Spatio-temporal Geostatistical Modeling of Hydrogeochemical Parameters in the San Diego Aquifer, Venezuela

¹Dr. Adriana Márquez Romance, ²Dr. Edilberto Guevara Pérez, ³Dr. Demetrio Rey Lago ^{1, 2,3}Professor,

^{1,2}Center of Hydrological and Environmental Research, University of Carabobo, Venezuela ³Institute of Mathematics and Compute Applied, University of Carabobo, Venezuela **Email:** ¹ammarquez@uc.edu.ve, ²eguevara@uc.edu.ve, ³drey@uc.edu.ve

Abstract

The study is developed a spatio-temporal geostatistical modeling of hydrogeochemical parameters in the San Diego aquifer, Carabobo State, Venezuela during the period 2015-2017. The main water compositions corresponding to the water classesare: 1) Bicarbonate of Calcium and/or Magnesium Ca–Mg–HCO₃ (North and Central regions, 95.16 km², 81.25%) 2) Bicarbonate of Sodium Na–HCO₃ (Central and South regions, 19.32 km², 16.5%), 3) Sulfate or Chloride of Calcium and/or Magnesium Ca–Mg–Cl (South region, 0.96 km², 0.82%), 4) Sulfate and/or Chloride of Sodium Na-SO₄ and Na-Cl (South region, 1.68 km², 1.43%). The modeling of the whole hydrogeochemical parameters is represented by J-Bessel function.

Keywords: Hydrogeochemical, Geostatistical Modeling, Spatio-Temporal Distribution.

INTRODUCTION

The San Diego aquifer is an important water source, mainly for domestic uses. The population in San Diego Municipality changes from 59247 in 2001 to 93257 persons in 2011, being increased in 57.4 % in ten years (INE, 2001, 2011). This population increase has created a high pressure on the exploitation of the groundwater resources reaching to 107 pumping wells, having information on hydrogeochemical parameters only of 58 wells by the regulatory pumping institutions in the study zone. In that sense, of Hydrological the Center and Environmental Research of the University of Carabobo has developed and advised scientific studies. measuring hydrogeochemical parameters with a frequency coinciding with climatic season of each year from 2015 to the present in the San Diego aquifer, working in cooperation with the main regulatory entities such as Ministry of Environment and the hydrological company, in order to contributing to the preserve the water quantity and quality available to domestic and industrial uses of the San Diego

aquifer. This investigation has as objectives: a) the analysis of geophysical parameters, land cover and land uses and lithological profiles to classify the type of acuifer, b) to calibrate geostatistical models for representing the spatialvariation temporal of the hydrogeochemcial parameters, and c) to generate the maps of spatio-temporal distribution of the hydrogeochemcial parameters.

STUDY AREA

The study area is the San Diego aquifer, located in the north region of Venezuela The aquifer limits (Figure 1). in geographic coordinates are the following: latitude: N 10°22'00", N 10°09'00", longitude: W67°52'00^{°°}, W68°00'00^{°°}. The San Diego aquifer is belonging to the Carabobo State. The north region is part of the mountain zone of the "Cordillera de la Costa", which is in front of the Caribbean sea (Figure 1). The south region of the San Diego aquifer shares its limits with the Valencia Lake. This aquifer might be interchanging its groundwater with the water body of Valencia Lake according to

the climatic season of the year. The area covered by the San Diego aquifer is 117 km^2 . The perimeter is 95 km. The terrain elevations of the San Diego aquifer are: minimum of 1416 masl, mean: 655 masl and maximum: 1964 masl. The terrain elevation covers area as follows (Figure 1): 1) from 416 to 581 masl (73 km², 63%), 2) from 582 to 891 masl (22 km², 19%), 3) from 892 to 1284 masl (13 km², 11%) and 4) from 1265 to 1264 masl (9 km^2 , 7%). The San Diego aquifer supplies water from 58 pumping wells, which have an use of type: domestic (42, 73%), industrial (16, 27%). The domestic use is based on the water consumption by a population of 93257 persons, being 4.15% of total population of Carabobo State, which is 2.245.744 (INE, 2011).

MATERIALS AND METHODS

The study is developed following the three stages as it is shown in Figure 2, where it can be observed the workflow for spatiotemporal geostatistical modeling of hydrogeochemical parameters in the San Diego aquifer, Carabobo State, Venezuela; which includes: 1) Collection of information as: a) Meteorological, b) Lithological profiles, c) pumping flow, d) water dynamic levels, e) Landsat Satellite Images and f) Digital Elevation Model. 2) Processing of information, including: a) Calibration of geostatistical models, b) validation of geostatistical models, c) calibration of forecast model, and d) application of forecast model. 3) Generation of Results, including: maps of the hydrogeochemical parameters showing spatio-temporal distribution of following parameters: Precipitation, Evapotranspiration, Pumping Flow. Infiltration, Volume Stored, Physicochemical Parameters (PCP), Hydraulic Parameters, Mass Flow of PCP.

The database used in this study has been provided by four information sources, which are 1) Ministry of the Environment, 2) National Institute of Meteorology and Hydrology belonging to Ministry of the Environment, 3) the Hydrological Company "Hidrologica Del Centro C.A.", 4) Center of Hydrological and environmental Research. The information has been gotten as it is described in the following four aspects : 1) Meteorological information corresponding to the period between 2015 and 2017, which are measured by the telemetric network of 31 climate monitoring stations close to San Diego aquifer managed by the National Institute of Meteorology and Hydrology belonging to Ministry of the Environment (Table 1). In Table 1 can be observed the details identifying the meteorological stations as: projected coordinates under the following projection parameters: a) Projection: Universal Transverse Mercator (UTM), b) Datum: World Geodetic System 1984 (WGS84), c) UTM Zone: 19 N. The information is available at no cost the following web in page: http://estaciones.inameh.gob.ve/estaciones/ estaciones_home.php. 2) Lithological profiles are 28 points located in the north, central and south regions of the San Diego aquifer provided by the Ministry of the Environment (Figure 3, Table 2). 3) The database of water levels, physico-chemical parameters and pumping flow is provided by three sources: a) the Hydrological Company "Hidrologica del Centro C.A.", consisting of 200 pumping wells in the Carabobo State, b) Ministry of the Environment, consisting of 1201 pumping wells in the Carabobo State and c) Center Hydrological Environmental of and Research of University of Carabobo based on 24 pumping wells into the San Diego aquifer. 4) The information of Landsat Satellite images and ASTER digital elevation model is gotten from the web page identified as earthexplorer belonging to the U.S. Geological Survey (USGS) in the following link:

https://earthexplorer.usgs.gov/.

Fig: 1. Location of the study area: a) Relative position of the San Diego aquifer regarding to the Carabobo State in Venezuela, showing the spatial distribution of the 925 pumping wells founded into the Carabobo State; whose monitoring variables are used to predict the hydrogeological parameters from the San Diego aquifer; b) relative position of the San Diego aquifer and pumping wells with respect to the Lake of Valencia; c) Terrain Elevation (masl) and stream network of the San Diego river superimposing the pumping wells. The terrain elevation varies between 416 and 1448masl.

Modeling of Statistical Spatial Prediction

MAT

JOURNALS

It will be applied models of statistical spatial prediction (SSPM) for estimating of the hydrogeochemical parameters. Α spatial prediction model estimates the values of the target variable (z) at some new location s_0 ; being a set of observations of a target variable z denoted as $z(s_1)$, $z(s_2), \ldots, z(s_n)$, where $s_i = (x_i, y_i)$ is a location and xi and yi are the coordinates (primary locations) in geographical space and n is the number of observations. The geographical domain of interest (area, land surface, object) can be denoted as A. It defines inputs, outputs and the computational procedure to derive outputs based on the given inputs (Hengl, 2007): $\hat{z}(s_0) = E\{Z/z(s_i), q_k(s_0), \gamma(h), s \in A\}$

Where $z(s_i)$ is the input point dataset, $q_k(s_0)$ is the list of deterministic predictors and $\gamma(h)$ is the covariance model defining the spatial autocorrelation structure. The type

of SSPM used is the statistical model called Ordinary Krigging (OK); whose technique was developed by Krige (1951). The predictions are based on the model: $Z(s) = \mu + \varepsilon'(s)$ (1) Where μ is the constant stationary function (global mean) and $\varepsilon'(s)$ is the spatially correlated stochastic part of variation. The predictions are made as in Matheron (1963) and Gandin (1960) introduced to the analysis of point data is the derivation and plotting of the so-called semivariances — differences between the neighbouring values:

 $\gamma(h) = \frac{1}{2}E\left[\left(z(s_i) - z(s_i + h)\right)^2\right]$ (2) where z(s_i) is the value of target variable at some sampled location and z(si +h) is the value of the neighbour at distance s_i + h. The semivariances versus their distances produce a standard experimental variogram.

Fig: 2. Workflow for Spatio-Temporal Geostatistical Modeling of Hydrogeochemical Parameters in the San Diego Aquifer, Carabobo State, Venezuela.

Table: 1.	. Telemetric network of climate monitori	ing stations in the San Diego aquifer	,
	Carabobo State, Ver	nezuela.	

Number	Projected	Coordinates	Station Code	Station Name
	Х	Y		
1	665682	1124668	AR01486AP1	SANTA CRUZ
2	648392	1140698	AR07241AP1	FORESTAL EL LIMON
3	670277	1121114	AR07330AP1	BELLA VISTA
4	653937	1133689	AR00456AS3	MARACAY- BASE ARAGUA
5	647690	1132951	AR80413AS3	MARACAY-BASE SUCRE-OMM
6	608178	1131078	CA00461AP1	VALENCIA-OFICINA
7	608490	1159760	CA80412AS4	PTO CABELLO BASE NAVAL
8	592724	1106863	CA01397AP1	CAMPO CARABOBO
9	616988	1138671	CA00451AP1	SAN DIEGO
10	622892	1135723	CA00423AP1	VIGIRIMA
11	613822	1154779	CA00412AP1	HDA EL MANGLAR
12	626026	1110365	CA00489AP1	AGUA BLANCA
13	598708	1124960	CA07346AP1	GUATAPARO CAMPO DE GOLF
14	619290	1112277	CA07297AP1	PLANTA DE POTABILIZACION
15	622148	1131688	CA00452AP1	GUACARA
16	603183	1134833	CA01310AP1	GUAPARO-EL CAFÉ
17	578351	1138895	CA01370AP1	CANOABO
18	630433	1102181	CA02404AP1	MANUARE
19	608661	1136374	CA07332AP1	UNIVERSIDAD DE CARABOBO
20	658047	1108591	CA07331AP1	LA CENIZA
21	616524	1122118	CA80472AS3	VALENCIA-AEROPUERTO
22	822700	1145984	MI01448AP1	LOS TEQUES INOS
23	726392	1144229	MI00561AP1	SAN DIEGO-MIRANDA
24	735254	1160195	MI80416AS3	CARACAS LA CARLOTA-OMM
25	726854	1151375	MI00563AC1	CARACAS LA MARIPOSA
26	595605	1078264	CO02349AP1	PAO OFICINA
27	546523	1066369	CO07320AS3	SAN CARLOS AEROPUERTO
29	677610	1097000	GU02417AS3	SAN JUAN DE LOS MORROS
30	617013	1160036	DC07315AP1	CARACAS UNEXPO
31	729293	1156854	DC07335AP1	FUERTE TIUNA

RESULTS

Geophysical parameters

The soil of the San Diego aquifer is composed by mineral particles classified according to the Unified Soil Classification System (USCS) on a sample of twenty eight lithological profiles extracted from pumping wells indicated in the Figure 3. In this sample of soil profiles, there are the following materials arranged in a varied form regarding the type of material and thickness of the soil layer: GW: well-graded gravel, GC: clayey gravel, GM: silty gravel, SW: well-graded sand, SM: silty sand, SC: clayey sand, CL: clay of low plasticity, ML: silt, VL: vegetation layer, R: Rock. In the north region, the materials mainly constitute the profile integrated by: GW and CL. In the middle and south region, the profile

contains alternating layers of fine material such as: SW and CL. The depth of pumping wells varies between 43 and 175 mbgs (Table 2). According to the location of the impervious layer constituted by CL with respect to the layers of GM, GC, SW or SM, the type of aquifer is confined.

