
  

Geosciences 2019, 9, 414; doi:10.3390/geosciences9100414 www.mdpi.com/journal/geosciences 

Article 

Heat as a Proxy to Image Dynamic Processes with 4D 
Electrical Resistivity Tomography 
Tanguy Robert 1,2,3,*,†, Claire Paulus 4,5,†, Pierre-Yves Bolly 1,4, Emma Koo Seen Lin 6  
and Thomas Hermans 7 

1 AQUALE sprl, Rue Ernest Montellier 22, 5380 Noville-les-Bois, Belgium; py.bolly@aquale.com 
2 Urban and Environmental Engineering, University of Liege, 4000 Liege, Belgium 
3 F.R.S. – FNRS (Fonds de la Recherche Scientifique), Rue d’Egmont 5, 1000 Brussels, Belgium 
4 UCLouvain, Louvain School of Engineering, Rue Archimède 1, 1348 Louvain-la-Neuve, Belgium; 

claire.i.paulus@gmail.com 
5 Raco bvba, Meylandtlaan 39, 3550 Heusden-Zolder, Belgium 
6 ENSEGID, Allée Fernand Daguin, 33607 Pessac, France; ksl.emma@gmail.com 
7 Department of Geology, Ghent University, Krijgslaan 281, 9000 Gent, Belgium; 

Thomas.Hermans@UGent.be 
* Correspondence: Tanguy.Robert@uliege.be 
† The two first authors contributed equally to the publication. 

Received: 26 June 2019; Accepted: 23 September 2019; Published: 24 September 2019 

Abstract: Since salt cannot always be used as a geophysical tracer (because it may pollute the aquifer 
with the mass that is necessary to induce a geophysical contrast), and since in many contaminated 
aquifer salts (e.g., chloride) already constitute the main contaminants, another geophysical tracer is 
needed to force a contrast in the subsurface that can be detected from surface geophysical 
measurements. In this context, we used heat as a proxy to image and monitor groundwater flow 
and solute transport in a shallow alluvial aquifer (< 10 m deep) with the help of electrical resistivity 
tomography (ERT). The goal of our study is to demonstrate the feasibility of such methodology in 
the context of the validation of the efficiency of a hydraulic barrier that confines a chloride 
contamination to its source. To do so, we combined a heat tracer push/pull test with time-lapse 3D 
ERT and classical hydrogeological measurements in wells and piezometers. Our results show that 
heat can be an excellent salt substitution tracer for geophysical monitoring studies, both 
qualitatively and semi-quantitatively. Our methodology, based on 3D surface ERT, allows to 
visually prove that a hydraulic barrier works efficiently and could be used as an assessment of such 
installations. 

Keywords: 3D electrical resistivity tomography; time-lapse; monitoring; heat tracer 
 

1. Introduction 

Geophysical techniques can provide spatially and temporally distributed information on the 
subsurface and related processes in a non-invasive way thanks to measurements taken on the ground 
surface or from the sky [1]. That's one of the reasons for the emergence of hydrogeophysics for the 
improved understanding of subsurface processes over multiple scales [2]. In the context of 
hydrogeology, we can mention groundwater flow, solute transport, and heat transfer among the most 
frequently monitored physical processes [3]. To follow a physical process in the subsurface using 
geophysical techniques, it is necessary to have a sufficient contrast of the associated geophysical 
property that is measured or imaged, hence the importance of properly dimensioning geophysical 
surveys [4]. This contrast can be either natural or forced. Examples of natural processes that can be 
imaged with geoelectrical methods are seawater intrusion in fresh water-bearing aquifers [5], as 
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seawater is far more electrically conductive than freshwater, and moisture dynamics in soils [6] or in 
the epikarst [7], since bulk electrical resistivity ρb decreases with increasing water content and vice 
versa. One example of forced contrast is lowering ρb (by e.g., injecting salt water) to image a 
preferential groundwater flow path in fractured-rock [8] or alluvial aquifers [9] with electrical 
resistivity tomography (ERT). As ρb is sensitive to many important hydrogeological parameters or 
properties (e.g., fluid electrical conductivity, water content, temperature, porosity…), it is not 
surprising that ERT (and in general, all geoelectrical methods) has become one of the favorite 
geophysical monitoring techniques [3], and that ERT devices fully dedicated to monitoring studies 
are now available. Moreover, the ERT installation itself is well suited for a monitoring setup 
compared to other geophysical methods such as ground penetrating radar or seismic refraction. ERT 
has been used in a time-lapse modality to monitor many subsurface processes such as the migration 
of dissolved CO2 in a shallow aquifer [10], the reinjection of leachate in an old landfill with the help 
of horizontal drains to reactivate the digestion process of municipal waste [11], biogeochemical 
changes of an aged hydrocarbon contamination [12], the bioremediation of hydrocarbons [13], to 
image and quantify salt tracer transport in a riparian groundwater system [14], to characterize solute 
transport in aquifers with different types of tracers [15], or even to better understand the thawing of 
frozen ground and permafrost [16]. A full review of geoelectrical monitoring can be found in [3] for 
the interested reader.  

