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Common variable immunodeficiency (CVID) is one of the most frequently diagnosed

primary antibody deficiencies (PADs), a group of disorders characterized by a decrease

in one or more immunoglobulin (sub)classes and/or impaired antibody responses caused

by inborn defects in B cells in the absence of other major immune defects. CVID patients

suffer from recurrent infections and disease-related, non-infectious, complications such

as autoimmunemanifestations, lymphoproliferation, andmalignancies. A timely diagnosis

is essential for optimal follow-up and treatment. However, CVID is by definition a diagnosis

of exclusion, thereby covering a heterogeneous patient population and making it difficult

to establish a definite diagnosis. To aid the diagnosis of CVID patients, and distinguish

them from other PADs, we developed an automated machine learning pipeline which

performs automated diagnosis based on flow cytometric immunophenotyping. Using

this pipeline, we analyzed the immunophenotypic profile in a pediatric and adult cohort

of 28 patients with CVID, 23 patients with idiopathic primary hypogammaglobulinemia,

21 patients with IgG subclass deficiency, six patients with isolated IgA deficiency, one

patient with isolated IgM deficiency, and 100 unrelated healthy controls. Flow cytometry

analysis is traditionally done by manual identification of the cell populations of interest.

Yet, this approach has severe limitations including subjectivity of the manual gating

and bias toward known populations. To overcome these limitations, we here propose

an automated computational flow cytometry pipeline that successfully distinguishes

CVID phenotypes from other PADs and healthy controls. Compared to the traditional,

manual analysis, our pipeline is fully automated, performing automated quality control and

data pre-processing, automated population identification (gating) and deriving features

from these populations to build a machine learning classifier to distinguish CVID from

other PADs and healthy controls. This results in a more reproducible flow cytometry

analysis, and improves the diagnosis compared to manual analysis: our pipelines achieve

on average a balanced accuracy score of 0.93 (±0.07), whereas using the manually

extracted populations, an averaged balanced accuracy score of 0.72 (±0.23) is achieved.
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INTRODUCTION

Primary antibody deficiencies (PADs), the largest group of
primary immune deficiency disorders, are characterized by
markedly reduced serum levels of one or more immunoglobulin
isotypes and/or inadequate antibody responses to specific
antigens due to genetically determined defects in B cell
development and/or function, without major impairments
in other parts of the immune system. Common variable
immunodeficiency (CVID) is one of the most prevalent
PAD disorders, and defined as a marked decrease in serum
immunoglobulin (Ig) G with a marked decrease in serum
IgM and/or IgA, poor antibody responses to vaccination,
and exclusion of secondary or other defined causes of
hypogammaglobulinemia (1). As CVID is a diagnosis of
exclusion, it encompasses a clinically and immunologically
heterogeneous patient population with varying age of onset
and severity. CVID patients typically have recurrent infections,
mainly of the respiratory, and gastrointestinal tracts. In addition,
CVID patients are prone to developing disease-related, non-
infectious, complications due to immune dysregulation such as
autoimmunity, polyclonal lymphoproliferation, granulomatous
manifestations, and malignancy (1–3). Although various
abnormalities in B and T cell subsets have been previously
reported, the pathophysiological mechanisms of CVID are
incompletely understood (1). In recent years, several disease
genes for monogenic forms of CVID have been identified, but
these only account for 2–10% of patients (4). Timely diagnosis of
CVID remains an important challenge in clinical practice, where
many other disease possibilities often have to be excluded before
a definite diagnosis of CVID can be established (5, 6).

To aid the diagnosis of CVID patients, immunophenotyping
by flow cytometry is often performed to obtain an overview of
which immune cell populations are affected. Recent advances in
multi-parameter flow cytometry allow the measurement of larger
marker panels, so that increasingly detailed cell subsets can be
identified (7–9).

Currently, flow cytometry data is typically analyzed manually
by iteratively selecting cell populations on two-dimensional
scatterplots. This manual approach is not only time-consuming,
but also researcher-dependent and biased toward expected cell
populations. In contrast, automated techniques may facilitate
the analysis of larger marker panels by testing countless
marker combinations, possibly identifying cell populations that
might be indicative of disease status, which may have been
overlooked during manual gating (10). In recent years, various
computational techniques to analyze flow cytometry data have
been developed (11). These techniques automate the different
steps in the flow cytometry data analysis pipeline, making
data analysis exactly reproducible. For example, pre-processing
techniques such as FlowAI (12), and flowClean (13) can be used
to perform data quality control. They automatically evaluate
scatter and marker values over time and filter out regions that
show abnormal behavior. To gain insight into the data structure,
various techniques can be applied. Dimensionality reduction
techniques such as PCA, t-SNE (14), or UMAP (15) perform
dimensionality reduction, and project the high-dimensional

cytometry data to a lower-dimensional (often two-dimensional)
space, allowing a more comprehensive overview. On the other
hand, automated population identification techniques also exist,
that aim to group (cluster) similar cells into cell populations
with similar phenotypes. To this end, many clustering algorithms
have been developed (16), some of which also offer specific
visualizations [e.g., FlowSOM (17) and Phenograph (18)]. Here,
we develop a novel computational pipeline that combines several
of these tools to help distinguish CVID patients from patients
with other forms of PADs as well as healthy controls.

