.5 0.8 100 0.4 0.0 67 

Megestrol acetate 0.9 0.1 67 0.9 0.6 100 
   

Medroxyprogesterone acetate 
   

0.7 0.4 100 
   

Flugestone acetate 1.3 0.6 67 1.5 0.5 100 
   

Caproxyprogesterone 1.2 0.1 67 1.8 0.1 67 0.3 0.0 83 

Prednisone 
   

15.2 3.5 67 1.6 0.4 83 

Corticosterone 5.8 0.8 67 3.7 1.6 67 
   

Cortisone 2.7 1.0 67 < MQL 
 

67 1.4 
 

17 

Prednisolone 
   

9.0 0.4 67 1.3 0.1 83 

Cortisol 
   

5.9 1.8 67 0.1 0.0 83 

Tetrahydrocortisone < 
MQL 

 
67 < MQL 

 
100 

   

Corticosterone acetate < 
MQL 

 
67 < MQL 

 
67 

   

Dexamethasone 9.7 0.3 67 9.6 0.3 67 2.4 0.2 50 

Prednisolone acetate 
         

Cortisone acetate 
      

229.3 59.9 67 

Hydrocortisone 21-acetate 
         

2-methyl phenol 
         

4-ethylphenol 2064.
6 

1192.5 67 
   

79.6 43.7 67 

4-isopropyl phenol 
      

94.0 2.7 50 

4-chloro-3-methylphenol 
         

2,5-dichloro phenol 
         

3,4,6-trichlorophenol 
         

Bisphenol A 
      

18.4 2.1 67 

Dimethyl phthalate 
         

Diethyl phthalate 478.2 463.5 67 
      

Dibutyl phthalate 5296.
5 

4839.7 67 112.3 79.
9 

67 43.1 34.4 83 

Diamyl phthalate < 
MQL 

 
100 

      

Benzyl butyl phthalate < 
MQL 

 
100 37.1 8.5 67 5.9 1.4 83 

Dicyclohexyl phthalate < 
MQL 

 
100 24.5 

 
33 

   

Dihexyl phthalate 
         

Dibenzyl phthalate < 
MQL 

 
100 

      

Diethylheyxl phthalate 190.6 130.1 67 
   

3.8 2.4 100 

Dinonyl phthalate 
      

35.9 38.2 100 

Diisodecyl phthalate 
      

18.1 6.7 83 

Monomethyl phthalate 
         

Monoethyl phthalate 
         

Monobutyl phthalate 458.8 560.0 67 
      

Mono-n-pentyl  phthalate 
      

4.0 2.1 50 

Monocyclohexyl phthalate 89.8 5.5 100 
      

Monohexyl phthalate 
      

23.1 13.0 50 

Monobenzyl phthalate 
      

3.1 1.2 50 

Monoethylhexyl phthalate 
      

8.3 1.0 50 
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Table D4. Overview of the quantitative results obtained in samples from SC4, collected at open sea 
Zeebrugge (OZ). D represents the active samling during deployement. Av and SD (nactive=3 and npassive=6) 
indicate the average concentration and the standard deviation, respectively, both expressed in ng L-1. DF 
represents the detection frequency (%). < MQL refers to concentrations below the method quantification 
limit. Blank cells refer to concentrations below the method detection limit. 

 
D 

  
 

Av SD DF 
Methandriol 

   

17α-trenbolone 
   

17β-trenbolone < MQL 
 

100 

11β-hydroxyandrosterone 
   

Testosterone 17β-cypionate 
   

17β-dihydroandrosterone 
   

Androsterone 
   

19-nortestosterone 
   

1,4-Androstadienedione 
   

11-ketoetiocholanolone < MQL 
 

67 

Androstenedione 
   

Mestanolone 
   

17α-testosterone 
   

17β-testosterone 0.3 0.0 100 

5α-dihydrotestosterone 0.2 0.1 100 

Norethindron 
   

Methylboldenone < MQL 
 

100 

11-ketotestosterone 
   

Formestane 
   

Norethandrolone 
   

Methyltestosterone 0.4 0.0 67 

Trenbolone acetate 
   

Ethynyl testosterone 
   

Stanozolol 
   

Testosterone acetate 
   

Fluoxymesterone 
   

Testosterone propionate 
   

Chlorotestosteron acetate 
   

Testosterone benzoate 
   

Testosterone phenylpropionate 
   

19-nortestosterone-17-decanoate 
   

17α-estradiol 
   

17β-estradiol 
   

Estradiol-17-acetate 3.9 4.1 67 

Dienoestrol 
   

Equilin 
   

Diethylstilbestrol 
   

Estrone 
   

17α-ethinylestradiol 
   

α-zearalenol 
   

β-zearalenol 
   

α-zeranol 
   

β-zeranol 
   

Gestodene 
   

Estradiol-benzoate 
   

5α-Pregnan-3α,20β-diol 
   

Norgestrel 2.9 0.2 67 

Dihydroprogesterone 
   

Progesterone 
   

Methylprogesterone 
   

17α-hydroxyprogesterone 0.3 0.0 67 

Megestrol 
   

Medroxyprogesterone < MQL 
 

67 

17α-acetoxyprogesterone 
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D 

  
 

Av SD DF 
Megestrol acetate 

   