а	Ь	с	d	а	в	с	d	a	D	с	d	a	D	с	d	a	D	с	d	a	D	с	d	a	D	с	d
a 1 1 1 1 1	b 0 1 12 50 62	c 1 12 50 62 83	d SM SW GW SW	a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b 0 1 8 12 18 34 42 47 73	c 1 8 12 18 34 42 47 73 94	a VL GW CL SM GW GC CL	a 3 3 3 3 3 3 3 3 3 3 3 3 3	0 2 23 33 53 54 60	2 23 33 53 54 60 71	d VL CL GW GC SM CL GC	4 4 4 4 4	0 1 16 32 47	c 1 16 32 47 58	a VL CL SW GW R	a 5 5 5 5 5 5 5	0 1 9 22 44	c 1 9 22 44 59	a VL GW ML GW R	a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	b 0 0.5 5 7 19 23 31 34 56 58 73 77 98 101 105 109 122 128 133 139 142 147	c 0.5 5 7 19 23 31 34 56 58 73 77 98 101 105 109 122 128 133 139 142 147 150	a SC CL SM CL SW CL SM CL SM CL SM CL SM CL SM CL SM CL SM CL SM CL SM CL	a 777777777777777777777777777777777777	b 0 0.5 5 7 18 21 42 44 93 96 102 105 108 110 119 128 139 142 150 153	c 0.5 5 7 18 21 42 44 93 96 102 105 108 110 119 128 139 142 150 153 160	d SM CL SM CL SW SW SW CL GM CL GM CL GM CL GM CL GM SW CL
a	b	с	d	a	b	c	d	a	b	c	d	a	b	с	d	a	b	с	d	6 6 6 a	130 162 170 173 b	162 170 173 175 c	CL SM CL d	a	b	с	d
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 0 \\ 0.5 \\ 5 \\ 7 \\ 20 \\ 25 \\ 56 \\ 65 \\ 75 \\ 83 \\ 108 \\ 115 \\ 127 \\ 133 \\ 138 \\ 146 \end{array}$	$\begin{array}{c} 0.5 \\ 5 \\ 7 \\ 20 \\ 25 \\ 56 \\ 64 \\ 75 \\ 83 \\ 108 \\ 115 \\ 127 \\ 133 \\ 138 \\ 146 \\ 150 \end{array}$	VL SC CL SC SW CL SW CL SW SC SW SC SW SC SW SC SW CL	9 9 9 9 9 9 9 9 9 9 9	0 17 52 67 77 105 112 117 126 136 156	17 52 67 77 105 112 117 126 136 156 160	CL SC GW GM CL ML CL SM SW CL	10 10 10 10 10 10 10 10 10 10 10	0 5 7 12 20 26 53 65 81 83 110 119 123 139	5 7 12 20 26 53 65 81 83 110 119 123 139 141	SC CL SW CL SC CL CL SW SC SC SC SC SC SC CL	11 11 11 11 11 11 11	0 2 33 52 54 60	2 23 33 52 54 60 76	VL CL GC SM CL GC	12 12 12 12 12 12 12 12 12 12	0 18 24 42 48 54 60 66 72	18 24 42 48 54 60 66 72 96	VL SW SW CL CL SW CL SW	13 13 13 13 13 13 13 13	0 1 22 25 44 50 59 85	1 22 25 44 50 59 85 90	VL CL SW CL SW GW CL CL	14 14 14 14 14 14	0 18 36 48 72 78	18 36 48 72 78 92	VL SW GW SW CL CL
a 15 15 15 15	b 0 1 16 32 47	c 1 16 32 47 58	d VL CL SW GW R	a 16 16 16 16	b 0 6 19 37 49 61 67 b	c 6 19 37 49 61 67 82	d VL SM SW GW SW CL SW	a 17 17 17 17	b 0 0.5 5 31	c 0.5 5 31 64	d VL SM CL R	a 18 18 18 18 18 18 18	b 0 1 6 9 18 30	c 1 6 9 18 30 66	d VL SW SC GW R R R	a 19 19 19 19 19 19	b 0 1 14 30 40 60	c 1 14 30 40 60 80	d CL GW CL CL GW	a 20 20 20 20 20	b 0 12 42 60 66	c 12 42 60 66 81	d VL SW GW GC SW	a 21 21 21 21 21 21	b 0 1 13 32	c 1 13 32 43	d VL CL SW GC
a 22 22 22 22 22 22 22 22 22 22 22 22 22	0 33 45 51 63 69 81 87 99 105	33 45 51 63 69 81 87 99 105 117	SC SW CL SW CL SW CL SW CL SW	a 23 23 23 23 23 23 23 23 23 23 23 23 23	0 4 6 14 18 24 28 30 32 24 44 48 52 54 60 66 68 80 72 74 78 84 86 88	4 6 14 18 24 28 30 32 34 44 48 52 54 54 56 60 66 66 68 70 72 74 78 84 88 89 94	VL SC SW CL SW CL SW CL SW CL SW CL SW CL SC CL SW CL SW CL SW CL SW CL SW CL	a 24 24 24 24 24 24	0 1 9 22 32 44	1 9 22 32 44 59	vL SW CL CL GW R	a 25 25 25 25 25 25 25 25 25 25 25 25	0 9 20 24 27 30 34 37 40 44	9 20 24 27 30 34 37 40 44 51	sM CL GW CL SW GW CL SW GW SW	26 26 26 26 26 26 26 26 26 26 26	0 6 9 15 21 24 27 30 36 39	6 9 15 21 24 27 30 36 39 50	sM CL SW CL SW SW CL SW CL GW	a 27 27 27 27 27 27 27	0 1 15 25 40 50	1 15 25 40 50 70	u VL SW GC CC SW GW	a 28 28 28 28 28 28 28 28 28 28 28 28 28	0 2 4 26 34 36 42 50 54 70 99 98 104	2 4 26 34 36 42 50 54 70 90 99 98 104 108	VL CL SW SC SC SC CL SC CL SC CL

			Tab	ole:	2.	Lith	olo	gica	l p	rofil	e int	o ti	he ,	Sar	ı D	Diego	o a	qui	fer	she	own	in	Figi	ure	2.		
а	h	C	d	а	h	C	d	а	h	C	d	а	h	C	d	а	h	C	d	а	h	C	d	а	h	C	d

a: number of lithological profile, b: upper limit of layer, c: lower limit of layer, d: soil type in the layer. The type of soil corresponds to the Unified Soil

Classification System (USCS) as: GW: well-graded gravel, GC: clayey gravel, GM: silty gravel, SW: well-graded sand, The profiles of effective porosity and permeability show that these vary according to the material (Figure 4, Figure 5), for GW and SW: 0.38 and 0.4, CL: 0.10; with respect to the permeability: GW: 1000 m/d, GC, GM, SW: 100 m/d,

SM: silty sand, SC: clayey sand, CL: clay of low plasticity, ML: silt, VL: vegetation layer, R: Rock.

SM, SC: 10 m/d, CL, ML: 0.1 m/d. In the aquifer zone, the effective porosity and permeability take high values by comparing with the impervious material such as SC, CL and ML.

Fig: 3. Lithological profiles of pumping wells into the San Diego aquifer. The 28 lithological profiles are located between the following terrain elevations: 416 and 674 masl, and two between 674 and 932 masl.

Land Use / Land Cover

The spatial distribution of land use and land cover in the aquifer of San Diego to month scale during the period between 2015 and 2018 is shown in Figure 6. The total area of the aquifer is 116 km². The Figure 7 shows the accumulated area by including the area corresponds to the land use and land cover on the San Diego aquifer. The vegetation covers in the north region permanently, varying between 18.21 and 71.96 km² (15.7 and 62%) according to the season into the year (Figure 7). The vegetation area contributes to the recharge of groundwater because of infiltration and inflow through the domains boundaries. The degraded soil zone covers the central region, varying between 6.54 and 44.48 km² (5.6 and 38.34 %). The urban zone covers the central region, varying between 24.09 and 56.47 km² (20.76 and 48.6%). The agricultural zone is distributed between central and south region, varying between 0 and 30.22 km² (o and 26%).

Fig: 4. Profiles of effective porosity of pumping wells into the San Diego aquifer. The 26 lithological profiles are located between the following terrain elevations: 416 and 674 masl, and two between 674 and 932 masl.

Fig: 5. Profiles of permeability of pumping wells into the San Diego aquifer. The 26 lithological profiles are located between the following terrain elevations: 416 and 674 masl, and two between 674 and 932 masl.

Groundwater Balance

1) Precipitation: the monthly precipitation in a way of rainfall is spatially distributed in a low intensity in the north and central region regarding to the south region of the San Diego aquifer during the dry season (Figure 8). In the north and central region, the precipitation varies between 0 and 21 mm/month during the dry season. In the south region, the precipitation varies between 4 and 44 mm/month during the dry season. The monthly precipitation in the north and central region varies between 28 and 291 mm/month during the rainy season. In the south region, the precipitation varies between 61 and 311 mm/month during the rainy season. The statistical spatial prediction model (SSPM) is the J-Bessel function. This function is fitted to the observed precipitation with a gradient that varies between 0.3 and 0.7. The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary as follows (Table 3): a: between 0 and 5905, b: between 14.513 and 5933, c: between 25056 and 995790, d: between 0.01 and 5.37. The coefficient a is associated with the no spatial correlation. The coefficient b is associated with $C_0 + C_1$ term, which is the sill variation. The coefficient c represents the maximum distance between stations of neighbor precipitation observations. The coefficient d represents the parameter of the J-Bessel function. There is pattern in the SPPMs for the dry season, associated with the first months of the each year. In all cases, the semivariances are smaller at shorter distance and then they stabilize at some distance.

2) *Evapotranspiration:* the monthly evapotranspiration is spatially distributed in a high intensity in the north and central region regarding to the south region of the San Diego aquifer during the dry season (Figure 9). In the north and central region, the evapotranspiration varies between 64 and 188 mm/month during the dry season. In the south region, the precipitation varies between 29 and 185 mm/month during the dry season. The monthly evapotranspiration in the north and central region varies between 86 and 141 mm/month during the rainy season. In the south region. the monthly evapotranspiration varies between 85 and 137 mm/month during the rainy season. The statistical spatial prediction model (SSPM) is the J-Bessel function. This function is fitted to the observed precipitation with a gradient that varies between 0.24 and 0.65. The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary as follows (Table 4): a: between 0 and 683, b: between 5.2 and 3673.6, c: between 57392 and 1674300, d: between 0.01 and 10. There is pattern in the SPPMs for the dry and rainy seasons.

3) *Pumping flow:* the monthly pumping flow is spatially distributed with a high intensity in the central and south regions regarding to the north region of the San Diego aquifer under a stationary regime (Figure 10). In the north region, the pumping flow varies between 0 and 6 l/s. In the central and south regions, the pumping flow varies between 6 and 20 l/s. The statistical spatial prediction model (SSPM) is the J-Bessel function. This function is fitted to the observed pumping flow with a gradient that varies between 0.55 and 0.57. The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary as follows (Table 5): a: between 9.04 and 10.28, b: between 57.13 and 78.1, c: between 20205 and 25980, d: between 1.2271 and 1.6849. There is permanent pattern in the SPPMs. The forecast model of a, c and d coefficients of SSPM is ARIMA (1,0,1). 4) Infiltration: the monthly infiltration is spatially distributed with a high intensity in the north and central region regarding to the south region of the San Diego aquifer during the dry season (Figure 11). In the north and central region, the infiltration varies between 0 and 11 mm/ month during the dry season. In the south region, the infiltration varies between 1 and 15 mm/ month during the dry season. The infiltration in the north and central region varies between 20 and 113 mm/ month during the rainy season. In the south region, the infiltration varies between 34 and 126 mm/month during the rainy season. The statistical spatial prediction model (SSPM) is the J-Bessel function. This function is fitted to the observed infiltration with a gradient that varies between 0.24 and 0.65. The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary as follows (Table 6): a: between 0 and 103, b:

between 0.00037546 and 197.53, c: between 143.68 and 10781, d: between 0.1298 and 10. There is pattern in the SPPMs for the dry and rainy seasons.