MATERIALS AND METHODS

Study Cohort
The study cohort was described earlier in Bogaert et al. (9),
in which extensive flow cytometric immunophenotyping was
performed in patients with different forms of PADs, including
CVID, and several control groups. From this cohort, we have
reexamined the flow cytometry data from 28 CVID patients, 23
patients with idiopathic primary hypogammaglobulinemia, 21
patients with IgG subclass deficiency, six patients with isolated
IgA deficiency, one patient with isolated IgM deficiency, and 100
healthy controls (HCs). CVID was defined as decreased [from
hereon always meaning: at least two standard deviations (SD)
below the age-adjusted mean according to the local lab reference
values, measured at least twice] IgG, decreased IgA and/or IgM,
and poor antibody responses to protein and/or polysaccharide
vaccines (1). Idiopathic primary hypogammaglobulinemia was
defined as decreased IgG, normal or decreased IgA and/or IgM,
and good antibody responses to protein and/or polysaccharide
vaccines. IgGSD was defined as decreased IgG2 and/or IgG3,
normal total IgG and IgM, normal or decreased IgA, and good
or poor antibody responses to protein and/or polysaccharide
vaccines. Isolated IgA and IgM deficiencies were defined as
an isolated decrease in IgA or IgM, respectively, normal IgG,
and good antibody responses to protein and/or polysaccharide
vaccines. Each patient was verified to fulfill the appropriate
definition before enrollment in the study. Patients with other
defined causes of antibody deficiency and/or profound T
cell defects, as determined by the ESID registry criteria
for CVID (http://esid.org/Working-Parties/Registry/Diagnosis-
criteria), were excluded. For the current study, the patients
with idiopathic primary hypogammaglobulinemia, IgG subclass
deficiency, isolated IgA deficiency and isolated IgM deficiency
were combined in one patient group from hereon referred to as
“other PADs” (n= 51).

Three different marker panels were measured. The first panel
focused on identifying the main cell populations in peripheral
blood mononuclear cells (PBMCs), the second panel focused
on B cell subsets, and the third panel focused on T cell
subsets. A detailed overview of the marker panels can be
found in Supplementary Table 1. The clinical variables gender,
age, and diagnosis were collected from the patients’ records.
The patients were divided into eight age groups to adjust
for age-dependent differences in white blood cell subsets [see
Supplementary Table 2; (9, 19)]. Data were measured over 21
experiment days.
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The study was approved by the ethical committee of Ghent
University Hospital (2012/593). All reported subjects (or their
parents in case of pediatric subjects) provided written informed
consent for participation in the study, in accordance with the
Helsinki Declaration of 1975.

Computational Pipelines
We automated most steps of cytometry data analysis workflow,
including quality control and data preprocessing, automated
population detection, feature extraction, and predictive model
building using machine learning methods to perform diagnosis.
The scripts for the computational pipelines can be found
on https://github.com/saeyslab/Computational_Pipeline_CVID.

Preprocessing and Quality Control
The fcs files were read into R, compensated with the
compensation matrices determined in the previous study and
transformed with the estimate Logicle function of the flowCore
package. Cells with unreliable measurements (e.g., out of the
detection range) were removed. Quality control was done with
the FlowAI (12) package. Only the high quality measurements
were selected for further processing. Additionally, only live
single cells were used for further analysis, based on the manual
pregating of the data.

Alongside the computational analysis, results were compared
to the manual analysis performed in the original study [see
Supplementary Figure 1; (9)]. The cell populations identified
for panel 1 included B cells, CD4+ T cells, CD4- T cells,
monocytes, natural killer T (NKT) cells, natural killer (NK)
cells, basophils, dendritic cells (DCs), plasmacytoid DCs, and
conventional DCs. For panel 2 this included IgD+CD27-
naive B cells, IgD-CD27+ switched memory B cells (mem B
cells), IgD+CD27+ marginal zone-like (MZ-like) B cells, IgD-
CD27- B cells, CD24-CD38++ plasmablasts, CD24++CD38++

transitional (trans) B cells, CD21-CD38+ B cells, CD21low
B cells, and CD19lowCD138+ plasma cells. The T cell panel
3 populations include CD31+RO-CD4+ T cells, CD31+RO-
CD8+ T cells, CD4+ naive T cells, CD4+ effector memory
T cells, CD4+ effector memory RA T cells, CD4+ central
memory T cells, CD8+ central memory T cells, CD8+ effector
memory T cells, CD8+ naive T cells, CD8+ effector memory
RA T cells, gamma delta T cells, and regulatory T cells
(Treg) cells.