Medroxyprogesterone acetate 
   

Flugestone acetate 
   

Caproxyprogesterone 
   

Prednisone 
   

Corticosterone 
   

Cortisone < MQL 
 

67 

Prednisolone 
   

Cortisol 
   

Tetrahydrocortisone 
   

Corticosterone acetate 125.4 
 

33 

Dexamethasone 3.5 0.2 67 

Prednisolone acetate 
   

Cortisone acetate 
   

Hydrocortisone 21-acetate 
   

2-methyl phenol 
   

4-ethylphenol 1233.1 4494.6 100 

4-isopropyl phenol 392.6 3.3 100 

4-chloro-3-methylphenol < MQL 
 

67 

2,5-dichloro phenol 
   

3,4,6-trichlorophenol 
   

Bisphenol A 961.3 330.2 67 

Dimethyl phthalate < MQL 
 

100 

Diethyl phthalate 
   

Dibutyl phthalate 240.5 132.5 100 

Diamyl phthalate 17.3 8.2 100 

Benzyl butyl phthalate 76.6 1.6 67 

Dicyclohexyl phthalate < MQL 
  

Dihexyl phthalate 31.1 19.6 100 

Dibenzyl phthalate 
   

Diethylheyxl phthalate 
   

Dinonyl phthalate 
   

Diisodecyl phthalate 
   

Monomethyl phthalate 488.2 238.3 67 

Monoethyl phthalate 
   

Monobutyl phthalate 132.5 59.0 100 

Mono-n-pentyl  phthalate 59.1 28.1 100 

Monocyclohexyl phthalate 
   

Monohexyl phthalate 
   

Monobenzyl phthalate 61.2 5.4 67 

Monoethylhexyl phthalate 
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Table D5. Overview of the quantitative results obtained in samples from SC1, collected at harbour of 
Oostende (HO). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=4 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol          
17α-trenbolone          
17β-trenbolone    0.9 0.5 100 0.1 0.0 83 
11β-hydroxyandrosterone          
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone 3.6 0.1 50       
19-nortestosterone    < MQL  100    
1,4-Androstadienedione 1.6 0.3 75 0.8 0.7 100 0.4 0.0 67 
11-ketoetiocholanolone          
Androstenedione    < MQL  100    
Mestanolone       0.4 0.1 50 
17α-testosterone 1.1 0.3 100 0.3 0.1 100 0.2 0.1 50 
17β-testosterone          
5α-dihydrotestosterone 1.9 0.5 100 < MQL  100 0.8 0.2 33 
Norethindron          
Methylboldenone          
11-ketotestosterone    2.3 0.3 50 1.0 1.1 50 
Formestane    2.0 0.6 100 0.5 0.2 50 
Norethandrolone       0.6  17 
Methyltestosterone          
Trenbolone acetate       0.2  17 
Ethynyl testosterone 0.6 0.0 100    0.0 0.0 67 
Stanozolol          
Testosterone acetate 1.1 0.1 75 < MQL  50 0.9 0.3 67 
Fluoxymesterone          
Testosterone propionate 2.7 1.1 100    0.5 0.3 67 
Chlorotestosteron acetate          
Testosterone benzoate          
Testosterone phenylpropionate          
19-nortestosterone-17-decanoate          
17α-estradiol    < MQL  100    
17β-estradiol 9.7 4.0 100 6.4 0.1 75 0.6 0.1 83 
Estradiol-17-acetate 10.4 6.9 100    0.3 0.1 33 
Dienoestrol          
Equilin          
Diethylstilbestrol          
Estrone    1.9 0.2 100 0.3 0.0 67 
17α-ethinylestradiol          
α-zearalenol          
β-zearalenol          
α-zeranol    3.9 1.1 50    
β-zeranol          
Gestodene          
Estradiol-benzoate          
5α-Pregnan-3α,20β-diol          
Norgestrel          
Dihydroprogesterone          
Progesterone < MQL  100    0.2 0.1 67 
Methylprogesterone 0.8 0.5 100 0.7 0.0 50 0.1 0.0 67 
17α-hydroxyprogesterone          
Megestrol       0.4 0.0 67 
Medroxyprogesterone 0.8 0.3 75 0.7 0.0 50 0.2 0.3 67 
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone 1.2 0.1 100    0.5 0.3 67 
Megestrol acetate < MQL  25       
Medroxyprogesterone acetate 1.1 1.0 75       
Flugestone acetate          
Caproxyprogesterone    1.1 0.2 100 0.2 0.0 33 
Prednisone 39.1 8.9 50    7.4 1.4 10 
Corticosterone 4.6 1.7 75 < MQL      
Cortisone 28.2 17.9 50 5.5 0.9 100 2.1 1.8 67 
Prednisolone    7.7 0.9 100 4.1 0.2 5 
Cortisol 7.5 5.6 100 3.1 0.1 75    
Tetrahydrocortisone < MQL  100 8.8 0.7 75 1.7 0.4 67 
Corticosterone acetate          
Dexamethasone       2.0 0.8 33 
Prednisolone acetate < MQL  100       
Cortisone acetate < MQL  100       
Hydrocortisone 21-acetate    5.0 0.0 75    
2-methyl phenol 215.4 47.8 100 6502.6 1791.7 75    
4-ethylphenol 2508.0 243.0 100 468.7 158.8 75 82.6 20.5 67 
4-isopropyl phenol       81.3 0.3 33 
4-chloro-3-methylphenol          
2,5-dichloro phenol          
3,4,6-trichlorophenol          
Bisphenol A       42.7 14.8 83 
Dimethyl phthalate          
Diethyl phthalate 235.0 111.0 100 753.0 95.0 75    
Dibutyl phthalate 2645.0 250.0 100 1502.0 401.0 75 23.0 15.1 83 
Diamyl phthalate    < MQL  75    
Benzyl butyl phthalate    343.0 283.0 75 8.8 2.9 83 
Dicyclohexyl phthalate       8.6 1.2 67 
Dihexyl phthalate          
Dibenzyl phthalate       6.8 0.8 33 
Diethylheyxl phthalate 100.1 70.5 100 704.4 246.7 75 2.6 2.2 83 
Dinonyl phthalate       16.2 14.2 83 
Diisodecyl phthalate    < MQL  75 41.6 44.3 50 
Monomethyl phthalate          
Monoethyl phthalate       1.1 0.4 33 
Monobutyl phthalate 165.0 28.0  192.3 7.5 75    
Mono-n-pentyl  phthalate    138.0 100.0 75 2.6  17 
Monocyclohexyl phthalate          
Monohexyl phthalate 53.1 30.2 100    13.7 4.3 67 
Monobenzyl phthalate    58.1 1.0 50 < MQL  33 
Monoethylhexyl phthalate 399.0 98.0 100 656.3 123.4 75 27.4 7.9 67 
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Table D6. Overview of the quantitative results obtained in samples from SC2, collected at harbour of 
Oostende (HO). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol       27.0 7.7 100 
17α-trenbolone          
17β-trenbolone 0.8 0.3 67 0.7 0.1 100    
11β-hydroxyandrosterone          
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone    83.2 38.3 100    
19-nortestosterone 3.9 1.1 100       
1,4-Androstadienedione 2.7 1.6 100 1.4 0.4 100 5.1 2.4 83 
11-ketoetiocholanolone 2.2 1.2 67 1.5 0.7 67 1.3 0.9 67 
Androstenedione 1.7 0.3 67 0.8 0.1 67    
Mestanolone    14.2  33    
17α-testosterone 1.0 0.3 67 < MQL  67    
17β-testosterone 1.1 1.4 67       
5α-dihydrotestosterone < MQL 0.0 100 < MQL  100    
Norethindron 1.2 0.2 100 < MQL  67    
Methylboldenone    1.0 0.7 67    
11-ketotestosterone 6.5 5.0 10 0.4 0.0 67    
Formestane 7.9 1.1 67 2.9 0.7 67    
Norethandrolone          
Methyltestosterone          
Trenbolone acetate 3.6  33       
Ethynyl testosterone 1.3 0.4 100 0.5 0.1 100    
Stanozolol          
Testosterone acetate 2.9 0.1 67 < MQL  67    
Fluoxymesterone          
Testosterone propionate 0.7 0.5 100! 0.6 0.0 67    
Chlorotestosteron acetate          
Testosterone benzoate       0.3 0.3 50 
Testosterone phenylpropionate 2.8 0.4 100 3.8 2.8 100 0.2 0.1 50 
19-nortestosterone-17-decanoate       2.6 2.0 33 
17α-estradiol          
17β-estradiol       50.3 7.3 83 
Estradiol-17-acetate          
Dienoestrol          
Equilin 2.8 0.2 67       
Diethylstilbestrol 2.0 1.9 67       
Estrone 0.3 0.0 67 0.9  33    
17α-ethinylestradiol          
α-zearalenol    3.0 0.4 67    
β-zearalenol 2.7 0.6 67 5.0 1.8 67    
α-zeranol 1.0  33 1.6  33    
β-zeranol 3.4 0.1 67 3.7 0.5 67    
Gestodene 1.0 0.1 67       
Estradiol-benzoate          
5α-Pregnan-3α,20β-diol          
Norgestrel    0.7  33    
Dihydroprogesterone          
Progesterone 0.4 0.2 100 < MQL  100 0.3 0.2 100 
Methylprogesterone 1.6 1.4 100       
17α-hydroxyprogesterone 15.3 5.0 100 2.2 0.0 67    
Megestrol          
Medroxyprogesterone 0.8 0.7 67 < MQL  67    
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone < MQL  100    0.7 0.7 100 
Megestrol acetate          
Medroxyprogesterone acetate 1.0 0.4 100 2.6 1.6 100    
Flugestone acetate 3.7 1.4 67 2.6 0.0 100 0.4 0.2 67 
Caproxyprogesterone          
Prednisone       5.7 1.3 100 
Corticosterone          
Cortisone 3.2 2.0 100    9.3 3.9 100 
Prednisolone 4.5 0.2 67 < MQL  67 4.0 1.2 100 
Cortisol 1.3 0.1 67 1.5 0.3 100 1.1 0.5 100 
Tetrahydrocortisone          
Corticosterone acetate < MQL  100 < MQL  67    
Dexamethasone       2.3 0.7 67 
Prednisolone acetate          
Cortisone acetate       56.5 34.7 100 
Hydrocortisone 21-acetate < MQL  100       
2-methyl phenol 309.2 103.5 67 153.3 84.8 67    
4-ethylphenol 2525.5 174.3 100 33.9 5.8 67 20.0 13.0 83 
4-isopropyl phenol          
4-chloro-3-methylphenol          
2,5-dichloro phenol          
3,4,6-trichlorophenol          
Bisphenol A       18.4 2.7 67 
Dimethyl phthalate       9.9 1.3 67 
Diethyl phthalate 235.3 111.4 100 3772.7 5259.3 67    
Dibutyl phthalate 2644.7 250.1 100 1433.0 1021.6 67 16.8 6.3 100 
Diamyl phthalate          
Benzyl butyl phthalate    137.1 160.0 100 5.4 1.9 67 
Dicyclohexyl phthalate          
Dihexyl phthalate 34.1 5.2 67 21.5 1.9 67    
Dibenzyl phthalate       6.9 0.1 67 
Diethylheyxl phthalate 205.0 86.7 100 443.2 58.1 67 1.9 0.5 50 
Dinonyl phthalate 446.3 374.9 100    11.8 3.4 50 
Diisodecyl phthalate 440.8 446.3 100    14.4 5.5 67 
Monomethyl phthalate 157.4 48.9 100       
Monoethyl phthalate          
Monobutyl phthalate   100 480.6 538.0 67    
Mono-n-pentyl  phthalate 248.2  100 184.0  33    
Monocyclohexyl phthalate 157.7 128.2        
Monohexyl phthalate 138.2         
Monobenzyl phthalate 448.9 308.0 100       
Monoethylhexyl phthalate    1545.6 220.1 67 22.4 3.1 83 
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Table D7. Overview of the quantitative results obtained in samples from SC3, collected at harbour of 
Oostende (HO). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol          
17α-trenbolone    1.7 0.6 67    
17β-trenbolone    3.0 2.7 67    
11β-hydroxyandrosterone    1.7 1.1 100    
Testosterone 17β-cypionate 4.8 5.3 67       
17β-dihydroandrosterone          
Androsterone 2.5 1.9 100       
19-nortestosterone          
1,4-Androstadienedione 1.5 0.2 67       
11-ketoetiocholanolone       0.5 0.5 67 
Androstenedione    3.4 1.3 67    
Mestanolone 7.1 1.0 100       
17α-testosterone 2.1 0.3 100 3.4 0.4 67    
17β-testosterone    3.5 1.4 67    
5α-dihydrotestosterone 1.6 2.5 100 < MQL  100    
Norethindron 7.4 5.0 67 13.6 3.9 67    
Methylboldenone 2.2  33 2.3 1.0 67    
11-ketotestosterone    2.1 1.0 67    
Formestane          
Norethandrolone          
Methyltestosterone    5.8 0.1 67    
Trenbolone acetate    1.1  33    
Ethynyl testosterone 0.9 0.3 100 2.0 0.6 67    
Stanozolol          
Testosterone acetate 2.8  33 2.5 1.2 67    
Fluoxymesterone < MQL  100 < MQL  100    
Testosterone propionate 1.6 1.6 67 1.9 0.2 67 0.5 0.5 50 
Chlorotestosteron acetate    0.8  33    
Testosterone benzoate 1.2 0.7 67 2.4 1.6 67 0.2 0.0 67 
Testosterone phenylpropionate 21.9 12.9 67 64.1 28.5 100 2.5 1.3 67 
19-nortestosterone-17-decanoate          
17α-estradiol 5.9  33       
17β-estradiol 6.5 1.9 67 29.3 4.9 67    
Estradiol-17-acetate 3.2 1.3 33 34.9 0.1 67    
Dienoestrol 4.3 2.6 67 16.0 3.7 67    
Equilin    2.3 3.1 67 9.0 1.9 50 
Diethylstilbestrol    3.7  33    
Estrone    < MQL  67    
17α-ethinylestradiol          
α-zearalenol < MQL  67       
β-zearalenol          
α-zeranol < MQL  67       
β-zeranol < MQL  67 1.5 1.6 67    
Gestodene          
Estradiol-benzoate       0.6 0.5 50 
5α-Pregnan-3α,20β-diol    3.9  33    
Norgestrel    0.5 0.1 67    
Dihydroprogesterone 1.2 0.4 100 2.3  33    
Progesterone 14.4 3.1 100 14.8 1.7 100 0.6 0.7 83 
Methylprogesterone 1.9 0.1 100 1.4  33 0.2 0.0 83 
17α-hydroxyprogesterone 11.1 1.5 100 28.0 4.2 100 4.9 0.9 83 
Megestrol    1.9 0.2 67    
Medroxyprogesterone          