5) Volume Stored: the monthly volume stored is spatially distributed with a high intensity in the north and central region regarding to the south region of the San Diego aquifer permanently (Figure 12). In the north and central mountainous region, the volume stored expressed as mm/ month varies between -96 and 6 mm; being the month of august, when the volume stored is the minimum. The monthly volume stored varies between -48 and -9 mm during the dry season. The monthly volume stored varies between 21 and 26 mm during the rainy season. The statistical spatial prediction model (SSPM) is the J-Bessel function. This function is fitted to the observed monthly volume stored with a gradient that varies between 0.87 and 0.99. The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary as follows (Table 7): a: between 0 and 103, b: between 0.00037546 and 197.53, c: between 143.68 and 10781, d: between 0.1298 and 10. There is pattern in the SPPMs for the dry and rainy seasons.

Physico-Chemical Parameters

The physico-chemical parameters in the water pumped from the San Diego aquifer measured during the period between 2015-2017 are the following a) Bicarbonate (mg/l) b) Chloride (mg/l), c) Sulfate (mg/l), d) Nitrate (mg/l), e) Calcium (mg/l), f) Magnesium (mg/l), g) Sodium (mg/l), h) Potassium (mg/l), i) Dissolved Solids (mg/l), j) Temperature (°C), k) Electrical conductivity (uS/cm), l) pH, m) Alkalinity (mg/l $CaCO_3$), n) Total Hardness (mg/l CaCO₃), **o**) Calcic hardness (mg/l CaCO₃), p) Magnesium hardness (mg/l CaCO₃). (Figure 13, Table 32). The bicarbonate varies between 81 and 333 mg/l, Chloride between 5 and 81

mg/l, Sulfate between 0 and 461 mg/l, Nitrite between 0 and 18 mg/l, Calcium between 0 and 119 mg/l, Magnesium between 6 and 45 mg/l, Sodium between 0 and 219 mg/l, Potassium between 0 and 17 mg/l, Dissolved Solids between 87 and 1384 mg/l, Temperature between 27 and 28 °C, Electrical conductivity between 188 and 2341µS/cm, pH between 6 and 8, Alcalinity between 91 and 318 mg/l CaCO₃ Total hardness between 52 and 618 mg/l CaCO₃, Calcic hardness between 0 and 295 mg/l CaCO₃, Magnesium hardness between 22 and 232 mg/l CaCO₃. In the north and central region of the San physico-chemical Diego aquifer the parameters take the minimum values. The whole of the physico-chemical parameters measured take the maximum values to the south zone of the San Diego aquifer in the boundary with the Valencia Lake, where the land use corresponds to urban and agricultural. According to the Sanitary Standards of Quality of Drinking Water published by the Ministry of Health and Social Assistance in the Official Gazette of the Republic of Venezuela with the number 36.395, the threshold of the physico-chemical parameters is as follows: Chloride < 300 mg/l, pH < 9, Sulfate <500 mg/l, Total hardness < 500 mg/l $CaCO_3$, Dissolved Solids < 1000 mg/l, Nitrite between < 0.03 mg/l, Sodium < The quality of water in the 200 mg/l.north zone of San Diego aquifer is acceptable for human consumption, while in the south zone, the water quality is slightly upper than the threshold of the environmental regulation in most of the physico-chemical parameters. The water of the Valencia Lake is contaminated; this contamination has its origin in the discharges of sewage from domestic and industrial sources and, to a lesser extent, agricultural activities (Guevara, 2000). According to values reported in recent studies (IESA, 1998), the lake has a characteristic of hyper-eutrophication in areas near the outlets of its main rivers.

From these results, it can be supposed that the water quality of the Valencia Lake is causing the increase of the physicochemical parameters of water quality of San Diego aquifer because of water recharge from the Valencia Lake to the groundwater of the San Diego aquifer during the dry season. The statistical spatial prediction model (SSPM) for whole of physico-chemical parameters is the J-Bessel function. This function is fitted to the observed physico-chemical parameters with a gradient that varies between 0.12 and 0.54 (Table 8). The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary according to the neighbors values in each dataset of physico-chemical parameters, as a sample, the coefficients for the alkalinity SSPM are as follows (Table 8): a: 4349.1, b: 4949.9, c: 22035, d: 0.11652.

Hydraulic Parameters

The hydraulic parameters from the San Diego aquifer measured during the period between 2015-2017 are the following: water dynamic level (Figure 14, Table 33), hydraulic gradient (Figure 15, Table 34) and flow velocity (Figure 16). The water dynamic level varies during the period 2015-2017 as follows: for 2015: between 385 and 574 masl, for 2016: between 329 and 803 masl, for 2017: between 329 and 803 masl. The highest elevations measured of the water dynamic level, trend to occur at the end of the mountain chain located to the south region of San Diego aquifer. The lowest elevations measured of the water dynamic level, trend to occur at the plains of the center and south regions of the aquifer. The statistical spatial prediction model (SSPM) for whole of water dynamic levels measured during the period 2015-2017 is the J-Bessel function. This function is fitted to the observed water dynamic level with a gradient that varies between 0.88 and 0.98 (Table 9). The equation is identified by the following coefficients in general a structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary according to the neighbors values in each dataset of water dynamic levels, as а sample, the coefficients for the water dynamic levels for 2015 are as follows (Table 9): a: 1281.6, b: 5000.7, c: 14136, d: 10.

The hydraulic gradient varies during the period 2015-2017 as follows: for 2015: between 0 and 39 %, for 2016: between 0 and 29%, for 2017: between 0 and 55%. The highest hydraulic gradient estimated of the groundwater, trend to occur at the two regions following: 1) in the central region and 2) at the end of the mountain chain located to the south region of San Diego aquifer. In the central region, the gradient is explained by two reasons: the pumping wells N° 6 to N° 10 where it is found high frequency of clay of low plasticity layers varying between 7 and 11 layers for the greatest deeps in the aquifer, which vary between 141 and 173 masl (Figure 3, Table 3). 2) a possible lack of well maintenance of the metal grid located in the aquifer layer composed by wellgraded gravel (GW) and well-graded sand (SW) occluding the water inlet to the well. The statistical spatial prediction model (SSPM) for whole of hydraulic gradients estimated during the period 2015-2017 is the J-Bessel function. This function is fitted to the observed hydraulic gradient with a gradient that varies between 0.77 and 0.94 (Table 10). The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary according to the neighbors values in each dataset of hydraulic gradient, as a sample, the coefficients for the water dynamic levels for 2015 are as follows (Table 10): a: 2.0954, b: 6.1085, c: 795.48, d: 10.

The flow velocity varies during the period 2015-2017 as follows: for 2015: between 0 and 2033 m/d, for 2016: between 0 and

946 m/d, for 2017: between 0 and 1259 m/d. The highest flow velocity estimated of the groundwater, trend to occur at the north region of San Diego aquifer; trending to zero to the central and north region of the aquifer, indicating that this is the water recharge zone. The soil profile of the wells located in the north region close to the mountains contain between 1 and 4 layers of well-graded gravel (GW) and clayey gravel (GC) as it is shown in Table 1; where the effective porosity and the permeability take the maximum values as 0.4 and 1000 m/d, respectively (Figure 4, Figure 5).

Mass flow of physico-chemical parameters

The mass flow of physico-chemical parameters from the San Diego aquifer estimated during the period between 2015-2017 are the following (Figure 17): a) Alkalinity for 2015 varies between 91 and 1E06 kg/d, b) Alkalinity for 2016 varies 17 and 456294 between kg/d. c) Alkalinity for 2017 varies between 17 and 456294 kg/d, d) Chloride for 2015 varies between 17 and 456294 kg/d, e) Chloride for 2016 varies between 17 and 456294 kg/d, f) Chloride for 2017 varies between 1 and 99757 kg/d, g) Sulfate for 2015 varies between 17 and 456294 kg/d, h) Sulfate for 2016 varies between 0 and 88514 kg/d, i) Sulfate for 2017 varies between 0 and 149459 kg/d, j) Total Hardness for 2015 varies between 59 and 962123 kg/d, k) Total Hardness for 2016 varies between 16 and 383595 kg/d, l)

Total Hardness for 2017 varies between 46 and 474531 kg/d, m) Nitrite for 2015 varies between 0 and 6800 kg/d, n) Nitrite for 2016 varies between 0 and 2117 kg/d, o) Nitrite for 2017 varies between 0 and 2772 kg/d, p) Sodium for 2015 varies between 3 and 153160 kg/d, q) Sodium for 2016 varies between 1 and 72383 kg/d, r) Sodium for 2017 varies between 1 and 103108 kg/d, s) Potassium for 2015 varies between 0 and 13285 kg/d, t) Potassium for 2016 varies between 0 and 18103 kg/d, u) Potassium for 2017 varies between 0 and 11655 kg/d, v) Calcium for 2015 varies between 0 and 170899 kg/d, w) Calcium for 2016 varies between 0 and 73035.5 kg/d, x) Calcium for 2017 varies between 0 and 98479.3 kg/d. In general, the flow mass follows the pattern observed in the representation of the flow velocity, the highest flow velocity occurs in the north region where the mountains are located. The statistical spatial prediction model (SSPM) for the mass flow estimated during the period 2015-2017 is the J-Bessel function. This function is fitted to the observed water dynamic level with a gradient that varies between 0.88 and 0.98 (Table 11). The equation is identified by the following coefficients in a general structure: a*nugget+ b(J-Bessel (c, d)). The values of coefficients vary according to the neighbors values in each dataset of mass flow, as a sample, the coefficients for the mass flow of alkalinity as CaCO₃ for 2015 are as follows (Table 11): a: 9.6802e8, b: 1.3745e9, c: 569.2, d: 10.

Fig: 6. Land use and land cover in the Pao river basin in the month period between January 2015 and July 2017

Fig: 7. Distribution of Area for land use and land cover in the San Diego aquifer in the month period between January 2015 and July 2017

	у	Z	aa	bb	сс	dd	ee
Min.	7	0	11	197	114	291	270
Máx.	12	12	15	202	126	298	275

Fig: 8. Spatial prediction of the monthly precipitation (mm/month) that occurred over the aquifer of San Diego Municipality during the period 2015-2017: Figure 8a - 1: January-December 2015, Figure 8 m-x: January-December 2016, Figure 8 y-e: January - July 2017.