In the context of shallow alluvial aquifers (the focus of our work) which are characterized by a 
maximum depth of 15 to 20 m, surface ERT does not suffer too much from its depth of investigation 
versus resolution problem [17], especially when the monitoring is only qualitative or even semi-
quantitative. The latter is generally common for real-world applications. Indeed, ERT monitoring 
should be able to give a quick answer about (non-exhaustive list) the groundwater flow direction, the 
risk of thermal feedback between two wells in aquifer thermal energy storage systems and, in the 
context of this work, the validation of the efficiency of a hydraulic barrier to confine a pollutant to its 
source. 

Thanks to the presence of large rivers, alluvial plains have historically become the place to be 
for big cities and industries. Nowadays, many brownfield sites still bear witness to this fact and many 
alluvial aquifers are contaminated by pollutants of all sort. Among the pollutants, we can cite 
chlorides and other dissolved salts that increase the groundwater electrical conductivity to the point 
where the injection of a saline tracer to force a geoelectrical contrast becomes difficult due to the extra 
mass of tracer that is required. When considering drinking water aquifers, injecting large quantities 
of salt to force the required geophysical contrast is probably not a good solution either, even if this 
would work (see Table 1 in [8] for a review on this topic). The use of negative tracers might be a 
solution to counteract these problems. For example, Müller et al. [15] used deionized water that 
increases bulk electrical resistivity and compared it with traditional (positive) tracer, such as salt, that 
decreases bulk electrical resistivity. However, the implementation of such experiments using 
deionized water seems difficult to carry out in real-world applications. For all these reasons, we 
believe that, in this specific context, modifying water chemistry to force a geophysical contrast is not 
the easiest and the most sustainable method.  

Although the effect of temperature on bulk or fluid electrical conductivity is known for long 
[18,19], we have seen during the last decade an increasing amount of studies using ERT to quantify 
temperature changes in the subsurface and more precisely, in aquifers [20]. In 1993, Ramirez et al. 
[21] already proved that heat (in the form of steam) could be monitored qualitatively with electrical 
measurements. In 2012, Hermans et al. [17] successfully monitored a heat storage experiment in a 
very shallow sandy aquifer (< 5 m deep) with a 2D ERT profile. They injected heated tap water (ΔT = 
30 K) to create a heat plume that could be imaged and estimated in a semi-quantitative way [22] by 
surface ERT measurements. In 2013, Hermans et al. [23] took profit of a multiple tracer test (which 
included heated groundwater with a ΔT of 30 K) conducted by [24] to monitor temperature changes 
in a shallow alluvial aquifer (< 10 m deep) with a cross-hole ERT profile. They were able to image 
spatially and temporally the distribution of temperature from the bulk electrical resistivity changes. 
Their results show a very good agreement with direct temperature measurements in piezometers 
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(maximum discrepancy of 20%, i.e., 1.5 °C). Robert et al. [25] showed that for medium (T > 40 °C) and 
higher injection temperatures, ERT-derived temperature estimates do not follow a linear relationship 
anymore as shown by Hayley et al. [18]. Indeed, at this temperature range, calcite, if close to 
saturation, starts to precipitate and the induced temperature change does not only increase the 
mobility of ions anymore but also modify the composition of dissolved minerals. In 2016, Giordano 
et al. [26] showed in the laboratory that apparent resistivity from a few electrodes might be sufficient 
to monitor temperature changes in a qualitative way, an idea that is interesting for a rapid scan of 
temperature changes. In the context of underground thermal energy systems, several authors used 
ERT to image and characterize the thermal affected zone [27] in aquifer with heated water injection 
[28] or borehole heat exchanger [29–31]. These time-lapse ERT data were also used for numerical 
model calibration and/or validation [30,32,33], or for system design [34,35]. For more information on 
this topic, the reader is referred to the following articles [20] and [36]. 

