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Abstract—A new, enhanced formulation of the 3-D differential
surface admittance operator is presented in this contribution. By
employing closed expressions for the sums of the infinite series
that arise from discretizing the operator by means of entire
domain basis functions, a more efficient and accurate form is
obtained. Convergence analysis demonstrates the performance
gain. Additionally, the appositeness of the novel operator is
studied by analyzing results for various interconnect structures
over a broad frequency range and by comparing with other
research and commercial solvers.

Index Terms—3-D surface admittance, boundary integral equa-
tion (BIE), interconnect modeling.

I. INTRODUCTION

Our modern society is characterized by an abundance
of electronic devices and appliances that enables (wireless)
connectivity on an unparalleled scale. Ever-increasing band-
width requirements and integration of smart functionality in
all aspects of our lives, have led to very diverse electronic
systems in an expanding number of (new) technologies and
applications. Of course, these trends and evolutions come with
their specific challenges, which may include manufacturability,
process inaccuracies and/or signal and power integrity (SI/PI).
The latter two categories include well-known phenomena with
potentially detrimental consequences such as crosstalk, signal
attenuation and dispersion. To avoid costly redesigns at the end
of the production process, it is therefore crucial for designers
to assess the influence of these effects on the operation of the
system as early as possible. To accommodate this need, full-
wave computer-aided design tools have to continue evolving
to stay accurate and relevant.

With the continuing miniaturization and increasing data
rates, the need for full-blown three-dimensional (3-D) solvers
that provide accurate, broadband results only rises. For in-
terconnects, the correct modeling of the conductors is very
challenging due to the field crowding associated with the
skin effect. A correct broadband simulation of this skin effect
is, however, of critical importance for the aforementioned SI
analysis. While in volumetric methods this leads to an in-
surmountable number of unknowns, boundary-based methods
struggle with the accurate numerical integration of the Green’s
function in the conductive medium [1]. Many techniques to
solve or circumvent these obstacles have been developed over

the years; a popular example being the surface impedance
boundary conditions [2], which replaces the material inside
by the background medium and enforces a local approximate
relation to account for the material’s influence. The differential
surface admittance operator, first proposed in 2-D [3], on
the other hand, provides a global relation that overcomes
the shortcomings of the surface impedance conditions and
enables accurate broadband modeling. Recently, a 3-D differ-
ential surface admittance operator has been proposed [4] that
solves the interior problem based on the eigenmodes of the
volume. In [4], [5], the broadband validity and accuracy of this
method has been amply demonstrated but one major downside
associated with the skin effect remains: a large number of
eigenmodes are required for obtaining accurate results.

In this contribution, we propose a new formulation of the
differential surface admittance operator for cuboids based on
entire domain basis functions that, through closed sums of
series, considerately improves the efficiency of its calculation,
especially for the strongly developed skin effect. By compar-
ison with commercial software tools and other approaches
to interconnect modeling, we demonstrate the augmented
efficiency and precision of this novel formulation.

II. ENTIRE DOMAIN BASIS FUNCTIONS

The 3-D differential surface admittance operator, as in-
troduced for cuboids in [4], enables the replacement of a
homogeneous, nonmagnetic material with wavenumber k in
a volume V by the nonmagnetic background material, char-
acterized by its wavenumber k0 through the introduction of
an equivalent surface current density js on the boundary sur-
face S. This surface current density is related to the tangential
electric field on the boundary, viz., et, through the differential
surface admittance operator Y as js = Yet. An elegant way
to construct this operator is based on the magnetic solenoidal
eigenfunctions of V , i.e., hν , [6]:

js = Yet = −η
∑
ν

Kν
N 2
ν

∫
S

(n̂× hν) · et dS

 (n̂× hν) ,

(1)
with the contrast parameter η =

(
k2 − k20

)
/jωµ0, kν and

Nν the wavenumber and normalization constant of the eigen-
function hν , respectively, n̂ the outward pointing normal
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vector and Kν = k2ν/
(
k20 − k2ν

)
/(k2 − k2ν). To facilitate

integration of this operator Y into a method to solve the
exterior problem, e.g., the Method of Moments (MoM), it
needs to be discretized. Expanding both js and et into basis
functions fi (r), transforms (1) into

