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ABSTRACT Accurate channel estimation is of utmost importance for massive MIMO systems to provide
significant improvements in spectral and energy efficiency. In this work, we present a study on the
distribution of a simple but yet effective and practical channel estimator for multi-cell massive MIMO
systems suffering from pilot-contamination. The proposed channel estimator performs well under moderate
to aggressive pilot contamination scenarios without previous knowledge of the inter-cell large-scale channel
coefficients and noise power, asymptotically approximating the performance of the linear MMSE estimator
as the number of antennas increases. We prove that the distribution of the proposed channel estimator can
be accurately approximated by the circularly-symmetric complex normal distribution, when the number of
antennas, M , deployed at the base station is greater than 10.

INDEX TERMS Massive MIMO, multi-cell, pilot-contamination, channel estimation.

I. INTRODUCTION
The foreseen demand increase in data rate has triggered a
research race for discovering new ways to increase the spec-
tral efficiency of the next generation of mobile and wire-
less networks [1]. The report in [1] predicts that data rates
will easily reach peaks of 10 Gbps, reaching a staggering
49 Exabytes of data transfer per month. Additionally, the next
generation of networks is also expected to serve a higher num-
ber of devices, including human-type communication (HTC)
devices and machine-type communication devices (MTC).
One of the performance requirements defined by the Interna-
tional Mobile Communications (IMT) requires a connection
density of 1×106 devices/km2 for a network to be considered
5G [2]. According to [3], the number of connected devices
is forecast to be nearly 30 billion by 2023, where around
20 billion are forecast to be MTC devices.

In that sense, several approaches have been proposed
to increase the spectral efficiency of such next-generation
networks, such as cell densification through the reduc-
tion of the cell size [4], high-order modulations such as
128-QAM or 256-QAM [5], larger transmission bandwidths
available on the millimeter-wave bands and aggregation
of industrial, scientific and medical (ISM) bands [6], [7]
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simultaneous access using a single time-frequency resource
employing non-orthogonal multiple access (NOMA) through
different transmission power allocation or spreading-
codes [8], and simultaneous multiple users access in the
same time-frequency resources by exploiting a higher num-
ber of degrees-of-freedom provided by massive MIMO
techniques [9]. Among all these approaches, massive MIMO
is one of the most important, prominent and studied ones, and
is already established on the initial deployments of the 5-th
generation of mobile networks (5G) [10].

In a multi-cell massive MIMO system, the base
station (BS) has to estimate the wireless channels of all its
connected devices. These channel estimates obtained during
the uplink communication are used to calculate the decoding
and the pre-coding matrices, which are used to receive and
transmit user data, respectively. Therefore, accurate estima-
tion of the channels is an essential task in such systems. The
linear minimum mean square error (LMMSE) channel esti-
mator is optimum when it comes to MSE minimization [11].
However, the channel statistics at the BS must be known
beforehand as a premise for the estimator work properly, i.e.,
it needs to have previous knowledge of both the intra/inter-
cell large-scale fading coefficients and the noise power [12].

The optimum estimation strategy of the intra/inter-cell
large-scale fading coefficients and noise power might be
unjustified in practice due to the excessive overhead it
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imposes on the system [12]. For instance, in the case where
there are L cells serving K users, each one of the L-th
BSs would have to acquire K (L − 1) inter-cell large-scale
fading coefficients plus the noise power estimation. In [12],
we proposed a channel estimator for multi-cell multi-user
systems that does not require the estimation of the inter-cell
large-scale fading coefficients plus noise power. In this
work, we find expressions for the probability density func-
tion (PDF), cumulative distribution function (CDF), and cen-
tral moments of the proposed channel estimator in [12]. The
statistics derived and discussed in this work are used to
assess the difference between the proposed estimator and the
LMMSE estimator, which is the optimum estimator when
both the channels and noise vectors are jointly Gaussian
distributed [13]. Additionally, the derived statistics presented
here, make it possible to find bounds to the spectral efficiency
of a system employing the proposed estimator and compare
its performance with that of a system employing optimal
LMMSE channel estimation.

This article is organized as follows. In section II we list
and discusses some related pieces of work. In section III,
we present the uplink channel model and define the method
for tackling the problem. In section IV, we describe the uplink
training scheme employed in this study. In section V we
briefly present two of the most well-known channel estima-
tors in the Massive MIMO literature. Next, in section VI,
we present a simple and effective channel estimator for the
multi-cell scenario. In section VII, we present a thorough
study on the distribution of the proposed channel estima-
tor, which is the main contribution of this work. Then,
in section VIII, we discuss the results of simulations proving
the findings of section VII. Finally, in section IX, we present
our final conclusions.

II. RELATED WORK
Herewe present and discuss some relatedwork on the channel
estimation subject. Channel estimation for massive MIMO
systems can be split into three main approaches, namely,
non-coherent detection, data-aided and pilot-based channel
estimation.

Coherent detection in massive MIMO systems requires
that devices send training signals (i.e., pilot sequences)
towards the BS so that it can estimate the channels from
the devices to each one of the antennas at the BS. How-
ever, the transmission of pilot signals increases the sig-
naling overhead considerably as they occupy part of the
coherence-interval that could be used for uplink or down-
link data transmission. Additionally, as each one of the
devices has to be assigned an orthogonal pilot sequence,
the interval used by the pilots has to be increased as the
number of devices increases. Moreover, coherent detection
is susceptible to performance degradation caused by pilot
estimation errors and pilot-contamination [14], [15]. There-
fore, the first approach discussed here is the non-coherent
detection, where in fact, there is no channel estimation
involved. With this approach, the disadvantages mentioned

earlier disappear, however, other ones arise. Non-coherent
detection is based on the careful design of the modu-
lation constellations and allows for systems approaching
the channel capacity of their coherent-detection counter-
parts at moderate to high signal-to-noise ratios (SNR)
regimes [16], [17]. The main disadvantages presented by
non-coherent detection are a 3 dB penalty in SNR and less
design freedom, once the transmitted signal has to be care-
fully designed based on some constraints necessary for the
non-coherent detection (e.g., isotropically-distributed Grass-
mannian constellations) [18], [19].