Through a case study, we will establish and validate a methodology focused on ERT monitoring 
and heat as a geophysical tracer to monitor the confinement of chloride contamination in a shallow 
alluvial aquifer. In addition to this introduction (Section 1), we will present the experimental site in 
its geological, hydrogeological, and geophysical aspects (Section 2.1). We will also present in detail 
the one-week push/pull test with heat as a tracer (Section 2.2) and its 3D ERT monitoring (Section 2.3) 
in all these aspects: field implementation, data error analysis, time-lapse data inversion, and image 
filtering with resolution indicators. We will then present our 3D ERT results and discuss them in the 
context of contaminated aquifer remediation and confinement of dissolved pollutant (Section 3). 
Section 4 concludes this study. 

2. Materials and Methods  

2.1. Experimental Site 

The experimental site is located in an old alluvial plain of the Sambre River in Wallonia, Belgium, 
(Figure 1a) which has been extensively studied in the past due to its chloride contamination. As a 
consequence of this contamination, more than a hundred piezometers have been drilled and 
equipped in the alluvial aquifer, which has provided a very clear view of the underlying geology and 
hydrogeology. In the investigated area, two wells (W1 and W2) and three piezometers (PzA, PzB, 
and PzC) were drilled, screened in the alluvial aquifer, and equipped with CTD divers (at a depth of 
6 m) measuring water level, groundwater temperature (T), and specific (i.e., corrected at 25 °C) 
electrical conductivity (Figure 1b) on a five-minute basis.  
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Figure 1. Location of the experimental site in an old alluvial plain of the Sambre River in Wallonia, 
Belgium (A). The experimental setup (B) shows the location of wells (W1 and W2) and piezometers 
(PzA, PzB, and PzC) equipped with CTD divers for water level (D), groundwater temperature (T), 
and specific electrical conductivity (C) measurements. The 3D ERT (electrical resistivity tomography) 
setup is composed of nine ERT profile lines and 189 electrodes in total (modified after [32]). 

The geological setting is typical of alluvial deposits, although quite heterogeneous in terms of 
the thickness of the different geological layers and the depth of the bedrock (Figure 2). From the 
ground surface, and on average, is found a 2–3 m thick layer of clay loam (possibly mixed with 
backfill on the upper first meter) and a 3–6 m thick layer composed of sand and gravel above the 
shale bedrock located at about 7.5 m.  

From a hydrogeological point of view, only the second layer composed of sand and gravel can 
be qualified as an aquifer. This aquifer, fully saturated, is confined by the clay loam layer that is only 
partially saturated. Preliminary pumping tests conducted before the experiment also showed an 
heterogeneity in terms of hydraulic conductivity (K) with a difference of at least one order of 
magnitude between the vicinities of wellW1 (K ~ 4 × 10−4 m/s) and well W2 (K ~ 4 × 10−3 m/s). Such 
heterogeneity has also been demonstrated by inverse calibration in [32]. Around well W2 (where the 
entire experiment took place), the alluvial aquifer is found between 3.5 m (base of the clay loam layer) 
and 7.5 m deep (top of the bedrock). The local hydraulic gradient is low (i ~ 0.0001) resulting in a very 
slow groundwater flow from North to South (towards the Sambre River that prescribes the base level 
of the aquifer) of ~10 m/year on average (Figure 1B).  

From a geophysical point of view, the different layers composing the site are relatively 
electrically conductive with the clay loam, alluvial aquifer, and shale bedrock respectively 
characterized by a bulk electrical resistivity of ~20, 60 to 80, and 120 Ωm. In terms of groundwater 
electrical conductivity, there is a gradient from North (closer to the source of contaminant) to South, 
in the investigated area, resulting in a different ambient groundwater electrical resistivity around W1 
(~ 4 Ωm) and W2 (~ 4.5 Ωm). This means that, in addition to heat, a slightly higher chloride 
concentration contributed to induce a geophysical contrast (see Section 2.2). 
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Figure 2. NE-SW cross-section of the investigated area presenting the underlying geology and 
hydrogeophysical parameters (modifier after [37]). ρ is the electrical resistivity; the subscripts b and f 
respectively stand for bulk and fluid (groundwater); K is the hydraulic conductivity; T0 is the ambient 
groundwater temperature; e is the aquifer thickness; and m.b.s. is meters below surface. 

2.2. The Push/Pull Test 

In May 2015, we conducted the push/pull test using heat as a geophysical tracer as follows: 

1. Groundwater is pumped out of W1 at a flow rate of 2.55 m³/h (T0 = 10 °C) using a surface pump; 
2. Water is heated (ΔT = 30 K) using a mobile water flow heater (Swingtec AquaMobil DH7); 
3. Heated water (T = 40 °C) is injected in W2 with the same flow rate of 2.55 m³/h and for 5.33 h 

(13.6 m³ in total) at an injection depth of about 6 m; 
4. Resting phase of 72 h during which full 3D ERT images are collected; 
5. Groundwater is pumped back out of W2 during 4.5 h at a mean flow rate of 7.6 m³/h (34.2 m³ in 

total). 

