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STRUCTURAL THEOREMS FOR QUASIASYMPTOTICS OF

ULTRADISTRIBUTIONS

LENNY NEYT AND JASSON VINDAS

Abstract. We provide complete structural theorems for the so-called quasiasymp-
totic behavior of non-quasianalytic ultradistributions. As an application of these
results, we obtain descriptions of quasiasymptotic properties of regularizations at the
origin of ultradistributions and discuss connections with Gelfand-Shilov type spaces.

1. Introduction

Several asymptotic notions play a fundamental role in the theory of generalized
functions. The subject has been studied by several authors and applications have been
elaborated in areas such as mathematical physics, Tauberian theorems for integral
transforms, number theory, and differential equations. See the monographs [6, 12, 13,
20] for an overview of results and the articles [5, 14, 23] for recent contributions.

The purpose of this article is to present a detailed structural study of the so-called
quasiasymptotics of ultradistributions. The concept of quasiasymptotic behavior for
Schwartz distributions was introduced by Zav’yalov in [21] and further developed by
him, Drozhzhinov, and Vladimirov in connection with their powerful multidimensional
Tauberian theory for Laplace transforms [20]. A key aspect in the understanding of this
concept is its description via so-called structural theorems and complete results in that
direction were achieved in [17, 19] (cf. [9, 13]). In [11] Pilipović and Stanković naturally
extended the definition of quasiasymptotic behavior to the context of one-dimensional
ultradistributions and studied its basic properties. We shall obtain here complete
structural theorems for quasiasymptotics of non-quasianalytic ultradistributions that
generalize their distributional counterparts. Our main goal is thus to characterize those
ultradistributions having quasiasymptotic behavior as infinite sums of derivatives of
functions satisfying classical pointwise asymptotic relations.

The paper is organized as follows. In Section 2 we explain some notions and tools that
will play a role in our arguments. Section 3 studies the quasiasymptotic behavior at
infinity. A key idea we apply here will be to connect the quasiasymptotic behavior with
the so-called S-asymptotic behavior [13], for which structural theorems are available,
via an exponential change of variables. The nature of the problem under consideration
requires to split our treatment in two cases, depending on whether the degree of the
quasiasymptotic behavior is a negative integer or not. We obtain in Section 4 structural
theorems for the quasiasymptotic behavior at the origin. Our technique there is based
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2 L. NEYT AND J. VINDAS

on a reduction to the results from Section 3 by means of a change of variables and
then regularization. Our method also yields asymptotic properties of regularizations
at the origin of ultradistributions having prescribed asymptotic properties, generalizing
results for distributions from [18]. It is also worth mentioning that our approach here
differs from the one employed in the literature to deal with Schwartz distributions,
and in fact can be used to produce new proofs for the classical structural theorems
for the quasiasymptotic behavior of distributions. We conclude the article by studying
extensions of quasiasymptotics to new ultradistributions spaces of Gelfand-Shilov type
that we shall introduce in Section 5.

2. Preliminaries

Throughout this article we fix a weight sequence of positive numbers {Mp}p∈N and
assume it satisfies (M.1), (M.2), and (M.3); the meaning of all these conditions is
very well explained in [10]. Let Ω ⊆ R. As customary [10], E∗(Ω) and D∗(Ω) stand,
respectively, for the spaces of all ultradifferentiable functions and compactly supported
ultradifferentiable functions of class ∗ on Ω, where we employ ∗ as the common notation
for (Mp) and {Mp}. For statements needing a separate treatment we will always talk
first about the Beurling case, followed by the corresponding assertion for the Roumieu
case in parenthesis. When Ω = R, we simply write D∗ = D∗ (R) and E∗ = E∗ (R).
The strong duals D∗′(Ω) and E∗′(Ω) are the spaces of ultradistributions and compactly
supported ultradistributions, respectively, on Ω.

The main subject of study of this article is the quasiasymptotic behavior of ul-
tradistributions, which is defined via asymptotic comparison with regularly varying
functions. A real-valued measurable function L is called slowly varying at infinity [1]
if L is positive for large arguments and L(ax) ∼ L(x) as x → ∞, for any a > 0. We
are only interested in the terminal behavior of L, so [1] we may always assume L to be
defined, positive, and locally bounded (or even continuous) on [0,∞). Finally, we say

that a function L on (0,∞) is slowly varying at the origin if L̃(x) := L(x−1) is slowly
varying at infinity.

In accordance to [11, 13], we define the quasiasymptotic behavior of an ultradistri-
bution at infinity or at the origin as follows.

Definition 2.1. Let L be a slowly varying function at infinity (at the origin, resp.).
We say that f ∈ D∗′ has quasiasymptotic behavior at infinity (at the origin) in D∗′ with
respect to λαL(λ), α ∈ R, if for some g ∈ D∗′ and every φ ∈ D∗,

(2.1) lim
λ→∞

〈
f(λx)

λαL(λ)
, φ(x)

〉
= 〈g(x), φ(x)〉

(
resp., lim

λ→0+

)
.

If (2.1) holds, we also say that f has quasiasymptotics of order α at infinity (at the
origin) with respect to L and write in short: f(λx) ∼ λαL(λ)g(x) in D∗′ as λ → ∞
(resp., λ→ 0+).

If f(λx) ∼ λαL(λ)g(x) in D∗′ as λ→∞ (as λ→ 0+), it can easily be shown [6, 13]
that this forces g to be a homogeneous ultradistribution of degree α. An adaptation
of the proof of [6, Theorem 2.6.1] shows that all homogeneous ultradistributions are
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exactly the homogeneous distributions, which we denote exactly as in [6]. We mention
that we will employ the notation H(x) = x0+ for the Heaviside function. In addition, we
shall make use of the special (non homogeneous!) distributions Pf(H(±)x−k), k ∈ Z+,
where Pf stands for Hadamard finite part regularization [6].