January 2015 SSPM 19.522*Nugget 159.2*1-Bessel(178510.2.0489) Pebrury 2015 SSPM 34.818*Nugget 158.49*1-Bessel(271440.4.82(1) PRF 0.51523569972* * + 4.2873087400682 March 2015 SSPM 1.4603*Nugget 158.49*1-Bessel(17810.4.82(1) PRF 0.5072356823* * + 1.5715555590625 April 2015 SSPM 23.597*Nugget 105.03*1-Bessel(4358.5.3761) PRF 0.53213550823* + 2.4577383*2.22.155 May 2015 SSPM 118.21*Nugget+236.4*1-Bessel(53709.0.43129) PRF 0.4564042557478* * + 2.2687309818075 2.2687308918075 June 2015 SSPM 0.65323755081744 * + 2.2687309818075 Jung 2015 SSPM 0.6532375380574 * + 1.500400866655 August 2015 SSPM 0.751250501746* + 2.2687309.217241 PRF 0.65237573328587 * + 2.057326327241 Ocober 2015 SSPM 0.7Nugget 1627.71*Bessel(40581.0.32483 PRF 0.78025019974* + 1.004019019208* * + 1.0504010401106 January 2016 SSPM 0.7802501974* + 2.2637090.2011 January 2016 SSPM 0.780250197961* + 1.00230147401106 January 2016 SSP	Precipitation	Prediction Model	Ordinary Krigging
PRF $0.5323818509308 * x + 4.287308740682February 2015SPM34181^{\rm New} 0.551323366099772 * x + 3.6663350087514March 2015SPM1.4003^{\rm New} 0.1553380April 2015SPM1.4003^{\rm New} 0.1553380March 2015SPM2.397^{\rm New} 0.552318165970819 * x + 8.6773339232231May 2015SPM2.397^{\rm New} 0.852018105970819 * x + 8.677339232231June 2015SPM11821^{\rm New} 0.43504025574774 * x + 22.6873008318075June 2015SPM0^{\rm New} 0.452455081704 * x + 23.5592157470299July 2015SPM0^{\rm New} 0.571765407138565 * x + 41.504000865655August 2015SPM0^{\rm New} 0.571765407138565 * x + 41.50400086565August 2015SPM0^{\rm New} 0.5525700807157 * x + 30.742206548426September2015SPM0^{\rm New} 0.5525700807157 * x + 30.4920552272341October 2015SPM0^{\rm New} 0.5525700807157 * x + 30.492052273241October 2015SPM0^{\rm New} 0.5525700807157 * x + 30.492052753741PRF0.75258871 * 3079 * x + 8.233109327537October 2015SPM0^{\rm New} 0.5525700807157 * x + 30.498073275341PRF0.7525889179691 * x + 0.83152112096019PRF0.752588179691 * x + 0.83152112096019Presender 2015SPM0^{\rm New} 0.5547 * x + 1.1379950303773Janaary 2016SPM0^{\rm New} 0.5547 * x + 1.1379950303773Janaary 2016SPM0^{\rm New} 0.514547 * x + 1.03200303767Janaary 2016SPM0^{\rm New} 0.514547 * x + 0.831521120960159Petruary 2016SPM$	January 2015	SSPM	19.522*Nugget+159.2*J-Bessel(178510,2.0489)
February 2015 SSPM 34.818*Nugger158.497-J8-sec0[27144].04.8261] March 2015 SSPM 1.4003*Nugger1410.54*J-Bessel(210830.1.5538) April 2015 SSPM 2.3597*Nugger1195.03*J-Bessel(210830.1.5538) May 2015 SSPM 2.3597*Nugger1195.03*J-Bessel(23059.0.43129) May 2015 SSPM 2.46471*Nugger1236.64*J-Bessel(53079.0.43129) June 2015 SSPM 2.6471*Nugger1-236.54*J-R58.28903 Juny 2015 SSPM 2.6471*Nugger1-2406.8*J-R58.28903 July 2015 SSPM 0.*Nugger1-2871*J-Bessel(25982.2.7193 July 2015 SSPM 0.*Nugger1-2871*J-Bessel(25982.0.7193 September2015 SSPM 0.*Nugger1-371*J-Bessel(25982.0.7193 PRF 0.7050*090715*** 41.50400086655 2.0050*812.0.71*35 November 2015 SSPM 0.*Nugger1-376.7*J-Bessel(3507.0.70572) PRF 0.7050*090715*** 41.501*00608655 2.0050*872 November 2015 SSPM 0.*Nugger1-376.7*J-Bessel(3507.0.70572) PRF 0.7052*080715*1** 41.5019060*8675 2.0040*199 Junary 2016 SSPM 0.7252*8814309*** 41.21.5079660*8757 Junary 2015 <td></td> <td>PRF</td> <td>0.532238183609308 * x + 4.42873087404682</td>		PRF	0.532238183609308 * x + 4.42873087404682
PRF $0.5315235609727 * x + 3.66653560087514March 2015SSPML.403574982841.0.5538)PRF0.50174595336823 * x + 2.151565599625April 2015SSPM25.977190819 * x + 2.67733392322315May 2015SSPM0.532218165970819 * x + 2.67733392322315June 2015SSPM18.217190819 * x + 3.67733392322315June 2015SSPM0.52218165970819 * x + 2.5733993318075June 2015SSPM0.632177382326174738 * x + 22.6873098318075June 2015SSPM0.543249553081704 * x + 23.5392157470299July 2015SSPM0.543249553081704 * x + 23.5392157470299July 2015SSPM0.5325700881704 * x + 23.5392157470299July 2015SSPM0.5325700881704 * x + 23.5392157470299September2015SSPM0.57375373328563 * x + 41.5040009865655August 2015SSPM0.5325700801757 * x + 30.4980732273241October 2015SSPM0.5325700801757 * x + 30.4980732273241October 2015SSPM0.5325700801757 * x + 30.4980732273241October 2015SSPM0.700601961920288 * x + 10.532103267537December 2015PRF0.700601961920189 * x + 10.531321102960159PRF0.726258817990631 * x + 0.5312112960159PRF0.726258817990631 * x + 0.531251039207537December 2016PRF0.726258817996951 * x + 0.5312514392002187Junary 2016SSPM0.5154744794794794 * x + 0.53756430796383July 2016PRF0.7262587192747007 * x + 0.53756430796383July 2016PRF0.72625719274087 * x$	February 2015	SSPM	34.818*Nugget+158.49*J-Bessel(271440,4.8261)
March 2015 SSPM 1.4603*Nugger110.54*J-Bessel(210830.1.5538) April 2015 SSPM 2.3.997*Nugget1495.03*J-Bessel(24538.5.5761) May 2015 SSPM 1.8.21*Nugget1495.03*J-Bessel(33709.0.43129) PkF 0.455040025574778* k = A.67733328587* k = 2.2.6873098318075 June 2015 SSPM 0.6471*Nugget+236.64*J-Bessel(50311.001) PkF 0.543240555081714* k = 2.2.5392157470299 July 2015 SSPM 0.751753323857* k = 4.5.042606965548126 Apgus 2015 SSPM 0.7Nugget+3677.1*J-Bessel(2398.2.3903) September2015 SSPM 0.7Nugget+3677.1*J-Bessel(2398.2.3923.17193) PkF 0.57527008907157* k = 0.5048206.32237.341 October 2015 SSPM 0.7Nugget+370.34*J-Bessel(3399.0.01) PkF 0.75737332887* k = 0.537056037157 December 2015 SSPM 0.7Nugget+370.34*J-Bessel(3709.0.01) PkF 0.859828134030* k = 0.537163031106 January 2016 SSPM 0.7Nugget+30.34*J-Bessel(3709.0.01) January 2016 SSPM 0.7Nugget+30.34*J-Bessel(3709.0.01) January 2016 SSPM 0.7Nugget+41.34*J-Bessel(3709.0.01) Jan		PRF	0.531523366999772 * x + 3.66653569087514
PEF 0.50174595336823 * x + 2.1571556559625 April 2015 SSPM 23.597*Wugget+195.0571-Besciel(4358.5,761) May 2015 SSPM 118.21*Wugget+23.64*1-Besciel(3709.043129) June 2015 SSPM 26.47*1/Wugget+26.84*1-Besciel(2509.043129) June 2015 SSPM 0.54324955501704* x + 23.592157470299 July 2015 SSPM 0*Nugget+2851+F-Besciel(2309.10.01) PEF 0.54324955501704* x + 23.592157470299 July 2015 SSPM 0*Nugget+2851+F-Besciel(2309.10.01) PEF 0.54324955501704* x + 23.5722696548426 September2015 SSPM 0*Nugget+30.71+178.5865* x + 41.5040609865055 September2015 SSPM 0*Nugget+30.71+178.5867* x + 30.70796639872 November 2015 SSPM 0*Nugget+708.71*Bescil(3570.001) PEF 0.59562882143079* x + 25.5107966309872 November 2015 SSPM 0*Nugget+30.51*1+159550017* PEF 0.79966398972 12.74*Nugget+104.29*1-Bescil(3570.001) PEF 0.799662882143079* x + 25.510796309872 November 2015 SSPM 0.7996796298272 PEF 0.43637970-D8381(05770.001)	March 2015	SSPM	1.4603*Nugget+110.54*J-Bessel(210830,1.5538)
April 2015 SSPM 23.597*Nugget+195.03*J-Bessel(4358,5.3761) May 2015 SSPM 118.21*Nugget+236.64*J-Bessel(33709.0.43129) June 2015 SSPM 26.471*Nugget+236.64*J-Bessel(50331.0.01) June 2015 SSPM 26.471*Nugget+236.64*J-Bessel(50331.0.01) June 2015 SSPM 0*Nugget+2851*J-Bessel(26398,28903) July 2015 SSPM 0*Nugget+481*J-5*D-Bessel(32070,7.07572) PKF 0.6737573332887*** +15.040600865055 August 2015 SSPM 0*Nugget+3677.1*J-Bessel(26398,2.32483) PKF 0.6735773332887*** +5.07422606548426 October 2015 SSPM 0*Nugget+276.7*J-Bessel(30590,010) PKF 0.7590090715***** +2.53790560757 Docember 2015 SSPM 9.8461*Nugget+20.4*J-4.0*9405655 Docember 2015 SSPM 9.8461*Nugget+40.4*J-86580(53700.0.01) PKF 0.759302807*** +2.53709607157* Docember 2016 SSPM 9.7867*** +2.5370960715** January 2016 SSPM 9.7867**** +2.5371964501** January 2016 SSPM 9.7867***** <td></td> <td>PRF</td> <td>0.501745953386823 * x + 2.15715565599625</td>		PRF	0.501745953386823 * x + 2.15715565599625
PRF 0.529218165970819 * x + 8.67733392322315 May 2015 SSPM 118.21% ugget+326.647+Bessel(53700.043129) June 2015 SSPM 26.471 wugget+40.6487+Bessel(53700.043129) July 2015 SSPM 0.543249555081704 * x + 23.539215747299 July 2015 SSPM 0.571765407138665 * x + 41.5040609865655 August 2015 SSPM 0.571765407138565 * x + 41.5040609865655 September2015 SSPM 0.60237573832887 * x + 50.742269548426 September2015 SSFM 0.632357000907157 * x + 30.4980732273241 October 2015 SSFM 0.790969196192058 * x + 21.5079966398722 November 2015 SSFM 0.859862882143070 * x + 8.2531093207337 December 2015 SSFM 0.45971992279988 * x + 10.8261043021106 January 2016 SSFM 0.4597199227988 * x + 10.8261034021106 January 2016 SSFM 0.712528891796611 * x + 0.8312120960159 February 2016 SSFM 0.71252891796611 * x + 0.3132120960159 February 2016 SSFM 0.7125289179661 * x + 1.37950303787 March 2016 SSFM 0.7125289179661 * x + 1.032501044611106 January 2016	April 2015	SSPM	23.597*Nugget+195.03*J-Bessel(44358,5.3761)