Appendices 

 287 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone 3.0 1.6 67 2.0 0.3 67    
Megestrol acetate          
Medroxyprogesterone acetate 2.8 1.9 67 2.9 1.1 67    
Flugestone acetate 1.3 0.0 67 1.5 0.1 67    
Caproxyprogesterone 1.2 0.0 67 2.2 0.7 100    
Prednisone    24.4 9.9 100 3.5 2.0 83 
Corticosterone 4.2  33       
Cortisone 7.2 4.2 100 28.6 12.1 67 5.0 1.8 67 
Prednisolone 12.2  33 59.1  33 4.4 1.4 67 
Cortisol       1.4 0.8 67 
Tetrahydrocortisone < MQL  67 3.8 1.9 67    
Corticosterone acetate    < MQL  67    
Dexamethasone 10.7 1.3 67 12.0 1.5 100 3.2 1.0 67 
Prednisolone acetate          
Cortisone acetate       111.4 53.7 83 
Hydrocortisone 21-acetate          
2-methyl phenol 124.3 98.9 67       
4-ethylphenol 1486.6 574.2 67 619.6 620.9 100 189.9 269.5 67 
4-isopropyl phenol       91.2 12.5 50 
4-chloro-3-methylphenol       28.3 0.1 67 
2,5-dichloro phenol          
3,4,6-trichlorophenol          
Bisphenol A    < MQL  67 55.0 23.0 33 
Dimethyl phthalate       10.3 0.8 33 
Diethyl phthalate 371.9 353.4 67       
Dibutyl phthalate 416.6 54.8 67 439.9 244.8 100 29.2 20.8 67 
Diamyl phthalate < MQL  100    9.5  17 
Benzyl butyl phthalate    128.3 74.5 100 5.7 1.3 50 
Dicyclohexyl phthalate 20.1  33 53.5 54.4 100 8.5  17 
Dihexyl phthalate          
Dibenzyl phthalate < MQL  33 3.0   6.9 0.1 67 
Diethylheyxl phthalate 368.8 393.7 67 197.0 142.5 100 1.3 0.2 50 
Dinonyl phthalate    242.5 131.6 100 8.4 1.3 50 
Diisodecyl phthalate       53.8 23.5 50 
Monomethyl phthalate       27.1 33.8 67 
Monoethyl phthalate       1.6 0.7 50 
Monobutyl phthalate 382.1 362.1 67       
Mono-n-pentyl  phthalate          
Monocyclohexyl phthalate          
Monohexyl phthalate       7.6 3.2 83 
Monobenzyl phthalate          
Monoethylhexyl phthalate          
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Table D8. Overview of the quantitative results obtained in samples from SC4, collected at harbour of 
Oostende (HO). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol       41.3 9.0 100 
17α-trenbolone < MQL  100       
17β-trenbolone 0.5 0.3 67       
11β-hydroxyandrosterone          
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone          
19-nortestosterone    0.6 0.3 67    
1,4-Androstadienedione    0.5 0.1 100    
11-ketoetiocholanolone 0.6 0.3 100 0.4 0.0 67    
Androstenedione          
Mestanolone    < MQL  67    
17α-testosterone 0.8 0.4 67       
17β-testosterone 0.4 0.1 100       
5α-dihydrotestosterone 0.3 0.2 100 < MQL  100 13.2 2.9 100 
Norethindron          
Methylboldenone < MQL  67       
11-ketotestosterone < MQL  67 0.3 0.2 67    
Formestane          
Norethandrolone 0.6  33       
Methyltestosterone 0.7 0.1 100 0.8 0.1 67    
Trenbolone acetate < MQL  100       
Ethynyl testosterone 0.8 0.0 100 0.2 0.1 100    
Stanozolol          
Testosterone acetate          
Fluoxymesterone < MQL  67       
Testosterone propionate 0.4 0.1 100       
Chlorotestosteron acetate          
Testosterone benzoate < MQL  67    0.1 0.0 50 
Testosterone phenylpropionate < MQL  67    0.1 0.0 67 
19-nortestosterone-17-decanoate       1.1  17 
17α-estradiol          
17β-estradiol < MQL  67    35.2 6.9 100 
Estradiol-17-acetate          
Dienoestrol          
Equilin          
Diethylstilbestrol    0.6 0.1 100    
Estrone    0.5 0.3 100    
17α-ethinylestradiol          
α-zearalenol 14.7 4.4 100       
β-zearalenol 14.8 4.1 100       
α-zeranol < MQL  67       
β-zeranol    < MQL  67    
Gestodene 3.4 2.3 100 0.7 0.1 100    
Estradiol-benzoate          
5α-Pregnan-3α,20β-diol          
Norgestrel 3.1 0.2 100       
Dihydroprogesterone    0.4 0.0 67    
Progesterone       0.8 0.6 100 
Methylprogesterone          
17α-hydroxyprogesterone 0.4 0.1 100 < MQL  100    
Megestrol          
Medroxyprogesterone    < MQL  33    
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone < MQL  67 0.4 0.2 67    
Megestrol acetate       0.2 0.0 50 
Medroxyprogesterone acetate       0.3 0.0 33 
Flugestone acetate          
Caproxyprogesterone       0.3 0.1 50 
Prednisone       4.1 1.1 100 
Corticosterone          
Cortisone < MQL  67    4.4 1.9 100 
Prednisolone    < MQL  67 3.1 1.6 83 
Cortisol    <  MQL  67 1.0 0.8 67 
Tetrahydrocortisone    < MQL  67 2.0 1.2 83 
Corticosterone acetate          
Dexamethasone 5.5 1.3 67    2.9 0.5 50 
Prednisolone acetate          
Cortisone acetate       224.2 46.5 100 
Hydrocortisone 21-acetate          
2-methyl phenol          
4-ethylphenol 782.1 329.6 100 213.4 86.1 100 122.0 93.0 100 
4-isopropyl phenol 244.1 21.2 67       
4-chloro-3-methylphenol < MQL  67    28.7 0.4 67 
2,5-dichloro phenol          
3,4,6-trichlorophenol    68.4 3.5 100    
Bisphenol A 1007.8 810.2 100 263.2 33.8 100 22.6 5.9 83 
Dimethyl phthalate          
Diethyl phthalate    < MQL  33    
Dibutyl phthalate 861.6 657.2 100 39.9 2.3 100 10.8 8.0 100 
Diamyl phthalate < MQL  67    9.4 0.0 50 
Benzyl butyl phthalate 102.9 113.7 100 47.1 5.4 100 5.0 0.2 33 
Dicyclohexyl phthalate 43.4 27.8 100 78.8 24.6 67 8.6 0.1 100 
Dihexyl phthalate 16.2 8.7 67       
Dibenzyl phthalate          
Diethylheyxl phthalate 307.1 136.8 100 206.7 78.5 67    
Dinonyl phthalate 336.9 203.1 100       
Diisodecyl phthalate 440.0 261.7 100    25.4 15.3 33 
Monomethyl phthalate          
Monoethyl phthalate    218.2 144.3 100    
Monobutyl phthalate 29.9  33       
Mono-n-pentyl  phthalate 242.2 123.1 100 529.9 166.4 100    
Monocyclohexyl phthalate 300.0 228.8 100 189.2 78.7 100    
Monohexyl phthalate 332.8 51.7 100 383.7 202.3 100 6.9 1.2 100 
Monobenzyl phthalate    214.1 59.4 100    
Monoethylhexyl phthalate 549.7 393.9 100 232.1 94.0 67    
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Table D9. Overview of the quantitative results obtained in samples from SC1, collected at harbour of 
Zeebrugge (HZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=4 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol          
17α-trenbolone          
17β-trenbolone    0.6 0.2 100 0.1 0.0 83 
11β-hydroxyandrosterone 0.6 0.1 100       
Testosterone cypionate 1.3 0.4 75       
17β-dihydroandrosterone         
Androsterone 3.3 1.4 100    1.9 0.0 50 
19-nortestosterone   < MQL  100    
1,4-Androstadienedione 1.5 0.5 100 0.3 0.1 100 0.2 0.1 50 
11-ketoetiocholanolone         
Androstenedione    < MQL  100 0.1 0.0 50 
Mestanolone < MQL  100 3.4 0.0 50 0.4 0.0 50 
17α-testosterone 0.9 0.3 100 0.3 0.0 100 0.2 0.0 83 
17β-testosterone          
5α-dihydrotestosterone 0.9 0.2 100 3.8 0.0 100 0.6 0.0 50 
Norethindron          
Methylboldenone          
11-ketotestosterone 2.1 0.6 100 0.5 0.1 100 0.4 0.1 83 
Formestane    0.7 0.1 100 0.5 0.1 83 
Norethandrolone       0.5  17 
Methyltestosterone 0.3 0.1 100       
Trenbolone acetate         
Ethynyl testosterone   0.3 0.0 75 0.0 0.0 33 
Stanozolol          
Testosterone acetate 1.0 0.1 100 < MQL  100    
Fluoxymesterone          
Testosterone propionate 1.3 0.1 100 0.5 0.0 100 0.4 0.1 33 
Chlorotestosteron acetate         
Testosterone benzoate 1.5 0.2 75       
Testosterone phenylpropionate        
19-nortestosterone-17-decanoate        
17α-estradiol    < MQL  100    
17β-estradiol 6.8 4.0 100 7.6 0.8 75 1.2 0.5 67 
Estradiol-17-acetate 3.0 1.7 100 2.0 0.7 100    
Dienoestrol    < MQL  100 0.5  17 
Equilin    < MQL      
Diethylstilbestrol          
Estrone    2.0 0.5 100 0.4 0.3 67 
17α-ethinylestradiol         
α-zearalenol          
β-zearalenol          
α-zeranol       0.2 0.3 67 
β-zeranol          
Gestodene    1.3 0.0 100    
Estradiol-benzoate 3.5 0.2 100       
5α-Pregnan-3α,20β-diol         
Norgestrel 0.4 0.0 100 1.7 0.0 75    
Dihydroprogesterone   1.9 0.0 100 0.4 0.0 83 
Progesterone < MQL  100 0.7 0.1 75 0.1 0.0 33 
Methylprogesterone 0.4 0.3 100 0.7 0.0 100 0.1 0.0 83 
17α-hydroxyprogesterone   1.8 0.0 50 0.5 0.1 33 
Megestrol       0.4 0.0 83 
Medroxyprogesterone 0.7 0.2 100 0.7 0.0 100 0.1 0.0 83 
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17a-acetoxyprogesterone   2.1 0.0 100 0.5 0.0 83 
Megestrol acetate < MQL  75       
Medroxyprogesterone 
acetate 

