
Received January 28, 2019, accepted March 27, 2019, date of publication April 15, 2019, date of current version April 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2911522

Weakly Supervised Deep Learning for the
Detection of Domain Generation Algorithms
BIN YU1,2, JIE PAN3, DANIEL GRAY3, JIAMING HU3, CHHAYA CHOUDHARY3,
ANDERSON C. A. NASCIMENTO3, AND MARTINE DE COCK 3,4
1Infoblox, Santa Clara, CA 95054, USA
2Infoblox, Tacoma, WA 98402, USA
3School of Engineering and Technology, University of Washington, Tacoma, WA 98402, USA
4Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, 9000 Ghent, Belgium

Corresponding author: Martine De Cock (mdecock@uw.edu)

ABSTRACT Domain generation algorithms (DGAs) have become commonplace in malware that seeks
to establish command and control communication between an infected machine and the botmaster. DGAs
dynamically and consistently generate large volumes of malicious domain names, only a few of which are
registered by the botmaster, within a short time window around their generation time, and subsequently
resolved when the malware on the infected machine tries to access them. Deep neural networks that can
classify domain names as benign or malicious are of great interest in the real-time defense against DGAs.
In contrast with traditional machine learning models, deep networks do not rely on human engineered
features. Instead, they can learn features automatically from data, provided that they are supplied with
sufficiently large amounts of suitable training data. Obtaining cleanly labeled ground truth data is difficult
and time consuming. Heuristically labeled data could potentially provide a source of training data for weakly
supervised training of DGA detectors. We propose a set of heuristics for automatically labeling domain
names monitored in real traffic, and then train and evaluate classifiers with the proposed heuristically labeled
dataset. We show through experiments on a dataset with 50 million domain names that such heuristically
labeled data is very useful in practice to improve the predictive accuracy of deep learning-based DGA
classifiers, and that these deep neural networks significantly outperform a random forest classifier with
human engineered features.

INDEX TERMS Deep learning, random forest, text classification, heuristically labeled data, domain
generation algorithms, cybersecurity, command and control.

I. INTRODUCTION
It is very common for malware that has infected a computer
to communicate with a command and control center (C&C)
over the internet. After establishing such a communication
channel, themalware can for instance send stolen information
from the infected computer to the malware designer (the
botmaster) behind the C&C center, or receive instructions or
even update itself with a newer version. To enable this kind of
communication, botmasters used to hard-code an IP address
or a domain name inside the malware, defining a rendez-
vous point where the malware from the infected computer
can connect with the botmaster. Once such an IP address
or domain name is detected by a cybersecurity system, this

The associate editor coordinating the review of this manuscript and
approving it for publication was Isaac Triguero.

IP address or domain name can be shut down, effectively
blocking all communication between the malware and the
botmaster.

In response, evasionmechanisms emerged, such as the Fast
Flux [1] technique of resolving a domain name to different
IP addresses over time. In addition, newer generations of
malware began including an embedded Domain Generation
Algorithm (DGA) as a fail-over mechanism. Such an algo-
rithm uses some available source of randomness to generate
hundreds or even thousands of domains automatically every
day. By design, these domains are unique or rarely dupli-
cated with each other or with other existing domains. The
malware on the infected computer and the botmaster run the
same algorithm. The botmaster registers one automatically
generated domain name at a time and keeps it alive for a
short period of time. The malware systematically tries to

51542
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7917-0771


B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

connect with each of the domain names that its embedded
DGA algorithm has generated. For almost all of the domains,
the malware receives a message from its local DNS server
stating that these domains could not be resolved, called a
Non-Existent Domain (NXDomain) response. The malware
can ignore these responses. For the few domains that have
actually been registered by the botmaster, the malware will
obtain a valid IP address and will be able to communicate
with the C&C center. Blacklisting IP addresses or domain
names that have been discovered to be malicious is no longer
sufficient to stop the malware from successfully contacting
the C&C center: when needed, both the malware and the
botmaster can dynamically generate more domain names and
repeat the process because the generated domain names are
disposable.

The focus in this paper is on the development of classifiers
that can detect DGA domains in real-time, predicting on a per
domain basis, to prevent any C&C communication. Models
which predict based solely on the domain name string are
of particular interest for their generality. Indeed, additional
information beyond the domain name string, such as the IP
address of the source, or information about the time when
the domain name query was sent to the DNS server, can be
expensive to acquire, or due to privacy concerns, it might
simply not be available.

Traditional machine learning methods for DGA detection
based on the domain name string rely on extraction of pre-
defined, human engineered lexical features [2]–[4]. When-
ever human engineered features are used, it is obvious that
this opens the door for an adversary to carefully craft its
DGA to avoid detection by using the aforementioned fea-
tures. This makesmaintaining suchmachine learning systems
labor intensive. Recently proposed deep learning techniques
for detecting DGAs learn features automatically, thereby
offering the potential to bypass the human effort of feature
engineering [5]–[9]. Many papers about the deep learning
approach for DGA detection include a featureful approach as
a baseline method, and the featureless approach is typically
reported to yield better, more accurate results, across a variety
of different ground truth datasets drawn from whitelists from
Alexa, Statvoo, and Cisco, and blacklists from Bambenek,
DGArchive, etc.

Deep neural networks are notoriously data hungry due to
the large number of parameters that have to be estimated:
they require large amount of training examples to learn from.
The approach followed in the literature on deep learning
for DGA detection so far has been to collect clean ground
truth labeled data from known whitelists (such as Alexa)
and known blacklists (such as DGArchive and the Bambenek
Consulting feed). The blacklists rely on reverse engineering
known DGA malware. This approach to collect clean ground
truth labeled training data has its weaknesses: (i) reverse
engineering DGA malware is not a scalable task; (ii) models
trained in this manner will become outdated as new DGA
malware families emerge in real traffic; (iii) there is no guar-
antee that domains from awhitelist such as Alexa form a good

representative set of non-malicious domains within a specific
network.

Since obtaining cleanly labeled ground truth data for train-
ing DGA detectors is difficult and time consuming, in this
paper we propose a set of heuristics for automatically convert-
ing live domain names monitored in real traffic into labeled
training examples. Relying on the fact that most DGA domain
names never resolve, we collect negatively labeled examples
(potentially legitimate domains) from resolving traffic, and
positively labeled examples (potentially DGA domains) from
non-resolving traffic. We refer to the resulting data as a
weakly labeled dataset, referring to the fact that the labels
are noisy (i.e. they are likely to contain errors but not to a
magnitude that is statistically significant) while still being
useful to train machine learning models in a weakly super-
vised fashion. It is important to point out that the labels are
automatically assigned in a retrospective manner, i.e. after
observing the behavior of a domain name during a period
of time. Subsequently, we use the weakly labeled data to
train DGA detectors that can classify new domain names as
malicious or not from the moment they first emerge in traffic.
As explained above, the vast majority of DNS requests

by malware corresponding to DGA domains will trigger an
NXDomain response, because the botmaster registers only
very few of the automatically generated domain names.
In other words, the bulk of DGA traffic falls under an
NXDomain label (and such labeling is easy to obtain in an
automated manner). However, DGA traffic only makes up
a part of NXDomain traffic. NXDomain responses can for
instance also result from typing errors in domain names,
nonexistence or non-availability of authorative DNS servers,
or domain names that were once legitimate and accessible
and are no longer registered. From the perspective of machine
learning for DGAdetection, the rawNXDomain traffic data is
therefore noisy and impossible to learn fromwithout filtering.
Following up on our preliminary work [10], in this paper we
propose the application of heuristic filtering rules to boost
the signal of DGA domains in NXDomain traffic, thereby
creating a weakly labeled training dataset that can be used
successfully to train DGA classifiers. The heuristic labeling
rules are based on the expected lifespan of DGA domains,
which is typically a lot shorter (i.e., a few days) than that of a
legitimate domain.