Automated Population Identification and Feature

Extraction
Cell populations were identified by FlowSOM, one of the
best performing automated gating techniques identified in
the benchmark by Weber et al. (16). FlowSOM uses a Self-
Organizing Map (SOM) to group similar cells into fine-
grained cell types, which are subsequently grouped into
metaclusters (coarse-grained cell types) and visualized in a
next step using a minimal spanning tree. FlowSOM trees
were built separately for each panel with the FlowSOM R
package. An aggregated file was created for each panel and
contained 3.000.000 cells sampled from all the files for that
panel. For panel 1, a FlowSOM model with a 10 × 10

grid and 14 metaclusters was created using the following
markers: FSC-A, SSC-A, CD56, CD3, CD123, CD14, CD127,
CD4, CD19, HLA-DR, iNKT/CD34, CD16, and CD11c. A
FlowSOM model was created for panel 2 using a 10 × 10
grid and 18 metaclusters using the following markers: CD21,
CD24, CD27, CD38, CD138, IgA, IgD, IgG, and IgM. The
FlowSOM model created for panel 3 was also built with
a 10 × 10 grid and 18 metaclusters using the following
markers: CCR7, CXCR5, CD45RO, g/dTCR, FoxP3, CD278,
CD8, CD31, and CD4. These were compared with the manual
gating labels using the purity and F1-measure. Note that
the purity is weighted for the number of cells belonging to
a cluster.

Purity: 1
N

∑
m ∈M

max
d ∈ D

|m ∩ d| (M: set of clusters, D: set of

classes, N: number of cells)
F1-measure: 2∗ precision ·recall

precision+recall
Precision: TP

TP+FP Recall: TP
TP+ FN

(TP: True positives, FP: False positives, FN: False negatives)
For each panel, the following set of features were extracted to be
used as input for the machine learning models in the next step:
cell percentages for each file per cluster (percentages_clusters),
per metacluster (percentages_metaclusters), and the cell
percentages in the clusters compared to their respective
metacluster (percentages_clusters_to_metaclusters). The
median fluorescence intensities (MFIs) for all markers were
also obtained for every cluster (MFI_cluster) and metacluster
(MFI_metacluster). Zero-imputation was used for MFI values
of clusters without cells. This resulted in a total of 1,696
features for panel 1, 1,162 features for panel 2 and 1,282
features for panel 3, yielding in total 4,140 features that
can be used as input variables for the classifiers to perform
automated diagnosing.

To eliminate effects linked to the aging of the immune system,
a z-score was applied per age group on the extracted features
of the clustering methods and on the features determined from
the manual gating. The score was based on the mean (µ) and
standard deviation (σ) of the healthy controls in each age group.
All the individual values (x) for that age group and feature are

normalized with the z-score: Zage =
xage− µage

σage

Automated Diagnosing Using Machine Learning
To perform automated diagnosis, we compared a number
of machine learning models that aim to predict a patient’s
disease status from the features obtained from the automated
gating. To this end, we explored two different types of
classifiers: Random Forests, an ensemble based classifier based
on a large combination of randomized decision trees, and
Support Vector Machines (SVMs), a linear classifier that
makes use of structural risk minimization to stimulate model
generalization. Random Forest models were constructed using
500 decision trees, and SVM models were trained with a
linear kernel function and C-parameter set to one. For each
model type, two versions were trained. The first version
formulated the problem as a three-class classification problem,
distinguishing between CVID, other PADs and healthy patients.
The second model version combined the other PADs and
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healthy control patients into a joint Non-CVID class vs. the
CVID patients.

The full classification models were built with six
different datasets consisting of the features extracted from
the FlowSOM objects: percentages_clusters, percentages_
metaclusters, percentages_clusters_to_metaclusters,
Clusters (percentages_clusters + MFI_clusters), Meta_clusters
(percentages_metaclusters + MFI_metaclusters), and total
(percentages_clusters, percentages_metaclusters + MFI_clusters
+MFI_metaclusters+ percentages_clusters_to_metaclusters).

Model performance was measured using 21-fold cross-
validation, leaving one experiment day out at the time. This
ensures that the impact of batch effects on individual experiment
days can be estimated accurately. The performance was assessed
using the balanced accuracy measure due to the class imbalance
for the CVID population compared to the other PAD and healthy
control population.