< MQL  75       
Flugestone acetate     25    
Caproxyprogesterone   0.9 0.0 50 0.2 0.0 50 
Prednisone       2.2  17 
Corticosterone 2.6 0.5 100 < MQL  75 0.5 0.0 33 
Cortisone 7.0 3.2 100 4.9 0.5 100 1.7 0.7 83 
Prednisolone 6.4 1.5 100 6.7 0.2 100 3.5 1.3 83 
Cortisol 1.2 0.9 75 2.7 0.0 75 0.3 0.1 50 
Tetrahydrocortisone < MQL  75    1.4 0.0 83 
Corticosterone acetate         
Dexamethasone          
Prednisolone acetate         
Cortisone acetate < MQL  100       
Hydrocortisone 21-acetate         
2-methyl phenol    2302.1 508.8 100    
4-ethylphenol 1518.0 113.0 100 111.8 22.9 67 58.2 52.0 83 
4-isopropyl phenol          
4-chloro-3-methylphenol      28.3 0.0 33 
2,5-dichloro phenol          
3,4,6-trichlorophenol         
Bisphenol A       45.8 18.6 67 
Dimethyl phthalate          
Diethyl phthalate 336.0 271.0 100 43.0 46.0 100    
Dibutyl phthalate 308.0 297.0 100 791.0 242.0 100 29.1 17.5 83 
Diamyl phthalate    12.5 3.0     
Benzyl butyl phthalate    105.0 29.0 100 14.8 18.0 83 
Dicyclohexyl phthalate          
Dihexyl phthalate 37.0 9.0 100 23.0 2.0 100    
Dibenzyl phthalate < MQL  100    6.8 0.1 33 
Diethylheyxl phthalate 140.3 103.7 100 517.5 110.7 100 2.1 0.8 67 
Dinonyl phthalate       13.1 5.0 67 
Diisodecyl phthalate <MQL  100    8.2 0.5 33 
Monomethyl phthalate    1579.7 27.0 67    
Monoethyl phthalate       0.3 0.2 50 
Monobutyl phthalate 73.0 28.0 100 109.0 14.0 100    
Mono-n-pentyl  phthalate   25.0 42.0 100 1.1 0.2 67 
Monocyclohexyl phthalate         
Monohexyl phthalate       10.4 9.3 67 
Monobenzyl phthalate       1.9 0.2 50 
Monoethylhexyl phthalate   674.4 115.2 100 34.9 37.1 50 
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Table D10. Overview of the quantitative results obtained in samples from SC2, collected at harbour of 
Zeebrugge (HZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   
 Av SD DF Av SD DF 
Methandriol       
17α-trenbolone    < MQL  67 
17β-trenbolone 0.6 0.1 67 0.7 0.1 100 
11β-hydroxyandrosterone    2.0 0.1 67 
Testosterone 17β-cypionate       
17β-dihydroandrosterone       
Androsterone 37.3 10.3 67 23.1 3.6 100 
19-nortestosterone       
1,4-Androstadienedione    1.2 0.3 100 
11-ketoetiocholanolone 2.3 0.6 67 0.9  33 
Androstenedione 1.1 0.4 100 0.8 0.3 67 
Mestanolone 4.3 0.3 33    
17α-testosterone    0.3 0.2 67 
17β-testosterone 0.6  33 < MQL  10 
5α-dihydrotestosterone < MQL  100 < MQL  100 
Norethindron    < MQL  100 
Methylboldenone 1.9 0.8 67 1.0 0.4 100 
11-ketotestosterone 2.3 0.1 67 1.1 0.4 100 
Formestane 7.4 3.5 100 3.2 1.4 67 
Norethandrolone       
Methyltestosterone       
Trenbolone acetate    0.9 0.1 67 
Ethynyl testosterone    0.6 0.0 67 
Stanozolol       
Testosterone acetate 4.2 1.7 100 < MQL  100 
Fluoxymesterone       
Testosterone propionate 0.7 0.1 33    
Chlorotestosteron acetate       
Testosterone benzoate       
Testosterone phenylpropionate 4.8 4.2 100 2.2 1.7 100 
19-nortestosterone-17-decanoate       
17α-estradiol       
17b-estradiol       
Estradiol-17-acetate       
Dienoestrol       
Equilin       
Diethylstilbestrol       
Estrone    0.7 0.2 67 
17α-ethinylestradiol       
α-zearalenol       
β-zearalenol 3.2 2.0 67 4.4 0.9 100 
α-zeranol 1.8 1.4 67 1.5  33 
β-zeranol 3.3 0.5 100 4.1 0.9 67 
Gestodene 1.4 0.6 100    
Estradiol-benzoate       
5α-Pregnan-3α,20β-diol       
Norgestrel 0.9 0.1 67 0.7 0.0 67 
Dihydroprogesterone       
Progesterone 0.6 0.7 100 < MQL  67 
Methylprogesterone 2.4 2.2 100 0.2 0.1 67 
17α-hydroxyprogesterone 9.3 9.0 100 1.0 0.2 100 
Megestrol       
Medroxyprogesterone < MQL  100 0.3  100 
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 D   R   
 Av SD DF Av SD DF 
17α-acetoxyprogesterone    0.3  100 
Megestrol acetate       
Medroxyprogesterone acetate 2.8 1.0 67 2.9 2.3 67 
Flugestone acetate 3.0 0.1 67 2.9 0.4 67 
Caproxyprogesterone       
Prednisone 8.2 8.3 67 1.3 0.6 67 
Corticosterone       
Cortisone < MQL  100 < MQL  100 
Prednisolone < MQL  67 3.1 0.2 100 
Cortisol 1.7 0.4 67 2.5 0.3 67 
Tetrahydrocortisone       
Corticosterone acetate < MQL  100 < MQL  67 
Dexamethasone       
Prednisolone acetate       
Cortisone acetate       
Hydrocortisone 21-acetate < MQL  100 < MQL  100 
2-methyl phenol    157.6  33 
4-ethylphenol 1518.0 72.7 100    
4-isopropyl phenol       
4-chloro-3-methylphenol       
2,5-dichloro phenol       
3,4,6-trichlorophenol       
Bisphenol A       
Dimethyl phthalate       
Diethyl phthalate 336.3 370.8 67    
Dibutyl phthalate 307.6 297.3 67    
Diamyl phthalate       
Benzyl butyl phthalate    43.4 13.5 67 
Dicyclohexyl phthalate       
Dihexyl phthalate 37.0 8.8 100    
Dibenzyl phthalate       
Diethylheyxl phthalate 184.6 148.2 100 96.4 66.9 67 
Dinonyl phthalate       
Diisodecyl phthalate       
Monomethyl phthalate    3165.7 234.4 100 
Monoethyl phthalate       
Monobutyl phthalate 58.6 31.4 100 84.2 1.0 67 
Mono-n-pentyl  phthalate 45.3 6.4 67 77.3 8.9 67 
Monocyclohexyl phthalate 70.6 9.5 67    
Monohexyl phthalate    38.5 9.3 67 
Monobenzyl phthalate 56.8 3.5 67    
Monoethylhexyl phthalate 399.0 97.6 67 994.5 197.3 67 
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Table D11. Overview of the quantitative results obtained in samples from SC3, collected at of harbour of 
Zeebrugge (HZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol          
17α-trenbolone 0.7 0.3 67 0.8 0.2 67    
17β-trenbolone 1.0 0.1 67 1.0 0.5 100    
11β-hydroxyandrosterone    0.7 0.1 100    
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone 5.6 1.8 67       
19-nortestosterone 5.0 0.9 100       
1,4-Androstadienedione          
11-ketoetiocholanolone       0.1 0.1 67 
Androstenedione 1.4 0.3 67       
Mestanolone 14.3 0.8 100       
17α-testosterone 2.5 0.2 67 2.3 0.7 100    
17β-testosterone    0.5  33    
5α-dihydrotestosterone 2.7 2.2 100 2.2 1.8 100    
Norethindron          
Methylboldenone    11.9 14.7 67    
11-ketotestosterone    1.3 0.4 67    
Formestane    10.0 10.7 100    
Norethandrolone 0.4 0.1 67       
Methyltestosterone 0.3 0.2 67       
Trenbolone acetate 0.4 0.3 67       
Ethynyl testosterone 0.7 0.1 67 0.7 0.1 67    
Stanozolol          
Testosterone acetate    1.2 0.1 100    
Fluoxymesterone < MQL  100       
Testosterone propionate    0.8 0.6 100    
Chlorotestosteron acetate 0.8  33    0.1  17 
Testosterone benzoate       0.1 0.0 67 
Testosterone phenylpropionate    4.1 0.7 100 0.3 0.2 67 
19-nortestosterone-17-decanoate          
17α-estradiol < MQL  33       
17β-estradiol 19.0 13.3 100 6.8 0.9 67    
Estradiol-17-acetate 11.1 2.7 100 4.5 2.7 100    
Dienoestrol    < MQL  67    
Equilin    0.9  33 2.3 0.9 67 
Diethylstilbestrol          
Estrone    < MQL  67    
17α-ethinylestradiol < MQL  67 < MQL  67 2.2 1.3 50 
α-zearalenol          
β-zearalenol    5.3 1.2 100    
α-zeranol < MQL  100 < MQL  100    
β-zeranol < MQL  100       
Gestodene          
Estradiol-benzoate       1.3 1.5 33 
5α-Pregnan-3α,20β-diol          
Norgestrel    0.6 0.1 67    
Dihydroprogesterone 1.1 0.1 67       
Progesterone 13.4 1.1 100 7.4 1.2 100 0.2 0.0 50 
Methylprogesterone 2.0 0.1 67    0.2 0.0 50 
17α-hydroxyprogesterone 8.0 2.3 67 8.0 1.3 100 1.0 0.3 50 
Megestrol    1.4  33    
Medroxyprogesterone 0.6 0.0 67 0.7 0.2 67    
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone    1.8 0.0 67    
Megestrol acetate    < MQL  67    
Medroxyprogesterone acetate 1.5 1.4 100 < MQL  67    
Flugestone acetate 1.3  33 1.6 0.1 67    
Caproxyprogesterone 1.2 0.0 100 1.6  33 0.3  17 
Prednisone    27.9 7.3 100 1.8 0.4 33 
Corticosterone 4.4 0.4 100 4.1 0.4 67    
Cortisone    6.6 1.7 67 0.4 0.3 33 
Prednisolone 18.5 0.3 67 6.5 0.1 67 1.4 0.1 50 
Cortisol       0.2 0.1 50 
Tetrahydrocortisone 4.7 3.1 67 < MQL  33    
Corticosterone acetate    < MQL  67    
Dexamethasone 9.7 0.1 67 10.9 0.1 67 2.3 0.0 50 
Prednisolone acetate          
Cortisone acetate       20.1 2.8 50 
Hydrocortisone 21-acetate          
2-methyl phenol 173.0 53.4 67       
4-ethylphenol 2674.0 394.4 67 388.5 254.1 100 7.2 1.2 83 
4-isopropyl phenol       82.4 1.6 83 
4-chloro-3-methylphenol          
2,5-dichloro phenol       14.5 0.2 100 
3,4,6-trichlorophenol       9.1 0.1 50 
Bisphenol A          
Dimethyl phthalate       10.0  17 
Diethyl phthalate < MQL  100       
Dibutyl phthalate 668.2 146.5 67 322.2 171.1 100 37.6 4.6 100 
Diamyl phthalate < MQL  100    138.8 20.5 100 
Benzyl butyl phthalate    95.1 55.8 100 4.4 0.2 50 
Dicyclohexyl phthalate    58.8 5.3 67 18.3 5.1 100 
Dihexyl phthalate       94.8 36.4 100 
Dibenzyl phthalate    22.3  33 6.8 0.1 50 
Diethylheyxl phthalate 399.7 239.4 67 248.6 316.4 100 2.3 1.2 100 
Dinonyl phthalate    271.1 229.4 67 63.1 31.3 100 
Diisodecyl phthalate       12.1 2.0 67 
Monomethyl phthalate       23.9 11.5 83 
Monoethyl phthalate       1.1 0.3 50 
Monobutyl phthalate 28.4 3.5 67       
Mono-n-pentyl  phthalate       6.3 6.3 100 
Monocyclohexyl phthalate       0.9 0.5 83 
Monohexyl phthalate       22.8 8.9 100 
Monobenzyl phthalate       3.2 1.3 83 
Monoethylhexyl phthalate       14.1 3.7 67 
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Table D12. Overview of the quantitative results obtained in samples from SC4, collected at harbour of 
Zeebrugge (HZ). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average concentration 
and the standard deviation, respectively, both expressed in ng L-1. DF represents the detection frequency 
(%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol       29.3 13.0 100 
17α-trenbolone          
17β-trenbolone < MQL  100       
11β-hydroxyandrosterone          
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone          
19-nortestosterone    0.9 0.1 100    
1,4-Androstadienedione          
11-ketoetiocholanolone    0.3 0.1 100    
Androstenedione          
Mestanolone          
17α-testosterone          
17β-testosterone 0.3  33       
5α-dihydrotestosterone < MQL  100 < MQL  100 14.6 1.2 100 
Norethindron          
Methylboldenone 0.7 0.4 100       
11-ketotestosterone          
Formestane          
Norethandrolone 0.3 0.0 67       
Methyltestosterone 0.4 0.1 100 0.4 0.0 100    
Trenbolone acetate < MQL  67       
Ethynyl testosterone 0.8  33 < MQL  100    
Stanozolol          
Testosterone acetate    < MQL  100    
Fluoxymesterone          
Testosterone propionate 0.3 0.0 100       
Chlorotestosteron acetate          
Testosterone benzoate       0.1 0.0 100 
Testosterone phenylpropionate       0.1 0.0 33 
19-nortestosterone-17-
decanoate 