2.3. 3D Electrical Resistivity Monitoring 

2.3.1. Electrodes Configuration 

The 3D ERT setup was composed of nine parallel ERT profiles with 21 electrodes each for a total 
of 189 classical stainless-steel electrodes. The origin of the local reference system (shown in Figure 
1B) is the most southwestern electrode. The unit electrode spacing in the X direction was 2 m whereas 
it was 3 m in the Y direction. Each profile was therefore spaced 3 m apart, which is in line with the 
recommendation made by Van Hoorde et al. [38] (i.e., less than twice the unit electrode spacing of 
the main profiles). The distance between the first two and last two pairs of electrodes on each of the 
nine ERT profiles has been doubled (i.e., 4 m) to increase the depth of investigation without sacrificing 
resolution in the central part of the ERT grid (where the push/pull test took place). Each of the nine 
ERT profiles was therefore 48 m long. More details on the 3D ERT grid can be seen in Figure 1B and 
the interested reader is referred to Van Hoorde et al. [38] or Cho and Yeon [39] for more details on 
3D ERT implementation. 

To acquire ERT data, we used the ABEM Terrameter LS device with eight acquisition channels. 
To take advantage of multichannel acquisition, we used a combination of inline and cross-line dipole-
dipole [38,39] (with a maximum spacing factor of eight) and gradient arrays. The acquisition has been 
split into three groups of three profiles as we did only have one Terrameter and no ES 1064 selector 
to branch all electrical lines altogether. This means that we had to manually move the acquisition 
device from one group to another for each ERT image (from G1 to G3, see Figure 1B) (roll-along in 
the Y direction). Cross-line measurements (current electrodes on one line and potential electrodes on 
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an adjacent line as defined by [39]) were therefore only done inside a group of three profiles. The 
total time needed to acquire a full set of 3D ERT measurements took two hours, whereas it was about 
35 min for a faster 3D ERT survey (see Tables 1 and 2). Acquisition parameters are shown in Table 1. 
A full 3D ERT image is composed of the nine electrical lines whereas the faster survey (called light 
3D ERT image in Table 2) used only the central group (G2) composed of three electrical lines. 

Table 1. ERT data acquisition and inversion parameters. 

Acquisition Device  ABEM Terrameter LS 
Number of Acquisition Channels 8 

Contact Resistance maximum 50 ± 25 Ω 
Current Intensity from 20 to 500 mA 

Stacking 2–3 repetitions with a quality factor of 1% 
Repetition Error mean 0.20%, std. 0.60% 

Delay Time 0.2 s 
Acquisition Time 0.3 s 

Total injection Time 0.5 s 
Unit Electrode Spacing in X 2 m 
Unit Electrode Spacing in Y 3 m 

Number of Electrodes Per Profile (in X) 21 
Number of Profiles (in Y) 9 

Total Number of Electrodes 189 
Dimension of the Full Set-up (X × Y) 48 m × 24 m 

Reciprocal Measurements For selected sequences only 
Reciprocal Error < 2% 

Depth of Investigation ~8 m 

Electrodes Arrays 
Inline dipole-

dipole 
Cross-line dipole-dipole  

Inline 
gradient 

Number of Quadrupoles Per Group  654 480 372 
Acquisition Time Per Group 15 min 10 min 8 min 

Total Number of Quadrupoles Per Image 4518 (full) and 1506 (light) 
Acquisition Time for a Full Image 2 hours 

Acquisition Time for a Light Image 35 min 

Inversion Parameters 
Robust data constraint (L1 norm) 

Standard “smoothness” model constraint (L2 norm) 
Stopping Criterion Iteration 3 with a final absolute error ~ 2% 
Time-lapse Scheme Independent inversions 

Time-lapse Reference 2nd background image for each time step 

We collected full 3D ERT images before the experiment (two background images), directly after 
the push phase (one image), during the resting phase (about two images per day), and directly 
following the pull phase (one image). We collected light 3D ERT surveys during the most transient 
phases of the experiment, namely the push (three images) and the pull (six images) phases in order 
to have a better temporal resolution. Note that we also collected a few light 3D ERT images during 
the resting phase (see Table 2). 

In hindsight, and by anticipating slightly the discussion section (Section 3), our electrode 
configuration could have been optimized. First, the sole gradient array would have been enough and 
would have permitted a better temporal resolution. Also, since the added value of cross-line 
measurements in the above-mentioned configuration is only in the first few upper meters where no 
change is expected, we could have done without them. 