G I = Y E, (2)

where the vectors I and E contain the expansions coefficients
of js and et, respectively, while the elements of the Gram
matrix G and the discretized differential surface admittance
operator Y are given by(
G
)
ij

=

∫
Si

fi (r) · fj (r) dS, (3)

(
Y
)
ij

= −η
∑
ν

Kν
N 2
ν

∫
Si

(n̂× hν) · fi dS

∫
Sj

(n̂× hν) · fj dS,

(4)

with Si the support of basis function fi. Previously, we
employed local functions such as RWGs or rooftops for this
discretization [4]–[6], depending on the nature of V . However,
it turns out that the employment of entire domain basis
functions on the faces of a cuboid enables a considerable
improvement in terms of accuracy and computation time. For
a proper choice of these basis functions, we first turn to the
eigenfunctions hν of the cuboid. These consists of two sets:
transverse magnetic (TM) and transverse electric (TE) modes,
which share the same wavenumber:

k2ν = k2mnp = λ2x+λ2y+λ2z =

(
mπ

lx

)2

+

(
nπ

ly

)2

+

(
pπ

lz

)2

,

(5)
with (lx, ly, lz) the dimensions of the cuboid and ν = (m,n, p)
the triple index defined over the nonnegative integers.

The magnetic TM eigenfunctions themselves are expressed
as

hTM
ν =kνλy sin (λxx) cos (λyy) cos (λzz) x̂

−kνλx cos (λxx) sin (λyy) cos (λzz) ŷ, (6)

while the TE modes are given by

hTE
ν =λzλx sin (λxx) cos (λyy) cos (λzz) x̂

+λzλy cos (λxx) sin (λyy) cos (λzz) ŷ (7)

−
(
λ2x+λ2y

)
cos (λxx) cos (λyy) sin (λzz) ẑ.

Both sets of eigenfunctions are not normalized but their
normalization constant can easily be calculated as

TM : N 2
ν = k2ν

V

4

(
λ2x + λ2y

) 1

εp
, (8)

TE : N 2
ν = k2ν

V

2

(
λ2x + λ2y

) 1

εmεn
, (9)

with the volume of V denoted as V = lxlylz and εi the
Neumann factor [7], which equals 1 for i = 0 and 2 otherwise.

In (4), the (rotated) tangential component of the eigenfunc-
tions on each face of the cuboid pops up. Numbering these

faces from zero to five, corresponding to their location at
x = 0, x = lx, y = 0, y = ly, z = 0, z = lz , respectively,
we take a closer look at the situation on face S5 (n̂ = ẑ):

S5 : ẑ× hν = ξx,ν(−1)p sin (λxx) cos (λyy)ŷ

−ξy,ν(−1)p sin (λyy) cos (λxx)x̂, (10)

where ξα,ν is a substitute for the factor of the α-component
of either the TM or TE modes, where α stands for one of the
Cartesian axes. Note that both components of this term have a
similar structure: notwithstanding the constant factor upfront,
it is formed by the product of two trigonometric functions,
i.e., a cosine function along its axis and a sine dependence on
the other coordinate axis of the face. Inspection of the same
quantity on the other five faces reveals the same regularity.

Taking this finding into account, we have found the candi-
dates for the entire domain basis functions. Focusing first on
these functions along the x-axis on S5, they are defined as

fxm′n′ = cos (λ′xx) sin
(
λ′yy

)
x̂, (11)

with m′ and n′ the equivalent of indices m and n for the
eigenmodes and with λ′x and λ′y fulfilling the same function
as their nonprimed counterparts. The relevant integral in the
calculation of the Gram matrix is now found to be∫

S5

fxm′n′ · fxm′′n′′ dS =
A5σn′

2εm′
δm′m′′δn′n′′ , (12)

with A5 the area of face S5, δij the Kronecker delta, σi
equal to zero for i = 0 and one otherwise. Owing to the
Kronecker deltas, the only nonzero entries for the x-directed
basis functions on S5 will be those for which m′ = m′′

and n′ = n′′. As this is true for the y-direction as well and
furthermore generalizes to other faces, the Gram matrix for
the entire domain functions will be a diagonal matrix.