         
17α-estradiol          
17β-estradiol < MQL  67    35.1 3.1 100 
Estradiol-17-acetate          
Dienoestrol          
Equilin       3.5 0.9 67 
Diethylstilbestrol    0.3  33    
Estrone    0.6 0.5 67    
17α-ethinylestradiol          
α-zearalenol          
β-zearalenol    0.5 0.2 100    
α-zeranol          
β-zeranol    < MQL  67    
Gestodene 1.0 0.0 67 < MQL  67    
Estradiol-benzoate       1.3 1.1 50 
5α-Pregnan-3α,20β-diol          
Norgestrel 2.8 1.0 67       
Dihydroprogesterone    0.4  33    
Progesterone       0.2 0.1 100 
Methylprogesterone          
17α-hydroxyprogesterone 0.3 0.0 100       
Megestrol          
Medroxyprogesterone < MQL  33       
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone 0.8 0.8 67       
Megestrol acetate          
Medroxyprogesterone acetate          
Flugestone acetate          
Caproxyprogesterone          
Prednisone       2.3 0.7 100 
Corticosterone          
Cortisone < MQL  67    2.2 1.7 100 
Prednisolone    < MQL  67 3.2 1.8 100 
Cortisol       0.9 0.7 100 
Tetrahydrocortisone          
Corticosterone acetate 141.7  100       
Dexamethasone       2.8 0.4 100 
Prednisolone acetate          
Cortisone acetate       254.9 87.3 100 
Hydrocortisone 21-acetate          
2-methyl phenol 363.5 43.9 67       
4-ethylphenol 2204.3 2730.1 100 203.9 28.8 100    
4-isopropyl phenol 354.6 333.6 100       
4-chloro-3-methylphenol          
2,5-dichloro phenol          
3,4,6-trichlorophenol    74.4 6.0 67    
Bisphenol A 273.2 180.6 100 194.9 32.2 67    
Dimethyl phthalate          
Diethyl phthalate          
Dibutyl phthalate 296.3 218.9 100 34.1 6.6 100    
Diamyl phthalate < MQL  67       
Benzyl butyl phthalate 32.2 22.3 100 41.8 5.3 100    
Dicyclohexyl phthalate    51.0 4.1 100    
Dihexyl phthalate < MQL  100       
Dibenzyl phthalate          
Diethylheyxl phthalate 604.7 353.4 100 109.7 62.2 100    
Dinonyl phthalate 90.4 63.1 67       
Diisodecyl phthalate 107.9 5.3 67 77.2 0.3 100 7.9 0.0 33 
Monomethyl phthalate          
Monoethyl phthalate    767.2 223.0 100    
Monobutyl phthalate          
Mono-n-pentyl  phthalate 759.4 1129.9 100 183.2 73.5 100    
Monocyclohexyl phthalate    271.6 174.8 100    
Monohexyl phthalate 538.4 360.9 100 256.3 150.8 100    
Monobenzyl phthalate    114.2 30.0 100    
Monoethylhexyl phthalate 2654.9 3514.8 100 214.4 122.7 100    
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Table D13. Overview of the quantitative results obtained in samples from SC2, collected at open sea of 
Oostende (OO). During the deployment and retrieval of the passive (P) samplers, active samples were 
taken; referred to as (D) and (R). Av and SD indicate the average concentration and the standard 
deviation, respectively, both expressed in ng L-1. DF (nactive=3 and npassive=6)  represents the detection 
frequency (%). < MQL refers to concentrations below the method quantification limit. Blank cells refer to 
concentrations below the method detection limit. 