Table 2. Workflow of the experiment. 

Phase Elapsed Time [h] 1 
Date (May [dd] 2015)  

and Time 
Implementation - 04 (11:00 AM) 

1st background ERT image - 04 (04:00 PM) 
Storm and heavy rain - at night 

2nd background ERT image - 05 (08:30 AM) 
Push start 0 05 (11:00 AM) 

Light 3D ERT image a 3 05 (02:00 PM) 
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Light 3D ERT image b 4 05 (03:00 PM) 
Light 3D ERT image c 5 05 (04:00 PM) 

Push end 5.33 05 (04:20 PM) 
Full 3D ERT image 1 6 05 (05:00 PM) 

Heavy rain - 06 (AM & PM) 
Full 3D ERT image 2 23 06 (10:00 AM) 
Full 3D ERT image 3 25 06 (12:00 AM) 
Full 3D ERT image 4 27 06 (02:00 PM) 

Light 3D ERT image d 29 06 (04:00 PM) 
Full 3D ERT image 5 47 07 (10:00 AM) 

Pump test 48.5 07 (11:30 AM) 
Full 3D ERT image 6 50 07 (01:00 PM) 

Light 3D ERT image e 70 08 (09:00 PM) 
Pull start 71.15 08 (10:10 AM) 

Light 3D ERT image f 71.5 08 (10:30 AM) 
Light 3D ERT image g 72.15 08 (11:10 AM) 
Light 3D ERT image h 72.8 08 (11:50 AM) 
Light 3D ERT image i 73.45 08 (12:30 AM) 
Light 3D ERT image j 74.1 08 (01:10 PM) 
Light 3D ERT image k 74.75 08 (01:50 PM) 

Pull end 75.5 08 (02:30 PM) 
Full 3D ERT image 7 76 08 (02:30 PM) 

1 Time t = 0 is at the start of the injection (push phase of the test). 

2.3.2. Data Error and Time-Lapse Data Analysis 

Improving the signal-to-noise ratio is crucial in time-lapse studies as measured resistance 
variations are generally low (here, < 1 Ω, Figure 3A) and could be masked by noise. In this study, we 
have taken all necessary precautions to limit noise in the data as much as possible starting with the 
contact resistances RC that present a mean ± standard deviation value equal to 50 ± 25 Ω for the first 
background data set and 25 ± 12 Ω for the second background data set and all the following ones 
(Figure 3C). The difference in RC between the two background data sets is caused by the heavy rainfall 
that occurred during the first night (Table 2). Except for a few outliers that were discarded from the 
data set, 96% of the data points present a repetition error (also called quality factor Q, which is the 
standard deviation value of a measurement) below 1% (Figure 3B) and 99.5% below 5%. The mean 
and standard deviation values of the repetition error distribution are respectively 0.20% and 0.60% 
(Figure 3B). We accepted all data with a repetition error below 5%. 

Many authors use the reciprocal error to estimate the data noise level in static [40–42] and time-
lapse ERT images [43]. The reciprocal error is the difference between normal and reciprocal 
(swapping current and potential electrodes) electrical resistances. The acquisition of full reciprocal 
measurements takes time because an acquisition sequence needs to be collected twice. In our case, 
for a full 3D image, it means a total acquisition time of four hours to collect both normal and reciprocal 
measurements. Another point of interest regarding reciprocal measurements in time-lapse studies 
concerns the most transient phases of our experiment (the push and the pull phases). Indeed, within 
two hours, reciprocal data are not equivalent to the normal data collected two hours before since we 
induce some changes in the aquifer. One way of partially solving this is to acquire the reciprocal 
measurement right after the normal one. However, in this case, the multichannel acquisition 
optimization is not optimal anymore. We then collected reciprocals only for a subset of sequences 
and during more steady-state phases as the background profiles. We were able to maintain the 
reciprocal error below 2%, except for a few outliers that were removed from all data sets. We also 
used this 2% value as the stopping criterion for the inversion process.  

Before proceeding to data inversion, it is crucial to ensure that our data set actually contains 
information about the physical process that is monitored. One simple of way of proving that is to plot 
the mean value of the data set (in our case, the mean value of the 1506 data points composing the fast 
surveys) with time. 
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Figure 3. Histograms presenting (A) the distribution of the electrical resistance values of the second 
background data set (with values < 1 Ω), (B) the distribution of the repetition errors for the second 
background data set, and (C) the distribution of the contact resistances RC for the first (blue) and 
second (red) background data sets. (D) shows the evolution of the mean value of our data sets during 
the experiment and the effect of the pump test (Table 2) on the temperature curve recorded in W2. 