Turning our attention to the Y -matrix, the integrals involved
are the same as (12) since the entire domain basis functions
are of the same form as the rotated magnetic eigenfunctions.
For two x-directed functions on S5, we thus get

−η
∑
mnp

Kν
N 2
ν

ξ2y,ν

(
A5σn
2εm

)2

δmm′δnn′δmm′′δnn′′ . (13)

Similarly to the elements of the Gram matrix, the Kronecker
deltas force the indices (m,n) and (m′′, n′′), respectively,
to the same value as the first x-directed basis function, i.e.,
(m′, n′). As such, the function fxm′n′ maps to only one other
x-directed basis function on S5, i.e., itself, as schematically
shown in Fig. 1. The coefficient is given by

Axxm′n′ =
A5σn′

2εm′

[
−η

∞∑
p=0

Km′n′p

N 2
m′n′p

ξ2y,m′n′p

]
A5σn′

2εm′
. (14)

The same basis function maps onto a second one on S5, viz.,
fym′n′ the y-directed equivalent of (11), as shown in Fig. 1.
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Fig. 1. Schematic representation of the structure of the Y -matrix elements for
one basis functions on S5 and the other on either S5 or S4. In this illustration
m′ and n′ are set to 1 and 2, respectively.

Following similar steps as outlined above, the relevant Y -
element is given by

Axym′n′ =
A5σm′

2εn′

[
η

∞∑
p=0

Km′n′p

N 2
m′n′p

ξx,m′n′pξy,m′n′p

]
A5σn′

2εm′
.

(15)
The reach of fxm′n′ on S5 is not limited to its own face but

extends to the other faces as well. First looking at the opposite
face S4, the same two basis functions fxm′n′ and fym′n′ are
excited with coefficients (as shown in Fig. 1):

Bxxm′n′ =
A4σn′

2εm′

[
η

∞∑
p=0

(−1)p
Km′n′p

N 2
m′n′p

ξ2y,m′n′p

]
A5σn′

2εm′
,

(16)

Bxym′n′ =
A4σm′

2εn′

[
− η

∞∑
p=0

(−1)p
Km′n′p

N 2
m′n′p

×

ξx,m′n′pξy,m′n′p

]
A5σn′

2εm′
. (17)

Turning our attention to one of the remaining faces, e.g.,
S3, the entire domain basis functions on this face are directed
along either the x- or z-axis. Focusing on the z-directed fzm′′p′′

functions, the equivalent of (13) becomes

−η
∑
mnp

Kν
N 2
ν

ξy,νξx,ν
A5σn
2εm

A3σm
2εp

δmm′δnn′δmm′′δpp′′ . (18)

Once again, the expression can be simplified into

Cxzm′n′p′′ =
A3σm′

2εp′′

[
−ηKm

′n′p′′

N 2
m′n′p′′

ξy,m′n′p′′ξx,m′n′p′′

]
A5σn′

2εm′
.

(19)
Remark that in contrast to (14)-(17), the coefficient still
depends on one of the indices of the second basis functions,
i.e., in this case p′′. This implies that, contrary to the basis
functions on parallel or coinciding faces, there is no longer
a one-to-one relation between the basis functions on perpen-
dicular faces. As demonstrated in Fig. 2, one single basis
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Fig. 2. Schematic representation of the structure of the Y -matrix elements
for one basis functions on S5 and the others on S3. In this illustration m′

and n′ are set to 1 and 2, respectively.

function along the x-axis on S5 excites an infinite series of
entire domain basis functions on S3 along the z-axis. The same
procedure applied to the x-directed basis functions on S3 and
to all other entire domain basis function on the remaining faces
leads to similar coefficients as (19).

At this point, we have to repeat the entire procedure detailed
for fxm′n′ on S5 to all other entire domain basis functions and
faces of the cuboid. Evidently, this will lead to completely
analogous results as the ones described above given the proper
permutation of the employed indices and axes. In the end, we
collect all elements into various matrices, transforming (2) into

G I = GX GE⇔ I = X GE, (20)

where the elements of X correspond to the bracketed terms
in (14)-(19). The decomposed form of Y presented in (20)
does not provide any inherent advantage over a discretization
with local basis functions such as rooftops since (14)-(17)
still contain series that have to be approximated numerically.
However, we show in the next section that these series do in
fact have closed forms for their sums.