Remark 2.2. Naturally [13], the quasiasymptotic behavior may be defined in other
spaces of generalized functions F ′ by asking (2.1) to hold for any φ ∈ F , whenever the
dialation operators act continuously on the test function space.

3. The structure of quasiasymptotics at infinity

This section is devoted to studying the quasiasymptotic behavior at infinity. Our
main results are Theorem 3.5 and Theorem 3.6, where we provide a full description
of the structure of quasiasymptotics at infinity. Some auxiliary lemmas used in their
proofs are shown in Subsection 3.1. Throughout this section L stands for a slowly
varying function at infinity.

3.1. Some lemmas. We start with the ensuing useful estimates for the weight se-
quence Mp, which we shall often exploit throughout the article. Hereafter S(n, k)
stand for the Stirling numbers of the second kind (see e.g. [8]).

Lemma 3.1. For any ℓ > 0 there is Cℓ > 0 (independent of p) such that

(3.1)
∞∑

k=p

k!ℓk

Mk

≤ Cℓ
p!

Mp

ℓp

and

(3.2)
∞∑

k=p

S(k + 1, p+ 1)
ℓk

Mk

≤ Cℓ
(2ℓ)p

Mp

.

Proof. Clearly, it is enough to show (3.1) just for sufficiently large p. Using [10, Lemma
4.1, p. 55], there is p0 such that for any p ≥ p0 we have p/mp := pMp−1/Mp ≤ (2ℓ)−1.
Hence, it follows that for p in this range

∞∑

k=p

k!ℓk

Mk
=

p!

Mp

(
ℓp +

∞∑

k=p+1

(p+ 1) · . . . · k · ℓk

mp+1 · . . . ·mk

)
≤ 2

p!

Mp
ℓp.

For (3.2), in view of [15, Theorem 3], we have S(k+1, p+1) ≤ 2k+1(p+1)k−p ≤ 2k+1k!/p!
for k ≥ p. The rest follows by application of (3.1). �

In [17], the structure of distributional quasiasymptotics at infinity was found by
noting that certain primitives preserve the asymptotic behavior, being of a higher
degree, and using the fact that eventually the primitives are continuous functions. As
the latter part does not hold in general for ultradistributions, a more careful analysis
is needed, although we may carry over some of the distributional results. In fact, one
may retread the proofs from [17, Section 2] (see also [13, Section 2.10]) to obtain,

Lemma 3.2. Let f ∈ D∗′. Suppose f has quasiasymptotics with respect to λαL(λ).
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(i) If α /∈ Z−: for any n ∈ N and any n-primitive Fn of f there exists a polynomial
P of degree at most n− 1 such that Fn + P has quasiasymptotics with respect to
λα+nL(λ) in D∗′.

(ii) If α = −k, k ∈ Z+: there is some (k − 1)-primitive F of f such that F has
quasiasymptotics with respect to λ−1L(λ) in D∗′.

The previous lemma roughly speaking shows that in order to find the structure of
quasiasymptotics for arbitrary degree, it suffices to discover the structure for degrees
≥ −1, where extra care is needed for the case −1. It should also be noticed that the
converse statements for (i) and (ii) from Lemma 3.2 trivially hold true.

The next lemma, a direct consequence of well-known moment asymptotic expansion
[6, 16], states that the quasiasymptotic behavior of degree > −1 is a local property at
infinity, which in some arguments enables us to remove the origin from the support of
the ultradistribution in our analysis.

Lemma 3.3. Suppose that f1, f2 ∈ D
∗′ and that for some a > 0, f1 and f2 coincide

on R \ [−a, a]. Suppose that f1(λx) ∼ λαL(λ)g(x) in D∗′ as λ → ∞, where α > −1.
Then, also f2(λx) ∼ λαL(λ)g(x) in D∗′.

3.2. Structural theorem for α /∈ Z−. We study in this subsection quasiasymptotics
of degree α /∈ Z−. Part of our analysis reduces the general case to that when α > −1,
i.e., the case when the quasiasymptotic behavior is local. Consequently, we may re-
strict our discussion to those ultradistributions whose support lie in the complement
of some zero neighborhood. As both the negative and positive half-line can be treated
symmetrically, it is natural to start the analysis with ultradistributions that are sup-
ported on the positive half-line. In the next crucial lemma we further normalize the
situation by assuming that our ultradistribution is supported in (e,∞).

Lemma 3.4. Let α ∈ R and let f ∈ D∗′ be such that supp f ⊂ (e,∞) and f has
quasiasymptotic behavior at infinity with respect to λαL(λ) in D∗′(0,∞). Then, there

are continuous functions fm such that supp fm ⊂ (e,∞), f =
∑∞

m=0 f
(m)
m , the limits

lim
x→∞

fm(x)

xα+mL(x)

exist, and furthermore, for some ℓ > 0 (any ℓ > 0) there is a C = Cℓ > 0 such that,

|fm(x)| ≤ C
ℓm

Mm

xα+mL(x), m ∈ N, x > 0.

Proof. Suppose f(λx) ∼ λαL(λ)g(x) in D∗′(0,∞) as λ → ∞. Since composition with
a real analytic function induces continuous mappings between spaces of ultradifferen-
tiable functions (see e.g. [7, Prop. 8.4.1, p. 281]), we obtain that the composition f(ex)
is an element of D∗′. Also, ψ ∈ D∗ if and only if ψ(x) = ϕ(ex) with ϕ ∈ D∗(0,∞).