Balanced accuracy: (TPP + TN
N )/2 (TP: True positives, P:

Positives, TN: True negatives, Negatives)
For each cross-validation run, one experiment day was left

out to test generalization performance. Aggregated fcs files
were created with the patient’s fcs files missing for the left-
out experiment day. FlowSOM objects were built for each
aggregation file and age-group specific means and standard
deviations for applying the z-scores were calculated at this point.
Then all the files, including the left-out files, were mapped
onto the FlowSOM object to extract their features and apply
the z-scoring. Classification models were built with the features
belonging to the train data (not the samples belonging to the left-
out experiment day) and the test data was then used to predict
their corresponding label.

Feature Selection
To get more insight into which features contribute most to model
performance, and check whether removing unimportant features
had a beneficial effect on classification performance, feature
selection was performed. A feature selection method was applied
to both the manual gating cell populations and the features
derived from FlowSOM and is based on the feature selection step
in Van Gassen et al. (20). For the classification models with two
classes, Wilcoxon tests were calculated for every feature in the
dataset based on the two labels (CVID vs. No-CVID). A Kruskal-
Wallis test was performed for every feature if a classification
model was built with CVID, other PADs, and HC labels. The p-
values of these tests were then sorted and used for the feature
selection step. The two features with the lowest p-values were
selected, whereafter new features were iteratively added from
the sorted list if the pairwise Pearson correlation between the
selected features and the new candidate feature was lower than
0.2. These features were then used to build the classification
models described in the previous section.

Classification Models Based on Manual Gating
In the original study, 47 features were extracted from the manual
gating to describe the patients’ immunophenotype. These values
were normalized using the z-score and were also used as features
to build the classification models. In the cross-validation step,

the features calculated for the patients and healthy controls
belonging to one experiment day were iteratively left out of the
z-scoring and classification step and used as test data to predict
their labels.

RESULTS

We compared the results of the automated pipeline based
on automated quality control and population identification
with FlowSOM to the results based on the manual gating.
In a first step, we aimed to find out whether the population
identification by FlowSOM corresponded to the manually gated
populations. Subsequently, we evaluated the predictive power
of features derived from both automated as well as manually
gated populations in combination withmachine learningmodels.
Finally, we aimed to identify those features that seem most
promising as biomarkers to diagnose CVID from other PADs and
healthy controls.

FlowSOM Accurately Identifies the Cell
Populations
The FlowSOM tree built for panel 1 coincided well with
the manual labels, with an average purity per cluster of 0.94
(Figure 1). When grouping the clusters into metaclusters, the
average purity was 0.78 and there was a clear correspondence
with the manual populations (e.g., metacluster 10 corresponds
with B cells). This translates into an F1-measure of 0.96
and is confirmed when looking at two-dimensional scatter
plots corresponding with the manual gating strategy in
Supplementary Figure 3.

For the second panel, the average purity was 0.82 per
cluster and 0.73 per metacluster, but the F1 measure only
0.60. This lower number is mainly due to a lower recall,
which indicates that not all cells from the manually identified
populations are captured together in one metacluster. When we
noticed this discrepancy, we compared again the labeling
on the tree (Figure 2) and the two-dimensional gating
(Supplementary Figure 4). This inspection revealed that
in the manual gating strategy, the cell populations are first
determined based on their expression of CD markers and are
later subdivided into smaller populations based on Ig expression.
In contrast, the FlowSOM tree is largely split up into quadrants
of immunoglobulins, and only then further split based on the
CD markers.

The average purity per cluster and metacluster was 0.83 and
0.67, respectively, for panel 3 (Figure 3). The F-measure for this
panel was 0.60. This lower purity and F-measure again indicate
that not all the manually identified populations were captured
together in one metacluster but the higher purity of the clusters
indicates that the cells that are assigned to one cluster mostly
belong to the same manually gated population. The purity of
the clusters and metaclusters can also be visually inspected on
Supplementary Figure 5.

The labeling of the clusters and metaclusters of all FlowSOM
trees are depicted in Supplementary Figure 2.
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FIGURE 1 | Left: FlowSOM tree for the PBMCs panel 1. The background coloring indicates the metaclustering. Right: FlowSOM tree were the cells from Healthy

control PIDHC011 were mapped onto the original FlowSOM tree for panel 1. The colors of the nodes correspond to the manually gated labels.

Machine Learning Models Accurately
Diagnose CVID
To assess the predictive power of the different classification
models, a 21-fold cross-validation was performed for every
classification model. The balanced accuracy was calculated
in order to determine the predictive power of the extracted
cell populations of FlowSOM or the manually extracted cell
populations in combination with a classifier (random forest or
SVM). An overview is given in Figure 4.