Another approach employed for estimation is the
data-aided channel estimation, which is a technique where
decoded modulation symbols, carrying data, are used to
estimate the channel [20]. The body of literature shows
approaches where data-aided techniques are used alone and
others where it helps to improve the quality of the pilot-based
channel estimates [21], [22]. Some works present results
showing that it is possible to achieve high spectral effi-
ciency with data-aided schemes using a very small num-
ber of pilot sequences [23], [24]. Other works show that
iterative joint channel estimation and data decoding has
the potential to effectively mitigate the pilot-contamination
effect [20], [25], which is a phenomenon inherent to massive
MIMO systems [20]. The adoption of hard-decoded symbols
for channel estimation might cause significant performance
degradation due to the fact that many of the hard decisions
are highly probable to be incorrect, especially in low SNR
cases, and therefore, producing channel estimates with low
accuracy, directly affecting the achievable spectral-efficiency.

A sub-branch of the data-aided techniques is divided
into blind and semi-blind estimation schemes. These
schemes employ statistical properties of the transmitted sig-
nals to estimate the channels. These techniques generally
employ second-order statistics of the received data with-
out any a priori knowledge of pilot sequences or channel
estimates [26], [27]. Blind estimation presents no overhead
penalty (i.e., there is no need to transmit pilot sequences for
training purposes) and therefore has high spectral efficiency
but, however, they are only suitable for slowly time-varying
channels, as they present long convergence times due to the
time it takes for them to produce reliable estimates [26]–[28].
On the other hand, semi-blind techniques are based on a
hybrid approach between blind and pilot-based channel esti-
mation, and therefore, are more suitable for channel esti-
mation in slowly time-varying channels [29]. They have the
advantage of more accurate estimates but still present longer
estimation processing than pilot-based techniques [30] and
might be computationally more complex than pure pilot- or
blind- based estimation algorithms [31].

Pilot-based channel estimation is the most used estimation
approach found in the body of the surveyed literature. A myr-
iad of works employ pilot-based channel estimation and use
linear channel estimators such as Least-Squares (LS) and
the Minimum Mean Squared Error (MMSE) [32]–[36], [40].
Among the linear estimators, MMSE is known for being the
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FIGURE 1. A multi-cell system diagram where K is the number of devices
per cell, M is the number of co-located antennas, and L is the number of
cells. The blue arrow (←) represents the channel from the k-th user
within the i -th cell to the i -th BS, and the red arrow (←) represents the
channel from the k-th user within the l -th cell to the i -th BS.

optimum estimator when both the channels and the noise
are jointly Gaussian [13]. The pilot-based estimation has the
advantage of producing good estimates in moderate to low
SNR scenarios due to the good correlation properties of the
training sequences [13], however, as the pilot sequences have
to occupy a portion of the coherence interval, the spectral
efficiency decreases with the length of the sequences [37].
Additionally, it is also important to highlight that in the great
majority of works, for the sake of clarity, the authors assume
perfect knowledge of the channel statistics (i.e., small- and
large- scale fading coefficients and noise power), which is
not practical [12]. In [12], a simple and practical channel
estimator that does not assume a priory knowledge of the
channel statistics is presented. The advantage of that estima-
tor is that it does not require the heavy overhead created by
the estimation of the channel statistics once they are obtained
from the received signal at the BS.

III. UPLINK SIGNAL MODEL
In this work, we consider a multi-cell system with L cells,
each cell has a BS, and each BS operates with M antennas
and K randomly located single antennas users as depicted
in Figure 1. Let gilkm represents the complex channel gain
from the k-th user within the l-th cell to the m-th antenna of
the BS located at the i-th cell. The channel gain, gilkm, can
be re-written as gilkm =

√
βilkhilkm where βilk represents the

large-scale coefficients (taking into account both path-loss
and shadowing) and hilkm represents a frequency-flat fading
channel coefficients. The large-scale fading coefficients from
the k-th user located at the l-th cell to the i-th cell, βilk ,
are assumed constant for all the M antennas at the i-th BS,
once path-loss and shadow fading change slowly along the
space [36], [37]. The channel can be considered flat Rayleigh
fading as the small-scale fading is considered to follow a com-
plex Gaussian distribution with zero mean and unitary vari-
ance and the transmitted signal’s bandwidth is smaller than
the coherence bandwidth [36]. The overall channel matrix is
denoted by Gil and has dimension M × K , where its k-th
column, gilk = [gilk1, · · · , gilkM ]T, represent the channel gain
from the k-th user in the l-th cell to the i-th BS. Additionally,
we consider the set of large-scale coefficients, {βilk}, as being

FIGURE 2. OFDM modulation and TDD transmission protocol employed in
a massive MIMO system.

deterministic during the estimation phase. This assumption
is reasonable due to the slow change of large-scale fading
in comparison with the small-scale fading coefficients [37].
The overall channel matrixGil can be defined directly by the
channel coefficients as showed next,

Gil =


gil11 gil21 · · · gilK1
gil12 gil22 · · · gilK2
...

...
. . .