These key observations allow us to make a change of variables in order to apply
the structural theorem for S-asymptotics [13, Theorem 1.10, p. 46]. In fact, we set
u(x) := f(ex), w(x) := g(ex) and c(h) := eαhL(eh). (Notice that w has actually
the form w(x) = Beαx for some B > 0.) A quick computation shows that that u
has the S-asymptotic behavior u(x + h) ∼ c(h)w(x) in D∗′ as h → ∞. The quoted
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structure theorem yields the existence of an ultradifferential operator P (D) of class ∗
and continuous functions u1 and u2 with supports on (1,∞) such that u = P (D)u1+u2
on (0,∞) and limh→∞ ui(x+ h)/c(h) exist uniformly for x on compacts of (0,∞).

Take any ϕ ∈ D∗(0,∞) and put ψ(x) = exϕ(ex), then the substitution y = ex yields

〈f(y), ϕ(y)〉 =

〈
f(y),

ϕ(y)

y
y

〉
= 〈u(x), ψ(x)〉 = 〈P (D)u1(x), ψ(x)〉 + 〈u2(x), ψ(x)〉 .

Let us consider both terms of the sum individually. The latter is simply

〈u2(x), ψ(x)〉 =

∫ ∞

1

u2(x)ψ(x)dx =

∫ ∞

e

u2(log y)ϕ(y)dy.

Setting f2(y) := u2(log y), we get 〈u2(x), ψ(x)〉 = 〈f2(y), ϕ(y)〉 , and the existence
of limy→∞ y−αf2(y)/L(y). For the first term, we will need to explicitly calculate the
derivatives of ψ. Using the Faà di Bruno formula [8, Eq. (2.2)],

ψ(n)(x) = ex
n∑

k=0

(
n

k

)
dk

dxk
(ϕ(ex)) = ex

n∑

m=0

S(n + 1, m+ 1)emxϕ(m)(ex),

where we have applied [3, Theorem 5.3.B]. Then,
∫ ∞

1

u1(x)ψ
(n)(x)dx =

n∑

m=0

S(n+ 1, m+ 1)

∫ ∞

e

u1(log y)ϕ
(m)(y)ymdy.

If P (D) =
∑

n=0 anD
n, then by (3.2) from Lemma 3.1, we may consider the following

constants,

cm = (−1)m
∞∑

n=m

(−1)nanS(n+ 1, m+ 1),

and it follows that cm ≤ Cµm/Mm for some µ > 0 (for any µ > 0) and some Cµ = C >
0. Collecting everything together, we obtain

〈P (D)u1(x), ψ(x)〉 =
∞∑

m=0

(−1)mcm

∫ ∞

e

u1(log y)ϕ
(m)(y)ymdy.

So if we define f1,m(y) := u1(log y)y
m, m ∈ N, we get

〈P (D)u1(x), ψ(x)〉 =
∞∑

m=0

cm

〈
f
(m)
1,m (y), ϕ(y)

〉
,

and the limits limy→∞ y−α−mf1,m(y)/L(y) exist. This completes the proof of the lemma.
�

We are ready to discuss the general case.

Theorem 3.5. Suppose α /∈ Z− and let k ∈ N be the smallest non-negative integer such
that −(k + 1) < α. Then, an ultradistribution f ∈ D∗′ has quasiasymptotic behavior

(3.3) f(λx) ∼ λαL(λ)(c−x
α
− + c+x

α
+) in D∗′ as λ→∞
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if and only if there exist continuous functions fm on R, m ≥ k, such that

(3.4) f =

∞∑

m=k

f (m)
m ,

the limits

(3.5) lim
x→±∞

fm(x)

xm|x|αL(|x|)
= c±m, m ≥ k,

exist, and for some ℓ > 0 (any ℓ > 0) there is a C = Cℓ > 0 such that

(3.6) |fm(x)| ≤ C
ℓm

Mm
(1 + |x|)α+mL(|x|), x ∈ R,

for all m ≥ k. Furthermore, in this case we have

(3.7) c± =

∞∑

m=k

c±m
Γ(α +m+ 1)

Γ(α + 1)
.

Proof. In view of Lemma 3.2(i), we may assume that α > −1 so that k = 0.
Suppose then first that f has quasiasymptotic behavior (3.3). We write f = f−+fc+

f+, where fc ∈ E
∗′ coincides with f on an open interval containing [−e, e] and supp f− ⊂

(−∞,−e) and supp f+ ⊂ (e,∞). Then, by Lemma 3.3 each f± has quasiasymptotic
behavior with respect to λαL(λ) in D∗′(−∞, 0) and D∗′(0,∞), respectively. Using
Lemma 3.4, we find continuous functions f±

1,m, m ∈ N with supports in (−∞,−e) and

(e,∞), respectively, such that the identities f± =
∑∞

m=0(f
±
1,m)

(m) hold, the limits

c±m = (−1)m lim
x→∞

f±
1,m(±x)

xα+mL(x)

exist, and the bounds |f±
1,m(x)| ≤ C ′ℓm|x|α+mL(|x|)/Mm are satisfied for some ℓ > 0

(any ℓ > 0) and some C ′ = C ′
ℓ > 0. Applying Komatsu’s first structural theorem1

for ultradistributions [10, Theorem 8.1 and Theorem 8.7] one can also find continuous
functions gm, whose supports lie in some (arbitrarily chosen) neighborhood of supp fc,

such that fc =
∑∞

m=0 g
(m)
m in D∗′ and supx∈R |gm(x)| ≤ C ′′ℓm/Mm for some ℓ > 0 (for

every ℓ > 0) and C ′′ = C ′′
ℓ > 0. The functions fm = gm + f−

1,m + f+
1,m satisfy all sought

requirements. We verify the relation (3.7) below.
Conversely, assume that f satisfies all of the conditions above. Take any φ ∈ D∗

and suppose that for some R > 1 we have supp φ ⊆ [−R,R]. Pick γ > 0 such that
α− γ > −1. Using Potter’s estimate [1, Theorem 1.5.4], we may assume that

(3.8)
L(λx)