Overall, it is clear that the models with FlowSOM derived
features are able to obtain higher scores than the pipelines
using the features from the manual gating. The average balanced
accuracy of all manual gating models for the prediction of the
CVID andNo-CVID class was 0.63 (±0.10) with feature selection
and 0.79 (±0.15) without feature selection while the average
balanced accuracy of all FlowSOM models was 0.80 (±0.13) and
0.91 (±0.07) with and without feature selection, respectively. For
the three-class models the average accuracies was 0.45 (±0.10)
with selection and 0.72 (±0.23) without selection for the manual
gating features and 0.81 (±0.16) with selection and 0.93 (±0.0)
without selection for the FlowSOM features. Several models only
misclassified one patient, obtaining a balanced accuracy of 0.982.

In general, the SVM models gave more accurate results than
the random forest classifiers if no feature selection step was
used, except for a number of classification models built with
the manually selected populations and the models using the
FlowSOM metacluster percentages of the individual panels. If a
feature selection step was used, all models with an SVM classifier
performed worse than the random forests models that were built
with the selected features. The decrease is smaller when the
FlowSOM cluster MFIs and percentages are used together, or
if all FlowSOM features are used for panel 2 or for the three

panels combined. Feature selection before training the random
forest models resulted most of the times in an equal or less
result than the models where no initial feature selection step was
performed. When using the features derived from the manually
gated populations, feature selection always had a negative impact.

The models where features from panel 2 were used also had
an overall better performance than the models based on features
from panel 1, and were only slightly better in comparison with
the models based on the features of the panels combined. When
only the features of panel 3 were used, the performance decreased
slightly for the FlowSOM features and greatly when the manually
gated populations were used compared to the other two panels.
When the information was combined of all three panels, the
results generally increased compared to the individual panels.
Only panel 2 generated some better results for particular models.
The top accuracy was only reached formodels built for panel 2 for
the two-class model but the overall performance of the models is
higher when three classes are classified.

In total, 112 models were built for both the two-class and
three-class classification problems and built with either an
SVM or random forest classifier, with one of the six different
feature sets of FlowSOM or the manually selected populations
and with or without a feature selection step. From all the
possible two-class classification models, 79 individuals (out of
179) were misclassified at least once and nine patients were
misclassified in more than 1/3th of the models (listed in Table 1).
From all possible three-class classification models, 168 people
were misclassified in the three-class classification models from
which seven individuals were mislabeled in more than 1/3th
of the models. This increase in mistakes between classification
problems is due to added misclassifications between healthy
controls and other PADs. For four of these ten patients, further
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FIGURE 2 | Top left: FlowSOM tree for the B cell subset panel 2 with expressed CD markers displayed. The background coloring indicates the metaclustering. Top

right: FlowSOM tree with expression of immunoglobulins displayed. Bottom: FlowSOM tree where the cells from Healthy control PIDHC011 were mapped onto

original FlowSOM tree for panel 2. The colors of the nodes correspond to the manually gated labels.

follow-up with their physician indicated that they might have
been misdiagnosed in our database.

Visual Exploration of the Immune State
Space Allows for Visual Separation of CVID
Patients
To explore the underlying structure of the patient population,
dimensionality reduction using t-SNE was performed on the
three features with the highest importance scores in the SVM

models built on either the manual gating results for the three
panels individually or the total feature set extracted from
FlowSOM for both panels individually (Figure 5). For both
models, there is no grouping visible based on age or gender.

Looking at diagnosis, there is a grouping of healthy controls
for both themodel built on themanual features and for themodel
built on the FlowSOM features. Most CVID patients also seem to
group together for both models with the exception of some. The
other PAD patients however seem to be spread across the healthy
controls and the CVID patients.

Frontiers in Immunology | www.frontiersin.org 6 August 2019 | Volume 10 | Article 2009

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Emmaneel et al. Computational Pipeline for Classifying CVID

FIGURE 3 | Left: FlowSOM tree for the T cell subset panel 3. The background coloring indicates the metaclustering. Right: FlowSOM tree were the cells from

Healthy control PIDHC011 were mapped onto the original FlowSOM tree for panel 3. The colors of the nodes correspond to the manually gated labels.

FIGURE 4 | Overview of the balanced accuracy scores of the different classification models (performed with 21-fold cross-validation). Color indicates whether feature

selection was applied, shape indicates which classification model was used. Overall, FlowSOM features can clearly improve on features extracted from the manual

gating.
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TABLE 1 | Overview of the most frequently misclassified patients.

Nr. misclassifications for

two-class classification model

Nr. misclassifications three-class

classification model

Remarks

PID030 (CVID) 52 45 No explanation found yet.

PID040 (CVID) 70 73 Syndromic primary immunodeficiency initially presenting with

CVID phenotype.