Figure 3D shows that the mean electrical resistance value decreases during the push phase, stays 
more or less stable during the resting phase, and increases during the pull phase as expected. Figure 
3D shows actually the difference between the mean value of the second background data set called 
R0 and the mean value R of the following time-steps. Interestingly, the mean electrical resistance value 
of the last time-step (after the push phase) goes back to its initial value (the difference between R0 and 
R is almost null). 

2.3.3. Data Inversion 

We used the RES3DINV software (https://www.geotomosoft.com/) to perform our inversions. 
We used a robust data constraint (L1 norm) to deal with eventual bad data that would remain and a 
standard smoothness model constraint (L2 norm) corresponding to Occam’s inversion [44,45]. 
Although there are different regularization techniques allowing to recover sharper and more focused 
thermal plumes such as the blocky inversion [46,47] or the minimum gradient support [48,49], we 
believe the standard smoothness-constraint scheme is well adapted to the smooth changes that are 
expected with injecting heated water in the aquifer. 

Although data difference inversion seems the most robust time-lapse inversion technique [8,50], 
when data quality is good, simple independent inversions can provide reliable results when the 
forced electrical resistivity contrast is high enough and when data quality is good. We used then 
independent inversion as a time-lapse scheme. This means that each data set is inverted separately 
and compared to the same background image (here the second one). However, to be able to compare 
apple with apple, we ensure that our final absolute error for all 3D ERT images was fixed at a constant 
value (2% here, given the noise level estimated with reciprocal error analysis). This 2% absolute error 
was achieved after the third iteration. The rapid convergence of the inversion process is another proof 
of the good data quality. 

When looking at inversion results (e.g., the second background inverted model is shown in 
Figure 4), it is important to assess ERT images with resolution indicators to avoid any 
misinterpretation of inverted model (especially the over interpretation of artifacts) [51] and for 
example with the sensitivity matrix. Around well W2 (where the push/pull test took place), the 
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extracted sensitivity (Figure 5) becomes almost null below 8 m deep (i.e., in the shale bedrock), which 
was expected as we sized our 3D ERT set-up to provide the best sensitivity inside the alluvial aquifer. 
This means that changes in bulk electrical resistivity imaged between the ground surface and 8 m 
deep are physically-based and can be interpreted.  

 

Figure 4. XZ slice (Y = 12 m) of the inverted bulk electrical resistivity model (2nd background) 
showing the 2 to 3 m tick clay loam layer (< 20 Ω.m) on top of the alluvial aquifer (60 to 80 Ω.m) (top 
panel); the associated relative sensitivity model (middle panel) and the application of the relative 
sensitivity filter on electrical images (bottom panel). 

 
Figure 5. Average sensitivity in the middle part of the 3D ERT set-up (i.e., at well W2 location). 

2.3.4. Post-processing 

To visualize bulk electrical resistivity variations, we used the following formula. 

∆ρb
i  =  100% 

ρb
0  െ  ρb

i

ρb
0  (1)

where ρb
0  is background bulk electrical resistivity, ρb

i  the bulk electrical resistivity at time i, and 
∆ρb

i  is the percentage change in bulk electrical resistivity between time i and 0. Since we expect a 
decrease in bulk electrical resistivity with increasing temperature and chloride concentration, we will 
observe positive ∆ρb

i . 
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We don’t expect changes in bulk electrical resistivity in the shale bedrock (i.e., below 7.5 m deep). 
First, the shale bedrock presents lower hydraulic conductivity. Second, heated water will tend to be 
transported upward in the aquifer because of density. Finally, sensitivity below 8 m deep is almost 
null (see Figure 4). According to the definition of the sensitivity matrix, if an electrical resistivity 
change occurs in a non-sensitive zone, the data set will not be affected by this change. For all these 
reasons, we blanked all our images below 8 m deep to avoid any over/misinterpretation of 3D ERT 
results. 

In the same way, bulk electrical resistivity variations that occur in the clay loam layer were also 
blanked. Indeed, even if they are physically plausible (e.g., heavy rainfalls that occur during the week 
of the test), they are considered as noise in the sense that they are not linked to the physical process 
of interest (the recovery of a heat and chloride plume).  

