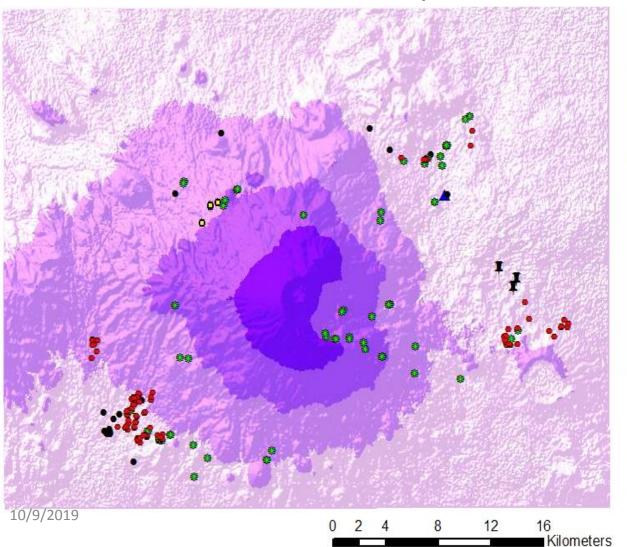
Geogenic groundwater pollution in volcanic rock aquifer systems on the eastern, western and northern flanks of Mount Meru, Tanzania – special reference to fluoride

George BENNETT^{1,2}, Stefanie ROMBAUT¹, Jill VAN REYBROUCK¹, Ceven SHEMSANGA³, Mary KISAKA^{3,4}, Ines TOMAŠEK^{4,5}, Karen FONTIJN⁶, Matthieu KERVYN⁴ & Kristine WALRAEVENS¹

¹Department of Geology, Laboratory for Applied Geology and Hydrogeology, Ghent University, Belgium
²Department of Mining and Mineral Processing Engineering, University of Dodoma, Tanzania
³Department of Geology, University of Dodoma, Tanzania
⁴Department of Geography, Vrije Universiteit Brussel, Belgium
⁵Department of Chemistry, Vrije Universiteit Brussel, Belgium
⁶Department of Geosciences, Environment and Society, Université Libre de Bruxelles, Belgium
<u>Contact Information:</u> George BENNETT, Laboratory for Applied Geology and Hydrogeology, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium, Email: <u>George.Bennett@UGent.be</u>

Introduction

- Arusha volcanic region in northern Tanzania
 - Water shortage
 - ➤ Surface water very high F⁻ conc.
 - Groundwater source of drinking water
 - ♦ Very poor quality high F⁻ conc.
 - Natural contamination
 - Dental and skeletal fluorosis


(Ghiglieri et al., 2012; Mckenzie et al., 2010).

Location of Mount Meru in Arusha region, Tanzania. (Source: modified after Wikimedia; commons.wikimedia.org)

Methods

- Two field campaigns;
 - 9th July 26th September 2017
 - 11th March 23rd September 2018

• 182 water points;

Legend

٠

.

0

I

Value

Well

Spring

Lake

River

Borehole

Tap water point

1,112 - 1,608

1,609 - 2,118

2,119 - 2,909

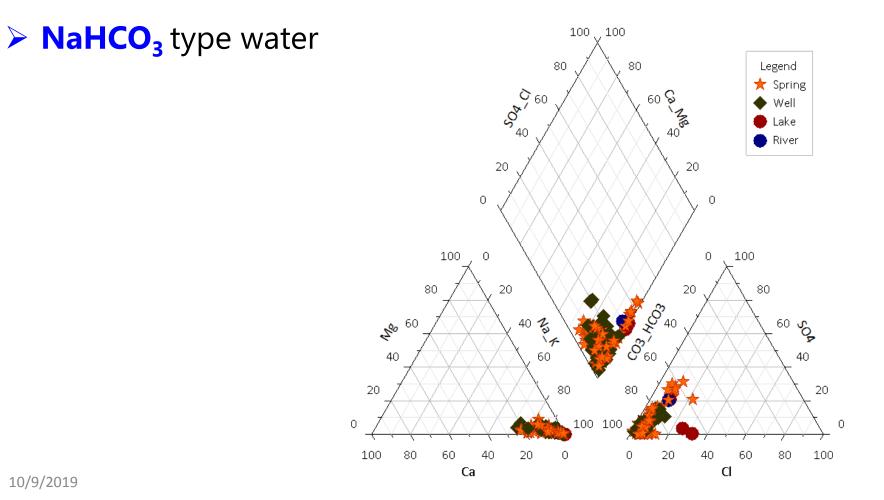
2,910 - 4,532

- 178 groundwater points
- 4 surface water points
- Groundwater points;
 - 96 hand-dug wells
 - □ 61 springs
 - □ 17 boreholes
 - □ 4 tap water points
 - (from remote springs).
- Surface water points;
 - 3 lakes
 - □ 1 river

Methods

- Water samples;
 - > 163 water samples 118 water points
 - * 159 groundwater samples