PID041 (CVID) 59 63 Syndromic primary immunodeficiency initially presenting with CVID

phenotype.

First degree family member of PID040.

PID043 (Other

PAD)

0 64 Early loss to follow-up, no information on progression of

disease phenotype.

PID053 (CVID) 111 110 No explanation found yet.

PID054 (CVID) 104 100 No explanation found yet.

First degree family member of PID053.

PID055 (CVID) 78 70 Presumably secondary CVID after autoimmune—induced

subacute liver failure with need of liver transplantation.

PID060 (CVID) 42 35 No explanation found yet.

PID257 (CVID) 38 29 No explanation found yet.

PID285 (CVID) 39 33 No explanation found yet.

All the patients listed in the first column were misclassified by the models in more than 1/3 of the 112 possible model combinations (built with or without a feature selection, with either

an SVM or random forest classifier, with one of six different feature sets of FlowSOM or the manually selected populations). The second column depicts the results for all two-class

models while the third column shows the results for the three-class models. In the last column, remarks are listed as possible explanations for the frequent misclassification. The red

color of a number indicates that that patient was not misclassified in more than 1/3th of the 112 models.

Most Important Features in SVM
Classification Identify Relevant
Populations for CVID Diagnosis
In order to find populations that could play a role in the
identification of CVID patients, importance scores were ranked
from the SVM result in the three-class classification models
for panels 1-3 individually. These are the same features as in
the dimensionality exploration section. The expression of the
top three features from the models that were built with all the
FlowSOM features (i.e., the MFIs and percentages of clusters and
metaclusters and the percentages of clusters compared to the
metaclusters) were compared across the three different classes
and are visualized in Figure 6 for the three panels.

For all features of the first panel, an increasing trend is visible
of the feature values for the CVID patients. These results indicate
an increase in a certain CD4+ T cell population compared to
the entire CD4+ T cell population and an increase of CD14
expression on a certain population of cDCs. For the second
panel there seems to be a decrease of CD27 expression for a
particular switched memory B cell population with IgG, CD24
and CD21 expression. A similar trend is visible for another
switched memory B cell population where no immunoglobulins
but the same CD markers are expressed. The last feature of
panel 2 indicates an increase of a CD21low B cell population
in CVID patients compared to the other two classes. Three
different types of T cells were selected for panel 3. The
first population consists of a specific gamma delta T cell
population that appears to have decreased in the other PAD
and CVID patients. There seems to be a decrease of the CD4+
naive T cells (CD45RO-CCR7+) in the other PAD patients
opposed to the healthy controls but this decrease is not greatly
extended to the CVID patients. The last feature indicates an

increase in MFI expression of FoxP3 for a certain regulatory T
cell population.

Feature Selection Identifies Relevant
Population for CVID Diagnosis
Although the feature selection steps did not seem to improve the
models, the selected features with the lowest p-values still seem to
be relevant in the identification of the CVID patients.

The number of selected FlowSOM features ranged from 2 to
43 features with a median of 13 features while the number of the
selected manual populations ranged from 4 to 15 features with a
median of seven features.

To inspect these features for the three-class classification
problem, Kruskal Wallis tests were performed on all the
FlowSOM features. The two features with the lowest p-values
and the next feature with the lowest p-value and with a low
correlation with the first two features were selected. They all had
a value smaller than 1.10–10 and are depicted in Figure 7. The
features selected for panel 1 indicate an increase of a certain
NK cell population compared to the entire NK cell population
for the other PAD and CVID patients. For another NK cell
population however, there seems to be a decrease in cell counts
compared to all immune cells. The difference between the two
populations is the expression of CD56. Cluster 89 shows a very
low expression of the marker. The final selected feature of panel
1 suggests that for cluster 22, cells (labeled as CD4+ T cells) have
a larger cell size due to higher FSC-A values in the other PAD
and CVID patients. Upon further inspection, we confirmed that
this significant increase was not only the case for cluster 22, but
also for the FSC-A MFI of most CD4+ T cell clusters and the
metacluster 1 which represents the CD4+ T cells. Unfortunately
this could not be confirmed in panel 3 due to altered scattered
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FIGURE 5 | (A1-3) t-SNE result of the patient population with manually gated cell populations of the most important features determined by the SVM model for the

three panels individually. (B1-3) t-SNE result of the patient population with the total features of FlowSOM of the most important features determined by the SVM model

for the three panels individually. The perplexity for both t-SNEs was set to 15. A z-score was applied on the used features first to eliminate age-linked immune changes.

values because of the fixation step necessary for the use of the
intracellular marker FoxP3.

For panel 2, a significant decrease is present in two certain
switched memory B cell populations, with IgG, CD38, and CD21
expressed, compared to the healthy controls and the other PAD
patients. A second switched memory B cell population seems to
be increased in CVID patients compared to the other two classes
that expresses CD21, IgA, and CD24.