May 2015 SSPM 118.21*Nugget+326.64*1-Bessel(53709,0.43129) June 2015 SSPM 26.471*Nugget+406.8*1-Bessel(5631,0.01) July 2015 SSPM 0.45124955081704 * x + 2.3235125740299 July 2015 SSPM 0*Nugget+3281*1-Bessel(23092,2403) August 2015 SSPM 0*Nugget+14715*1-Bessel(23092,2403) September2015 SSPM 0*Nugget+326.771*82.887* * x = 50.472006544426 September2015 SSFM 0*Nugget+276.877*1-Bessel(23952,1.7193) October 2015 SSFM 0*Nugget+326.771*Bessel(35700,0.01) PRF 0.63525700980715* * x = 50.4206549426 November 2015 SSFM 0*Nugget+30.437*19*Bessel(35700,0.01) PRF 0.7006019612058* * x = 12.037966399872 November 2015 SSFM 0.839862882143079* x = 8.2331093267537 December 2015 SSFM 0.81545*Nugget+8.6169*Dessel(158700,0.01) January 2016 SSFM 0.40573199327088* x = 10.826104301106 January 2016 SSFM 0.72625891709551* x = 0.83132120960157 Pari 2016 SSFM 0.72623957254487* x = 1.1379950303787 March 2016 PRF 0.726205957		PRF	0.529218165970819 * x + 8.67733392322315
PRF $0.48506402574778 * x + 2.2873008318075$ June 2015SSPM $26471^{10} saget-40.6874^{-10} secsel(3390, 2531, 001)$ July 2015SSPM0"Nugget-14071-585081704 * x + 2.3392157470299July 2015SSPM0"Nugget-1471574-5858012039, 28003)Aagust 2015PRF $0.66237573822857 * x + 50.74226654426$ September2015SSPM0"Nugget-1705.771-Bessel(12092, 0.70872)PRF $0.66237573822857 * x + 50.74226654426$ October 2015SSPM0"Nugget-1705.771-Bessel(140882, 0.32483)October 2015SSPM0"Nugget-1703.471-Bessel(140882, 0.32483)December 2015SSPM0.8466282143079 * x + 2.31096639872November 2015SSPM0.8366282143079 * x + 2.3103267537December 2015SSPM0.731993270888 x + 10.82014031106January 2016SSPM0.72628891796901 * x + 0.83132106610January 2016SSPM0.71620572574087 * x + 1.3139763039787March 2016SSPM0.71620572574087 * x + 1.3139763039787March 2016SSPM0.71620572574078 * x + 1.337963039787March 2016SSPM0.71892509824210960101July 2016SSPM831.58*Nugget-1898.59*Dessel(47718.001)July 2016SSPM0.718925098722July 2016SSPM0.7262437394521 * x + 0.5337564397633July 2016SSPM0.7149407 * x + 1.43794509633July 2016SSPM0.71494707 * x + 1.437945148066July 2016SSPM0.7354977027273478 * x + 6.3375643764336July 2016SSPM0.36237192747007 * x + 10484300022245	May 2015	SSPM	118.21*Nugget+236.64*J-Bessel(53709,0.43129)
June 2015 SSPM 26.471*Nugget+406.8*J-Bessel(5631,0.01) PRF 0.54324955081740* x + 23.53215740299 July 2015 SSPM 0*Nugget+281*J-Bessel(26398,2.8903) August 2015 SSPM 0*Nugget+14715*J-Bessel(23097,0.70872) August 2015 SSPM 0*Nugget+14715*J-Bessel(23097,0.70872) September2015 SSPM 0*Nugget+36277,87378478*F x + 50.472206548426 September2015 SSPM 0*Nugget+730,34*J-Bessel(130700,0.01) October 2015 SSPM 0*Nugget+30.67*J*Bessel(40882.0.32488) December 2015 SSPM 38.461*Nugget+30.67*J*Bessel(58700,0.01) Jannary 2016 SSPM 0.405731993270988* x + 1.0.32910930737 Jannary 2016 SSPM 0.405731993270988* x + 1.0.32910930737 Jannary 2016 SSPM 0.405731993270988* x + 1.0.32910930787 March 2016 PRF 0.73625891706051 * x + 0.331321120960159 February 2016 SSPM 0.73625897202* x + r.5.33756430796333 April 2016 SSPM 0.736209572274087* x + 1.1370950303787 March 2016 SSPM 0.33968759902042* x + 6.33716425686 July2016 SSPM<		PRF	0.485604025574778 * x + 22.6873098318075
PFF 0.54324955081704 * x + 23.5392157470299 July 2015 SSPM 0*Nugget-28171-Bessel(20382,28003) August 2015 PFF 0.571765407138565 * x + 41.504069865655 September2015 SSPM 0*Nugget+261751-Bessel(203907,07572) PFF 0.662375738328587 * x + 50.742269654384266 September2015 SSPM 0*Nugget-2768.771-Bessel(20392,17133) October 2015 SSPM 0*Nugget-2768.771-Bessel(30302,0132414 November 2015 PFF 0.85962882143471-Bessel(53709.001) PFF 0.709060191012058 * x + 13.00796639872 November 2015 SSPM 132.74*Nugget+1042.99*1-Bessel(0395010.01) January 2016 SSPM 0*Nugget+30.56*1* x + 0.8312120960159 February 2016 SSPM 0*Nugget+41.513*1-Bessel(30801.01, BS17) March 2016 SSPM 0.4189026342024 * x + 0.53756403796533 April 2016 SSPM 0.42203713944204 * x + 0.43756403796633 July 2016 SSPM 516.66*Nugget+1268.9*J-Bessel(3797.00.01) July 2016 SSPM 516.66*Nugget+1268.9*J-Bessel(3797.00.01) July 2016 SSPM 0.326271127707 * x + 108.430000222451 </td <td>June 2015</td> <td>SSPM</td> <td>26.471*Nugget+406.8*J-Bessel(56331,0.01)</td>	June 2015	SSPM	26.471*Nugget+406.8*J-Bessel(56331,0.01)
July 2015 SSPM $0^{\text{rNuget+281}-12-\text{Bessel}(26398,2.8003)$ PRF 0.57175340113856 ** x + 41.504060865655 August 2015 SSPM $0^{\text{rNuget+14715}-1-\text{Bessel}(3207,0.70572)$ PRF 0.6627373832887 * x 50.742696548426 September2015 SSPM $0^{\text{rNuget+3627},1^{19}-1-\text{Bessel}(3987327324)$ October 2015 SSPM $0^{\text{rNuget+3627},1^{19}-1-\text{Bessel}(398732732)$ November 2015 SSPM $0^{\text{rNuget+3627},03.4^{19}-1-\text{Bessel}(35709,001)$ December 2015 SSPM $0^{\text{rNuget+3057},03.4^{19}-1-\text{Bessel}(35709,001)$ December 2015 SSPM $0^{\text{rNuget+30577},03.4^{19}-1-\text{Bessel}(369790,01)$ December 2015 SSPM $0^{\text{rNuget+30577},19.4562,037637$ December 2016 SSPM $0^{\text{rNuget+30577},19.4562,03764,0376433106$ January 2016 SSPM $0^{\text{rNuget+415137},19.462,0976,00,01)$ PRF $0.726238817907951 * x + 0.33376430796383$ April 2016 SSPM $0^{\text{rNuget+145137},19.468,00,01)$ PRF $0.4396875995204 * x + 0.33376430796383$ April 2016 SSPM $13.58^{\text{rNugget+1898},5^{1-1},19.45686(53709,0,01)$ PRF		PRF	0.543249555081704 * x + 23.5392157470299
PFF $0.57176540713856F + 4.15040060865565August 2015SSPM0^{\circ}Nugget+1715^{\circ}F-Bessel(32000.075757)September2015SSPM0^{\circ}Nugget+36271.1^{\circ}F-Bessel(325251.1793)October 2015SSPM0^{\circ}Nugget+32768.7^{\circ}1-Bessel(325251.1793)October 2015SSPM0^{\circ}Nugget+3768.7^{\circ}1-Bessel(32500.01)PRF0.535257009807157^{\circ} x + 3.04980732273.41October 2015SSPM38.461^{\circ}Nugget+30.347^{\circ}-Bessel(53709.0.01)PRF0.8996288144079^{\circ} x + 8.250103267537December 2015SSPM132.74^{\circ}Nugget+30.567^{\circ}+Bessel(138700.0.01)January 2016SSPM0^{\circ}Nugget+30.567^{\circ}+Bessel(138700.0.01)January 2016SSPM0^{\circ}Nugget+30.567^{\circ}+Bessel(138700.1.8760)PFF0.72629871960951^{\circ} x + 0.831321120606159February 2016SSPM0^{\circ}Nugget+41.513^{\circ}+Bessel(53000.001)PRF0.726209572574087^{\circ} x + 1.13799603833April 2016SSPM815.8^{\circ}Nugget+18.619^{\circ}+1.86.86166331.001)PRF0.4398875952042^{\circ} x + 0.533756430706383June 2016PSF0.42263713244521^{\circ} x + 7.3163761825868July2016SSPM516.6^{\circ}Nugget+18.4513^{\circ}+Bessel(53700.0.01)PRF0.3625719274070^{\circ} x + 1.03673618256631.0.01)PRF0.36257192747077^{\circ} x + 1.03673618256631.0.01)July2016SSPM72.4848^{\circ} x + 9.825044SSPM285.48^{\circ}Nugget+131.6^{\circ}-11.86156731.20,010PRF0.36257192747007^{\circ} x + 1.08.403000222451July2016SSPM72.4848^{\circ} x + 9.82504$	July 2015	SSPM	0*Nugget+2851*J-Bessel(26398,2.8903)
August 2015SSPM $0^{\text{Nugget}1+175^{3}\text{Bessel}(32097).070572)PRF0.66277573328587 * x 50.742269654826September2015SSPM0^{\text{Nugget}-3627,14^{3}\text{Bessel}(23952,1.7193)Decober 2015SSPM0^{\text{Nugget}-3627,14^{3}\text{Bessel}(2392,1.7193)Decober 2015SSPM0^{\text{Nugget}+2768,74^{3}\text{Bessel}(40582,0.32488)November 2015SSPM0^{\text{Nugget}+2768,74^{3}\text{Bessel}(40582,0.32488)December 2015SSPM38.461^{4}\text{Nugget}+730.34^{4}\text{Bessel}(959790.001)December 2015SSPM0^{\text{Nugget}+10.402,94^{3}\text{Bessel}(995790.001)Innuary 2016SSPM0^{\text{Nugget}+13.657,1488,6194^{3}\text{Bessel}(995790.001)PRF0.405731993270988^{4}x + 1.03261034031106January 2016SSPM5.1454^{4}\text{Nugget}+1878.61,947^{3}\text{Bessel}(32206,1187)Parch 2016PRF0.72620872574087^{4}x + 1.0379950309787March 2016PSF0.43968759952042^{4}x + 0.53356430796383April 2016PSF0.42968759952042^{4}x + 0.53356430796383April 2016SSPM831.58^{4}\text{Nugget}+128.94^{-1}\text{Bessel}(53709.001)PRF0.429637134421241^{2}x + 65027964189065July 2016SSPM25251224420320^{2}x + x + 0.533764307022451July 2016SSPM25251234240530^{4}x + 1.1379960303922451July 2016SSPM25251234242312421^{2}x + x 65027964189065July 2016SSPM25251234240500^{4}x + 10.53761825406September 2016SSPM252512342426050^{4}x + 10.02371623744SPF0.3437^{4}x + x + 9.25131029115013October 2$		PRF	0.571765407138565 * x + 41.5040609865655
PRF $0.66237738328587 * x + 50.74226954426$ September2015SSPM $0^{\text{PNugget}} 325.71 * J + Bessel(23952,1.7193)October 2015PRF0.535257009807157 * x + 30.498073227341October 2015SSPM0^{\text{PNugget}} 47.68 * T + L + 50.69860882,0.32488)November 2015PRF0.709009196192088 * x + 12.507996039872December 2015SSPM132.74^{\text{PNugget}} + 703.34^{\text{P1}} - Bessel(53700,0.01)December 2016SSPM0.25986282143079 * x + 8.2531093267337December 2016SSPM0^{\text{PNugget}} + 30.567^{\text{P1}} - Bessel(158700,1.5876)February 2016SSPM0^{\text{PNugget}} + 30.567^{\text{P1}} - Bessel(379700,01)February 2016SSPM0^{\text{PNugget}} + 30.571497 * x + 1.13799503037877March 2016SSPM0^{\text{PNugget}} + 132.74^{\text{PNugget}} + 1382.59186863April 2016SSPM0^{\text{PNugget}} + 132.74^{\text{PNugget}} + 136.7506333March 2016PRF0.439675952042 * x + 0.53375643076633May 2016SSPM51545^{\text{PNugget}} + 1385.59186866311.001May 2016SSPM0.3525124274007 * x + 10.84030002245131July2016SSPM0.3525192747007 * x + 108.4030002245131July2016SSPM0.3525192747007 * x + 10.840300023245131July2016SSPM0.3525192742007 * x + 10.5311441543499August 2016PRF0.36237192747007 * x + 10.84030042731July2016SSPM0.3525123422630 * x + 10.5314454349August 2016SSPM0.3525124422300 * x + 10.5314514590.0011December 2016SSPM0.353749727$	August 2015	SSPM	0*Nugget+14715*J-Bessel(32097,0.70572)