L(λ)
≤ Cγ max{x−γ, xγ}

1The first structural theorem even holds true in the quasianalytic case under mild conditions, see
[4, Proposition 4.1 and Proposition 4.7].
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holds for all x, λ > 0. Since φ ∈ D∗, for any h > 0 (for some h > 0) there exists a Cφ,h

such that for all m ∈ N and x ∈ R we have |φ(m)(x)| ≤ Cφ,hh
mMm. Due to (3.6), we

now have for any m ∈ N and λ > 1
∣∣∣∣
1

λ

∫ ∞

−∞

fm(x)

λαL(λ)

φ(m)(x/λ)

λm
dx

∣∣∣∣

≤ Cℓ
(2ℓ)m

Mm

(∫ λ−1

−λ−1

|φ(m)(x)|

λm+αL(λ)
dx+

∫

|x|≥1/λ

L(λ|x|)

L(λ)
|x|α+m|φ(m)(x)|dx

)

≤ 2CℓCφ,h(2hℓ)
m

(
1

λm+1+αL(λ)
+ CγR

m+α+γ+1 +
Cγ

α− γ +m+ 1

)
≤ C(2hℓR)m,

and, as 2hℓ may be chosen freely, this is absolutely summable over m ∈ N. It follows
by applying the Lebesgue dominated convergence theorem twice that

lim
λ→∞

〈
f(λx)

λαL(λ)
, φ(x)

〉
= lim

λ→∞

1

λ

∞∑

m=0

(−1)m
∫ ∞

−∞

fm(x)

λαL(λ)

φ(m)(x/λ)

λm
dx

= c−

∫ 0

−∞

|x|αφ(x)dx+ c+

∫ ∞

0

xαφ(x)dx,

with c− and c+ given by (3.7).
�

3.3. Structural Theorem for negative integral degrees. We now address the case
of quasiasymptotics of degree α ∈ Z−. The next structural theorem is the second main
result of this section.

Theorem 3.6. Let k ∈ Z+ and f ∈ D∗′. Then, f has the quasiasymptotic behavior

(3.9) f(λx) ∼
L(λ)

λk
(γδ(k−1)(x) + βx−k) in D∗′ as λ→∞

if and only if there exist continuous functions fm on R, m ≥ k − 1, such that

(3.10) f =
∞∑

m=k−1

f (m)
m ,

the limits

(3.11) lim
x→±∞

fm(x)

xm−kL(|x|)
= c±m, m ≥ k − 1,

and

(3.12) lim
x→∞

1

L(x)

∫ x

−x

fk−1(t)dt = c∗k−1

exist, and for some ℓ > 0 (any ℓ > 0) there is C = Cℓ > 0 such that

(3.13) |fm(x)| ≤ C
ℓm

Mm
(1 + |x|)m−kL(|x|), x ∈ R,
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for all m ≥ k. Furthermore, we must have

(3.14) γ = c∗k−1+
∞∑

m=k

(c+m−c
−
m) and β = (−1)k−1(k−1)!c+k−1 = (−1)k−1(k−1)!c−k−1.

Proof. In view of Lemma 3.2(ii) we may assume that k = 1.
Necessity. We start showing the necessity of the conditions if f has the quasiasymp-

totic behavior (3.9). Take a compactly supported ultradistribution fc that coincides

with f on [−e, e] and consider f̃ = f − fc, so that supp(f − fc) ∩ [−e, e] = ∅. We set
g(x) = x(f(x) − fc(x)), which has quasiasymptotic behavior g(λx) ∼ βL(λ) in D∗′ as
λ→∞. Splitting g as the sum of two distributions supported on (−∞,−e) and (e,∞)

respectively, we can apply Lemma 3.4 to obtain its structure as g =
∑∞

m=0 g
(m)
m , where

each of the functions has support in (−∞,−e) ∪ (e,∞), satisfies the corresponding
bounds implied by the lemma, and is such that the limits limx→±∞ x−mgm(x)/L(|x|)
exist. Define, for any j ∈ N, the following continuous functions

f̃j(x) =
xj−1

j!

∞∑

m=j

m!gm(x)x
−m, x 6= 0,

and f̃j(0) = 0. Let us verify they satisfy the requirements that the fj should satisfy.
First of all, for some ℓ > 0 (any ℓ > 0) and C = Cℓ > 0,

∣∣∣f̃j(x)
∣∣∣ ≤ C

|x|j−1

j!
L(|x|)

∞∑

m=j

m!ℓm

Mm
≤ C ′|x|j−1 ℓ

j

Mj
L(|x|),

by (3.1) from Lemma 3.1. This not only shows that each f̃j is well-defined and contin-
uous on R, but also provides the bounds (3.13) for them. From dominated convergence
we infer the existence of

lim
x→±∞

f̃j(x)

xj−1L(|x|)
= lim

x→±∞

1

j!

∞∑

m=j

m!gm(x)

xmL(|x|)
=

1

j!

∞∑

m=j

lim
x→±∞

m!gm(x)

xmL(|x|)
.

Take an arbitrary φ ∈ D∗ and let ϕ ∈ D∗ be another corresponding test function that
coincides with φ on R \ (−e, e), while its support does not contain the origin. We then
have
〈
f̃(x), φ(x)

〉
=

〈
g(x),

ϕ(x)

x

〉
=

∞∑

m=0

m∑

j=0

(−1)m
(
m

j

)〈
gm(x), (−1)

m−j(m− j)!
ϕ(j)(x)

xm−j+1

〉

=
∞∑

j=0

(−1)j

j!

∞∑

m=j

〈
m!xj−1 gm(x)

xm
, ϕ(j)(x)

〉
=

∞∑

j=0

〈
f̃
(j)
j , φ(x)

〉
.

Applying the first structural theorem to fc as in the proof of Theorem 3.5, we obtain
compactly supported continuous functions gm such that fm = f̃m + gm satisfy (3.10),
(3.11), and (3.13). The necessity of (3.12) follows from (3.15) below. That (3.14) must
necessarily hold will also be shown below in the proof of the converse.