In panel 3, an increase can be found for a certain population
of CD8+ effector memory T cells (CD45RO+CCR7-) compared
to the other populations in its metacluster in the other PAD
patients. This increase toward the healthy controls is also present
in the CVID patients but not as pronounced. The MFI however
of CCR7 in a certain cluster of regulatory T cells is increased
gradually from the healthy controls to the other PADs and
the CVID patients. The third important feature of the SVM
model is again a cluster to metacluster ratio where a great

decrease is noticed in the other PADs compared to the healthy
controls and a smaller decrease in the CVID patients of a certain
CD31+CD45RO-CD8+ T cell population.

Diagnosis of a New Patient Is Much Faster
by Automated Classification Than by
Manual Analysis
A big advantage of using automatedmodels during the diagnostic
process of patients is that the computational time is much less
than the time necessary to manually gate every population in 2D
plots. It took our model 2.54min in total to load the necessary
objects to make a prediction, to map the fcs file of a randomly
chosen patient on the FlowSOM tree created for panel 1, to
extract all possible features (percentages and MFIs), to apply the
z-score to these features and to make a prediction with the SVM
of a three-class model built on all possible FlowSOM features.
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FIGURE 6 | Boxplots calculated for the most important features in the support vector machines built for the three-way classification of all FlowSOM features for either

panel 1, 2, or 3. The colored points indicate the values on which the boxplots were built. A z-score was applied on the used features first to eliminate age-linked

immune changes.

When the classification would be done with a manual gating
strategy it would take at least 15min to gate the entire manual
gating strategy and classify the patient based on the known
CVID criteria. The classifier built on these gated populations, as

performed in this study, still uses the populations that have to be
gated first which occupies most of the work and time. This means
that the usage of a full computational model is much faster than
performing classification based on manually placed gates.
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FIGURE 7 | Boxplots calculated for the features selected by the feature selection step in the three-class classification model calculated on all FlowSOM features for

either panel 1, 2, or 3. This feature selection step is performed before the classification step in the automated models. The first three features selected with the lowest

p-value are displayed for both panels. The colored points indicate the values on which the boxplots were built. A z-score was applied on the used features first to

eliminate age-linked immune changes.

DISCUSSION

In this study, the efficiency and accuracy of different models
built with varying FlowSOM feature sets or manually gated cell

populations were compared in their ability to identify CVID
patients, patients with other PADs and healthy controls.

Both types of automated techniques can be used to diagnose
CVID but models built on FlowSOM features proved to be
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faster and more accurate than models built on manually
gated cell populations. Even when the number of FlowSOM
features dropped lower than the total number of manually
gated populations due to feature selection, the random forest
models still obtained better results than the models built with all
manual features.

The FlowSOM models accurately represented the manually
gated cell populations and captured more detail allowing for
better classification results with either an SVMor a random forest
as classifier. This is confirmed by the features extracted from
the FlowSOM tree of panel 2. Although the structure of the tree
of this panel does not coincide with the manual gating strategy
since it first splits up the immunoglobulins instead of the CD
markers, the classification results of the extracted features from
this tree still managed to obtain better accuracies in predicting
the class labels.

The comparison between these classifiers showed that models
built with an SVM outperformed the models with a random
forest when no feature selection was applied. However, when
this selection limited the number of features, the accuracy of
the SVM models dropped below the accuracy of the random
forest models.

Adding this feature selection step, in order to remove
unimportant features, did not increase the accuracy of the
models. For the models built on the manually gated populations,
this is explained by the limited number of cell populations
that were gated. These populations were specifically selected
according to commonly used gating guidelines in order to
investigate CVID patients, meaning that filtering these cell
populations resulted in a loss of information needed to classify
the patients correctly. The fact that CVID is an immunologically
heterogeneous disease could explain the accuracy drop for
all models built on FlowSOM features. This would indicate
that there are many differential alterations in the immune
system in CVID patients, other PAD patients and healthy
controls and that the distinction between these groups cannot
be made based on only a few of them. By performing a
feature selection step, too much valuable information would
be lost. The heterogeneity of the disease is confirmed by
the selection of other features that were considered as most
important in the classification step for the different models
and by selecting other features during the feature selection step
than those that were most important in the SVM or random
forest models.