In contrast with the clean ground truth data that is tradition-
ally used, the heuristically labeled real traffic data is easy to
obtain without the intervention of human annotators or mal-
ware reverse engineering and has broader coverage for DGA
family variations. As a result, one can collect heuristically
labeled training datasets that are orders of magnitude larger
than the available clean ground truth data. We show through
experiments on a dataset with 50 million domain names that
such heuristically labeled data is very useful in practice to
improve the predictive accuracy of deep learning based DGA
classifiers, and that these deep neural networks significantly
outperform a random forest classifier with human engineered
features.

VOLUME 7, 2019 51543



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

After providing background information on DGA detec-
tion in Section II, in Section III we present the deep neural
network architectures that we use in our study. These include
deep neural networks that have previously appeared in the
literature on DGA detection [6], [7] in addition to adaptations
of deep neural network architectures that were recently pro-
posed for processing and classification of tweets [11], [12]
as well as general natural language text [13]. They all rely on
character-level embeddings, and they all use a deep learning
architecture based on convolutional neural network (CNN)
layers, recurrent neural network (RNN) layers such as long
short-term memory (LSTM) layers, or a combination of
both. In Section IV we present our method for collecting
the weakly labeled dataset, i.e. a large noise-not-free but
practical training dataset obtained from real traffic. We also
provide details on a smaller, ground truth dataset used in
our experiments. Next, we train the deep neural architectures
from Section III on the data from Section IV, and present the
results in Section V. Our most important findings are:

• Our ground truth trained classifiers perform well when
evaluated against ground truth datasets.

• The classifiers trained on weakly labeled data perform
reasonably well when evaluated against weakly labeled
data from the future, i.e. with domain names that first
appeared in traffic after training time.

• The ground truth trained classifiers perform poorlywhen
evaluated against weakly labeled data.

• The classifiers trained on weakly labeled data perform
poorly against ground truth data.

• The classifiers that are pre-trained on weakly labeled
data and post-trained on ground truth data perform really
well against ground truth data (the highest results of all)
and reasonably well against weakly labeled data.

This paper is an extended version of two conference
papers [9], [10]. In [10] we presented preliminary work about
collecting a heuristically labeled dataset for DGA classifica-
tion, and initial results for training a CNN and an LSTM deep
neural network on that dataset. The weakly labeled training
dataset used in this paper expands the previous one with
6 more months of recent real traffic data. We present results
for five different deep neural network architectures trained
and tested on this expanded dataset. In [9] we presented a
study about the applicability of different deep neural net-
works for text classification when used for DGA detection.
All models are only trained and tested on a ground truth
dataset in [9]. The main novel contributions from a method-
ological point of view in the current paper stem from a com-
bination of ideas from [9] and [10]. In particular, we present
a detailed comparative analysis of the predictive accuracy of
deep neural networks for DGA classification (1) when trained
on clean ground truth data (as in [9]), (2) when trained on
heuristically labeled real traffic data (as in [10]), and (3) when
trained on a combination of both (by using transfer learning),
arriving at the conclusion that the third option leads to the
strongest DGA classifiers. Our work is the very first one to

use transfer learning as a way to combine heuristically labeled
data sets with synthetic data sets to increase the accuracy of
DGA classifiers.

II. BACKGROUND
Malware controllers, or botmasters, use malware for all kinds
of unauthorized malicious activities. These activities range
from stealing information, to exploiting the victims’ comput-
ing resources to mine bitcoin. They can also include launch-
ing a distributed denial of service attack from the victims’s
computers or encrypting the victims hard drive (ransomware).
In order to successfully achieve its goals, it is vital that the
malware be able to connect to a command and control (C&C)
center. This communication can serve many purposes. The
malware can use it to send stolen information (such as pass-
words or access credentials) to the malware designer behind
the C&C center, it can use this communication channel to
receive instructions or even to update itself to a newer version.

Initially, botmasters established such a communication
channel to the C&C center by hard-coding an IP address or
domain name inside the malware. This approach has obvious
shortcomings from the botmasters’ perspective: once themal-
ware is reversed engineered, the IP address or domain name
is discovered and shut down. Over time, malware designers
came up with a much more effective strategy: Domain Gen-
eration Algorithms (DGAs) that generate hundreds or even
thousands of domains automatically and consistently [14].
The malware then attempts at resolving each one of these
domains with its local DNS server. The botmaster will have
registered one automatically generated domain at a time. For
these domains that have been actually registered, the malware
will obtain a valid IP address and will be able to commu-
nicate with the C&C center. For all the other domains that
were automatically generated but not registered, the malware
obtains a message stating that these domains could not have
been resolved and ignores them.

DGAs make blacklisting of domains extremely difficult,
since by changing the initial randomness (while keeping the
same algorithm) the malware can potentially generate com-
pletely different domains. This technique has been used by
high-profile malware such as Conficker, Stuxnet (the mal-
ware designed to attack Iran nuclear facilities) and Flame.
Catching domain names generated by malware has become
a central topic in information security, leading to a recent
interest in detecting DGA domains using machine learning
techniques.

The focus in this paper is on the development of clas-
sifiers that can detect DGA domains by looking solely at
the domain name string, i.e. by treating the DGA detection
problem purely as a text classification task. This sets our
approach apart from techniques that require additional infor-
mation, such as the IP address that requested the domain name
(i.e. the potentially infected computer) [15], [16] or other side
information [2], [17]. In practice, such side information may
be expensive to acquire, or due to privacy concerns, it might
simply not be available.

51544 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

Traditional machine learning methods for DGA detection
based on the domain name string rely on extraction of prede-
fined, human engineered lexical features [2]–[4]. Whenever
human engineered features are used, it is obvious that this
opens the door for an adversary to carefully craft its DGA
to avoid detection by using the aforementioned features.
This makes maintaining such machine learning systems labor
intensive. Recently proposed deep learning techniques for
detectingDGAs learn features automatically, thereby offering
the potential to bypass the human effort of feature engi-
neering. The problem of adversarial examples, i.e. instances
that have intentionally been designed to cause the model
to make a mistake, are a well known problem in machine
learning. The scenario sketched above— in which a malware
designer exploits knowledge about the lexical features used
by a random forest to craft his DGA to avoid detection— is a
prime example of this. Deep neural networks are famously
not immune to adversarial examples either, and generative
adversarial networks (GANs) can be trained to generate them
automatically (see e.g. [18], [19]). Specifically in the context
of DGA detection, Anderson et al. have used a character-
based generative adversarial network (GAN) to augment
training sets in order to harden other machine learningmodels
(like a random forest) against yet-to-be-observed DGAs [20].

It is highly unlikely for attackers to use GANs themselves,
because DGA algorithms must be light enough to be embed-
ded inside malware code. Furthermore, generating domain
names that look like a benign domain is not enough for an
effective DGA. Ideally, every domain produced by a DGA
must not have been registered yet or must have a low likeli-
hood of being registered already – if a domain produced by a
DGA has already been taken, it is useless for the botmaster.
Combining all these requirements is essential for a serious
study of adversarial generated domains and outside the scope
of this paper.

Another distinguishing characteristic that sets our work
apart from related efforts is that our trained classifiers are
suitable to classify domain names as benign or malicious
on a per domain basis, as they first appear in real traffic.
This is fundamentally different from existing approaches that
collect data over a certain time period and then analyze that
data in batch to detect anomalies [2], [21], [22]. While such a
retrospective approach is useful to diagnose infected botnets
post-fact, e.g. after the first day of infection, our real-time
approach is aimed at detecting DGA domain names from the
moment they appear so that any C&C communication can be
prevented.