 D   R   P   
 Av SD DF Av SD DF Av SD DF 
Methandriol       58.0 28.2 100 
17α-trenbolone 2.3 1.2 67 1.3 1.4 67    
17β-trenbolone 1.0 0.0 67 1.3 0.1 100    
11β-hydroxyandrosterone 1.8 0.9 67 1.4 0.2 67    
Testosterone 17β-cypionate          
17β-dihydroandrosterone          
Androsterone 45.7 31.1 100 168.8 30.5 100    
19-nortestosterone 6.4 0.9 67       
1,4-Androstadienedione 1.0 0.0 67 1.2 0.3 100    
11-ketoetiocholanolone 1.3 0.3 67 1.3 0.2 67 2.0 1.0 100 
Androstenedione 0.8 0.0 67 1.7 0.1 67    
Mestanolone 127.5 179.1 67 3.3 0.3 67    
17α-testosterone 0.7 0.1 100 2.4 0.2 67    
17β-testosterone < MQL  100 0.3 0.1 67    
5α-dihydrotestosterone < MQL  100 < MQL  100    
Norethindron < MQL  100 1.5 0.5 67    
Methylboldenone 2.3 0.2 100 1.5 0.4 67    
11-ketotestosterone 1.5 0.2 100 1.4 0.2 100    
Formestane 3.6 1.1 67 3.0 0.7 100    
Norethandrolone 1.4 0.1 67 2.1 0.9 100    
Methyltestosterone    1.8 0.3 67    
Trenbolone acetate 1.8 0.1 67 2.9 0.2 67    
Ethynyl testosterone    4.3 0.3 100    
Stanozolol          
Testosterone acetate 0.6 0.3 67 3.2 1.7 100    
Fluoxymesterone          
Testosterone propionate          
Chlorotestosteron acetate    0.7  33    
Testosterone benzoate          
Testosterone phenylpropionate 2.2 2.6 67 15.0 20.5 100 1.3 1.4 100 
19-nortestosterone-17-decanoate         
17α-estradiol          
17β-estradiol       47.8 14.2 100 
Estradiol-17-acetate          
Dienoestrol          
Equilin    7.7 2.5 33 70.3 5.9 50 
Diethylstilbestrol    14.4  33    
Estrone 1.5  33 0.8  33    
17α-ethinylestradiol          
α-zearalenol 3.2 1.3 67 5.1 1.5 100    
β-zearalenol 2.4 1.8 67 5.9 1.8 67    
α-zeranol 1.5 0.3 100 1.9 1.2 100    
β-zeranol 4.0 0.7 67 4.2 1.1 67    
Gestodene 1.3 0.1 67 1.6 0.6 67    
Estradiol-benzoate          
5α-Pregnan-3α,20β-diol          
Norgestrel    1.9 0.4 100    
Dihydroprogesterone          
Progesterone < MQL  67 0.3 0.0 100 0.5 0.2 100 
Methylprogesterone    0.8 0.3 67    
17α-hydroxyprogesterone 50.4 86.3 100 3.2 0.7 67    
Megestrol          
Medroxyprogesterone < MQL  67 0.5 0.3 67    
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 D   R   P   
 Av SD DF Av SD DF Av SD DF 
17α-acetoxyprogesterone 5.2 0.5 67    1.4 0.8 100 
Megestrol acetate 11.7 2.3 67       
Medroxyprogesterone acetate 141.5 10.4 67       
Flugestone acetate 2.8 0.3 67 2.8 0.2 100 1.0 0.6 100 
Caproxyprogesterone 132.0 23.5 67       
Prednisone 1.0 0.4 67 2.3 0.2 67 4.8 3.0 100 
Corticosterone < MQL  33       
Cortisone 103.5 144.6 67 < MQL  100 21.7 14.2 100 
Prednisolone < MQL  33 2.6 1.3 100 18.4 10.0 100 
Cortisol 2.3  33 2.3 1.0 100 8.0 4.7 100 
Tetrahydrocortisone          
Corticosterone acetate < MQL  67 < MQL  67    
Dexamethasone 68.7  33 6.6  33    
Prednisolone acetate 25.4  33       
Cortisone acetate       50.5 18.6 100 
Hydrocortisone 21-acetate < MQL  67 < MQL  67 40.6  33 
2-methyl phenol < MQL  100 203.2  33    
4-ethylphenol 275.0 198.9 100 593.9 345.1 67 37.4 22.2 100 
4-isopropyl phenol          
4-chloro-3-methylphenol          
2,5-dichloro phenol          
3,4,6-trichlorophenol          
Bisphenol A       45.1 30.7 100 
Dimethyl phthalate          
Diethyl phthalate    110.2 14.5 67    
Dibutyl phthalate 341.7 274.3 100 157.2 85.6 100 30.1 16.0 100 
Diamyl phthalate          
Benzyl butyl phthalate    99.3 66.9 100 8.8 8.0 100 
Dicyclohexyl phthalate    41.6 18.4 33    
Dihexyl phthalate    26.2 7.8 67    
Dibenzyl phthalate          
Diethylheyxl phthalate 122.4 59.0 100 168.9 94.0 100 2.3 1.8 83 
Dinonyl phthalate       14.5 11.2 83 
Diisodecyl phthalate          
Monomethyl phthalate 1094.9 325.4 67 6103.5 649.6 67    
Monoethyl phthalate          
Monobutyl phthalate 45.5 24.5 100 228.9 111.8 100    
Mono-n-pentyl  phthalate 69.7 23.4 67 103.4 58.1 100    
Monocyclohexyl phthalate          
Monohexyl phthalate          
Monobenzyl phthalate 57.4 38.3 67 58.0 14.4 67    
Monoethylhexyl phthalate    423.3 52.6 100 40.2 11.7 83 
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Table D14. Overview of the quantitative results obtained in samples from SC3 and 4, collected at open 
sea of Oostende (OO). During the deployment and retrieval of the passive (P) samplers, active samples 
were taken; referred to as (D) and (R). Av and SD (nactive=3 and npassive=6) indicate the average 
concentration and the standard deviation, respectively, both expressed in ng L-1. DF represents the 
detection frequency (%). < MQL refers to concentrations below the method quantification limit. Blank 
cells refer to concentrations below the method detection limit. 