III. CLOSED-FORM EXPRESSIONS FOR THE SUM OF SERIES

We first take a look at the series present in (14). Keeping
in mind that the contributions for both the TM and TE modes
should be taken into account, the bracketed term in (14)
becomes

−4η

V

 ∞∑
p=0

εpk
2
m′n′pλ

′2
x(

k2 − k2m′n′p

)(
k20 − k2m′n′p

)(
λ′2x + λ′2y

)
+εm

∞∑
p=1

λ′
2
yλ
′2
z(

k2 − k2m′n′p

)(
k20 − k2m′n′p

)(
λ′2x + λ′2y

)
 .

(21)



Recombining both sums, extracting the p = 0 term from the
first series and implementing the following substitutions:

γ =
lz
π
γ̃ =

lz
π

√
k2 − λ′2x − λ′

2
y (22)

γ0 =
lz
π
γ̃0 =

lz
π

√
k20 − λ′

2
x − λ′

2
y (23)

ρ =
lz
π
λ′x = m′lz/lx % =

lz
π
λ′y = n′lz/ly (24)

we rewrite (21) as

−4η

V

l2z
π2

(
ρ2

γ2γ20
+

εm′

γ2 − γ20

[ ∞∑
p=1

ρ2 + γ2

p2 − γ2
− ρ2 + γ20
p2 − γ20

])
.

(25)
The two sums in (25) are both of the same form and have a
closed sum expression [8]:∑

k=1

1

k2 − α2
=

1

2α2
− π

2α
cot (πα) , (26)

which leads to the following expression for (25):

2εm′ lz
jωµ0V

(
k2 − λ′2y

γ̃
cot (πγ)−

k20 − λ′
2
y

γ̃0
cot (πγ0)

)
. (27)

The series in (15) can be resolved in a similar manner,
resulting in

4lz
jωµ0V

λ′xλ
′
y

(
1

γ̃
cot (πγ)− 1

γ̃0
cot (πγ0)

)
. (28)

Note that the series in (16) and (17) are the same as the ones
in (14) and (15) apart from a factor −(−1)p. This transforms
the infinite sums in the equivalent of (25) for (16) into the
following expression with its own closed sum [9]:

∑
k=1

(−1)k

k2 − α2
=

1

2α2
− π

2α
csc (πα) . (29)

In the end, we thus find the following evaluations for the
bracketed terms in (16) and (17), respectively:

− 2εm′ lz
jωµ0V

(
k2 − λ′2y

γ̃
csc (πγ)−

k20 − λ′
2
y

γ̃0
csc (πγ0)

)
,

(30)

− 4lz
jωµ0V

λ′xλ
′
y

(
1

γ̃
csc (πγ)− 1

γ̃0
csc (πγ0)

)
.

(31)

An extensions of this approach to all other, relevant ele-
ments in X is achieved, due to symmetry, by the correct cyclic
permutation of the indices and axes. In the end, this replaces
any series present in X by closed analytical expressions and
thus results in a more efficient and accurate formulation.

IV. EXAMPLES

As a first example, we study the convergence behavior of
the series in (14) and (16) for an increasing number of terms.
To this end, we compare the values of Axxm′n′ and Bxxm′n′ to
the ones calculated by means of the closed sums (27) and
(30) for m′ = n′ = 1 (other values of m′ and n′ behave
similarly). These are computed for a cube with a side of 1 mm
for two different materials: a dielectric with εr = 4 and copper
with σ = 5.8 · 107 S/m. The evolution of the relative errors is
demonstrated in Fig. 3(a) for a relatively low frequency of
1 kHz. We observe that this error descends slower for Axx11
than for Bxx11 for both materials. Moreover, the relative errors
for the dielectric and the copper display the same convergence
behavior. At this frequency, the skin depth of copper is about
twice the size of the cube and as such behaves similar to a
lossless dielectric. If we increase the frequency, the skin effect
kicks in and this influences the relative error. At 100 kHz,
where the skin depth is about a fifth of the cube’s size, we see
in Fig. 3(b) that the convergence for the copper values starts
to deteriorates while the error values for the dielectric remain
undisturbed. At 1 GHz with a fully developed skin effect, the
number of terms required to attain the same relative errors for
the copper cube as for the lower frequencies has increased
with two orders of magnitude, as shown in Fig. 3(c). The
closed expressions for the sums of the series in (14) and (16)
thus provide a substantial and clear accuracy improvement that
furthermore increases the efficiency of the differential surface
admittance operator.