III. DEEP NEURAL NETWORK ARCHITECTURES
There is an increasing interest in the literature in deep
learning for DGA detection. The neural network archi-
tectures that have been proposed so far to this end
are either based on recurrent neural networks (RNNs) –
most often long short-term memory networks (LSTMs)
– [5], [6], [8], [10], [17], or on convolutional neural net-
works (CNNs) [7], [10]. In addition, hybrid CNN/RNN

TABLE 1. High level overview of recent deep learning approaches for
character based text classification.

architectures have also been introduced as successful mecha-
nisms for text classification [12].

Our focus in this paper is to investigate the benefits of
heuristically labeled data to train deep learning classifiers
for DGA detection. To demonstrate that these advantages
hold across the board and are not bound to a specific kind
of neural network architecture, we include in our study five
kinds of neural network architectures that have recently been
proposed for either short string classification in general,
or DGA detection in particular. For each of the methods,
we start from the original proposals as can be found in the
references in Table 1 and only make modifications when
they improve the predictive accuracy for the classification of
domain names. Below we give an overview of the methods
and the adaptations made. The design of new neural network
architectures for DGA detection is orthogonal to our research.

A. PREPROCESSING
The strings that we give as input to all classifiers are second
level domains (SLDs) such as wikipedia.org. An SLD con-
sists of a right-most label (e.g. org) preceded by a second
label (e.g. wikipedia), separated by a dot. We convert each
domain name string to lower case, since domain names are
case insensitive. We use ASCII code to map each character
to an integer between 0 and 127. For instance, facebook.com
becomes [102, 97, 99, 101, 98, 111, 111, 107, 46, 99, 111,
109], since 102 is the ASCII code for f, 97 is the ASCII code
for a etc.
We set the maximum length at 75 characters. The sec-

ond label and the right-most label can in theory be up to
63 characters long each. In practice they are typically shorter.
If needed, we truncate domain names by removing characters
from the end of the second label until the desired length
of 75 characters is reached. For domains whose length is less
than 75, we pad with zeros on the left.

B. RNN BASED ARCHITECTURES
Long short-term memory networks (LSTMs), a special kind
of recurrent neural networks (RNNs) have recently attracted
a lot of attention because of their successful application to
problems that involve processing of sequences [23]. Since
domain names can be thought of as sequences of characters,
LSTMs are a natural kind of classifiers to apply. The LSTM
networks proposed in [5] and [6] were designed specifically
for DGA detection. Since they are very similar, in this study

VOLUME 7, 2019 51545



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

we use the original model [6]. The network is comprised
of an embedding layer, an LSTM layer (128 LSTM cells
with default Tanh activation), and a single node output layer
with sigmoid activation. Instead of using RMSProp as the
optimization algorithm, as was done in [6], we switched to
Adam [24] because it resulted in better loss convergence
results (see Section V).

The role of the embedding layer is to learn to repre-
sent each character that can occur in a domain name by a
128-dimensional numerical vector. The embedding maps
semantically similar characters to similar vectors, where the
notion of similarity is implicitly derived (learned) based on
the classification task at hand. As will become clear in the
remainder of this section, all five deep neural network archi-
tectures under study start with such an embedding layer.
To allow for a fair comparison, we have made the parameter
choices for the embedding layer, such as the dimensionality
of the embedding space, identical for all five models. In addi-
tion, for comparison purposes, in Section V we also present
the results of a ‘‘baseline neural network model’’ consisting
only of an embedding layer as its hidden layer.

The Endgame model includes dropout, a technique to
improve model performance and overcome over-fitting by
randomly excluding nodes during training, which serves to
break up complex co-adaptations in the network [25]. This
is confined to the training phase; all nodes are active during
testing and deployment.

Bidirectional RNNs extend regular RNNs by processing
the input string in two ways. In a forward layer, the input
sequence is processed from the left to the right, as in a
traditional RNN, while in a backward layer, the processing
happens from the right to the left. The output from the forward
and the backward layer is then combined and passed on
to further layers. Bidirectional LSTMs for character level
text processing have been proposed in [26], and, following
up on that, very similar bidirectional GRUs (gated recurrent
units) have been applied in a ‘‘Tweet2Vec’’ model for tweet
classification (predicting hashtags of tweets) in [11]. We use
an adaptation of the latter to our problem of DGA detection,
with a bidirectional LSTM layer with 64 cells. Including
dropout or replacing LSTM by GRU did not cause a signif-
icant change in predictive accuracy, although the latter did
result in a decrease of training runtime.

C. CNN BASED ARCHITECTURES
Convolutional neural networks (CNNs) are known for their
ability to process input data with a grid like topology, such
as images consisting of a grid of pixels. To the best of our
knowledge, Zhang et al. were the first to apply 1-dimensional
or ‘‘temporal’’ CNNs successfully to text classification at
character level [13]. Their proposed deep network architec-
ture, which is intended to process full-blown natural language
text such as news articles or reviews, includes 6 stacked CNN
layers, with each subsequent layer consuming the output from
the previous layer. Each CNN layer consists of a set of filters
or kernels that ‘‘slide’’ over the input to the layer in search

for patterns. Next, a pooling step with a predefined pooling
size is applied to make the network less sensitive to the exact
position where the pattern was detected in the input string (the
larger the pooling size, the less sensitive). During training of
the network, each filter automatically learns which pattern it
should look for. In contrast to natural language text, domain
names are very short and they do not have an internal gram-
matical structure, naturally resulting the original architectures
from [13] to overfit on our data. We therefore reduced the
number of stacked CNN layers to two, and decreased the size
and the number of filters on the CNN layers (respectively
128 filters of size 3, and 128 filters of size 2).

Saxe and Berlin proposed a CNN based classifier that takes
generic short character strings as its input and learns to detect
whether they are indicators of malicious behavior [7]. The
short character strings can be e.g. URLs, file paths, or reg-
istry keys. The fundamental difference between the Invincea
model versus the NYU model described above, is that in
the Invincea model the CNN layers are parallel instead of
stacked, and that pooling always happens over the entire
domain name instead of within a small pooling window. That
means that the Invincea model is only detecting the presence
or absence of patterns in the domain names, and does not
retain any information on where exactly in the domain name
string these patterns occur.

The embedding layer is followed by a convolutional layer
with 1024 filters, namely 256 filters for each of the sizes 2,
3, 4, and 5. Each of these filters learns to detect the soft
presence of an interesting soft n-gram (with n = 2, 3, 4, 5).
The output of the convolutional layer is consumed by two
dense hidden layers, each with 1024 nodes, before reaching
a single node output layer with sigmoid activation. Out of all
the models that we compared, this one has the most extensive
architecture.

D. HYBRID CNN/RNN BASED ARCHITECTURE
The MIT model proposed in [12] is an extension of the NYU
model, where the stacked CNN layers are followed by an
LSTM layer. Similarly as with the NYU model, the use of
multiple stacked CNN layers (which worked well for tweets
in [12]) resulted in the models to overfit on our data. For
this reason, we reduced the MIT model architecture to the
minimum that preserves its spirit: one CNN layer followed
by one LSTM layer.

In Section V we present detailed results for DGA classifi-
cationwith each of the neural network architectures described
above, when trained and evaluated on ground truth data
and/or heuristically labeled real traffic data, details about
which are given in Section IV.