Sufficiency. Conversely, assume that (3.10) holds with fm fulfilling (3.11), (3.12)
and (3.13) (recall we work with the reduction k = 1). We assume without loss of
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generality that L(x) is everywhere continuous and vanishes for x ≤ 1. We consider

g =
∑∞

m=1 f
(m−1)
m . It follows from Theorem 3.5 that g has quasiasymptotic behavior of

degree 0 with respect to L(λ), and differentiation then yields

f(λx)− f0(λx) = g′(λx) ∼ (γ − c∗0)
L(λ)

λ
δ(x) in D∗′ as λ→∞,

with γ precisely given as in (3.14). It thus remains to determine the quasiasymptotic
properties of f0. Write F (x) =

∫ x

0
f0(t)dt. Since f0(±x) ∼ ±c

±
0 L(x)/x, x → ∞, one

readily shows that

F (λx)H(±x) = F (±λ)H(±x) + c±0

∫ ±λx

λ

L(t)

t
dt+ o (L(λ))

= F (±λ)H(±x) + c±0 L(λ)H(±x) log |x|+ o (L(λ)) , λ→∞,

uniformly for x on compact intervals, and in particular the relation holds in D∗′. Dif-
ferentiating

F (λx) = F (−λ)H(−x) + F (λ)H(x) + L(λ)
(
c−0H(−x) + c+0H(x)

)
log |x|+ o (L(λ)) ,

we conclude that
(3.15)

f0(λx) =
F (λ)− F (−λ)

λ
δ(x)+

L(λ)

λ

(
c−0 Pf

(
H(−x)

x

)
+ c+0 Pf

(
H(x)

x

))
+o

(
L(λ)

λ

)
,

whence the result follows. �

3.4. Extension from R \ {0} to R. The methods employed in the previous two
subsections also allow us to study the following question. Suppose that the restriction
of f ∈ D∗′ to R \ {0} is known to have quasiasymptotic behavior in D∗′ (R \ {0}),
what can we say about the quasiasymptotic properties of f? In view of symmetry
considerations, it is clear that it suffices to restrict our attention to ultradistributions
supported on [0,∞).

Theorem 3.7. Suppose that f ∈ D∗′ is supported in [0,∞) and has quasiasymptotic
behavior f(λx) ∼ cλαL(λ)xα in D∗′(0,∞) as λ→∞.

(i) If α > −1, then f(λx) ∼ cλαL(λ)xα+ in D∗′ as λ→∞.
(ii) If α < −1 and N ∈ N is such that −(N + 1) < α < −N , then there exist

constants a0, . . . , aN−1 such that

f(λx)−
N−1∑

n=0

an
δ(n)(x)

λn+1
∼ cλαL(λ)xα+ in D∗′ as λ→∞,

(iii) If α = −k ∈ Z−, then there is a function b satisfying2 for each a > 0

(3.16) b(ax) = b(x) + c
(−1)k−1

(k − 1)!
L(x) log a+ o (L(x)) ,

2Such functions are called associate homogeneous of degree 0 with respect to L in [13, 17]. They
coincide with functions of the so-called De Haan class [1].
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x→∞, and constants a0, . . . , ak−1 such that

(3.17) f(λx) = c
L(λ)

λk
Pf

(
H(x)

xk

)
+
b(λ)

λk
δ(k−1)(x) +

k−1∑

j=0

aj
δ(j)(x)

λj+1
+ o

(
L(λ)

λk

)
,

in D∗′ as λ→∞.

Proof. The moment asymptotic expansion [16] says that we may assume that, say,
supp f ⊂ (e,∞) by removing a neighborhood of the origin. So, we can apply exactly
the same argument as in the proof of Theorem 3.5 (via Lemma 3.4 and Lemma 3.2(i))
to show parts (i) and (ii). For (iii), we assume without loss of generality that k = 1
(Lemma 3.2(ii)) and apply the same argument as in the proof of Theorem 3.6 to
conclude that f(λx) = f0(λx) + γL(λ)δ(λx) + o (L(λ)/λ) in D∗′, where the continuous
function f0 has also support in (e,∞) and satisfies f0(x) ∼ cL(x)/x, x → ∞, in the
ordinary sense. At this point the result can be derived from [17, Theorem 4.3] (see
also [13, Theorem 2.38, p. 155]), but we might argue directly as follows. In fact, we
proceed in the same way we arrived at (3.15). Set b(x) =

∫ x

1
f0(t)dt, then, uniformly

for x in compact subsets of (0,∞),

b(λx) = b(λ)H(x) + c

∫ λx

λ

L(t)

t
dt+ o(L(λ)) = b(λ)H(x) + cL(λ)H(x) log x+ o(L(λ)),

so that differentiation finally shows

f0(λx) =
b(λ)

λ
δ(x) + c

L(λ)

λ
Pf

(
H(x)

x

)
+ o

(
L(λ)

λ

)
in D′.

�

4. The structure of quasiasymptotics at the origin

We now focus our attention on quasiasymptotic behavior at the origin. The reader
should notice that Lemma 3.2 holds for quasiasymptotics at the origin as well. Fur-
thermore, it is a simple consequence of the definition that quasiasymptotics at the
origin is a local property, in the sense that two ultradistributions that coincide in a
neighborhood of the origin must have precisely the same quasiasymptotic properties.
Throughout this section L stands for a slowly varying function at the origin and we
set L̃(x) = L(1/x). From now on, by convention the parameters ε→ 0+ and λ→∞.

We will reduce the analysis of the structure of quasiasymptotics at the origin to
that of the quasiasymptotics at infinity the via the change of variables x ↔ 1/x. We
therefore need to see how this substitution acts on derivatives.