Next, we examine the interconnect structure depicted in
Fig. 4 consisting of two sets of three parallel conductors with
a conductivity of 3.57 · 107 S/m [10]. All six lines have a
length of 100µm with a cross-section of 6µm×4µm. The
structure is simulated by integrating the enhanced differential
surface admittance operator into an augmented EFIE formula-
tion [5], [11], resulting in a broadband characterization of the
impedance matrix, which is compared to the reference result
presented in [10]. In Fig. 5, some relevant matrix elements
are plotted, where the markers represent the reference solution
while the various lines correspond to the differential surface
admittance operator. Note that both the real and imaginary part
of Z25 are, in fact, nonzero but several orders of magnitude
smaller than the other selected impedance matrix elements.
Overall, we observe excellent agreement between both meth-
ods. Slight deviations are present (most notably for Z11 and
Z13 in Fig. 5(b)) that can be attributed to the assumptions
made in constructing the equivalent surface impedance in [10]
and, potentially, the difference in port definition.

Consider now the RF coil shown in Fig. 6 [12]. The copper
conductors (σ = 5.8 · 107 S/m) constituting the coil have
a square cross-section with a side of 3µm. The coil has
three windings separated by a 1µm spacing with the longest
sides measuring 40µm. Its port is defined across the 1µm
air gap present in the middle of the underpass. More details
about the geometry can be found annotated on Fig. 6. The
structure is simulated employing the enhanced differential
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Fig. 3. Relative error of Axx
11 and Bxx

11 as a function of the number of terms
in their series as compared to the sums (27) and (30), respectively, for a
low-contrast dielectric (εr = 4) and copper (5.8 · 107 S/m) at three different
frequencies.
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Fig. 4. Two sets of three parallel conductors (σ = 3.57 · 107 S/m). The
vertical spacing between the two sets is 0.5µm, i.e., the same distance as
present between the parallel conductors [10].
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Fig. 5. Selected impedance matrix elements of the interconnect structure
depicted in Fig. 4. Results from this work are plotted with lines while the
results from [10] are shown with markers.
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Fig. 6. Copper (σ = 5.8 · 107 S/m) RF coil with a square cross-section of
3µm×3µm. The different windings are separated by a 1µm spacing. A port
is defined over the 1µm air gap in the middle of the underpass [12].

surface admittance operator and its results are compared to
the commercial solvers CST Microwave Studio (MWS) [13]
and ANSYS HFSS [14]. The resulting impedance is shown in
Fig. 7. Focusing first on the real part in Fig. 7(a), all three
curves coincide for low-frequency values. Once the frequency
increases and current crowding inside the conductors comes
into play, a difference between the solvers is clearly observed.
Both reference solvers, which employ volume based methods,
exhibit a faster increasing resistance as the mesh refinement
start to struggle with the rapidly varying fields inside the
material; a drawback not present for the differential surface
admittance operator as the fields inside are not computed
directly, but are taken into account via the equivalent surface
current density. The low-frequency values of the inductance,
presented in Fig. 7(b), differ for all three solvers. For the
commercial solvers, the value is sensitive to the bounding box
dimensions and imposed boundary conditions to approximate
free space while the BIE-based method presented here takes
the unboundedness into account automatically through use of
the free-space Green’s function. For higher frequencies, the
same remarks can be made as for the resistance, i.e., the
volume meshing results in a faster decline of the inductance.

V. CONCLUSION

An enhanced formulation of the 3-D differential surface
admittance operator for cuboids is introduced. Through the
use of entire domain basis functions and closed forms for
the sums of the resulting series, an important downside of
previous expressions of this operator is alleviated, resulting
in a substantial increase in accuracy and efficiency. This
improvement is demonstrated by studying the convergence
behavior of the matrix elements and the differential surface
admittance operator is employed to characterize interconnect
structures in comparison to commercial software and similar
methods.
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