 SC3      SC4   
 D   R   D   
 Av SD DF Av SD DF Av SD DF 
Methandriol          
17α-trenbolone 0.5 0.2 67       
17β-trenbolone 0.4 0.3 67    < MQL  100 
11β-hydroxyandrosterone 0.8 0.2 67 < MQL  100    
Testosterone 17β-cypionate 1.7 0.8 67       
17β-dihydroandrosterone 3.9  33       
Androsterone    2.1 1.4 67    
19-nortestosterone 2.7 1.6 100       
1,4-Androstadienedione 1.9 0.1 67 1.0 0.0 67    
11-ketoetiocholanolone       < MQL  100 
Androstenedione          
Mestanolone          
17α-testosterone 2.4 0.1 67       
17β-testosterone       0.3 0.0 100 
5α-dihydrotestosterone < MQL  100 0.4 0.0 100 0.2 0.1 100 
Norethindron 3.2 0.7 67       
Methylboldenone 1.3 1.2 67    < MQL  100 
11-ketotestosterone 1.0 0.2 67 1.4 0.1 67 0.4 0.1 100 
Formestane 1.5 0.7 67       
Norethandrolone       0.2 0.1 67 
Methyltestosterone 0.4 0.2 100 < MQL  67 0.4 0.0 67 
Trenbolone acetate       < MQL  100 
Ethynyl testosterone 0.6 0.1 67    0.3 0.0 100 
Stanozolol          
Testosterone acetate    0.9 0.0 100    
Fluoxymesterone          
Testosterone propionate    1.2 0.1 100 0.3 0.0 100 
Chlorotestosteron acetate 0.6  33       
Testosterone benzoate 1.3 0.1 67       
Testosterone phenylpropionate 3.6 4.5 100       
19-nortestosterone-17-decanoate          
17α-estradiol < MQL  100       
17β-estradiol 7.6 2.5 100 7.4 0.4 100    
Estradiol-17-acetate 1.5 0.5 100 2.2 0.2 100    
Dienoestrol          
Equilin          
Diethylstilbestrol          
Estrone          
17α-ethinylestradiol          
α-zearalenol       < MQL  100 
β-zearalenol       1.3 0.9 67 
α-zeranol < MQL  67       
β-zeranol < MQL  100       
Gestodene          
Estradiol-benzoate < MQL  100       
5α-Pregnan-3α,20β-diol          
Norgestrel 0.4 0.0 67    2.6 0.1 67 
Dihydroprogesterone          
Progesterone 8.2 5.0 100       
Methylprogesterone 1.2 0.1 100       
17α-hydroxyprogesterone    0.8 0.1 100 0.3 0.0 100 
Megestrol 1.3 0.0 67       
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 SC3      SC4   
 D   R   D   
 Av SD DF Av SD DF Av SD DF 
Medroxyprogesterone 0.4 0.2 67 0.3 0.1 100    
17α-acetoxyprogesterone 1.8 0.0 100    < MQL  67 
Megestrol acetate 0.8 0.4 100 < MQL  100    
Medroxyprogesterone acetate 3.6 3.3 100       
Flugestone acetate 1.2 0.4 67       
Caproxyprogesterone 1.3 0.2 67       
Prednisone          
Corticosterone 3.6 1.7 67 2.3 1.5 67    
Cortisone 2.8 0.3 67 5.7 0.6 67    
Prednisolone 8.2 3.9 67 15.2 3.0 67    
Cortisol          
Tetrahydrocortisone < MQL  67 < MQL  100    
Corticosterone acetate       279.2 365.2 67 
Dexamethasone 9.5  33       
Prednisolone acetate          
Cortisone acetate          
Hydrocortisone 21-acetate          
2-methyl phenol 326.4  33 429.9  33    
4-ethylphenol 823.0 761.6 67 217.1 105.5 100 2628.7 303.4 67 
4-isopropyl phenol    329.2 143.4 100 310.4 193.9 33 
4-chloro-3-methylphenol          
2,5-dichloro phenol    532.8 497.1 100    
3,4,6-trichlorophenol    32.0  33    
Bisphenol A    1413.1 261.4 100 429.0 75.8 67 
Dimethyl phthalate          
Diethyl phthalate    1619.7 1363.6 100    
Dibutyl phthalate 1743.4 234.7 100 1443.6 626.6 100 61.7  33 
Diamyl phthalate    80.3  33    
Benzyl butyl phthalate    285.8 94.8 100 47.4 8.9 67 
Dicyclohexyl phthalate < MQL  100 216.3 82.0 100    
Dihexyl phthalate          
Dibenzyl phthalate    65.4 16.9 67    
Diethylheyxl phthalate 37.0 12.4 67 119.0 66.6 100 357.6  33 
Dinonyl phthalate    52.7 38.4 67 395.2 68.4 67 
Diisodecyl phthalate       115.1  33 
Monomethyl phthalate    34.5 8.4 33    
Monoethyl phthalate          
Monobutyl phthalate < MQL  67 1549.2 1302.5 100    
Mono-n-pentyl  phthalate    < MQL  100 185.8  33 
Monocyclohexyl phthalate 54.5 28.4 67 35.8 19.9 100    
Monohexyl phthalate       668.3  33 
Monobenzyl phthalate    40.8 10.0 100    
Monoethylhexyl phthalate       1093.1 208.4 67 
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Summary 
 
Nowadays, a growing societal and scientific concern exists regarding the widespread 

occurrence of endocrine disrupting compounds (EDCs) in the aquatic environment. The most 

important EDC classes comprise the steroid hormones, plasticizers and plastics additives. 

Indeed, even at very low concentrations, steroidal EDCs may affect the hormonal system of 

aquatic organisms, while leaching of plasticizers and plastics additives into the aquatic 

environment is inevitable as a result of their extensive use for numerous applications. Until 

now, limited knowledge was available on the presence of steroidal EDCs, plasticizers and 

plastics additives in the marine environment. Therefore, an urgent need existed to monitor the 

fate and effects, as well as the environmental and human risks posed by these emerging 

micropollutants in marine ecosystems. Given our lack of knowledge on the occurrence of 

EDCs, the main goal of this dissertation was to investigate the prevalence of steroidal 

EDCs, plasticizers and plastics additives in the marine environment. To this end, new 

analytical methods targeting a broad range of EDCs (n=97) were developed, optimized and 

validated. Both active, as well as passive sampling approaches were applied extensively in 

the Belgian Part of the North Sea (BPNS), from 2016 to 2018. Passive sampling involves a 

collecting device, placed in situ, which accumulates chemical pollutants in the environment 

over time, while for active sampling, a sample is taken directly from the environment at one 

point in time. Finally, the potential negative effects of the detected compound concentrations 

were assessed. 

Chapter I entails a comprehensive overview on the fate of EDCs in the aquatic environment. 

Additionally, a summary on the predominant analytical strategies employed for sampling, 

extraction and detection of EDCs is provided, including a detailed description of the analytical 

platforms and their capabilities. This chapter ends with the conceptual framework and 

research objectives of this PhD study, as outlined in research chapters II, III and IV. 

The aim of chapter II was to develop and validate two accurate ultra-high performance liquid 

chromatography (UHPLC) coupled to high-resolution mass spectrometry (HRMS) methods for 
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the quantification of steroidal EDCs (n=70), plastics additives and plasticizers (n=27) in 

seawater. For each target group, the instrumental methods were combined with optimised 

large-volume solid phase extraction procedures, as it was the goal to detect ng.L-1 range 

residues in the marine environment. The developed methods showed excellent performance 

characteristics (according to 2002/657/EC and Eurachem guidelines) and versatility to fresh 

water samples.  