Lemma 4.1. Let φ ∈ C∞(R \ {0}) and set ψ(x) := x−2φ(1/x). Then for any m ∈ N,
there exist constants cm,0, . . . , cm,m such that

(4.1)
dm

dxm
(ψ(x)) =

m∑

j=0

cm,j
φ(j)(1/x)

xm+j+2
,
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where we have the bounds

(4.2) |cm,j| ≤
m!

j!
4m, 0 ≤ j ≤ m.

Proof. Applying the Faà di Bruno formula [8, Eq. (2.2)],

dk

dxk
(φ(1/x)) =

k∑

j=1

(−1)kx−(k+j)φ(j)(1/x)Bk,j(1!, 2!, . . . , (k − j + 1)!),

where Bk,j are the Bell polynomials; from their generating function identity [3, (3a’),
p. 133] we infer that

Bk,j(1!, . . . , (k − j + 1)!) =
dk

dtk

(
1

j!

(
t

1− t

)j
)∣∣∣∣∣

t=0

=
k!(k − 1)!

j!(j − 1)!(k − j)!
.

Therefore, we obtain that (4.1) holds with

cm,0 = (−1)m(m+ 1)! and cm,j = (−1)m
m!

j!

m∑

k=j

(m− k + 1)

(
k − 1

j − 1

)

when 0 < j ≤ m, whence one readily obtains the bound (4.2). �

Theorem 4.2. Let α /∈ Z− and let k ∈ N be the smallest integers such that −(k+1) <
α. Then, f ∈ D∗′ has quasiasymptotic behavior

(4.3) f(εx) ∼ εαL(ε)(c−x
α
− + c+x

α
+) in D∗′ as ε→ 0+

if and only if there exist functions fm ∈ L1(−1, 1), m ≥ k, that are continuous on
[−1, 1] \ {0} such that (3.4) holds on (−1, 1),

(4.4) c±m = lim
x→0±

fm(x)

xm|x|αL(|x|)
, m ≥ k,

exist, and furthermore, for some ℓ > 0 (for any ℓ > 0) there is a C > 0 such that

(4.5) |fm(x)| ≤ C
ℓm

Mm
|x|α+mL(|x|), 0 < |x| ≤ 1,

for all m ≥ k. Moreover, the relation (3.7) must hold.

Proof. The proof of sufficiency can be done analogously as in Theorem 3.5. Hence we
are only left with necessity. If we can show the theorem for degree larger than −1,
then the full structure theorem will follow from Lemma 3.2(i), hence we assume that
α > −1 (hence k = 0). If f has quasiasymptotic behavior with respect to εαL(ε), then

f̃(x) := f(1/x) has quasiasymptotic behavior in D∗′ (R \ {0}) with respect to λ−αL̃(λ).
Then by Theorem 3.5 or Theorem 3.6 if α ∈ Z+ and keeping in mind our observations

from Section 3.4, there exist continuous f̃m in R \ {0}, m ≥ 0, that satisfy (3.4), (3.5)
and (3.6). Consider now for any m ≥ 0,

fm(x) :=

∞∑

k=m

(−1)k+mck,mf̃k(1/x)x
m+k,
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where the ck,m are as in Lemma 4.1. By (3.6) and (4.2) it follows that for some ℓ > 0
(for any ℓ > 0) and any 0 < |x| ≤ 1,

|fm(x)| =

∣∣∣∣∣

∞∑

k=m

(−1)k+mck,mf̃k(1/x)x
m+k

∣∣∣∣∣ ≤
∞∑

k=m

k!

m!
4k · C

(2ℓ)k

Mk
|x|α−kL(|x|)|x|m+k

= C|x|α+mL(|x|)
1

m!

∞∑

k=m

k!
(8ℓ)k

Mk
≤ CC8ℓ

(8ℓ)m

Mm
|x|α+mL(|x|),

by (3.1) from Lemma 3.1. This not only shows existence and continuity in [−1, 1]\{0},
but also shows that the fm satisfy (4.5). By (3.5) and dominated convergence, it also
follows that for these functions the limits (4.4) exist. Now take any φ ∈ D∗ (R \ {0})
with supp φ ⊆ (−1, 1) and set ψ(x) := φ(1/x)x−2. Then,

〈f(x), φ(x)〉 =
〈
f̃(x), ψ(x)

〉
=

∞∑

k=0

〈
f̃k(x), (−1)

kψ(k)(x)
〉
.

Since for any k ∈ N, by Lemma 4.1,

∫ ∞

−∞

f̃k(x)ψ
(k)(x)dx =

k∑

m=0

ck,m

∫ ∞

−∞

f̃k(1/x)φ
(m)(x)xm+kdx,

it follows by switching the order of summation that f =
∑∞

m=0 f
(m)
m , in D∗′((−1, 1) \

{0}). Now as α > −1, the latter sum is an element of D∗′, so that there is some

g ∈ D∗′ with supp g ⊆ {0} for which f =
∑∞

m=0 f
(m)
m + g, in D∗′(−1, 1). Since we

have already shown sufficiency, the sum has quasiasymptotics with respect to εαL(ε),
implying that the same holds for g. If g 6= 0, we can find an ultradifferentiable operator
P (D) =

∑
n≥n0

anD
n of type ∗ such that g = P (D)δ and an0

6= 0. Then, for any
φ ∈ D∗,

〈
g(εx)

εαL(ε)
, φ(x)

〉
=

∞∑

n=n0

(−1)nan
ε−n−α−1

L(ε)
φ(n)(0).

But if φ(x) = xn0 in a neighborhood of 0, we conclude that

∞ = lim
ε→0+

1

εn0+α+1L(ε)
=

(−1)n0

an0
n0!

lim
ε→0+

〈
g(εx)

εαL(ε)
, φ(x)

〉
,

leading to a contradiction. Therefore, g must be identically 0 and this completes the
proof of the theorem. �

The structure for negative integral degree can be described as follows.