...

gil1M gil2M · · · gilKM

 = HD1/2

=


hil11 hil21 · · · hilK1
hil12 hil22 · · · hilK2
...

...
. . .

...

hil1M hil2M · · · hilKM



√
βil1 0 · · · 0
0
√
βil2 · · · 0

...
...

. . .
...

0 0 · · ·
√
βilK

,
(1)

where D is the diagonal matrix with the large-scale coeffi-
cients for all K devices, βilk , k = 1, . . . ,K .

IV. UPLINK TRAINING
We assume that the users of all cells use the same set of
pilot sequences at the same time (i.e., all users’ transmis-
sions aligns to the BS uplink) and that the pilot reuse fac-
tor is equal to one which is the most aggressive. Figure 2
shows the signaling structure in more detail. If we assume
a static channel during coherence time Tc then the proper sig-
nal multiplexing scheme is Time-Division Duplexing (TDD)
protocol. Furthermore, we can additionally say that uplink
and downlink channels are reciprocal, i.e., they are identical
within the channel coherence time, which minimizes the pilot
transmission overhead since only users need to transmit pilots
in the uplink direction. Therefore, two direct consequences
of the TDD protocol adoption are: (i) the channel coherence
time limits the TDD frames [38], [39], and (ii) the pilot
overhead cost is only proportional to the number of termi-
nals, K , and not to the number of antennas, M [40], [41].
Finally, we assume Orthogonal frequency-division duplexing
multiplexing (OFDM), which is a well-known modulation
with a straightforward interpretation of the coherence interval
concept [37].
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The pilot sequences of K users are represented by a
τ ×K matrix8 with the orthogonality property,8H8 = IK ,
where K ≤ τ . The received pilot sequences at the i-th BS are
represented by a M × τ matrix, Yi, defined as

Yi =
√
ρ

L∑
l=1

Gil8
H
+ Ni, (2)

where ρ is the average pilot transmit power of each user and
Ni is a M × τ matrix with i.i.d. elements following the dis-
tribution CN (0, 1). Equation (2) can be re-written as showed
next in Equation (3). Equation (3) clearly shows the coherent
inter-cell interference, which is represented by the second
term in the equation and is caused by users employing the
same pilot sequences within other BSs.

Yi =
√
ρGii8

H︸ ︷︷ ︸
Desired pilot signals

+
√
ρ

L∑
l=1,l 6=i

Gil8
H

︸ ︷︷ ︸
Undesired pilot signals

+ Ni︸︷︷︸
Noise

. (3)

As the length of the pilot sequences has to be much smaller
than the coherence time (see Figure 2), the maximum number
of orthogonal sequences within a cell is limited, and due to
that, other cells end up reusing the same pilot sequences. This
reuse of pilot sequences brings about what is known in the
literature as pilot contamination [37]. Due to the pilot con-
tamination phenomenon, channel estimates obtained within
a given cell get contaminated by pilots transmitted by the
users located within neighbour cells. The worst-case scenario
for pilot contamination is when the frequency reuse factor is
equal to 1 (i.e., all cells reuse the same frequency) and all
transmissions coming from the different cells are perfectly
synchronized. Pilot contamination leads to the coherent inter-
ference term in Equation 3, which is hard to mitigate in
the case of spatially uncorrelated channels [13]. Under this
specific channel condition, pilot contamination is an impair-
ment that does not disappear, even with an infinite number of
antennas [13]. On the other hand, the coherent interference
caused by pilot contamination becomes negligible when large
frequency reuse factors are adopted [37].

Let φk denote the k-th column of 8H . Hence, a sufficient
statistic for the estimation of the channel vectors, giik , at the
i-th BS is given by

zik =
1
√
ρ
Yiφk =

L∑
l=1

Gil8
Hφk +

1
√
ρ
Niφk

=

L∑
l=1

gilk + wik (4)

= giik︸︷︷︸
Desired channel

+

L∑
l=1,l 6=i

gilk︸ ︷︷ ︸
Inter-cell interference

+
Niφk
√
ρ︸ ︷︷ ︸

Noise

,

where wik =
1
√
ρ
Niφk has distribution CN (0M , 1

ρ
IM ) and zik

follows the distribution CN (0M , ζikIM ) where

ζik =

L∑
l=1

βilk +
1
ρ
. (5)

During the detection phase, the i-th BS has to estimate the
channels of its users, i.e., gilk ,∀k , based on the transmitted
pilot sequences.

V. CHANNEL ESTIMATION
In this section we briefly present two of the most well-known
and heavily used channel estimators in the Massive MIMO
literature [12], namely, Least-Squares (LS) and Linear Mini-
mum Mean-Square Error (LMMSE) channel estimators.

A. LEAST-SQUARES
A sufficient statistic for estimating the channel vectors
giik ,∀k at the i-th BS is defined as [11]

ĝLSiik = zik , (6)

with distribution given by CN (0M , ζikIM ) [12]. Additionally,
by using (6), we can show that ĝLSilk = ĝLSiik ,∀l, meaning that
the channel estimates acquired by the i-th BS are parallel
vectors.

This estimator is known as the Least Squares (LS) esti-
mator and as can be seen, it does not rely on any prior
information on the channel statistics, such as the large-scale
fading coefficients. Moreover, the LS estimator is known to
have poorer performance than the MMSE estimator [12].

B. LINEAR MINIMUM MEAN-SQUARE ERROR
In case the channel statistics (i.e., large-scale fading coeffi-
cients and noise power) are assumed perfectly known at the
i-th BS, the optimumLMMSE channel estimator is defined as

ĝMMSE
iik =

βiik

ζik
zik , (7)

with distribution given by CN (0M ,
β2iik
ζik

IM ) [12]. Addition-

ally, by using (7), we can show that ĝMMSE
ilk =

βilk
βiik

ĝMMSE
iik ,∀l,

meaning that the channel estimates are parallel vectors that
only differ by the scaling factor, βilk

βiik
.