The last filter we used is based on the background resistivity variations methodology developed 
by Robert et al. [8]. This methodology analyses bulk electrical resistivity variations imaged in a time-
lapse modality between (at least) two data sets acquired before the injection of a geophysical tracer. 
For example, Robert et al. [8] and Chrétien et al. [52] showed that such background resistivity 
variations were below 3% in their experimental site. In our case, we collected two background data 
sets: the first one on May 04 (the day before the injection) and the second one on May 05, just before 
the injection. However, heavy rainfall occurred during the night between the two acquisitions. As a 
result, bulk electrical resistivity changed a lot in the upper layer between both background images 
and the methodology of Robert et al. [8] cannot be applied as this. We modified it by using the second 
background and the first data set acquired right after the start of the injection (light 3D image a). Since 
we only injected 3 m³ of water at that time, we simply applied the methodology in zones which were 
not near the injection well W2. In this case, we can see that a cut-off value of about 2% on bulk 
resistivity variations is adequate (see Figure 6) but maybe too safe as we might miss secondary 
processes related to chloride transport due to the pumping in W1 and the injection in W2. As a 
consequence, we took +1% as a cut-off value. 

Figure 7 shows the application of the different aforementioned filters on a vertical slice (in the 
XZ plane, Y = 12 m) of image 6 (see Figure 1B for the exact position in the setup). The first panel 
presents the unfiltered resistivity changes (in %) associated to the thermal plume. The second panel 
shows the application of the 1% cut-off value on background resistivity variations. The third panel 
shows the application of the relative sensitivity filter which removes artefacts in the left and right 
corners which are not physically-based. The last panel shows the removal of the remaining resistivity 
changes that are present in the first upper meters (not associated to the targeted process we want to 
highlight). Thanks to these three filters, the thermal plume can be presented in 3D views with very 
clean figures (Figures 8 and 9).  



Geosciences 2019, 9, 414 11 of 18 

 

 
Figure 6. Filtering scheme and the +1% cut-off value on ∆ρb

i . 

 

Figure 7. XZ slice (Y = 12 m) of the full 3D ERT image 6 showing the unfiltered changes in bulk 
electrical resistivity (1st panel), the application of the 1% cut-off filter calculated with the background 
resistivity variations (2nd panel), the application of the relative sensitivity filter (3rd panel), and the 
removal of artefacts in the very shallow subsurface (in the first 2 meters where no temperature 
changes due to the heated water injection is expected) (4th panel). 
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3. Results and Discussion 

A selection of the different filtered (full, i.e., issued from the nine ERT profiles) 3D ERT images 
are presented in Figure 8 (3D view from SW) and Figure 9 (view from above). They present the 
thermal plume created around W2 and to some extent, the displacement of some chloride from a 
higher concentration zone to a lower concentration zone due to the pumping-injection scheme.  

The first image in Figure 8 (Image 1) corresponds to the end of the push phase (t = 6 h). We can 
see a spherical thermal plume around W2 corresponding to the injection of heated groundwater and 
some changes in bulk electrical resistivity around PzB which can be due to the displacement of 
chloride downgradient of W2. With a +2% cut-off value on ∆ρb

i , interestingly, the plume around PzB 
disappears (not shown). The two next images (Image 3, t = 25 h and Image 6, t = 50 h) correspond to 
the resting phase. The plume shape has not changed much during the two days after the resting 
phase. This was expected with the very slow fluxes characterizing the site (~10 m/year). The fourth 
(and last) image (Image 7, t = 76 h) corresponds to the end of the pull phase. Note that we could not 
recover all the heat during this step, as evidenced by the energy recovery rate [32] and obviously by 
the 3D ERT image itself since a sphere with a diameter of ~2 m is still visible in Image 7.  

The first image in Figure 9 shows Image 6 from above. It can be seen that, after two days of 
resting, the thermal plume has moved slightly towards SW (and PzB) since it does not keep its 
spherical shape in the direction of natural groundwater fluxes. The second image in Figure 9 shows 
Image 7 from above too. It can be seen that a small portion of the heat plume remained inside the 
aquifer. 

 
Figure 8. Plain view showing changes in bulk electrical resistivity at different time steps showing the 
thermal plume right after the end of the push phase (1st panel), one day (2nd panel) and two days 
after (3rd panel) during the resting phase, and finally right after the pull phase (4th panel). The 
filtering scheme is explained in Figure 7. 
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Figure 9. Plain view showing changes in bulk electrical resistivity (view from above) at the end of the 
resting phase (1st panel, Image 6) and right after the pull phase (2nd panel, Image 7). The same 
filtering scheme has been used. 

These 3D views of the thermal plume clearly demonstrate the ability of 4D ERT to image 
qualitatively the entire dynamics of physical processes taking place in the subsurface (here, 
groundwater injection and recovery highlighted with heat as a proxy for ERT). We can easily 
extrapolate this finding to hydraulic barrier assessment where heat could be used as a geophysical 
tracer to validate the efficiency of pumping wells to confine any contaminants to its source. 