IV. DATA COLLECTION
Table 2 contains an overview of the datasets used for training,
validation (i.e. hyperparameter tuning), and testing the DGA
classifiers in this study. Both the ground truth and the real
traffic datasets consist of second level domains (SLDs). The
advantage of the ground truth dataset is that its labels are

51546 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 2. Overview of datasets. In the ground truth data, positive examples are known DGAs obtained from the bambenek feeds, and negative examples
are alexa domain names. The domain names obtained from real traffic are assigned to the positive or the negative class based on heuristic labeling rules.
The positive examples from the retro and prospective datasets are all distinct: each positively labeled domain name occurs in at most one dataset,
namely the one corresponding to the time window during which it first occurred (as indicated in the table).

TABLE 3. Distribution of DGA families in the ground truth dataset.

(presumably) correct because they are obtained through
reverse engineering malware, as explained in Section IV-A.
The downside is that obtaining such reliable labels is labor
intensive, which explains why the ground truth dataset is
fairly small (2M instances in total). In Section IV-B we
explain how to overcome this problem by using heuristic
labeling rules to obtain a large noise-not-free yet practi-
cal dataset (approx. 50M instances) from real traffic data.
In Section V we present and compare the results of classifiers
trained on both kind of datasets, i.e. with ground truth as well
as with weakly labeled real traffic data.

A. SMALL GROUND TRUTH DATASET
We collected a small ground truth dataset with 1 million
DGAdomain names obtained from the BambenekConsulting
feeds1 (positive examples), and the top 1 million domain
names fromAlexa2 (negative examples). As is commonwhen
running experiments on datasets with hundreds of thousands
of instances or more, we randomly split this data into 80% for
training, 10% for validation, and 10% for testing, keeping the
50-50 ratio of positive vs. negative examples throughout.

Alexa ranks websites based on their popularity in terms
of number of page views and number of unique visitors.

1http://osint.bambenekconsulting.com/feeds/, Accessed 2017-07-23
2https://www.alexa.com/topsites, Accessed 2017-05-28

It only retains the websites’ SLD, aggregating across any sub-
domains. For example, according to Alexa, the five highest
ranked domain names in terms of popularity on 2017-10-26
are google.com, youtube.com, facebook.com baidu.com, and
wikipedia.org. For our experiments, we assume that the top
1 million domain names in this ranking are benign domain
names, although it is possible that the bottom of the ranking
may contain some noise.

In addition to these benign domain names, we collected
1 million DGA domain names from the Bambenek Consult-
ing feeds for three different days, namely Jun 24, Jul 22,
Jul 23, 2017. Table 3 shows the distribution of the 1M
collected DGA domain names across 50 different known
malware families. They were obtained by reverse engi-
neering the known malware family, and generating lists of
domain names with the reverse engineered malware with
the random seeds for the specific days (see above). Note
that our goal in this paper is the development of deep
neural network classifiers that can detect DGAs without
the need to reverse engineer malware families. An impor-
tant advantage of such classifiers is that they can be used
against new and previously unknown malware families.
Besides the small ground truth labeled dataset described
in this section, we therefore train our deep networks
on a heuristically labeled real traffic dataset described
next.

VOLUME 7, 2019 51547



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

B. HEURISTICALLY LABELED REAL TRAFFIC DATA
The real traffic data originates from a real-time stream of
passive DNS data. It consists of roughly 10-12 billion DNS
queries per day collected from subscribers including ISPs
(Internet Service Providers), schools, and businesses, from
September 2015 through November 2017. As explained in
Section I and II, DGA domains are generated dynamically.
The structure of these domain names is typically based on
a time-dependent random seed, such as the current date,
weather forecasts, or the trending topics on Twitter.com at
that moment. The botmaster registers only very few of the
domain names generated by a DGA. As a result, almost
all of the requests from infected botnets to resolve DGA
domain names trigger an NXDomain response. In addition,
DGA domains have a shorter and very distinguishing lifes-
pan compared to legitimate domains. Legitimate domains
occur and reoccur for a longer period of time than DGA
domains do. A unique DGA domain is normally generated
only once on the same infected system. Different infected
systems will generate the same DGA domains (relying on
the same time dependent seed that is publicly available to
all infected systems) within a small time window so that a
registered DGA domain can have a high hit rate to be cost
effective. Leveraging the fact that DGAs leave a characteristic
trace of unsuccessful lookups (NXDomains) and that the
domain names that they generate are typically short-lived,
we use the heuristic filtering rules below for automatically
creating a large dataset of positive and negative examples that
can subsequently be used to train deep neural networks. It is
important to observe that the temporal information about the
lifespan of the domain names is only used for the creation
of the dataset. The classifiers proposed in Section III and
evaluated in Section V only rely on the domain name string
itself as input, and can be deployed to detect DGA domain
names from the moment that they appear in DNS traffic,
without any prior knowledge of what their lifespan will be.

1) HEURISTIC LABELING RULES
We take as negative examples (potentially legitimate
domains) those domain names which:

• have been resolved at least once
• never resulted in an NXDomain response, and
• spanmore than 30 days (span is defined as the number of
days between the first and last query for a given domain)

We take as positive examples (potentially malicious domains)
those which:

• never resolved
• consistently resulted in NXDomain at least 10 times, and
• have all occurrences within the span of 7 days with
standard deviation 3 days or less

We apply these filtering rules to A and AAAA type DNS
queries (a.k.a. IPv4 and IPv6 address records). We exclude
samples with a second label of less than 10 characters, which
serves to minimize noise [10].

TABLE 4. Example domain names selected from real traffic. They are
labeled as positive (first column) or negative (second column) according
to our heuristic labeling rules.

Table 2 contains an overview of the training and test
datasets created using the selected real traffic data. From
the filtered domain names that were observed for the first
time from September 2015 through August 2017, we selected
roughly 40M instances and assigned them to a ‘‘Retro’’
dataset, split into 80% for training, 10% for validation
(parameter tuning), and 10% for testing. In addition, filtered
domains that were observed for the first time in the months
September and October 2017 are reserved for testing pur-
poses only; we refer to these sets as the prospective sets (see
ProsSep-Test, ProsOct-Test) in Table 2) in the sense that sam-
ples in these sets are born after training time. The prospective
data is used to evaluate the performance of the classifiers
on future traffic, as it consists of domains observed from a
later time period and not present in the training set. While
the number of positive examples in these prospective sets
is roughly equal, the number of negative examples appears
to decline. This is simply a result of the time at which the
data was collected (December 2017) and the filtering rules,
in particular the requirement for a domain name to have an
observed span of at least 30 days before it is considered
a negative example. As time goes on, it becomes easier
to satisfy the requirement. As a result, when re-collecting
the prospective dataset for a particular month at a future
time point, the number of negative examples tends to grow.
To compensate this negative sample size reduction, we add
negative samples that were observed for the first time from
September 2015 through August 2017 and are not included in
the Retro dataset into each of the prospective datasets because
negative samples or legitimate domain names don’t change
over the time.

Examples from the real traffic data are shown in Table 4.
Checking against a public repository of DGA domains,
DGArchive [27], we confirm that the positives shown are real
DGAdomains. The negatives shown are not recorded as DGA
domains on DGArchive.

V. RESULTS
In this section, we present the results of all architectures from
Section III trained separately with the ground truth data and
with the real traffic data from Section IV as well as with a
combination of both kinds of data. Note that this gives rise to
15 deep neural network classifiers. Indeed, each architecture
from Section III results in three kinds of classifiers that have
the same structure but differ in the data they are fed with

51548 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 5. Overview of trained models, with a specification of the data that was used for training and validation (hyperparameter tuning).

for training: the first kind of classifier is trained on ground
truth data, the second one is trained on weakly labeled real
traffic data, and the third one on a combination of both. This
allows us to compare the performance of classifiers trained
on supervised high quality training data versus on noisy, but
high-volume data obtained by our heuristic labeling method.