Theorem 4.3. Let f ∈ D∗′ and k ∈ Z+. Then, f has quasiasymptotic behavior

(4.6) f(εx) ∼
L(ε)

εk
(γδ(k−1)(x) + βx−k) in D∗′ as ε→ 0+
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if and only if there are continuous functions F and fm on [−1, 1] \ {0}, m ≥ k, such
that

(4.7) f = F (k) +

∞∑

m=k

f (m)
m on (−1, 1),

the limits

(4.8) c±m = lim
x→0±

fm(x)

xm−kL(|x|)
, m ≥ k,

exist, for some ℓ > 0 (for any ℓ > 0) there exists C = Cℓ > 0 such that

(4.9) |fm(x)| ≤ C
ℓm

Mm

|x|m−kL(|x|), 0 < |x| ≤ 1,

for all m ≥ k, and for any a > 0 the limit

(4.10) lim
x→0+

F (ax)− F (−x)

L(x)
= c∗1 + c∗2 log a

exists. In this case,

(4.11) γ = c∗1 +
∞∑

m=k

(c+m − c
−
m) and β = (−1)k−1(k − 1)!c∗2.

Proof. For the sufficiency, applying Theorem 4.2 to the series
∑∞

m=k f
(m−1)
m , one deduces

f(εx)− F (k)(εx) ∼ (γ − c∗1)δ
(k−1)(εx) in D∗′ as ε → 0+. In view of [19, Theorem 5.3]

(see also [13, Theorem 2.33, p. 149]), we have F (k)(εx) ∼ L(ε)(c∗1δ
(k−1)(εx) + β(εx)−k)

in D′ as ε→ 0+, which yields the result.
For the necessity, we may assume that k = 1. We now apply Theorem 4.2 to

xf(x). Using the same reasoning as in the proof of Theorem 3.6, one can write f(x) =

f0+
∑∞

m=1 f
(m)
m on (−1, 1)\{0}, with continuous functions f0, f1, . . . on [−1, 1]\{0} such

that the limits (4.8) exist including the case m = 0. Applying again Theorem 4.2 to the

series
∑∞

m=1 f
(m−1)
m , we deduce that f0 has an extension g0 to R with quasiasymptotic

behavior of order −1 with respect to L(ε). Let F be a first order primitive of g0. Due
to the fact that F ′ = f0 off the origin and the quasiasymptotic behavior of F ′, it is
clear that F is integrable at the origin and that it must have the form

F (x) = −H(x)

(∫ 1

x

f0(t)dt+ C+

)
+H(−x)

(∫ x

−1

f0(t)dt+ C−

)
.

Similarly as in the proof of Theorem 3.6, we conclude that

c∗1 = lim
x→0+

F (x)− F (−x)

L(x)

must exist by comparing with the quasiasymptotics of g0. Hence, for each a > 0

lim
x→0+

F (ax)− F (−x)

L(x)
= c∗1 + lim

x→0+

1

L(x)

∫ ax

x

f0(t)dt = c∗1 + c+0 log a.

�
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Our method also yields:

Theorem 4.4. Suppose that f0 ∈ D
∗′(0,∞) has quasiasymptotic behavior

f0(εx) ∼ cεαL(ε)xα in D∗′(0,∞) as ε→ 0+.

Then f0 admits extensions to R. Let f ∈ D∗′ be any of such extensions with support
in [0,∞). Then:

(I) If α /∈ Z−, then there is g ∈ D∗′ with supp g ⊆ {0} such that

f(εx)− g(εx) ∼ cεαL(ε)xα+ in D∗′ as ε→ 0+.

(II) If α = −k ∈ Z−, then there are a function b satisfying (3.16) as x → 0+ for
each a > 0 and an ultradistribution g ∈ D∗′ with supp g ⊆ {0} such that

f(εx) = c
L(ε)

εk
Pf

(
H(x)

xk

)
+
b(ε)

εk
δ(k−1)(x) + g(εx) + o

(
L(ε)

εk

)
in D∗′ as ε→ 0+.

5. Quasiasymptotic behavior in Z ′∗

As an application of our structural theorems, we now discuss some other extension
results for quasiasymptotics of ultradistributions. For distributions, the connection
between tempered distributions and the quasiasymptotic behavior has been extensively
studied [13, 14, 17, 19, 22]. The following properties are well known:

1. If f ∈ D′ has quasiasymptotic behavior at infinity, then f ∈ S ′ and it has the
same quasiasymptotic behavior in S ′.

2. If f ∈ S ′ has quasiasymptotic behavior at the origin in D′, then it has the same
quasiasymptotic behavior in S ′.

Our goal is to obtain ultradistributional analogs of these results. For this, we in-
troduce new ultradistibution spaces Z ′∗, somewhat reminiscent of the Gelfand-Shilov
type spaces [2] and at the same time generalizing S ′. They are defined as follows. For

any n ∈ N and h > 0, Z
Mp,h
n denotes the Banach space of all ϕ ∈ C∞ for which the

norm

‖ϕ‖Mp,n,h
:= sup

x∈R,m∈N

(1 + |x|)n+m|ϕ(m)(x)|

hmMm

is finite. Then we consider the following locally convex spaces

Z(Mp)
n = lim

←−
h→0+

ZMp,h
n , Z{Mp}

n = lim
−→
h→∞

ZMp,h
n ,

corresponding to the Beurling and Roumieu case, where we use Z∗
n as a common

notation for these two cases, and finally we define

Z∗ = lim
←−
n∈N

Z∗
n.

The aim of this section is to show that quasiasymptotic behavior in D′∗ naturally
extends to quasiasymptotic behavior in Z ′∗. Let us first consider the case at infinity.
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Theorem 5.1. If f ∈ D′∗ has quasiasymptotic behavior with respect to λαL(λ), with L
slowly varying at infinity and α ∈ R, then f ∈ Z ′∗ and it has the same quasiasymptotic
behavior in Z ′∗.