VI. A SIMPLE AND EFFECTIVE CHANNEL ESTIMATOR
As proposed in [12], a very simple but yet effective channel
estimator for the multi-cell case is defined by

ĝprop.iik = Mβiik
zik
‖zik‖2

, (8)

which asymptotically approaches the performance of the lin-
ear LMMSE estimator as M →∞ [12].
Remark 1: If giik is an i.i.d. complex Gaussian vector,

then, we see that ĝprop.ilk =
βilk
βiik

ĝprop.iik ,∀l, meaning that the
channel estimates are parallel vectors that only differ by the
scaling factor, βilk

βiik
, and therefore, showing the BS’s inability
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to separate users transmitting the same pilot sequence within
other cells.

The channel estimator presented in Equation (8) has
E[ĝpropiik ] = 0M and covariance matrix given by

E[ĝpropiik (ĝpropiik )H ] =

(
M

M − 1

β2iik

ζik

)
IM

=

(
β2iik

ζik
+

1
(M − 1)

β2iik

ζik

)
IM

=

(
β2iik

ζik
+ εik

)
IM , (9)

where εik = 1
(M−1)

β2iik
ζik

. The mean of E[ĝpropiik ] is found
by using the symmetry property of the distribution of
zikm ∼ CN (0, ζik ), we conclude that E

[
ĝpropiikm

]
= 0, once

E
[

zikm
‖zik‖2

]
= E

[
−zikm
‖zik‖2

]
,∀m. As can be seen by analyzing

equation (9), asM →∞, Cov[ĝpropiik ]→
β2iik
ζik

IM , which is the
covariance matrix of the LMMSE estimator [12].
Remark 2: The average normalized squared Euclidean

distance between ĝpropiik and ĝMMSE
iik is given by

1
M

E
[
‖ĝpropiik − ĝMMSE

iik ‖
2
]
=

1
M − 1

β2iik

ζik
= εik . (10)

The proof of (10) is given in Appendix B of [12]. From
(5) and (10), it is easily noticeable that the average dis-
tance decreases with increasing M , decreasing ρ, increasing
βilk , i 6= l, and decreasing βiik .

VII. DISTRIBUTION OF THE PROPOSED ESTIMATOR
Since zik ∼ CN (0M , ζikIM ), then ‖zik‖2 ∼ 0(M , ζik ),
therefore, the distribution of the elements, ĝprop.iikm =

Mβiik zikm
‖zik‖2

,

of the channel estimator, ĝprop.iik , is the ratio between a
Circularly-symmetric normal distribution and a Gamma dis-
tribution.

As zikm∀m are i.i.d. complex normal random variables, then
it is clear that the distribution of ĝprop.iikm in C = R2 is rotation
invariant. Therefore, it suffices to find the distribution of
|ĝprop.iikm |

2, which is the same as that of

R =
(Mβiik )2|zikm|2

(|zikm|2 +
∑M

m′=1,m′ 6=m zikm′ |
2)2
=

bX
(X + Y )2

≥ 0,

(11)

where b = (Mβiik )2, X = |zikm|2 and Y =

|
∑M

m′=1,m′ 6=m zikm′ |
2 are independent random variables

exhibiting the distributions 0(1, ζik ) and 0(M − 1, ζik ),
respectively. The proof of the distributions of X and Y are
given in Lemmas 1 and 2 of Appendix A, respectively. The
random variables X and Y are independent due to the fact that
the M elements of zik and uncorrelated (diagonal covariance
matrix), and therefore, as they are Complex Gaussian random
variables, they are also independent.

Next, in order to find the PDF of R, we consider the
transformation of random variables from (X ,Y ) to (R′, S),

where S = X and R′ = X
(X+Y )2

. After finding the joint distri-
bution of (R′, S), fR′,S (r, s), then the PDF of R′ is defined by∫
∞

0 fR′,S (r ′, s)ds. The joint PDFs of fX ,Y (x, y) and fR′,S (r ′, s)
are derived in Appendix B. After applying the substitution
v =
√
r ′s to the previous integral, we find (see Appendix C

for the proof.)

fR′ (r
′) =

1

ζMik (M − 2)!r ′M+1

∫ 1

0
vM (1− v)M−2e

−
v

ζik r
′ dv,

0 ≤ r ′ <∞. (12)

Finally, by applying the change of variable R = bR′ to (12)
results in

fR(r) =
1
b
fR′
( r
b

)
=

(Mβiik )2M

ζMik (M − 2)!rM+1

∫ 1

0
vM (1− v)M−2e−

(Mβiik )
2v

ζik r dv,

0 ≤ r <∞, (13)

which by using an integral solver [42] results in

fR(r) =
1

ζikr2

√
(Mβiik )2π
ζikr

e−
(Mβiik )

2

2ζik r

2

×

{ [
2ζikMr − (Mβiik )2

]
IM− 1

2

(
(Mβiik )2

2ζikr

)
+(Mβiik )2IM+ 1

2

(
(Mβiik )2

2ζikr

)}
, (14)

where In(z) is the modified Bessel function of the first kind.
From (13) and using the Fubini theorem [43] (i.e., switch the
order of integration), it is easy to find all the central moments
of R = |ĝprop.iikm |

2, which are derived in Appendix D and
given as

E
[
Rk
]
=E

[
|ĝprop.iikm |

2k
]
=

(Mβiik )2kk!(M−k−1)!