Though it did not seem that feature selection added an
advantage in increasing accuracy of the predictions, it still
gave valuable insights into the CVID phenotype next to the
features that were ranked as most important in the SVM
classification. Most of these insights are confirmed in the
original study of Bogaert et al. (9) where they also noticed
a general decrease of switched memory B cell populations, a
decrease of switched memory B cells that express IgG and
an increase of CD21low B cells in CVID patients, a decrease
in CD4+ naïve T cells and a decrease in NK cells in CVID
patients and in patients with other PADs. However, two features,

concerning CD4+ T cells, seem to contradict results from
the original study. The original results showed a decrease
of the general CD4+ T cell population while these features
indicates an increase for one CD4+ T cell population in CVID
patients and in patients with other PADs. Nevertheless, this
is merely an indication of only one CD4+ T cell population
that seems to be increased as opposed to the entire CD4+ T
cell population.

The advantage of using a FlowSOM model allowed for a
deeper insight into these results and delivered a more specific
marker profile of the cells (i.e., the decreasing szitched memory
B cell percentages for clusters 18 and 30 expressed next to IgG
also CD38 and CD21). This also allowed for the comparison
in MFIs of markers between cell populations which lead to
a certain sw memory B cell population that expressed CD21,
CD24, and IgA. For this cell population in CVID and other PAD
patients, the CD24 expression was increased. Other examples of
the specificity of FlowSOM are the features that either showed
the increase of FoxP3 for a certain regulatory T cell population
in other PAD but mostly in CVID patients and the feature
that showed the increase of CCR7 for another regulatory T
cell population.

Multiple features highlighted in this study have not yet been
discussed in literature. They concern the increase of the FSC-
A marker in the CD4+ T cell population in CVID and other
PAD patients, the increase of the CD14 markers for a certain
conventional dendritic cell population, the increase in CD8+
effector memory T cells and in CD8+CD45RO-CD31+ T cells
and the decrease of certain gamma delta T cells in the other PAD
and CVID patients.

There are two features that did not seem to be related
to the CVID or other PAD phenotypes that indicate a
decrease of the CD27 marker for two switched memory B
cell populations. This is explained by the mapping of IgD-
CD27- cells instead of switched memory B cells on these
clusters of the FlowSOM model for the CVID and other
PAD patients.

Another important aspect of the classification models
concerns the frequently misdiagnosed patients. Although
the best model could predict almost all CVID patients,
mistakes were still made. It was shown that these mistakes
could be valid and that the follow-up of these patients can
give valuable insights into the model. It seemed that two
misclassified patients were wrongly diagnosed and that
secondary complications have a marked influence on the
classification of the patients. However, most of these patients
with secondary complications are still correctly diagnosed in the
best performing models.

The final conclusion of this study tells us that the use
of a classification model built on FlowSOM features would
be a quick, accurate and useful tool in the diagnosis of
patients with CVID. This, however, should still be confirmed
in a larger cohort with a more generalized marker panel
in order to integrate the classification models in the daily
diagnostic procedures.
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Supplementary Figure 1 | Manual gating strategies. The manual gated

strategies used to determine the manually selected cell populations is depicted in

the figure for panel 1, panel 2, and panel 3.

Supplementary Figure 2 | Overview of clustering and meta-clustering labels of

FLowSOM trees. Cluster- and meta-clusterlabels were created by building the

FlowSOM models for the three panels. These clusterlabels (left) and

meta-clusterlabels (right) are used for labeling in the feature extraction step.

(A) FlowSOM model created for the panel 1 with focus on Peripheral Blood

Mononuclear cells. (B) FlowSOM model created for the panel 2 with focus on B

cell subsets. (C) FlowSOM model created for the panel 3 with focus on T cell

subsets.

Supplementary Figure 3 | Comparison of metaclusters with manual gating panel

1. The manual gated plots are depicted on the first row for PIDHC011 and

correspond to the same marker combinations visualized in Supplementary

Figure 1. The following rows visualize 2D scatterplots of the same marker

combinations of the manual gates in the first row for each metacluster. 100,000

cells were randomly sampled from the FlowSOM tree from panel 1. The

background cells are colored black while those of the selected metacluster are

plotted in color.

Supplementary Figure 4 | Comparison of metaclusters with manual gating panel

2. The manual gated plots are depicted on the first row for PIDHC011 and

correspond to the same marker combinations visualized in Supplementary

Figure 1. The following rows visualize 2D scatterplots of the same marker

combinations of the manual gates in the first row for each metacluster. 100,000

cells were randomly sampled from the FlowSOM tree from panel 2. The

background cells are colored black while those of the selected metacluster are

plotted in color.

Supplementary Figure 5 | Comparison of metaclusters with manual gating panel

3. The manual gated plots are depicted on the first row for PIDHC011 and

correspond to the same marker combinations visualized in Supplementary

Figure 1. The following rows visualize 2D scatterplots of the same marker

combinations of the manual gates in the first row for each metacluster. 100,000

cells were randomly sampled from the FlowSOM tree from panel 1. The

background cells are colored black while those of the selected metacluster are

plotted in color.
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