September2015 SSPM 0*Nugget+3627, 1*J-Bessel (23952, 17, 193) October 2015 PRF 0.55257009807157 * x + 10.4980732273241 October 2015 SSPM 0*Nugget+2768, 7*J-Bessel (40582, 0.32488) November 2015 SSPM 38.461 *Nugget+730.34*J-Bessel (50700, 0.01) December 2015 SSPM 12.74*Nugget+1042, 971-Bessel (50700, 0.01) December 2015 SSPM 0.405731993270988 * x + 10.826103401166 January 2016 SSPM 0.405731993270988 * x + 10.826103401166 PRF 0.7026209572574087 * x + 0.331321120960159 February 2016 SSPM 0.7162209572574087 * x + 1.13799503039787 March 2016 PRF 0.726209572574087 * x + 1.13799503039787 March 2016 SSPM 0.718205229 * x + 0.537564307966383 April 2016 SSPM 831.58*Nugget+188,59*J-Bessel(47180,01) PRF 0.36227192747007 * x + 10.840300022241 July2016 SSPM 116.66*Nugget+2126,9*J-Bessel(4988,0.047188) July2016 SSPM 0.35257192747007 * x + 108.40300022451 September 2016 SSPM 0.36257192747007 * x + 108.403000022451 September 2016		PRF	0.662375738328587 * x + 50.7422696548426
PRF $0.535257009807157^* x + 3.049807327341$ October 2015 SSPM $0^{7}ugget2768, 7^{7}desset(40582, 0.32488)$ November 2015 SSPM $3.8461^{8}Nugget730.3471-Besset(33709, 0.01)$ December 2015 SSPM $132, 74^{8}Nugget+730.3471-Besset(33709, 0.01)$ January 2016 SSPM $0.85960282143079^{9} x + 8.251(932307371)$ January 2016 SSPM $0^{7}Nugget+30.567^{3}-1Besset(1587601, 18769)$ February 2016 SSPM $0^{7}Nugget+1451.8710, 1379950303787$ March 2016 SSPM $0^{7}Nugget+145.13^{3}N_2000, 1.8517)$ March 2016 SSPM $0^{7}Nugget+145.13^{3}N_2000, 0.01)$ March 2016 SSPM $0^{7}Nugget+1268, 9^{1}-Besset(50300, 0.01)$ March 2016 SSPM $0^{7}Nugget+1268, 9^{1}-Besset(50310, 0.01)$ March 2016 SSPM $0^{1}Nugget+1268, 9^{1}-Besset(50310, 0.01)$ May 2016 SSPM $0.35251234426308 * x + 101.511441849866 July2016 SSPM 0.35251234426308 * x + 101.511441545499 August 2016 SSPM 0.35251234426308 * x + 101.511441545499 August 2016 SSPM 0.35251234426308 * x + 100.5013.001) $	September2015	SSPM	0*Nugget+3627.1*J-Bessel(23952,1.7193)
October 2015 SNPM $0^{\text{PNugget+27}(8, 7^{1}-\text{Bessel}(4)S82, 0), 24283} November 2015 SSPM 38.461^{\circ}\text{Nugget+730}.34^{\circ}\text{J}-\text{Bessel}(53709, 0.01) December 2015 SSPM 32.74^{\circ}\text{Nugget+104}.29^{\circ}\text{J}-\text{Bessel}(95709, 0.01) January 2016 SSPM 132.74^{\circ}\text{Nugget+104}.29^{\circ}\text{J}-\text{Bessel}(95700, 0.01) January 2016 SSPM 0^{\circ}\text{Nugget+30.5674'-J}-\text{Bessel}(138760, 1.8769) PkF 0.726209572574087^{\circ}** + 1.379950309787 Harch 2016 SSPM 0^{\circ}\text{Nugget+14.5137}-\text{Bessel}(158760, 1.8517) PkF 0.726209572574087^{\circ}** + 1.379950309787 March 2016 SSPM 0^{\circ}\text{Nugget+14.5137}-\text{Bessel}(59080, 0.01) PkF 0.726209572574087^{\circ}** + 1.379950309787 March 2016 SSPM 81.58^{\circ}\text{Nugget+38.169^{\circ}-18essel}(53803, 0.01) PkF 0.742633719247007^{\circ}** + 1.379950438^{\circ}** + 0.537264189666 July 2016 SSPM 516.66^{\circ}\text{Nugget+3275.3^{\circ}-18essel}(34400, 0.01) PkF 0.34263719247007^{\circ}** + 108.4103000224515 July 2016 SSPM 252.57192474007^{\circ}** + 10.5114545499 August 2016 SSPM 253.48^{\circ}\text{Nugget+350.591-91-8essel}(57040, $	o 1 0017	PRF	0.535257009807157 * x + 30.4980732273241
November 2015SSPM PKF $0.00069196192008 * x + 21.507960398/2November 2015SSPM0.83461^8 Nugget+30.3479 + x + 8.253109267537December 2015SSPM0.27267889201430219 * x + 10.8261034031106January 2016SSPM0^{10}Nugget+30.3479 + 1.8essel(995790.0.01)January 2016SSPM0^{10}Nugget+30.3479 + 1.8essel(158706.1.8769)February 2016SSPM0.72625887029261.87670February 2016SSPM0^{10}Nugget+38.519 + 1.8essel(3970633)March 2016SSPM0^{10}Nugget+38.519 + 1.8essel(5980,0.01)PKF0.4396875952042 * x + 0.5337564307633April 2016SSPM81.58^{10}Nugget+38.519 + 1.8essel(5431,0.01)PKF0.4396875952042 * x + 0.53375641825868May 2016SSPM51.66^{10}Nugget+268.919 + 1.8essel(56331,0.01)PKF0.422633713944521 * x + 65.057264189686June 2016SSPM285.48^{10}Nugget+381.36^{10} + Bessel(54380,0.01)PKF0.3227192747007 * x + 108.403000222451July2016SSPM275.42424308 * x + 10.511441545499August 2016SSPM285.48^{10}Nugget+375.3^{11}-Bessel(31400,0.01)PKF0.324712727407 * x + 108.403000222451August 2016SSPM285.48^{10}Nugget+750.1^{11}-Bessel(50709,0.01)PKF0.324712727407 * x + 10.511441545499August 2016SSPM285.48^{10}Nugget+750.1^{11}-Bessel(107010,0.01)PKF0.32471727407 * x + 10.81040340737August 2016SSPM3580^{10}Nugget+750.1^{11}-Bessel(105500,01)PKF0.$	October 2015	SSPM	0*Nugget+2/68./*J-Bessel(40582,0.32488)
November 2015 SSPM 58.461^{-1} Nugget - 10.3-47 - Bessel (370,00.01) PRF 0.8598628214307 * x + 8.2531093267537 December 2015 SSPM 132.74 ^{+N} Nugget - 1042.9 ⁻¹ - Bessel (3970,0.01) January 2016 SSPM 0.4053139270988 * x + 10.8261034031106 January 2016 SSPM 0.726258891796951 * x + 0.831321120960159 February 2016 SSPM 0.726208757274087 * x + 1.1379503039787 March 2016 PKF 0.726209572574087 * x + 1.1379503039787 March 2016 SSPM 0.7Nugget - 188.561(97060.0.01) PKF 0.451890263420529 * x + 72.3163761825868 May 2016 SSPM 516.66 ⁺ Nugget - 186.56 ⁻ PB-Bessel(477118.0.01) PRF 0.451890263420529 * x + 72.3163761825868 May 2016 SSPM 516.66 ⁺ Nugget - 186.91 ⁻ Bessel(4309686 June 2016 SSPM 2828.6 ⁺ Nugget - 186.91 ⁻ Bessel(43100.0.01) PRF 0.345271274007 * x + 108.43000222451 July2016 SSPM 25521234423078 * x + 98.25004 September 2016 SSPM 5362.9 ⁺ PVLget - 935.1 ⁺ PS-Bessel(1370,0.01) PKF 0.3487 * x + 98.25004 Septem	N 1 2015	PRF	0.709069196192058 * x + 21.5079966399872
Prefer $0.85986.28214.30/9 * x + 8.2.31092.67/37December 2015SSPM132.74^{*}Nugget+104.29^{*}F.Bessel(05370).011January 2016SSPM0^{*}Nugget+3.567^{*}.Bessel(05370).011January 2016SSPM0^{*}Nugget+3.567^{*}.Bessel(158760).18769).February 2016SSPM5.1545^{*}Nugget+88.619^{*}1.Bessel(3202.601.4817).PRF0.726258891796951 * x + 0.831321120960159March 2016SSPM0^{*}Nugget+14.513^{*}1.Bessel(5030.01)PRF0.72620572574087 * x + 1.13799503039787March 2016SSPM0^{*}Nugget+14.513^{*}1.Bessel(5030.01)PRF0.4368759952042 * x + 0.533756430796383April 2016SSPM81.58^{*}Nugget+18.98.5^{*}1.Bessel(56331.0.01)PRF0.4368759952042 * x + 0.533756430796886June 2016SSPM282.68^{*}Nugget+326.5^{*}1.Bessel(56331.0.01)PRF0.36257192747007 * x + 108.403000222451July2016SSPM282.86^{*}Nugget+327.5^{*}1.Bessel(34500.001)PRF0.36257192747007 * x + 108.403000222451July2016SSPM282.86^{*}Nugget+325.5^{*}1.Bessel(34500.001)PRF0.36257192747007 * x + 108.11441545499August 2016SSPM282.68^{*}Nugget+7951.1^{*}1.Bessel(10700.0.01)PRF0.36374 * + 98.25004September 2016SSPM2550.48^{*}Nugget+173.1510215013Cotober 2016SSPM572.^{*}Nugget+173.86^{*}1.Bessel(13770.0.01)PRF0.36374912482319 * x + 110.20307162874December 2016SSPM790.58^{*}Nugget+173.86^{*}1.Bessel(203170.0.01)$	November 2015	SSPM	38.461*Nugget+/30.34*J-Bessel(53/09,0.01)
December 2015 SFM 132. / 4*Nugget+104.59*1.ebssel(35700.1876) January 2016 SSPM 0*Nugget+30.567*J-Bessel(158700.18769) January 2016 SSPM 0*Nugget+30.567*J-Bessel(158700.18769) February 2016 SSPM 5.1545*Nugget+88.619*J-Bessel(320260.1.8517) March 2016 SSPM 0.726209572574087 * x + 1.379950303978 March 2016 SSPM 0*Nugget+14.513*J-Bessel(550800.0.01) April 2016 SSPM 831.58*Nugget+1898.5*J-Bessel(547706383 April 2016 SSPM 16.66*Nugget+1268.9*J-Bessel(5310.01) PRF 0.43968759952042* x + 62.0572964189686 July 2016 SSPM 516.66*Nugget+353.7*J-Bessel(5331.0.01) PRF 0.42623113044521* x + (5.0572964189686 July 2016 SSPM 2828.6*Nugget+33.6*J-Bessel(53310.0.01) PRF 0.36257192747007* x + 108.4030022451 July 2016 SSPM 283.4*Nugget+351.5*J-Bessel(53709.0.01) PRF 0.36257192747007* x + 108.4030022451 July 2016 SSPM 283.4*Nugget+7951.1*J-Bessel(70621.2.0628) PRF 0.3487* x + 98.25004 291.5*10205131 October 20	December 2015	PKF	0.859862882143079 * x + 8.2531093267537
January 2016FKP $0.030319952/10986 * X \pm 10.250104031106January 2016SSPM0^{PNLgett} = 30.567"-Bessel(158760,1.8769)February 2016SSPM5.1545"Nugget+88.619*1-Bessel(320260,1.8517)PRF0.726258891796951 * x + 0.83312120960159March 2016SSPM0^{PNLget+14.513*1-Bessel(320260,1.8517)PRF0.475675925024 * x + 0.533756430796383April 2016SSPM831.58*Nugget+188.5*1-Bessel(47718,0.01)PRF0.43968759952042 * x + 0.533756430796383April 2016SSPM831.68*Nugget+126.89*1-Bessel(56331,0.01)PRF0.43548725274007 * x + 0.533756430796383June 2016SSPM282.6*Nugget+313.6*1-Bessel(54631,0.01)PRF0.36257192747007 * x + 108.403000222451July2016SSPM1734.4*Nugget+3275.3*1-Bessel(5481,040,0.01)PRF0.36257192747007 * x + 108.403000222451July2016SSPM285.48*Nugget + 3569.9*1-Bessel(54621,0450,0.01)PRF0.36257192747007 * x + 108.403000222451July2016SSPM25542426308 x + 10.1511441545499August 2016SSPM25509.9*1-Bessel(5709,0.01)PRF0.354397702273458 * x + 10.511441545499August 2016SSPM575.2*Nugget+4061*1-Bessel(10706,0.1)PRF0.354397702273458 * x + 10.51141545499August 2016SSPM5905.5*Nugget+4061*1-Bessel(107010,0.01)PRF0.354397702273458 * x + 10.257102273458 * x + 10.51141545499August 2016SSPM5905.5*Nugget+4061*1-Bessel(107010,0.01)PRF0.357$	December 2015	2255M	132.74*Nugget+1042.9*J-Bessel(995790,0.01)