ζ kik (M+k−1)!
, k ∈ Z.

(15)

The variance of |ĝprop.iikm |
2 is defined as

var
(
|ĝprop.iikm |

2
)
=

(Mβiik )4[2+M (M−1)]

ζ 2ikM
2(M+1)(M−1)2(M−2)

, (16)

The covariance between |ĝprop.iikm |
2 and |ĝprop.iikn |

2 is given by

cov
(
|ĝprop.iikm |

2, |ĝprop.iikn |
2
)
=

2(Mβiik )4

ζ 2ikM
2(M + 1)(M − 1)2(M − 2)

,

(17)

which tends to 0 when M → ∞. By using the symmetry
property of the distribution of zikm ∼ CN (0, ζik ), we con-
clude that E

[
ĝprop.iikm

]
= 0, once E

[
zikm
‖zik‖2

]
= E

[
−zikm
‖zik‖2

]
.

Next, by using the symmetry property of zikm again,
we find that ĝprop.iikm and ĝprop.iikn , when m 6= n, are uncor-
related, i.e., cov(ĝprop.iikm , ĝ

prop.
iikn ) = E

[
(ĝprop.iikm )∗ĝprop.iikn

]
, once

114512 VOLUME 7, 2019



F. A. P. de Figueiredo et al.: On the Distribution of an Effective Channel Estimator for Multi-Cell Massive MIMO

E
[
ĝprop.iikm

]
= E

[
ĝprop.iikn

]
= 0. First, by the Cauchy-Schwarz

inequality, we have

E
[∣∣(ĝprop.iikm )∗ĝprop.iikn

∣∣] ≤ √E
[∣∣ĝprop.iikm

∣∣2]E [∣∣ĝprop.iikn

∣∣2]
= E

[∣∣ĝprop.iikm

∣∣2] = E
[∣∣ĝprop.iikn

∣∣2]
=

Mβ2iik
ζik (M − 1)

<∞,m 6= n, (18)

hence, E
[
(ĝprop.iikm )∗ĝprop.iikn

]
exists and is finite. Therefore and

because the joint distribution of the pair
(
(−ĝprop.iikm )∗, ĝprop.iikn

)
is the same as that of

(
(ĝprop.iikm )∗, ĝprop.iikn

)
, we conclude that

E
[
(ĝprop.iikm )∗ĝprop.iikn

]
= E

[
(−ĝprop.iikm )∗ĝprop.iikn

]
= 0. Therefore,

the elements of ĝprop.iik are uncorrelated.
The CDF of R = |ĝprop.iikm |

2 is derived in Appendix E and
defined as

FR(r) =
∫ r

−∞

fR(t)dt

= 1−

√
(Mβiik )2π
ζikr

e−
(Mβiik )

2

2ζik r IM− 1
2

(
(Mβiik )2

2ζikr

)
, M>1.

(19)

Next, we find the PDF and CDF of U = <{ĝprop.iikm } =

={ĝprop.iikm }. First we recall that ĝprop.iikm can be expressed as
√
RC + j

√
RS, where C = cos(2), S = sin(2), and 2 is a

random variable independent of R and uniformly distributed
in the interval [0, 2π ] or, by symmetry, in [0, π]. The PDF
of C , is given by fC (c) = 1

π
√

1−c2
,−1 < c < 1. Consid-

ering the transformation of random variables from (R,C) to
(U ,W ), whereU =

√
RC andW = R, we have the following

for the PDF of U

fU (u) =
1
π

∫
∞

u2

1
√
w− u2

fR(w)dw, (20)

for all real u, where fR(r) is given by (13). Using the Fubini
theorem and an integral solver [42] for the calculation of the
iterated double integral, we get

fU (u) =
(Mβiik )2e

−
(Mβiik )

2

2ζik u
2

2ζik |u|3

[
IM−1

(
(Mβiik )2

2ζiku2

)
−IM

(
(Mβiik )2

2ζiku2

)]
. (21)

By recalling that U =
√
R cos(2) and that R and 2 are

independent, we know that all odd moments of U vanish due
to the fact that E

[
(cos(2))2k+1

]
= 0, k ∈ Z and that all even

moments of U are given by

E
[
U2k

]
= E

[
Rk
]
E
[
(cos(2))2k

]
=

(Mβiik )2k

ζ kik

(M − k − 1)!
(M + k − 1)!

0(k + 1
2 )

√
π

. (22)

The covariance between <{ĝprop.iikm } and ={ĝ
prop.
iikm } is define

as

cov
(
<{ĝprop.iikm },={ĝ

prop.
iikm }

)
= E

[
<{ĝprop.iikm }={ĝ

prop.
iikm }

]
= E

[√
RC
√
RS
]
=E [RCS]

= E [R]E [CS] = 0, (23)

once E [CS] = 1
π

∫ π
0 cos(2) sin(2)d2 = 0.

By using (22), the Kurtosis of <{ĝprop.iikm } = ={ĝ
prop.
iikm } is

defined as

Kurt
[
<{ĝprop.iikm }

]
=

E[U4]
(E[U2])2

=
3M (M − 1)

(M + 1)(M − 2)

M→∞
≈ 3, M>2,

(24)

which approaches 3 as the number of antennas,M , increases.
Therefore, as M → ∞, the distribution of <{ĝprop.iikm } and
={ĝprop.iikm } becomes a mesokurtic distribution, i.e., this distri-
bution has tails shaped the same way as the normal distribu-
tion as M increases. Hence, as M → ∞ the distributions of
<{ĝprop.iikm } and ={ĝ

prop.
iikm } tend to that of the normal distribution

with mean equal to 0 and variance equal to
Mβ2iik

2(M−1)ζik
.