In chapter III, a new sorbent phase for passive sampling purposes was investigated that 

enables to capture a broad polarity range of emerging organic compounds (log P range 

between 1.30 to 9.85). For 131 compounds the sampler-water partition coefficients (Ksw) could 

be determined by using a static exposure design. Calculation of the thermodynamic 

parameters indicated that the main partitioning process for the (alkyl)phenols, personal care 

products, pesticides and pharmaceuticals was driven by physisorption, while the uptake of 

phthalates and steroidal EDCs was mediated by a combination of physisorption and 

chemisorption. It was clearly demonstrated in this chapter that hydrophilic DVB can be used 

for passive sampling.  

Using the newly developed methodologies from chapters II and III, active and passive 

samplers were intensively deployed in the Belgian Part of the North Sea, as discussed in 

chapter IV. The detected concentrations for the steroidal EDCs were mainly below 10 ng L-1, 

while for the plastics additives and plasticizers concentrations between 10 and 1000 ng L-1 

were observed. Concentrations detected by passive sampling, were generally lower than 

those in active samples. Furthermore, it could be concluded that our proposed strategy for 

active and passive sampling offers a complementary approach for the measurement of EDCs 

in the marine environment. Ultimately, the detected concentrations of 17β-estradiol exceeded 

pose a risk, as the EQS of 0.08 ng L-1 was exceeded. No risk was observed for diethylhexyl 

phthalate, although this was the most abundant plasticizer. 

Finally, in chapter V, the general discussion and future perspectives of this PhD study are 

presented. Thereby, it was suggested that future research should focus on the implementation 

and use of an atomized analysis pipeline for suspect and untargeted screening. Also, the 
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development of new passive samplers containing hydrophilic DVB could be promising, as 

Speedisks showed reduced Ksw as compared to naked sorbent. Moreover, Speedisks could 

serve as a viable archive tool for sampled EDCs, but this should be investigated more 

extensively. Finally, a more in-depth evaluation of contaminant levels in Speedisk passive 

sampler as compared to those in biota could offer an added value towards environmental risk 

assessment of the findings obtained in this PhD. 

Overall, this thesis contributes to the establishment of integrated active and passive sampling 

approaches for monitoring EDCs in the marine environment, and more specifically the BPNS. 
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Samenvatting 
Momenteel heerst vanuit maatschappelijk en wetenschappelijk oogpunt een toenemende 

bezorgdheid omtrent de aanwezigheid van hormoonverstorende stoffen (EDC’s) in het 

aquatisch milieu. Tot de meest belangrijke EDC-klassen behoren de steroïdhormonen, de 

weekmakers en de kunststofadditieven aangezien steroïdhormonen reeds aan zeer lage 

concentraties het hormonaal systeem van waterorganismen kunnen verstoren en het 

voorkomen van weekmakers en kunststofadditieven onvermijdelijk is door hun veelvuldig 

gebruik in talrijke toepassingen. Tot op heden bestond weinig kennis omtrent de aanwezigheid 

van steroïdhormonen, weekmakers en kunststofadditieven in het mariene milieu. Het was 

aldus noodzakelijk om de bestemming en effecten, alsook de risico’s van EDC’s voor zowel 

milieu als mens te bestuderen in het mariene ecosysteem. Gezien de beperkte kennis omtrent 

de aanwezigheid van EDCs, bestond het hoofddoel van dit doctoraat erin om de prevalentie 

van steroïdhormonen, weekmakers en kunststofadditieven in het mariene milieu te evalueren. 

Hiervoor werden nieuwe methodes voor een breed bereik aan EDC’s (n=97) ontwikkeld, 

geoptimaliseerd en gevalideerd. Bovendien werden zowel actieve als passieve 

bemonsteringstechnieken bestudeerd en intensief toegepast in het Belgisch deel van de 

Noordzee gedurende een periode van 2 jaar (2016-2018). Bij passieve bemonstering wordt 

een sampler voor een specifieke periode in situ geplaatst, gedurende dewelke chemische 

stoffen accumuleren, terwijl bij actieve bemonstering waterstalen rechtstreeks uit de omgeving 

worden verzameld. Tenslotte werden de potentiële negatieve effecten van de geobserveerde 

EDC-concentraties en de bijhorende ecotoxicologische implicaties geëvalueerd. 

Hoofdstuk I start met een overzicht van het lot/voorkomen van EDC’s in het aquatisch milieu. 

Daarnaast biedt dit hoofdstuk een samenvatting van de overheersende analytische 

strategieën voor bemonstering, met onder meer een gedetailleerde beschrijving van het 

analytisch instrumentarium en zijn mogelijkheden. Ten slotte wordt het conceptueel kader 

geschetst en de opbouw van de verschillende onderzoeksfasen aangegeven, zoals 

voorgesteld in hoofdstukken II, III en IV.  
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Hoofdstuk II beschrijft de ontwikkeling en validatie van twee ultrahoge performantie 

vloeistofchromatografie (UHPLC) gekoppeld aan hoge resolutie massaspectrometrie 

(HRMS)-gebaseerde methodes voor de kwantificatie van steroïdhormonen (n=70), 

weekmakers en kunststofadditieven (n=27) in zeewater. Voor iedere EDC-klasse werd de 

instrumentele methode gecombineerd met een geoptimaliseerde groot-volume vaste-fase 

extractie, aangezien deze methodes finaal zouden worden aangewend voor de detectie van 

residuen aan ng.L-1 concentraties in het mariene milieu. Beide methodes werden succesvol 

gevalideerd (volgens CD 2002/657/EC en Eurachem richtlijnen) en toonden eveneens 

potentieel voor het analyseren van zoetwaterstalen. 

In hoofdstuk III werd een nieuw sorptiemiddel onderzocht voor de passieve bemonstering 

van een groot aantal organische contaminanten met uiteenlopende polariteit (log P varieert 

tussen 1.30 en 9.85). Voor 131 componenten werd de sorbent/water-partitiecoëfficiënt (Ksw) 

bepaald door middel van een statisch blootstellingsmodel. Na het berekenen van de 

thermodynamische paramaters kon worden afgeleid dat het sorptieproces voor de 

(alkyl)fenolen, persoonlijke verzorgingsproducten, pesticiden en farmaceutica voornamelijk 

werd gedreven door fysisorptie, terwijl de opname van ftalaten en steroïdhormonen bestond 

uit een combinatie van zowel fysisorptie als chemisorptie. Dit hoofdstuk toonde duidelijk aan 

dat hydrofiel DVB kan worden gebruikt als sorbent voor passieve bemonstering. 

Op basis van de nieuwe ontwikkelingen in hoofdstuk II en III, werden actieve en passieve 

bemonsteringsmethodes intensief toegepast in het Belgisch deel van de Noordzee 

(hoofdstuk IV). De gedetecteerde concentraties van de steroïdhormonen bleven 

hoofdzakelijk onder 10 ng L-1, terwijl voor de weekmakers en kunststofadditieven 

concentraties tussen 10 en 1000 ng L-1 werden geobserveerd. In het algemeen waren de 

concentraties na passieve bemonstering lager dan deze door actieve bemonstering. 

Daarenboven kon worden vastgesteld dat de vooropgestelde strategie van actieve en 

passieve bemonstering complementair was voor de bepaling van EDC’s in het mariene milieu. 

Tenslotte werd met behulp van een risico-analyse aangetoond dat 17β-estradiol een risico 

vormt, aangezien de omgeving kwaliteit standaard van 0.08 ng L-1 werd overschreden. Geen 
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risico werd waargenomen voor diethylhexyl ftalaat, desondanks dit de meest voorkomende 

gedetecteerde weekmaker was.  

Ter afsluiting werden naast de algemene discussie ook de toekomstperspectieven van dit 

doctoraal onderzoek beschreven in hoofdstuk V. Hierbij werd geopperd dat toekomstig 

onderzoek zich zou moeten richten op de implementatie en het gebruik van een automatische 

analysepipeline voor verdachte en niet-gerichte screening. Daarnaast zou de ontwikkeling van 

een nieuwe passieve bemonsteringstechniek veelbelovend kunnen zijn, aangezien de 

Speedisk een lagere Ksw vertoonde dan het naakte sorbent. Vervolgens moet verder worden 

nagegaan of de lange-termijn bewaring van EDC’s op Speedisks een mogelijke piste kan 

bieden. Tenslotte kan een meer diepgaande vergelijking van verontreiniging in Speedisks en 

biota een meerwaarde bieden in omgevingsgebonden risico-analyse, zoals beschreven in dit 

doctoraat. 

Over het algemeen kan worden geconcludeerd dat dit doctoraal onderzoek heeft bijgedragen 

aan het verwerven van essentiële informatie omtrent geïntegreerde actieve en passieve 

bemonsteringstechnieken voor de bepaling van EDC’s in het mariene milieu en in het 

bijzonder het Belgisch deel van de Noordzee. 
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