For comparison purposes, for each kind of training dataset,
we have also trained a Random Forest (RF) and a Mul-
tilayer Perceptron (MLP) on the following 11 features,
extracted from each domain name string (see [1], [28]):
ent (normalized entropy of characters); nl2 (median of
2-gram); nl3 (median of 3-gram); naz (symbol character
ratio); hex (hex character ratio); vwl (vowel character ratio);
len (domain label length); gni (gini index of characters);
cer (classification error of characters); tld (top level domain
hash); dgt (first character digit). Tree ensembles, includ-
ing RFs, are a frequently used, state-of-the-art method for
DGA classification based on human defined lexical fea-
tures [2], [4], [6], [9], [10]. Feature based approaches to
DGA detection, including RFs, logistic regression, and sup-
port vector machines (SVMs), are systematically reported in
the literature to be outperformed by featureless deep learning
methods. The findings we report in this section are in line
with this. Since for the RF and the MLP there is no need
to fix the length of the domain names to 75 characters,
we extracted the 11 features directly from the domain names,
without the preprocessing described in Section III-A. The RF
consists of 100 trees. The MLP has a single hidden layer with
128 nodes. The values of the 11 features are normalized so
that they are all on the same scale before presenting them to
the MLP.

An overview of all trained models is presented in Table 5.
The MLP and all deep learning models were trained using

FIGURE 1. Training and validation loss curves for gold-endgame model.

Keras [29] while the RF was trained using sklearn [30], using
the default settings for parameters unless specified otherwise.
All deep learning models were trained with a learning rate
of 0.001. Other details about the parameter settings for the
deep learning models can be found in the Keras code snippets
provided by Yu et al. [9].

A. TRAINING AND TESTING ON GROUND TRUTH DATA
Figure 1–6 show the training and validation loss curves for
models 3-8 fromTable 5, i.e. the deep learningmodels trained
on the small ground truth dataset. In each figure there are one
or more epochs where the validation curve increases, which
indicates that we trained the models sufficiently long, and
that further training would result in overfitting. Among all
epochs, we then selected the epoch that gave the highest true
positive rate (TPR) at a false positive rate (FPR) of 0.001 on
the validation data. The displayed epochs indicate where we
stopped the training to obtain the models used to produce the

VOLUME 7, 2019 51549



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

FIGURE 2. Training and validation loss curves for gold-CMU model.

FIGURE 3. Training and validation loss curves for gold-NYU model.

FIGURE 4. Training and validation loss curves for gold-invincea model.

final results in Table 6 and 10. The training loss is higher
than the validation loss in the pictures in Figure 1–6 because
the loss against the training data is computed in an average
way across batches (the batch size is 100) while dropout is
being applied, whereas performance on the validation set is
determined at the end of each epoch with dropout disabled.

The accuracy of each of the trained models when applied
to the ground truth test data AlexaBamb-Test is recorded
in Table 6. In addition to accuracy, this table includes the true
positive rate (TPR) and false positive rate (FPR) for each of
the models. Recall that TPR = TP/(TP + FN) and FPR =
FP/(FP + TN) where TP, FP, TN, and FN are the number
of true positives, false positives, true negatives, and false

FIGURE 5. Training and validation loss curves for gold-MIT model.

FIGURE 6. Training and validation loss curves for gold-embedding only
model (baseline model).

negatives respectively. A low false positive rate is very impor-
tant in deployed DGA detection systems, because block-
ing legitimate traffic is highly undesirable. All classifiers
in Table 6 output a probability that a given instance belongs
to the positive class, so we can tune a threshold probability
at which to consider a prediction positive. For each model,
we choose this threshold such that the model trained over
the training data has a 0.001 FPR over the validation data.
Then we report the accuracy, TPR and FPR obtained with this
classification threshold over the test data.

Finally, we also report AUC@1%FPR, which is the inte-
gral of the ROC curve from FPR = 0 to FPR = 0.01 on the
test data. Note that the highest absolute AUC@1%FPR value
that can theoretically be obtained is 0.01, in other words,
the absolute value of AUC@1%FPR ranges between 0 and
0.01. In Table 6 we denote the AUC@1%FPR achieved by
the classifiers as a percentage of the ideal score. The gold-
CMUmodel for instance, which is the best performingmodel,
achieves an AUC@1%FPR of 98.25%, corresponding to an
absolute AUC@1%FPR score of 0.009825.

As expected, the FPR of all classifiers in Table 6 is around
0.001: we tuned a classification threshold for the classifiers
that produces a FPR of 0.001 on the validation data, and it
is reassuring to see the same FPR emerge for the classifiers
on the test data. There is a clear variation in the TPR that the
classifiers achieve against that small FPR.While the Random

51550 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 6. Results for classifiers trained with ground truth alexabamb-train when applied to ground truth test data alexabamb-test. Accuracy, TPR, FPR are
w.r.t. a threshold that gives a FPR of 0.001 on alexabamb-val.

TABLE 7. Examples of domain names from ground truth test data alexaBamb-test that were either misclassified by the random forest or by the deep
neural networks trained on alexabamb-train. For the malicious domain names, the name of the malware family is shown between parentheses.

Forest is only able to ‘‘catch’’ 83% of the malicious domain
names, all the deep neural network architectures achieve a
recall of 97-98%. The baseline neural network consisting of
only an embedding layer as its hidden layer clearly performs
the worst with a TPR of less than 69%, highlighting that it is
advantageous to extend the network architecture with one or
more LSTM or CNN layers. Interestingly, there is little to no
variation among the five deep neural network architectures in
terms of TPR.

Table 7 contains examples of domain names from the
ground truth test data that were randomly selected among
those misclassified by either the Random Forest or by all five
deep neural networks. Inspecting the column of the benign
domain names, i.e. the Alexa domain names, it is interesting
to note that most of those misclassified by the ground truth
trained deep neural networks (bottom left in the table) come
across as gibberish that a human annotator would likely also
classify as malicious. As also evident from the top right of
Table 7, the deep neural networks have become very good
at considering such gibberish-looking domain names to be
malicious, even though they were never explicitly told to do
so (unlike the Random Forest, which explicitly includes a
normalized entropy of characters feature). The fact that the
malicious domain names at the bottom right of Table 7 were
missed by the deep neural networks might be due to our delib-
erate choice to tune the classification threshold to achieve a
very low FPR. This makes all the classifiers hold back from
labeling a domain name as malicious if they are not almost
completely certain. As explained above, a low FPR is very
important in deployed DGA detection systems, as blocking
legitimate traffic is highly undesirable. Note that if a deployed

DGA detection system would rely on the Random Forest
classifier, it would block all domain names from the first
row in Table 7, whereas, if it would rely on any of the deep
neural network classifiers, it would block all domain names
from the second row in Table 7. The domain names from
the first column would have been unjustly blocked. For those
negatively affected by this, it would be easier to ‘‘understand’’
(and perhaps forgive) the decisions made by the deep neural
network classifiers, as they are more in line with decisions
that a humanwouldmakewhen confrontedwith these domain
name strings.

As Table 8 shows there is a substantial distinction among
the different models in terms of complexity (number of
parameters that have to be learned during the training process)
and required training time per epoch. The platform used for
training is an AWS virtual machine with access to multiple
GPUs. Both the number of epochs needed to train a network,
and the number of seconds required per epoch, are contribut-
ing factors to the overall training runtime. The NYU model
took less than 8 minutes to train, while the CMU model took
as much as 10 hours. The last column in Table 8 shows the
time needed to classify 200K domain names with an already
trained model. The ranking of the deep networks in terms of
this ‘‘scoring time’’ coincides with the ranking in terms of
training time. Given that all deep networks achieve a similar
accuracy (TPR), the NYU model with it short training and
scoring time comes out as the winner.