□ 61 hand-dug wells, 53 springs


*** 4** surface water samples

3 lakes, **1** river

• Water chemical analysis;

> Laboratory for Applied Geology and Hydrogeology, Ghent University

- Laboratory analytical results; •
 - > Sodium (Na⁺) and bicarbonate (HCO₃⁻) are the dominant ions

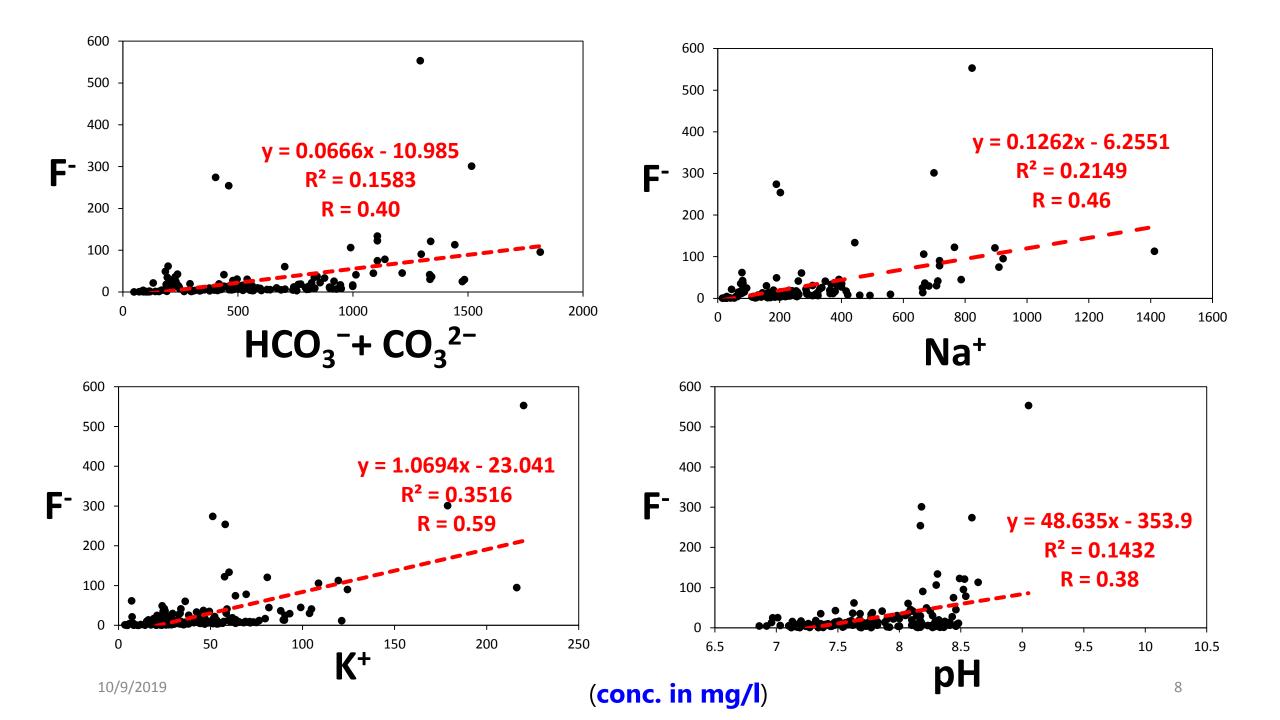
• Laboratory analytical results;

≻High values of F⁻ were recorded

In 159 groundwater samples;

□ Values range: 0.147 – 553 mg/l

Average value = 26.6 mg/l


In 4 surface water samples;

□ Values range: 143.6 – 1004 mg/l

Average value = **588.2 mg/l**

- Laboratory analytical results;
 - \succ F⁻ concentrations;
 - In **159** groundwater samples;
 - > 91% (144 samples) above 1.5 mg/l (WHO limit for drinking water)
 - > 9% (15 samples) below the limit
 - Springs at higher elevations on N-E flank of Mount Meru

Recharge area within Arusha National Park

- Laboratory analytical results;
 - \succ F⁻ concentrations in groundwater;

Table 3. Pearson correlation coefficients for $HCO_3^- + CO_3^2^-$, Na^+ , K^+ , pH, Ca^{2+} on fluoride.

 $\alpha = 0.05$; *r*- correlation coefficients; *n*-number

			1
	r	n	p-value
$HCO_{3}^{-} + CO_{3}^{2-}$	0.40	158	2.07E-07
Na ⁺	0.46	158	7.59E-10
K^+	0.59	158	1.80E-16
pН	0.38	158	6.16E-10
Ca ²⁺	- 0.18	158	0.026827

• Significant positive correlations of F^- with HCO₃⁻ + CO₃²⁻, Na⁺, K⁺ and pH

***** Weathering of silicate minerals

• Significant negative correlation of F⁻ with Ca²⁺

Dissolution of fluorite (CaF₂)