As cov
(
ĝprop.iikm , ĝ

prop.
iikn

)
= 0, m 6= n, cov

(
<{ĝprop.iikm } ,

={ĝprop.iikm }
)
= 0,∀m, and Kurt

[
<{ĝprop.iikm }

]
→ 3 as M

increases, then we conclude that the distribution of random
vector ĝprop.iik , approaches that of a circularly-symmetric com-

plex normal vector, ĝprop.iik ∼ CN
(
0M ,

Mβ2iik
(M−1)ζik

IM

)
as M

increases.
Remark 3: As the number of antennas, M grows without

bound, the distribution of the proposed channel estimator
tends asymptotically to the distribution of LMMSE estimator.

lim
M→∞

CN
(
0M ,

Mβ2iik
(M − 1)ζik

IM

)
= CN

(
0M ,

β2iik

ζik
IM

)
(25)

The CDF of U , FU (u) = 2
∫ u
0 fU (t)dt , results in a quite

complicated expression involving Hypergeometric functions,
i.e., it does not have a neat closed form expression, however,
as we just discussed, it can be approximated by the CDF of a
normal random variable as M increases.

VIII. SIMULATION RESULTS
In this section, we present simulation results assessing the
performance of proposed estimator and showing that its dis-
tribution tends to that of a complexGaussian randomvariable.

In Figure 3, we compare the MSE versus the number of
antennas, M , deployed at the BS under the settings βiik = 1,
βilk = 0.05,∀l 6= i and ρ = 10 dB. As can be seen, with the
increase ofM , theMSE of the proposed estimator approaches
that of the optimumMMSE estimator, while the MSE of both
the LS and MMSE estimators are independent of the number
of antennas and therefore, stay constant over all values ofM .
Based on these results and the ones presented next, we will
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FIGURE 3. MSE performance versus number of antennas deployed
at the BS.

FIGURE 4. Distance between the proposed and MMSE channel estimators
(Remark 2).

conclude that the proposed channel estimator and its distribu-
tion tends to that of the MMSE channel estimator, which has

complex Gaussian distribution given by CN
(
0M ,

β2iik
ζik

IM

)
.

In Fig. 4, we compare the distance between the proposed
andMMSE channel estimators for different number of anten-
nas, M , with βiik = 1 and βilk = 0.05,∀l 6= i. As the
Remark 2 states, the distance is small at low values of ρ,
increasing with it until a ceiling value is reached. As can be
also noticed, the ceiling value decreases with the number of
antennas, M . The figure also depicts the variation of 1/ρ,
showing that it has a direct impact on the distance as it direct

affects ζik . For low ρ values the term
β2iik
ζik

in (10) tends to zero
quite fast due to the impact of 1/ρ and when ρ increases,
the effect of 1/rho in ζik vanishes and the distance tends to a
constant value for a fixed value of M .

FIGURE 5. Proposed estimator’s histogram versus Normal’s PDF.

FIGURE 6. Eq. (21) versus the Normal’s PDF.

Next, we present some results showing that the distribu-
tion of the proposed estimator asymptotically approaches
that of the circularly-symmetric complex normal distribution.
Figures 5 to 8 show several results comparing the distribution
of the real (or imaginary) part, <{ĝprop.iikm }, of the proposed
estimator and the Normal distribution for βiik = 1 and
ζik = βiik +

∑L
l=1,l 6=i βilk +

1
ρ
= 2 (i.e.,

∑L
l=1,l 6=i βilk +

1
ρ
= 1) respectively. The large-scale coefficient of the

device within the target cell, βiik , was chosen so that it was
greater than the other individual large-scale coefficients from
interfering cells. The value of ζik was chosen so that the
inter-cell large-scale fading coefficients plus noise power
term,

∑L
l=1,l 6=i βilk +

1
ρ
, is comparable to βiik .

114514 VOLUME 7, 2019



F. A. P. de Figueiredo et al.: On the Distribution of an Effective Channel Estimator for Multi-Cell Massive MIMO

FIGURE 7. Proposed estimator’s CDF, FU (u) = 2
∫ u
0 fU (t)dt , versus the

Normal’s CDF.

FIGURE 8. Proposed estimator’s excess Kurtosis for several number of
antennas, M.

Figure 5 compares the normalized histogram of <{ĝprop.iikm }

with the PDF of the Normal distribution, N
(
0,

Mβ2iik
2(M−1)ζik

)
.

The figure shows that for M = 2 the distributions differ
considerably, however, for M = 10 they become very close,
showing that the PDF of the random variable U asymptot-
ically approaches that of the normal Gaussian PDF as the
number of antennas increases. It is also worth mentioning that
the same conclusion can be drawn to the imaginary part of
ĝprop.iikm , i.e., ={ĝprop.iikm }.
Figure 6 compares the PDF of U = <{ĝprop.iikm }, with the

PDF of the Normal distribution. Again the results show that
both PDFs become quite close as M increases. The results
presented in figure 6 shows that the analytical expression

FIGURE 9. Mean absolute percentage error between (21) and the
Normal’s PDF, fN (n) for several number of antennas, M.

derived for the the PDF of U in (21) is tight and tends to
represent the same distribution of a Normal distribution asM
grows.

Figure 7 compares the CDF ofU , with the CDF of the Nor-
mal distribution. As with the PDF analysis and as expected,
the results presented in the figure show that the CDFs as M
increases, the difference between the two CDFs disappear.