January 2016SFM 0^{-1} Nugget+30.367-7-Dessel(39700.1.879) PRFProblemPRF $0.7262389179691 * x + 0.831321120960159$ February 2016SSPM 5.1545° Nugget+86.619*1-Bessel(392060.1.8517)March 2016SSPM 0° Nugget+14.513*1-Bessel(59080.0.01)April 2016SSPM 0° Nugget+14.513*1-Bessel(59080.0.01)April 2016SSPM 811.58° Nugget+188.51*-Bessel(159080.0.01)PRF $0.43968759952042 * x + 0.533756430796383May 2016SSPM516.66^{\circ}Nugget+126.89*1-Bessel(5031.0.01)PRF0.422633713944521 * x + 65.0572964189686June 2016SSPM2228.6^{\circ}Nugget+313.6*1-Bessel(6498.0.047188)July2016SSPM225.48^{\circ}Nugget+3275.3*1-Bessel(314500.0.01)PRF0.35251234426308 * x + 101.511441545499August 2016SSPM225.48^{\circ}Nugget+15413.6*1-Bessel(67021,2.0628)PRF0.35251234426308 * x + 101.511441545499August 2016SSPM257.2^{\circ}Nugget+1671.1*1-Bessel(70621,2.0628)PRF0.3487 * x + 98.25004September 2016SSPM57.2^{\circ}Nugget+161.1*19-Bessel(70621,2.0628)PRF0.3537491242318 * x + 81.6411650714322November 2016SSPM595.5^{\circ}Nugget+204.95*K-Bessel(13770,0.01)PRF0.3537910273485 * x + 10.061874396207February 2017SSPM27.05^{\circ}Nugget+212.95*I-Bessel(37917,0.01)PRF0.35391048927083 * x + 10.061874396207February 2017SSPM27.05^{\circ}Nugget+844.75*J-Bessel(194470.0.01)PRF0.353951048927083 * x + 20$	January 2016		0.403/319932/0988 * X + 10.8201034031100
February 2016FNF PRF $0.72623897139139137129001199$ March 2016SSPM 5.1545^{*N} Nugget+186.519 ^{*1} .Bessel(259061.15317)March 2016SSPM 0^{*N} Nugget+145.13*1-Bessel(59080.001)PRF $0.43968759952042^{*} x + 0.533756430796383April 2016SSPM831.58^{*N}Nugget+189.55*1-Bessel(59080.01)PRF0.43968759952042^{*} x + 0.533756430796383May 2016SSPM516.66^{*N}Nugget+131.6*1-Bessel(5938.001)PRF0.422633713944521^{*} x + 65.572964189686June 2016SSPM228.66^{*N}Nugget+313.6*1-Bessel(6498.0047188)July2016SSPM228.66^{*N}Nugget+313.6*1-Bessel(6398.00.01)PRF0.36257192747007^{*} x + 108.403000222451July2016SSPM273.4^{*N}Nugget+3275.3*1-Bessel(314500.001)PRF0.36257192747007^{*} x + 108.403000222451July2016SSPM275.4^{*N}Nugget+3275.3*1-Bessel(314500.001)PRF0.36257192747007^{*} x + 108.403000222451August 2016SSPM285.48^{*N}Nugget+3275.3*1-Bessel(31450.00.01)PRF0.36257192747007^{*} x + 108.403000222451October 2016SSPM255.48^{*N}Nugget+3275.215102915013October 2016SSPM572.2^{*N}Nugget+3275.11*1-Bessel(70621,2.0628)PRF0.337497702273485^{*} x + 81.6411650714322November 2016SSPM590.5^{*N}Nugget+4061*1-Bessel(05590.001)PRF0.337497702273485^{*} x + 40.56159770001PRF0.34374912482319^{*} x + 19.023071628874December 2016SSPM590.5^{*N}Nugget+4147.9*1-Bessel$	January 2010		0.726259901706051 * x + 0.921221120060150
$\begin{array}{cccc} 1.537M & 5.1547M & 5.15441M &$	February 2016	PKF SSDM	0.720238891790931 * X + 0.831321120900139 5 1545*Nuggat (88 610*L Pagea)(220260 1 8517)
March 2016SFM $0^{12}02052^{12}43^{13}$ $1-15^{13}5^{13}0576^{13}$ April 2016PRF $0.43968759952042^{+}x + (5.33756430796383)$ April 2016SSPM $811.58^{+}Nugget+189.5^{+}1-Bessel(57018,25868)$ May 2016SSPM $516.66^{+}Nugget+1268.9^{+1}-Bessel(56311,0.01)$ PRF $0.42523713944251^{+}x + 65.0572964189686$ June 2016SSPM $2828.6^{+}Nugget+5413.6^{+}1-Bessel(64988,0.047188)$ PRF $0.36257192747007^{+}x + 108.403000222451$ July2016SSPM $2828.4^{*}Nugget+3275.3^{+}1-Bessel(134500,0.01)$ PRF $0.36257192747007^{+}x + 108.403000222451$ July2016SSPM $285.48^{*}Nugget+3569.9^{+}1-Bessel(53709,0.01)$ PRF $0.35251234426308^{+}x + 98.2153102910.010$ PRF $0.35251234426308^{+}x + 98.2153102910.010$ PRF $0.3512712747007^{+}x + 108.2153102910.010$ PRF $0.35251234426308^{+}x + 98.2153102910.010$ PRF $0.35251234426308^{+}x + 98.2153102910.010$ October 2016SSPMSSPM $557.2^{*}Nugget+141.1^{-*}1-Bessel(107010,0.01)$ PRF $0.35497702273485^{+}x + 81.6411650714322$ November 2016SSPMSSPM $5905.5^{*}Nugget+129.49^{+}88.41.6311742.00.01)$ PRF $0.35497702273485^{+}x + 10.98.21(10370,0.01)$ PRF $0.35497702273485^{+}x + 10.203071628874$ December 2016SSPMPRF $0.3549702319^{+}x + 19.2023071628742$ December 2016SSPMPRF $0.35435^{+}x + 10.0861874396207$ PRF $0.35435^{+}x + 10.0861874396207$ PRF </td <td>Teordary 2010</td> <td></td> <td>0.726200572574087 * x + 1.12700502020787</td>	Teordary 2010		0.726200572574087 * x + 1.12700502020787
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	March 2016	SSDM	$0.720207572574087 \times X + 1.15775505057787$ 0*Nugget+14.513*I Bessel(50080.0.01)
April 2016Int0.3750017322042 $\times 10.3513720472$ $\times 10.3513720472$ April 2016SSPM83138*Nugget+1898.5*J-Bessel(47718.001)PRF0.422633713944521 $\times + 12.3163761825868$ June 2016SSPM2828.6*Nugget+3413.6*J-Bessel(56331.0.01)PRF0.36257192747007 $\times \times + 108.403000222451$ July2016SSPM2828.6*Nugget+5413.6*J-Bessel(5498.0.047188)PRF0.36257192747007 $\times \times + 108.40300022451$ July2016SSPM1734.4*Nugget+3275.3*J-Bessel(5498.0.047188)PRF0.36257192747007 $\times \times + 108.40300022451$ August 2016SSPM285.48*Nugget +3560.9*J-Bessel(53709.0.01)PRF0.3487 $\times + 98.25004$ September 2016SSPM2521018315209597 $\times \times + 89.2153102915013$ October 2016SSPM557.2*Nugget+140147.7*J-Bessel(707010.0.01)PRF0.36734912482319 $\times \times + 19.023071628874$ November 2016SSPM5905.5*Nugget+406147.18essel(105500.0.01)PRF0.36734912482319 $\times \times + 10.023071628874$ December 2016SSPM188.92*Nugget+739.86*J-Bessel(25050.0.81312)PRF0.363734912482319 $\times \times + 10.023071628874$ January 2017SSPM0*Nugget + 212.95*J-Bessel(25050.0.81312)PRF0.35157 $\times \times 5.3918$ March 2017SSPM237.68*Nugget + 204.93*J-Bessel(231770.0.01)PRF0.35157 $\times \times 5.3918$ March 2017SSPM232.82*Nugget + 208.03*J-Bessel(194470.0.01)PRF0.353951048927083 $\times \times + 23.4768407446735$ April 2017SSPM232.82*Nugget +	Water 2010	PRE	$0.13968759952042 * x \pm 0.533756430796383$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	April 2016	SSPM	831 58*Nugget+1898 5*LBessel(47718 0 01)
May 2016SSPM516.66*Nugget+1268.9*1-Bessel(56331.0.01) PRFJune 2016PRF0.422633713944521*** 0.422633713944521*** 0.6257192747007***+108.403000222451July2016SSPM1734.4*Nugget+3275.3*1-Bessel(314500,0.01) PRF0.53251234426308*** 0.53251234426308***101.511441545499August 2016SSPM285.48*Nugget + 3569.9*1-Bessel(53709.0.01) PRF0.3487*** 0.3487***98.25004September 2016SSPM285.48*Nugget+7951.1*1-Bessel(70621.2.0628) PRF0.521018315209597*** 0.521018315209597***89.2153102915013October 2016SSPM557.2*Nugget+1471.7*1-Bessel(107010.0.01) 	ripin 2010	PRF	0.451890263420529 * x + 72.3163761825868
$\begin{array}{cccc} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	May 2016	SSPM	516 66*Nugget+1268 9*I-Bessel(56331.0.01)
June 2016SSPM $2828.6^*Nugget+5413.6^*J-Bessel(64988.0.047188)$ PRFJuly2016PRF $0.36257192747007 * x + 108.403000222451$ July2016SSPM $1734.4^*Nugget+3257.3^*J-Bessel(314500,0.01)$ PRFAugust 2016SSPM $285.48^*Nugget + 3569.9^*J-Bessel(53709,0.01)$ PRFSeptember 2016SSPM $285.48^*Nugget + 3569.9^*J-Bessel(70621,2.0628)$ PRFOctober 2016SSPM $3580.9^*Nugget+7951.1^*J-Bessel(70621,2.0628)$ PRFOctober 2016SSPM $557.2^*Nugget+1471.7^*J-Bessel(107010,0.01)$ PRFNovember 2016SSPM $595.5^*Nugget+1471.7^*J-Bessel(107010,0.01)$ PRFOctober 2016SSPM $595.5^*Nugget+398.4^*J-Bessel(107010,0.01)$ PRFOctober 2016SSPM $595.5^*Nugget+398.4^*J-Bessel(313770,0.01)$ PRFDecember 2016SSPM $188.92^*Nugget + 729.95^*K-Bessel(25056.0.81312)$ PRFJanuary 2017SSPM $7.2046^*Nugget + 212.95^*K-Bessel(25056.0.81312)$ PRFPRF $0.5137^* x + 5.3918$ March 2017SSPM $267.05^*Nugget + 308.3^* x + 23.4768407446735$ April 2017PRF $0.32391024159167 * x + 23.4768407446735$ April 2017PRF $0.3216^* x + 87.9910$ May 2017SSPM $232.82^*Nugget + 388.97*J-Bessel(201320,0.01)$ PRFMay 2017SSPM $3874.2^*Nugget + 388.97*J-Bessel(18810,1.2106)$ PRFJuly 2017SSPM $4830.6^*Nugget + 5933.1*J-Bessel(186820,1.2692)$ PAFJuly 2017SSPM $4830.6^*Nugget + 5933.1*J-Bessel(186820,1.2692)$	May 2010	PRF	0.422633713944521 * x + 65.0572964189686
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	June 2016	SSPM	2828.6*Nugget+5413.6*J-Bessel(64988.0.047188)
		PRF	0.36257192747007 * x + 108.403000222451