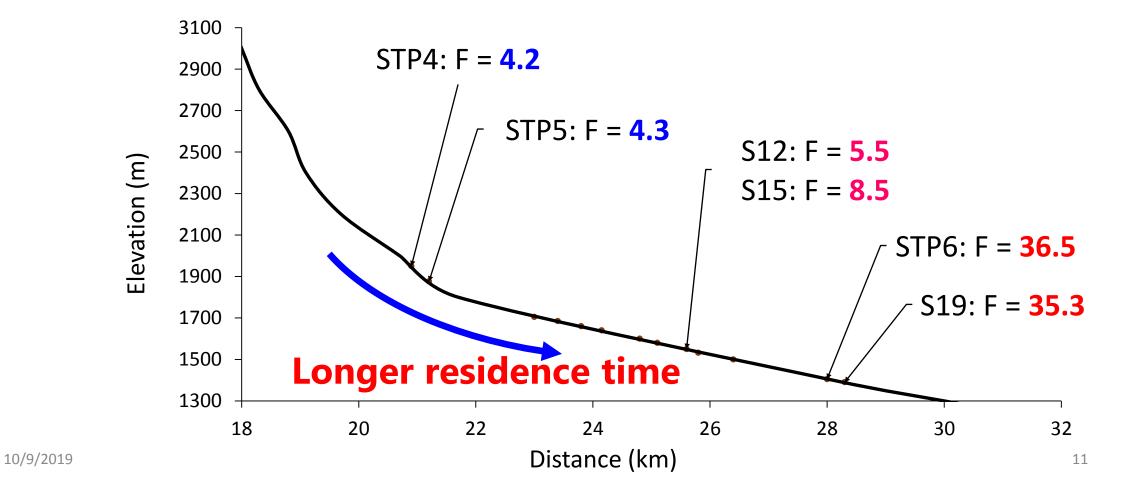
***** Calcite precipitation

* Low/or absence of Ca²⁺

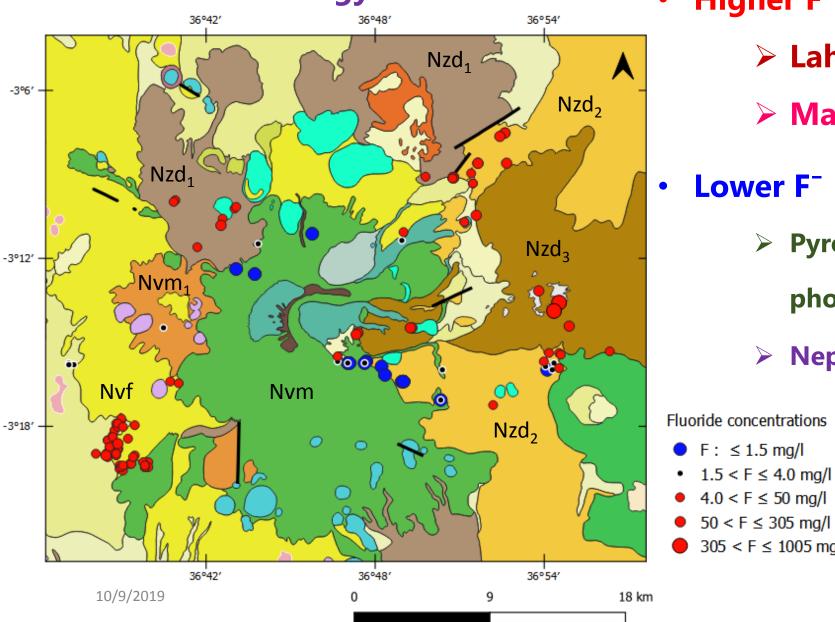
- Laboratory analytical results;
 - ➤ F:Cl ratio (by meq/l)

 $\Box F:CI < 0.10 - F^{-} \text{ from the atmosphere.}$ (Kilham and Hecky, 1973)

 \Box Ratio > 0.10 – F⁻ from chemical weathering


➢ 99% (157 samples) – F:Cl > 0.10

➤ 1% (2 samples) - F:Cl < 0.10</p>


□ Springs in the recharge area.

- Laboratory analytical results;
 - North-eastern flank of Mount Meru
 - **♦ F**⁻ (mg/l) increase with a decrease in elevation

• F⁻ conc. vs Geology

Higher F[−]

Lahars (DADs) - Nzd₁, Nzd₂, Nzd₃

- Mantling ash Nvf
- Lower F⁻

 $4.0 < F \le 50 \text{ mg/l}$ $50 < F \le 305 \text{ mg/l}$ $305 < F \le 1005 \text{ mg/l}$

Pyroclastics with nephenelitic +

phonolitic lavas - Nvm

Nephelinite lavas and breccias - Nvm₁

Conclusion

• Chemical evolution of groundwater;

Weathering and dissolution of silicate minerals
Chemical weathering of Na-K-feldspars
Dissolution of fluorite (CaF₂) and calcite precipitation

• Factors controlling F⁻ concentrations in groundwater;

Long residence time

Nature of the geological formations (degree of weathering)

Ash cone, Mount Meru (Picture by George Bennett)