Figure 8 shows the excess Kurtosis of<{ĝprop.iikm }. The excess
kurtosis measures the distance of a given distribution to
the normal distribution, which has Kurtosis equal to 3. The
figure shows that the excess Kurtosis of <{ĝprop.iikm } tends to
0 as M increases, showing that, indeed, the distribution of
<{ĝprop.iikm } asymptotically tends to that of the Normal distri-
bution. It is worth mentioning that the excess Kurtosis of
={ĝprop.iikm } also tends to 0 as M increases, as the real and
imaginary parts of ĝprop.iikm have the same distribution.

Figure 9 depicts the mean absolute percentage
error (MAPE) between the PDF of the random variable U ,
i.e., fU (u), given by (21), and the Normal’s PDF, fN (n). The
MAPE is defines as

MAPE =
100
N

N∑
i=1

∣∣∣∣ fU (ui)− fN (ni)fN (ni)

∣∣∣∣. (26)

As it can be seen in the figure, the MAPE decreases as the
number of antennas, M , increases, showing once more that
fU (u) asymptotically approaches fN (n) as M increases.
It is important to emphasize that since the proposed

estimator was based on the LMMSE channel estimator,
it was expected that the distribution of proposed estimator
would approach asymptotically the distribution of LMMSE,

CN
(
0M ,

β2iik
ζik

IM

)
, as the number of antennas, M , grew.

All the results presented in this section prove that the dis-
tribution of the proposed channel estimator can be accurately
approximated by a circularly-symmetric complex normal
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distribution with covariance matrix given by
Mβ2iik

(M−1)ζik
IM for

M > 10. Having a BS deployed with an antenna array
of more than 10 elements (i.e., antennas) is quite feasible
given the recent advances in massive MIMO development.
As reported in [10], current deployments have shown BSs
equipped with antenna arrays of more than 64 elements.

IX. CONCLUSION
This study derived expressions for the PDF, CDF, and cen-
tral moments of a channel estimator proposed in [12]. The
distribution of the proposed channel estimator asymptoti-
cally approaches the circularly-symmetric complex normal
distribution as the number of antennas M increases.
The results presented here show that the distribution
of the proposed channel estimator approximates accu-
rately by a circularly-symmetric complex normal distribu-
tion for M > 10, which is the case for massive MIMO
deployments [10]. Moreover, the findings presented here,
clearly show that the distance between the distribution of
proposed estimator and that of the optimum LMMSE esti-
mator decreases as the number of antennas increases, getting
really close when M > 10.
As future work, an interesting direction where the findings

of this work can be very useful, is on the derivation of spectral
capacity bounds of systems employing the channel estimator
presented here. This direction is an important one as it will
shed light on the performance gap that theremight be between
systems employing the optimum MMSE channel estimator
and the one presented here.

APPENDIX A
Lemma 1: If W ∼ CN (0, σ 2) then ‖W‖2 ∼ 0(1, σ 2).
Proof: We know that W = X + jY and consequently

‖W‖2 = X2
+ Y 2, where X ,Y are i.i.d. random variables

with distributionN (0, σ 2/2). Now, if we make Z = X2
+Y 2,

then using the joint pdf of X and Y we have that P(Z ≤ z) is
defined by

P(X2
+ Y 2

≤ z) =
1
πσ 2

∫
x2+y2≤z

e−
(x2+y2)
σ2 dxdy. (27)

Next, switching to polar coordinates we get:

P(Z ≤ z) =
1
πσ 2

∫ 2π

0

∫ √z
0

re−
r2

σ2 drdθ =
2
σ 2

∫ √z
0

re−
r2

σ2 dr .

(28)

Now if we set u = r2 then we get

P(Z ≤ z) =
1
σ 2

∫ z

0
e−

u
σ2 du, (29)

so Z is exponentially distributed with rate parameter λ = 1.
Finally, comparing the pdf given above with the Gamma

distribution pdf one can notice that if the shape parameter k
is set to 1 and scale parameter θ is set to σ 2 it becomes the
exponential pdf, concluding the proof.
Lemma 2: If Xm ∼ CN (0, σ 2) ∀m are independent, then∑M
m=1 |Xm|

2
∼ 0(M , σ 2).

Proof: From Lemma 1 we know that each
Zm = ‖Xm‖2 ∼ 0(1, σ 2). We also know that Zm is
independent for all m. Therefore, each Zm has the following
characteristic function:

ϕZ (t) = (1− jσ 2t)−1. (30)

Next, knowing that the characteristic function of the sum
of independent random variables is the product of their indi-
vidual characteristic functions leads to

ϕZ1+Z2+...+ZM (t) = ϕZ1 (t)ϕZ2 (t)...ϕZM (t) = (1− jσ 2t)−M .

(31)

Eq. (31) defines the characteristic function of a
Gamma-distributed random variable with scale parameter
θ = σ 2 and shape parameter k = M , and therefore
concluding the proof.

APPENDIX B
In this Appendix we derive the PDF of fR′,S (r ′, s). First,
by remembering that R′ = X

(X+Y )2
and S = X , where

X = |zikm|2 and Y = |
∑M

m′=1,m′ 6=m zikm′ |
2 are independent

random variables exhibiting the distributions 0(1, ζik ) and
0(M − 1, ζik ), respectively, then, the PDF of fX ,Y (x, y) is
given by

fX ,Y (x, y) =
1

ζik0(1)0(M − 1)
yM−2e−(x+y)/ζik ,

0 ≤ x <∞, 0 ≤ y <∞. (32)

Next, taking the Jacobian determinant of the transforma-

tion X = S and Y =
√

S
R′ − S results in

|J |=

∣∣∣∣ ∂(x, y)∂(r ′, s)

∣∣∣∣=
∣∣∣∣∣∣∣
∂x
∂r ′

∂x
∂s

∂y
∂r ′

∂y
∂s

∣∣∣∣∣∣∣=
∣∣∣∣∣∣

0 1

−
1
2r ′

√
s
r ′
∂y
∂s

∣∣∣∣∣∣ = 1
2r ′

√
s
r ′
.