B. TRAINING AND TESTING ON REAL TRAFFIC DATA
Our weakly labeled real traffic data set is an order of magni-
tude larger than our ground truth data (50M vs. 2M). Training

VOLUME 7, 2019 51551



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 8. Comparison of complexity and efficiency of classifiers for DGA detection trained on ground truth data alexaBamb-train. The complexity refers
to the number of parameters that have to be learned in the deep learning architectures. The training time is reported in terms of seconds needed for an
epoch times the number of epochs. The scoring time is the time in seconds needed to label 200K domain names by an already trained model.

TABLE 9. Results for classifiers trained with real traffic data retro-train when applied to the prospective datasets obtained from real traffic. For the RF
models, accuracy and TPR are w.r.t. a threshold that gives a FPR of 0.0002 on retro-val. For all other models, accuracy and TPR are w.r.t. a threshold that
gives a FPR of 0.0001 on retro-val.

FIGURE 7. Training and validation loss curves for the real-endgame
model, i.e. the model that is trained on retro-train, using retro-val as
validation data.

on the real traffic data and keeping the batch size fixed at
100 results in more than 25 times as many weight updates per
epoch, causing the optimization algorithm to try to learn too
fast, giving rise to decreasing accuracy convergence curves.
Rather than altering the learning rate, we solved this learn-
ing problem by increasing the batch size to 2048, which
– as a welcome side-effect – also decreased the runtime
significantly.

We trained all ‘‘real’’ models, i.e. models 9-16 from
Table 5, on the Retro-Train dataset from Table 2, and used
the Retro-Val validation dataset from Table 2 for hyperpa-
rameter tuning, such as determining the number of epochs at
which to stop training the neural networks, and selecting a
classification threshold to achieve a desired FPR. The ‘‘real’’
models were trained on a workstation with an NVIDIA Titan

Xp GPU and 12 GB RAM. Figure 7 depicts, as an example,
the train and validation loss curves for the real-Endgame
model. Compared to Figure 1, training on the weakly labeled
dataset took approx. twice as many epochs as training on the
ground truth dataset.

Table 9 contains the results for the classifiers that are
trained on the weakly labeled real traffic data only, and
evaluated on the prospective datasets with the same kind
of heuristically labeled real traffic data. Keep in mind that
in the heuristically labeled data, a domain name is labeled
as positive (suspicious) if it was queried at least 10 times,
never resolved, and all queries were within a time span
of 7 days. Similarly, a domain name is labeled as negative
(non-suspicious) if it was queried during a time span of at
least 30 days and always resolved. When evaluating classi-
fiers on the prospective real traffic datasets, we are effectively
evaluating their ability to predict, based solemnly on a domain
name string, whether that domain is a long-living, resolving
domain (negative example) or whether it is a short-living
domain that will never resolve (positive example).

The accuracy and TPR values reported in Table 9 for all
models other than the RFs are with respect to a classifi-
cation threshold that gives a FPR of 0.0001 on Retro-Val.
We measured the achieved FPR obtained with this classifica-
tion threshold on the prospective datasets as well. We found
it to be 0.000099 consistently and decided to omit it from the
table. The accuracy scores are very high, which is not very
surprising given that the prospective datasets are imbalanced,
i.e. they contain many more negative than positive examples.
The more interesting metrics to inspect are therefore the TPR

51552 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 10. Predictive performance overview of all trained models, compared in terms of AUC@1% on alexabamb-test dataset and AUC@0.1% across
different prospective test datasets.

and the AUC@0.1%. The latter is the integral of the ROC
curve from FPR= 0 to FPR= 0.001 on the prospective data.
As in Table 6, it is reported as a percentage of the ideal value.
For example, the real-MIT model achieves an AUC@0.1%
of 72.69% on the prospective data from Sep 2017, which
corresponds to an absolute AUC@0.1% value of 0.0007269
(the maximum possible being 0.001).

The first obvious observation is that the results in Table 9
are significantly lower than those in Table 6, which comes
as no surprise given the quality of the labels in the data.
Indeed, the real traffic data is likely to contain a lot of noise
because of the heuristic labeling rules. A second noteworthy
observation is that there is a substantial amount of variation
in the AUC scores of the five deep neural network models
in Table 9, ranging for instance from 44.45% (the real-CMU
model) to 72.69% (the real-MIT model) on the prospective
data from Sep 2017. This is unexpected and very unlike
the evaluation on the ground truth dataset in Table 6, for
which the AUC scores of all ground truth trained deep neural
networks differed by less than 1%. The best performing
models on heuristically labeled data are the real-Endgame
(LSTM) and the real-MIT (CNN + LSTM) models. They
both achieve AUC@0.1% scores that are above 72% when
evaluated against future (prospective) weakly labeled data,
which means that they can predict surprisingly accurately
when a new domain name will never resolve and live only
shortly. This confirms that there is a clear distinguishing
signal in the domain name strings that are labeled as positive
vs. negative by our heuristic labeling rules, even though the
labeling rules themselves do not use any information derived
from the domain name string at all.

FIGURE 8. Training and validation loss curves for the real-gold-endgame
model, i.e. the real-endgame model trained further on alexabamb-train,
using alexabamb-val as validation data.

C. CROSS-DATASET RESULTS
Table 10 contains results for classifiers that are trained on
weakly labeled real traffic data and cleanly labeled ground
truth data combined, the so-called ‘‘real-gold’’ models from
Table 5. For all neural network based models, we have taken
advantage of the fact that neural networks are very suitable for
online learning, meaning that it is possible to first train them
with real traffic data (Retro-Train) and then further update the
weights by continuing the training with ground truth exam-
ples (AlexaBamb-Train). Train and validation loss curves
for the real-gold-Endgame model are depicted in Figure 8
as an example. In the case of Random Forests, where such
pretraining is not possible, we simply combine all data
(Retro-Train + AlexaBamb-Train) and present it all to the
RF learning algorithm at once.

VOLUME 7, 2019 51553



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

TABLE 11. Examples of malicious domain names that were caught by the
real-gold-invincea model and not by the gold-invincea model.

All models are evaluated on the ground truth data (Alexa-
Bamb-Test, in terms of AUC@1%) and on the prospective
datasets (in terms of AUC@0.1%). For comparison purposes,
for the ‘‘gold’’ and ‘‘real’’ models, some results from Table 6
and Table 9 are recalled. Furthermore, they are completed
with cross-dataset results, such as the results for the classi-
fiers trained on the real traffic data when evaluated on the
ground truth data test set (Alexa-Bamb-Test). As mentioned
in Section IV, the filtered real traffic data does not contain
domain names with a second label that is shorter than 10 char-
acters, which implies that the ‘‘real’’ models have never seen
such domain names during training. For this reason, when
evaluating these ‘‘real’’ models on the ground truth data test
set, we systematically classify all domains that are shorter
than 10 characters as negative (benign) and use the trained
classifier to infer a class label for all other domains.

The results in Table 10 reveal thatmodels trained on ground
truth data (the ‘‘gold’’ models) do not perform well against
the prospective real traffic data, while models trained on
weakly labeled real traffic data (the ‘‘real’’ models) do not
performwell against ground truth data. Classifiers pre-trained
on the heuristically labeled data and post-trained on ground
truth data (the ‘‘real-gold’’ models) perform reasonably well
against heuristically labeled data, and, as shown in the bottom
left of Table 10, they perform really well against ground
truth data. Given that the AUC@1% scores of the ‘‘gold’’
models are already very high to begin with, leaving only little
room for improvement, the improved AUC@1% scores of the
‘‘real-gold’’ models are noteworthy.