Proof. Let k ∈ N be the smallest natural number such that −(k + 1) ≤ α. Then
by either Theorem 3.5 or Theorem 3.6 we find some ℓ > 0 (for any ℓ > 0) and a
C = Cℓ > 0 such that (3.4) and (3.6) hold. Wet set n = ⌈α + 1⌉. Employing Potter’s
estimate (3.8) (with γ = λ = 1), we find that for any ϕ ∈ Z∗ and any m ≥ k we have
∣∣∣∣
∫ ∞

−∞

fm(x)ϕ
(m)(x)dx

∣∣∣∣ ≤ C
ℓm

Mm

∫

R

(1 + |x|)m+n|ϕ(m)(x)|dx ≤ C ′‖ϕ‖Mp,n+2,h(hℓ
m),

and as hℓ may be chosen freely, it follows that this is absolutely summable over m ≥ k.

Consequently, f =
∑∞

m=k f
(m)
m ∈ Z ′∗.

For the quasiasymptotic behavior of f , the case where α is not a negative integer
can be shown in a similar fashion as the sufficiency proof of Theorem 3.5. For α =
−k ∈ Z−, it is clear that we only need to treat the case k = 1, as the general case
then automatically follows by differentiating. By Theorem 3.6, there exist continuous

functions fm, m ∈ N, satisfying (3.11), (3.12), and (3.13) such that f = f0+
∑∞

m=1 f
(m)
m .

The infinite sum in the previous identity clearly has a primitive with quasiasymptotic
behavior with respect to L(λ), so that its quasiasymptotic behavior may be extended

to the whole of Z ′∗, and in turn its derivative
∑∞

m=1 f
(m)
m has quasiasymptotic behavior

with respect to λ−1L(λ) in Z ′∗. By (3.11) and (3.12), f0 has quasiasymptotic behavior
with respect λ−1L(λ) in D′, hence, by [17, Remark 3.1] (see also [13, Theorem 2.41,
p. 158]), it has the same quasiasymptotic behavior in S ′, hence certainly also in Z ′∗.
Therefore, the same also holds for f . �

Let us now turn our attention to the case at the origin. The next lemma proves that
the quasiasymptotic at the origin in Z ′∗ is a local property.

Lemma 5.2. Let L be a slowly varying function at the origin and α ∈ R. Suppose
f1, f2 ∈ Z

′∗ are such that for some a > 0, f1 and f2 coincide on R \ [−a, a]. Suppose
that f1(εx) ∼ εαL(ε)g(x) in Z ′∗ as ε→ 0+, then, also f2(εx) ∼ εαL(ε)g(x) in Z ′∗.

Proof. We only show the Beurling case; the Roumieu case can be shown analogously
by employing a projective description for Z{Mp} obtained similarly as in [2]. It suffices
to show that if f ∈ Z ′(Mp) vanishes near the origin, then f(εx) ∼ εN · 0 for all N ∈ N.
Let f be as described, then there exist 0 < R < 1, n ∈ N, ℓ, C > 0 such that

|〈f(εx), φ(x)〉| ≤ C sup
|x|≥R,m∈N

|x|n+m|φ(m)(x)|

ℓmMm
, φ ∈ Z(Mp).

Taking φ(x) = ε−1ϕ(x/ε) with ϕ ∈ Z(Mp) and arbitrary 0 < ε < 1 we have for N ≥ n

ε−N |〈f(εx), ϕ〉| ≤ C sup
|x|≥R,m∈N

|x|n+m|ϕ(m)(x/ε)|

εN+m+1ℓmMm

≤ CR−N+n−1 sup
|x|≥R/ε,m∈N

|x|N+m+1|ϕ(m)(x)|

ℓmMm
→ 0,
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as ε→ 0+. �

Theorem 5.3. Suppose f ∈ Z ′∗ has quasiasymptotic behavior in D′∗ with respect to
εαL(ε), with L slowly varying at the origin and α ∈ R, then f has the same quasi-
asymptotic behavior in Z ′∗.

Proof. By Lemma 5.2 we may assume that supp f ⊂ [−1, 1]. Suppose first that α /∈ Z−

and let k ∈ N be the smallest integer such that −(k + 1) < α. From Theorem 4.2 we
find continuous functions fm on [−1, 1] \ {0}, satisfying (3.4), (4.4) and (4.5). Take
any ψ ∈ Z ′∗ and decompose it as ψ = ψ− + ψc + ψ+ where suppψ− ⊆ (−∞,−1], ψc

has compact support and suppψ+ ⊆ [1,∞). Then by the hypothesis

lim
ε→0+

〈
f(εx)

εαL(ε)
, ψc(x)

〉
= c+

〈
xα+, ψc(x)

〉
+ c−

〈
xα−, ψc(x)

〉
.

It suffices to show that the same limit holds for ψ± placed instead of ψc. As the two
cases are symmetrical, we only look at ψ+. It follows from (3.8), (4.5) and the Lebesgue
dominated convergence theorem that for any m ≥ k,

lim
ε→0+

〈
f
(m)
m (εx)

εαL(ε)
, ψ+(x)

〉
= lim

ε→0+

∫ 1/ε

1

L(εx)

L(ε)

(
fm(εx)

(εx)α+mL(εx)

)
xα+mψ

(m)
+ (x)dx

= c+m

∫ ∞

0

xαψ+(x)dx.

Then another application of dominated convergence shows that

lim
ε→0+

〈
f(εx)

εαL(ε)
, ψ+(x)

〉
= c+

〈
xα+, ψ+(x)

〉
.

This shows the case for α /∈ Z−. The case of negative integral degree can then be done
as in the proof of [19, Theorem 6.1]. �
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