(33)

Therefore, the joint distribution of R′ and S has the pdf
given by

fR′,S (r
′, s) = fX ,Y (x, y)

∣∣∣∣ ∂(x, y)∂(r ′, s)

∣∣∣∣
=

1

ζMik0(1)0(M−1)

1
2r ′

√
s
r ′

(√
s
r ′
−s
)
M−2e

−

√
s
r ′
/ζik
,

0 ≤ r ′ <∞, 0 ≤ s <∞. (34)

APPENDIX C
In this Appendix, we derive the PDF of R′. By using (34),
the PDF of R′ is obtained by integrating fR′,S (r ′, s) over s.
We start by writing the integral of fR′,S (r ′, s) over s as

fR′ (r
′) =

∫
∞

0
fR′,S (r

′, s)ds

=

∫
∞

0

1

ζMik 0(1)0(M−1)

1
2r ′

√
r ′s
r ′

(√
r ′s−r ′s
r ′

)M−2
× e
−

√

r ′s
ζik r
′ ds, 0 ≤ r ′ <∞, 0 ≤ s <∞. (35)
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Next, in order to find fR′ (r ′) we apply the following change
of variable to fR′,S (r ′, s), v =

√
r ′s. Therefore, the PDF of R′

is given by

fR′ (r
′) =

∫ 1

0

ζMik

0(1)0(M − 1)
1
r ′
v
r ′

(
v− v2

r ′

)M−2
e
−

v
ζik r
′
v
r ′
dv

=
1

ζMik (M − 2)!r ′M+1

∫ 1

0
vM (1− v)M−2e

−
v

ζik r
′ dv,

0 ≤ r ′ <∞. (36)

where the upper limit in the integral is equal to 1 due to the
fact that

√
r ′s = x

x+y =
s
s+y and that lims→∞

s
s+y =

s
s = 1.

APPENDIX D
In this Appendix, we derive the central moments of R.
We start by writing the expectation integral of R, which is
defined as (37), as shown at the bottom of this page.

The integral between the square brackets in the last part
of (37) can be found by using the following integral identity∫

∞

0
xae−b/xdx = b1+a0(−1− a). (38)

By applying the identity (38) into (37), it can be re-written
as (39), as shown at the bottom of this page.

The integral in (39) can be found by using the following
integral identity∫ 1

0
xa(1− x)bdx =

0(1+ a)0(1+ b)
0(2+ a+ b)

. (40)

Finally, by applying the identity (40) into (39), it can be
re-written as

E
[
Rk
]
=

(Mβiik )2k (M − k − 1)!

ζ kik (M − 2)!

0(1+ k)0(1+M − 2)
0(k +M )

=
(Mβiik )2k (M − k − 1)!

ζ kik (M − 2)!

k!(M − 2)!
(M + k − 1)!

=
(Mβiik )2kk!(M − k − 1)!

ζ kik (M + k − 1)!
, k ∈ Z. (41)

APPENDIX E
In this Appendix we derive the CDF orR.We start by defining
CDF expectation of R, which is defined as

FR(r) =
∫ r

0
fR(t)dt

=

∫ r

0

(Mβiik )2M

ζMik (M−2)!t
M+1

∫ 1

0
vM (1−v)M−2e−

(Mβiik )
2v

ζik t dvdt

=
(Mβiik )2M

ζMik (M−2)!

∫ 1

0
vM (1−v)M−2

[∫ r

0

1
tM+1

e−
(Mβiik )

2v
ζik t dt

]
dv,

(42)

where in the last line of (42) we used the Fubini theorem [43]
to switch the order of integration.

The integral between the square brackets in the last part of
(42) can be found by using the following integral identity∫ r

0

1
xa
e−b/xdx = b1−a0(a− 1, b/r). (43)

Replacing (43) into (42) results in

FR(r) =
1

(M − 2)!

∫ 1

0
(1− v)M−20

(
M ,

(Mβiik )2v
ζikr

)
dv.

(44)

The integral in (44) is found by using an integral solver [42]
and is defined as∫ 1

0
(1−v)M−20

(
M ,

(Mβiik )2v
ζikr

)
dv

=

{
1−e−

(Mβiik )
2

2ζik r

√
π (Mβiik )2

ζikr
IM− 1

2

(
(Mβiik )2

2ζikr

)}
0(M−1).

(45)

After replacing (45) into (44) and remembering that
0(M − 1) = (M − 2)! we conclude the proof and find FR(r),
which was defined in (19).

E
[
Rk
]
=

∫
∞

0
rk fR(r)dr

=

∫
∞

0
Rk
[

(Mβiik )2M

ζMik (M − 2)!rM+1

∫ 1

0
vM (1− v)M−2e−

(Mβiik )
2v

ζik r dv

]
dr

=
(Mβiik )2M

ζMik (M − 2)!

∫ 1

0
vM (1− v)M−2

[∫
∞

0
rk−M−1e−

(Mβiik )
2v

ζik r dr

]
dv. (37)

E
[
Rk
]
=

(Mβiik )2M

ζMik (M−2)!

∫ 1

0
vM (1−v)M−2

(
(Mβiik )2v

ζik

)k−M
0(M−k)dv

=
(Mβiik )2k0(M − k)

ζ kik (M − 2)!

∫ 1

0
vk (1− v)M−2dv. (39)
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