It is interesting to observe that the gold-Invincea model,
which was the weakest among the ground truth trained deep
neural network models when applied to the AlexaBamb-Test
set (97.47%), became the strongest model of all (i.e. the real-
gold-Invincea model) after pretraining on the heuristically
labeled real traffic data (98.62%). As we know from Table 8,
this is the most complex model, i.e. with the largest number
of parameters, and it can thrive when given enough data.
Table 11 contains examples of malicious domain names that
were correctly detected as such by the Invincea model when
trained on a combination of weakly labeled real traffic data
and cleanly labeled ground truth data. The Invincea model
that was trained on ground truth data alone overlooked these
malicious domain names, illustrating the fact that there is

TABLE 12. AUC@1% results for all trained deep neural network models
when evaluated on different ground truth datasets.

practical value in pretraining the deep neural network clas-
sifiers with weakly labeled real traffic data.

To verify that the improvement obtained with pretrain-
ing on heuristically labeled real traffic data is statistically
significant, we evaluated the trained models on additional
test data, with malicious domain names that appeared in
traffic after the data that was used for training. Recall that all
data used for training the models in Table 10 was collected
between 2015-2017. In Table 12 we tested these models
on datasets AlexaBambJun29-Test, AlexaBambJul01-Test,
and AlexaBambJul03-Test. Each of these datasets contains
100K malicious domain names from the Bambenek feeds for
June 29, 2018, July 01, 2018, and July 03, 2018 respectively,
as well as the 100K Alexa domain names from AlexaBamb-
Test. The first column with results in Table 12 contains
the AUC@1% score for the various deep neural network
models when trained on ground truth data only, and the sec-
ond column contains the results when the ground truth data
is augmented with real traffic data during training. Using the
Wilcoxon test we determined that the improvement observ-
able in Table 12 is statistically significant at the 1% signif-
icance level with a p-value of 6.104E-5. This should come
as no surprise, as a strict improvement was observed for
each experiment, highlighting that the use of real traffic data
consistentlymakes the classifiers significantlymore accurate.

VI. CONCLUSION
In this paper we have investigated the use of deep neural
network based classifiers for DGA detection, trained with
large amounts of weakly labeled data obtained from real
traffic. The heuristic labeling rules that we proposed to obtain
a noise-not-free yet practical training dataset do not make
any assumptions about the structure of the domain name
strings themselves, nor the algorithms that were used to
generate them. Instead, they leverage the fact that DGAs
leave a characteristic trace of NXDomain responses, and that
DGA domain names have a typical, short lifespan. We have
shown that enriching ground truth data trained DGA classi-
fiers with automatically collected and filtered weakly labeled
real traffic data improves their predictive accuracy, resulting

51554 VOLUME 7, 2019



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

in classifiers that achieve very high AUC scores (98% and
above).

The trained classifiers themselves only require the domain
name string as input, which means that they can be deployed
to detect DGAdomain names in real-time as part of a resolver,
on a per domain basis, without requiring knowledge about the
expected lifespan of the domain name or any other potentially
privacy sensitive information such as the IP address of the
host requesting the domain name. Infoblox has created an
architecture to include the DGA detection classifier that is
served by Google’s TensorFlow Serving [31] into its DNS
services. A DNS query is sent to the resolver and the clas-
sifier in parallel. When the domain name is resolved and
the classification result is positive, the resolved IP address
is suspected to be intended for C&C communication, and
blocked accordingly. In the product, the false positive rate is
set to be as low as 0.001%. Since a C&C server’s IP address
will be reused over time by a number of malicious domains,
any lowered true positive rate for detecting DGA domains
resulting from the lower false positive rate setting does not
significantly reduce the rate of capturing C&C IP addresses.

REFERENCES
[1] B. Yu, L. Smith, andM. Threefoot, ‘‘Semi-supervised time series modeling

for real-time flux domain detection on passive DNS traffic,’’ in Proc.
MLDM, Stain Petersburg, Russia, 2014, pp. 258–271.

[2] M. Antonakakis et al., ‘‘From throw-away traffic to bots: Detecting the
rise of DGA-based malware,’’ presented at the USENIX Secur. Symp.,
Bellevue, WA, USA, 2012. [Online]. Available: https://www.usenix.
org/system/files/conference/usenixsecurity12/sec12-final127.pdf

[3] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, ‘‘Phoenix: DGA-
based botnet tracking and intelligence,’’ in Proc. DIMVA, Egham, U.K.,
2014, pp. 192–211.

[4] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, ‘‘FANCI:
Feature-based automated NXDomain classification and intelligence,’’
presented at the USENIX Secur. Symp., Baltimore, MD, USA, 2018.
[Online]. Available: https://www.usenix.org/system/files/conference/
usenixsecurity18/sec18-schuppen.pdf

[5] P. Lison and V. Mavroeidis. (2017). ‘‘Automatic detection of malware-
generated domains with recurrent neural models.’’ [Online]. Available:
https://arxiv.org/pdf/1709.07102.pdf

[6] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant. (2016). ‘‘Pre-
dicting domain generation algorithms with long short-term memory net-
works.’’ [Online]. Available: https://arxiv.org/pdf/1611.00791.pdf

[7] J. Saxe and K. Berlin. (2017). ‘‘eXpose: A character-level convolu-
tional neural network with embeddings for detecting malicious URLs,
file paths and registry keys.’’ [Online]. Available: https://arxiv.org/pdf/
1702.08568.pdf

[8] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, ‘‘A LSTM based
framework for handling multiclass imbalance in DGA botnet detection,’’
Neurocomputing, vol. 275, pp. 2401–2413, Jan. 2018.

[9] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, ‘‘Character level
based detection of DGA domain names,’’ in Proc. WCCI, Rio de Janeiro,
Brazil, 2018, pp. 4168–4175.

[10] B. Yu, D. Gray, J. Pan, M. De Cock, and A. Nascimento, ‘‘Inline DGA
detection with deep networks,’’ in Proc. ICDMW, New Orleans, LA, USA,
Nov. 2017, pp. 683–692.

[11] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. Cohen,
‘‘Tweet2Vec: Character-based distributed representations for social
media,’’ in Proc. ACL, vol. 2, Berlin, Germany, 2016, pp. 269–274.

[12] S. Vosoughi, P. Vijayaraghavan, and D. Roy, ‘‘Tweet2vec: Learning tweet
embeddings using character-level CNN-LSTM encoder-decoder,’’ in Proc.
SIGIR, Pisa, Italy, 2016, pp. 1041–1044.

[13] X. Zhang, J. Zhao, and Y. LeCun, ‘‘Character-level convolutional networks
for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 28,
2015, pp. 649–657.

[14] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-
Padilla, ‘‘A comprehensive measurement study of domain generat-
ing malware,’’ presented at the USENIX Secur. Symp., Austin, TX,
USA, 2016. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity16/sec16_paper_plohmann.pdf

[15] J. Kwon, J. Lee, H. Lee, and A. Perrig, ‘‘PsyBoG: A scalable botnet
detection method for large-scale DNS traffic,’’ Comput. Netw., vol. 97,
pp. 48–73, Mar. 2016.

[16] J. Abbink and C. Doerr, ‘‘Popularity-based detection of domain generation
algorithms,’’ in Proc. ARES, Reggio Calabria, Italy, 2017, pp. 1–79.