If we focus on a specific cell of the 3D mesh (for example, the cell located at a depth of 6.2 m at 
W2 location—so exactly at the same position as the CTD diver for comparison), we can extract 
changes in bulk electrical resistivity and construct a breakthrough curve (see Figure 10A). For this 
breakthrough curve, we also added the light 3D ERT images in addition to the full ones. Figure 10A 
thus presents a comparison of the groundwater temperature measured with the CTD diver with the 
percentage change in bulk electrical resistivity at the same location (W2, 6.2 m deep). It can be seen 
that when the heated water injection starts, the percentage change in resistivity starts to increase to 
reach its maximum value (~ 6%) when the push phase is finished. During the resting phase, the 
percentage change in resistivity does not vary much and stays around 4%. During the pull phase, we 
can see a rapid decrease of the percentage change in resistivity which stabilizes at around 1.5% once 
the experiment is finished. Note that the last point of this breakthrough curve does not get back to 
zero as some energy (in the form of heat) is still stored in the aquifer. 

If we now focus on a cell which is outside the thermal plume (for example, the cell located at a 
depth of 6.2 m at PzA location; so exactly at the same position as the CTD diver for comparison, 
Figure 10B), we can see that the percentage change in resistivity does not vary. Since the groundwater 
temperature recorded in PzA does not vary either, we can conclude that 4D ERT sees the thermal 
plume where it is and not elsewhere. 

Although 3D views of the thermal plume (as presented in Figures 8 and 9) are a powerful way 
of presenting the results, especially for a validation purpose, they remain qualitative. In Figure 11, 
we present horizontal (in the XY plane, at a depth of 6.2 m) and vertical (in the XZ plane, Y = 12 m, 
see Figure 1b for the exact position) slices of contoured percentage changes in resistivity. 



Geosciences 2019, 9, 414 14 of 18 

 

 
Figure 10. Changes in bulk electrical resistivity in comparison with changes in groundwater 
temperature at well W2 location (depth of 6.2 m, position of the CTD diver) (A) and outside the 
thermal affected zone, at piezometer PzA location (depth of 6.2 m, position of the CTD diver) (B). 

Figure 11A–C show the vertical slice for three time-steps: Image 1, collected just after the push 
phase (A), Image 6, collected at the end of the resting phase (B), and Image 7, collected after the pull 
phase (C). The same filtering scheme has been applied (see Figure 7). The comparison between Figure 
11A and Figure 11B (so respectively in the beginning and the end of the resting phase) better shows 
that the thermal plume moved slightly towards South during the resting phase than shown in 3D 
views. Figure 11D–F shows the horizontal slice for same three time-steps. 

 

Figure 11. XY slices (Z = -6.2 m) (left) and XZ slices (Y = 12 m) of changes in bulk electrical resistivity 
for different timesteps (images 1, 6, and 7, respectively in A, B, and C and in D, E, and F) with all the 
filters applied. 
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4. Conclusion and Perspective 

We demonstrated that 4D ERT can be a powerful tool to image dynamic processes in the shallow 
subsurface, especially using heat as a (sustainable) geophysical tracer. Even with classical tools, 
softwares, and inversion approaches, practitioners will be able to successfully reproduce this 
methodology providing they focus on data quality. In a semi-quantitative point-of-view, we can 
conclude that 4D ERT is able to correctly image the dynamics of the heat (and to some extent, 
chloride) injection and recovery. In particular, the faster ERT surveys collected during the pushing 
and pulling phases captured the physics very nicely. The match is not perfect but this is easily 
explained by the “blurred” characteristics of 3D ERT coming from inversion and transient processes. 
Another concern is the comparison of a punctual measurement of temperature (via the CTD diver) 
with a volumetric ERT-derived estimation. Both methods do not measure the same volume of aquifer. 
If heat seems to be a good tracer in our context, it might not be in other ones presenting a higher 
hydraulic gradient, a higher hydraulic conductivity, or a higher aquifer thickness, all leading to 
strong dilution that could prevent its detection with ERT. 

The quantitative interpretation of resistivity into temperature is difficult in deterministic 
approach due to the presence of a varying chloride concentration with uncertain prior distribution. 
To go fully quantitative on bulk temperature estimations, adapted petrophysical laws have to be 
developed, e.g., taking into account (in our case) the chloride transport and chemical reactions 
induced by the high increase in temperature (e.g., calcite precipitation). 
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