[17] R. R. Curtin, A. B. Gardner, S. Grzonkowski, A. Kleymenov, and
A. Mosquera. (2018). ‘‘Detecting DGA domains with recurrent neural
networks and side information.’’ [Online]. Available: https://arxiv.org/pdf/
1810.02023.pdf

[18] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ presented at the NIPS,
Montréal, QC, Canada, 2014. [Online]. Available: http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf

[19] I. Goodfellow, J. Shlens, and C. Szegedy. (2014). ‘‘Explaining and har-
nessing adversarial examples.’’ [Online]. Available: https://arxiv.org/pdf/
1412.6572.pdf

[20] H. S. Anderson, J. Woodbridge, and B. Filar, ‘‘DeepDGA: Adversarially-
tuned domain generation and detection,’’ in Proc. AISec, Vienna, Austria,
2016, pp. 13–21.

[21] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan, ‘‘Detecting algorith-
mically generated malicious domain names,’’ in Proc. IMC, Melbourne,
VIC, Australia, 2010, pp. 48–61.

[22] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan, ‘‘Detecting
algorithmically generated domain-flux attacks with DNS traffic analysis,’’
IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1663–1677, Oct. 2012.

[23] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[24] D. Kingma and J. Ba. (2014). ‘‘Adam: A method for stochastic optimiza-
tion.’’ [Online]. Available: https://arxiv.org/pdf/1412.6980.pdf

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[26] W. Ling et al. (2016). ‘‘Finding function in form: Compositional character
models for open vocabulary word representation.’’ [Online]. Available:
https://arxiv.org/pdf/1508.02096.pdf

[27] DGArchive Fraunhofer FKIE. Accessed: May 28, 2017. [Online]. Avail-
able: https://dgarchive.caad.fkie.fraunhofer.de/

[28] B. Yu, L. Smith, M. Threefoot, and F. Olumofin, ‘‘Behavior analysis based
DNS tunneling detection and classification with big data technologies,’’ in
Proc. IoTBD, Rome, Italy, 2016, pp. 284–290.

[29] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io
[30] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.
[31] Google. Accessed: Jun. 26, 2018. [Online]. Available: https://www.

tensorflow.org/serving/

BIN YU received the Ph.D. degree in electronic
engineering from Tsinghua University, China. He
is a Chief Data Scientist at Infoblox, Santa Clara,
CA, USA, where he pioneered big data analyt-
ics to detect malicious DNS traffic, using deep
learning and artificial intelligence techniques to
keep pace with fast changing malware evolution.
He worked with many high tech companies in
Silicon Valley at senior leadership positions and
led projects of machine learning and artificial

intelligence for internet search, medical imaging, computer vision, and
e-commerce. He has a rich experience in both academia and industry for
more than 25 years. He was a Postdoctoral Fellow with the Pattern Recog-
nition and Image Processing Lab, Michigan State University, USA, and
as an Associate Professor with Beijing Jiaotong University, China. He has
published more than 50 peer reviewed papers and holds patents in artificial
intelligence, deep learning, machine learning, image processing, and cyber-
security. He is a Senior Member of the IEEE Computer Society.

VOLUME 7, 2019 51555



B. Yu et al.: Weakly Supervised Deep Learning for the Detection of DGAs

JIE PAN received the B.S. degree in management
information systems from The Ohio State Uni-
versity, USA, in 2013, and the M.S. degree in
computer science and systems from the University
of Washington, USA, in 2017. During his gradu-
ate studies, he was a Student Assistant research-
ing the detection and classification of malicious
domain names with machine learning techniques.
He is currently with Amazon Video, Seattle, USA,
where he usesmachine learning techniques to offer
recommendations for consumers.

DANIEL GRAY received the B.S. degree in com-
puter engineering and theM.S. degree in computer
science and systems from the University of Wash-
ington, USA, in 2016 and 2018, respectively. His
M.S. research was on the use of deep learning to
train classifiers for the detection of algorithmically
generated domain names. He is currently a Soft-
ware Engineer with Infoblox, Tacoma, USA.

JIAMING HU received the B.S. degree in com-
puter science and technology from ZhejiangWanli
University, China, in 2005, and the M.S. degree in
computer science and systems from the University
of Washington, USA, in 2018. His M.S. research
was on the use of deep learning to train classi-
fiers for the detection of algorithmically generated
domain. He is currently a Senior Deep Learning
Scientist with Mythic, Inc., Palo Alto, USA. His
current research interests include object detection,

super resolution, low light image enhancement in computer vision, and AI
auto-training infrastructure.

CHHAYA CHOUDHARY received the B.S. degree
in computer science from Banasthali University,
India, in 2011, and the M.S. degree in computer
science and systems from the University of Wash-
ington, USA, in 2019. Her master’s thesis was on
the evaluation of state-of-the-art DGA classifiers
against adversarial examples using autoencoders
and generative adversarial networks. She is cur-
rently a Data Scientist with Infoblox, where she is
solving challenging data problems involving mal-

ware detection and classification using machine learning and deep learning
techniques.

ANDERSON C. A. NASCIMENTO received the
B.S. degree in electrical engineering from the Uni-
versity of Brasilia, Brazil, in 1998, and the M.S.
and Ph.D. degrees in information and communi-
cation engineering from The University of Tokyo,
Japan, in 2001 and 2004, respectively. He was a
permanent member of the Nippon Telegraph and
Telecom Cryptography Research Group, Japan,
and a Faculty Member with the University of
Brasilia, Brazil. He is currently an endowed Asso-

ciate Professor of information security and information technology with the
School of Engineering and Technology, University of Washington, Tacoma,
USA. His research interests include cryptography, information security,
privacy, and machine learning applications.

MARTINE DE COCK received the M.S. and Ph.D.
degrees in computer science from Ghent Univer-
sity, Belgium, in 1998 and 2002, respectively. Her
previous work experiences include positions as
a Research Assistant and a Postdoctoral Fellow
supported by the Fund for Scientific Research—
Flanders, a Visiting Scholar with the BISC Group,
University of California at Berkeley, Berkeley,
USA, a Visiting Scholar with the Knowledge Sys-
tems Laboratory, Stanford University, USA, and

an Associate Professor with the Department of Applied Mathematics, Com-
puter Science and Statistics, Ghent University. She is currently a Profes-
sor with the School of Engineering and Technology, University of Wash-
ington, Tacoma, USA, and a Guest Professor with Ghent University. She
Co-Organized the KDDCup2013. She has more than 150 peer reviewed
publications in international journals and conferences on artificial intel-
ligence, data mining, machine learning, information retrieval, web intel-
ligence, and logic programming. Her current research interests include
privacy-preserving machine learning, cybersecurity, and data analytics to
improve the quality of healthcare. She is a Program Committee Member of
numerous international conferences. She has served as an Associate Editor
for the IEEE TRANSACTIONS ON FUZZY SYSTEMS.

51556 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	DEEP NEURAL NETWORK ARCHITECTURES
	PREPROCESSING
	RNN BASED ARCHITECTURES
	CNN BASED ARCHITECTURES
	HYBRID CNN/RNN BASED ARCHITECTURE

	DATA COLLECTION
	SMALL GROUND TRUTH DATASET
	HEURISTICALLY LABELED REAL TRAFFIC DATA
	HEURISTIC LABELING RULES


	RESULTS
	TRAINING AND TESTING ON GROUND TRUTH DATA
	TRAINING AND TESTING ON REAL TRAFFIC DATA
	CROSS-DATASET RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	BIN YU
	JIE PAN
	DANIEL GRAY
	JIAMING HU
	CHHAYA CHOUDHARY
	ANDERSON C. A. NASCIMENTO
	MARTINE DE COCK