PRF $0.53525123426308 * x + 101.511441545499$ August 2016SSPM $285.48*Nugget + 3569.9*J$ -Bessel(53709,0.01)PRF $0.3487 * x + 98.25004$ September 2016SSPM $3580.9*Nugget+7951.1*J$ -Bessel(70621,2.0628)PRF $0.521018315209597 * x + 89.2153102915013$ October 2016SSPM $557.2*Nugget+1471.7*J$ -Bessel(107010,0.01)PRF $0.37549770227485 * x + 81.6411650714322$ November 2016SSPM $5905.5*Nugget+4061*J$ -Bessel(105590,0.01)PRF $0.363734912482319 * x + 119.023071628874$ December 2016SSPM $188.92*Nugget+739.86*J$ -Bessel(313770,0.01)PRF $0.43239024159167 * x + 20.1213030430473$ January 2017SSPM $7.2046*Nugget + 294.95*K$ -Bessel(25056,0.81312)PRF $0.5435 * x + 10.0861874396207$ February 2017SSPM $0*Nugget + 212.95*J$ -Bessel(37917,0.01)PRF $0.5157 * x + 5.3918$ March 2017SSPM $23.282*Nugget + 1346.9*J$ -Bessel(203170,0.01)PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $23.282*Nugget + 208.3*J$ -Bessel(201320,0.01)PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget + 1346.9*J$ -Bessel(201320,0.01)PRF $0.3047476712288 * x + 86.581597567905$ June 2017SSPM $3874.2*Nugget + 3889.7*J$ -Bessel(186810,1.2106)PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6*Nugget + 593.1*J$ -Bessel(186820,1.2692)PUF $0.34858 * x + 140.7880$	July2016	SSPM	1734.4*Nugget+3275.3*J-Bessel(314500,0.01)
August 2016SSPM PRF $285.48*Nugget + 3569.9*J-Bessel(53709,0.01)$ PRF September 2016SSPM PRF $3580.9*Nugget+7951.1*J-Bessel(70621,2.0628)$ PRF October 2016SSPM PRF $557.2*Nugget+1471.7*J-Bessel(107010,0.01)$ PRF November 2016SSPM PRF $5905.5*Nugget+4061*J-Bessel(107010,0.01)$ PRF December 2016SSPM PRF $5905.5*Nugget+4061*J-Bessel(105590,0.01)$ PRF December 2016SSPM PRF $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRF December 2016SSPM PRF $188.92*Nugget+294.95*K-Bessel(25056,0.81312)$ PRF December 2017SSPM PRF $0.5435*x+10.0861874396207$ $PRFFebruary 2017SSPMPRF0.5157*x+5.39180.5157*x+5.3918March 2017March 2017SSPMSSPMPRF267.05*Nugget+844.75*J-Bessel(23170,0.01)PRFMarch 2017PRFSSPM0.353951048927083*x+23.4768407446735232.82*Nugget+2080.3*J-Bessel(201320,0.01)PRFMay 2017PRFSSPM0.304747671720388*x+86.5815975679705June 2017PRFSSPM0.34858*x+140.7880July 2017SSPMPRF0.34858*x+140.7880July 2017SSPMPRF0.34858*x+140.7880July 2017SSPMPRFPRF0.34858*x+140.7880$	2	PRF	0.535251234426308 * x + 101.511441545499
PRF $0.3487 * x + 98.25004$ September 2016SSPM $3580.9*Nugget+7951.1*J-Bessel(70621,2.0628)$ PRFOctober 2016PRF $0.52101835209597 * x + 89.2153102915013$ October 2016SSPM $557.2*Nugget+1471.7*J-Bessel(107010,0.01)$ PRFNovember 2016SSPM $5905.5*Nugget+4061*J-Bessel(105590,0.01)$ PRFDecember 2016SSPM $5905.5*Nugget+34912482319 * x + 119.023071628874$ December 2016SSPM $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRFDecember 2016SSPM $188.92*Nugget+739.86*J-Bessel(25056,0.81312)$ January 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRFPRF $0.5435 * x + 10.0861874396207$ February 2017SSPM $0*Nugget + 212.95*J-Bessel(37917,0.01)$ PRFPRF $0.5157 * x + 5.3918$ March 2017SSPM $267.05*Nugget+84.75*J-Bessel(23170,0.01)$ PRFPRF $0.322.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRFMay 2017SSPM $94.699*Nugget+1346.9*J-Bessel(194470,0.01)$ PRFMay 2017SSPM $94.699*Nugget+346.9*J-Bessel(185810,1.2106)$ PRFJune 2017SSPM $94.699*Nugget+346.9*J-Bessel(185810,1.2106)$ PRFJune 2017SSPM $94.699*Nugget+346.9*J-Bessel(185810,1.2106)$ PRFJune 2017SSPM $94.699*Nugget+348.9*J-Bessel(185810,1.2106)$ PRFJune 2017SSPM $94.699*Nugget+348.9*J-Bessel(185810,1.2106)$ PRFJune 2017SSPM $3874.2*Nugget+388.7*J-Bessel(186820,1.2692)$ July 2017SSPM $4830.6*Nugget+5933.1*J$	August 2016	SSPM	285.48*Nugget + 3569.9*J-Bessel(53709,0.01)
September 2016SSPM PRF $3580.9*Nugget+7951.1*J-Bessel(70621,2.0628)$ PRFOctober 2016SSPM PRF $557.2*Nugget+1471.7*J-Bessel(107010,0.01)$ PRFNovember 2016SSPM SSPM PRF $0.375497702273485 * x + 81.6411650714322$ $0.375497702273485 * x + 81.6411650714322$ November 2016SSPM PRF $5905.5*Nugget+4061*J-Bessel(105590,0.01)$ PRFDecember 2016SSPM PRF $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRFJanuary 2017SSPM PRF $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRFFebruary 2017SSPM PRF $0.5435 * x + 10.0861874396207$ PRFFebruary 2017SSPM PRF $0.5157 * x + 5.3918$ March 2017SSPM PRF $267.05*Nugget + 2080.3*J-Bessel(233170,0.01)$ PRFMarch 2017SSPM PRF $232.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRFMay 2017SSPM PRF $9.2216 * x + 87.9910$ May 2017SSPM PRF $9.2216 * x + 83.9910$ May 2017SSPM PRF $9.3458 * x + 140.7880$ July 2017SSPM PRF $3874.2*Nugget + 388.7*J-Bessel(186810,1.2106)$ PRFJuly 2017SSPM PRF $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$		PRF	0.3487 * x + 98.25004
$\begin{array}{llllllllllllllllllllllllllllllllllll$	September 2016	SSPM	3580.9*Nugget+7951.1*J-Bessel(70621,2.0628)
October 2016SSPM PRF $557.2*Nugget+1471.7*J-Bessel(107010,0.01)$ PRFNovember 2016SSPM $590.57*Nugget+14061*J-Bessel(105590,0.01)$ PRFDecember 2016SSPM $590.5.7*Nugget+4061*J-Bessel(105590,0.01)$ PRFDecember 2016SSPM $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRFDecember 2017SSPM $183.23*Nugget+294.95*K-Bessel(25056,0.81312)$ PRFDecember 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRFDecember 2017SSPM $0*Nugget + 212.95*J-Bessel(37917,0.01)$ PRFPRF $0.5157*x + 5.3918$ March 2017SSPM $267.05*Nugget + 2080.3*J-Bessel(233170,0.01)$ PRFPRF $0.2216*x + 87.9910$ May 2017SSPM $94.699*Nugget + 1346.9*J-Bessel(201320,0.01)$ PRFMay 2017SSPM $94.699*Nugget + 1346.9*J-Bessel(201320,0.01)$ PRFJune 2017SSPM $94.699*Nugget + 3889.7*J-Bessel(185810,1.2106)$ PRFJuny 2017SSPM $94.692*Nugget + 5933.1*J-Bessel(186820,1.2692)$ PRFJuly 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$ PRF		PRF	0.521018315209597 * x + 89.2153102915013
PRF $0.375497702273485 * x + 81.6411650714322$ November 2016SSPM $5905.5*Nugget+4061*J-Bessel(105590,0.01)$ PRF $0.363734912482319 * x + 119.023071628874$ December 2016SSPM $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRF $0.432390024159167 * x + 20.1213030430473$ January 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRF $0.5435 * x + 10.0861874396207$ February 2017SSPM $0*Nugget + 212.95*J-Bessel(37917,0.01)$ PRF $0.5157 * x + 5.3918$ March 2017SSPM $267.05*Nugget + 844.75*J-Bessel(233170,0.01)$ PRF $0.3282*Nugget + 208.3*J-Bessel(233170,0.01)$ PRF $0.3282*Nugget + 208.3*J-Bessel(20120,0.01)$ PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget + 1346.9*J-Bessel(201320,0.01)$ PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J-Bessel(186820,1.206)$ PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$	October 2016	SSPM	557.2*Nugget+1471.7*J-Bessel(107010,0.01)
November 2016SSPM PRF $5905.5*Nugget+4061*J-Bessel(105590,0.01)$ $0.363734912482319*x+119.023071628874December 2016SSPMPRF188.92*Nugget+739.86*J-Bessel(313770,0.01)PRFJanuary 2017SSPMPRF7.2046*Nugget+294.95*K-Bessel(25056,0.81312)PRFPerbuary 2017SSPMPRF0.5435*x+10.08618743962070*Nugget+212.95*J-Bessel(25056,0.81312)PRFMarch 2017SSPMPRF0.5157*x+5.3918March 2017SSPMPRF267.05*Nugget+844.75*J-Bessel(233170,0.01)PRFMarch 2017SSPMPRF232.82*Nugget+2080.3*J-Bessel(194470,0.01)PRFMay 2017SSPMPRF94.699*Nugget+1346.9*J-Bessel(201320,0.01)PRFMay 2017SSPMPRF94.699*Nugget+3889.7*J-Bessel(185810,1.2106)PRFJune 2017SSPMPRF3874.2*Nugget+3889.7*J-Bessel(186820,1.2692)July 2017SSPMPRF94.693.1*J-Bessel(186820,1.2692)$		PRF	0.375497702273485 * x + 81.6411650714322
PRF $0.363734912482319 * x + 119.023071628874$ December 2016SSPM $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRF $0.432390024159167 * x + 20.1213030430473$ January 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRF $0.5435 * x + 10.0861874396207$ February 2017SSPM $0*Nugget + 212.95*J-Bessel(37917,0.01)$ PRF $0.5157 * x + 5.3918$ March 2017SSPM $267.05*Nugget + 844.75*J-Bessel(233170,0.01)$ PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $232.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget + 1346.9*J-Bessel(201320,0.01)$ PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J-Bessel(186820,1.2692)$ July 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$	November 2016	SSPM	5905.5*Nugget+4061*J-Bessel(105590,0.01)
December 2016SSPM $188.92*Nugget+739.86*J-Bessel(313770,0.01)$ PRFJanuary 2017SSPM $0.432390024159167*x+20.1213030430473$ January 2017SSPM $7.2046*Nugget+294.95*K-Bessel(25056,0.81312)$ PRFPRF $0.5435*x+10.0861874396207$ February 2017SSPMPRF $0.5157*x+5.3918$ March 2017SSPM267.05*Nugget+844.75*J-Bessel(233170,0.01) PRFPRF $0.353951048927083*x+23.4768407446735$ April 2017SSPM232.82*Nugget + 2080.3*J-Bessel(194470,0.01) PRFMay 2017SSPMPAF $0.304747671720388*x+86.5815975679705$ June 2017SSPMPRF $0.34858*x+140.7880$ July 2017SSPMPRF $0.34858*x+140.7880$ July 2017SSPMPRF $0.346777*x+503.1*J-Bessel(186820,1.2692)$		PRF	0.363734912482319 * x + 119.023071628874
PRF $0.432390024159167*x + 20.1213030430473$ January 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRF $0.5435*x + 10.0861874396207$ February 2017SSPM $0*Nugget + 212.95*J-Bessel(37917,0.01)$ PRF $0.5157*x + 5.3918$ March 2017SSPM $267.05*Nugget+844.75*J-Bessel(233170,0.01)$ PRF $0.353951048927083*x + 23.4768407446735$ April 2017SSPM $232.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRF $0.2216*x + 87.9910$ May 2017SSPM $94.699*Nugget+1346.9*J-Bessel(201320,0.01)$ PRF $0.304747671720388*x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106)$ PRF $0.34858*x + 140.7880$ July 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$	December 2016	SSPM	188.92*Nugget+739.86*J-Bessel(313770,0.01)
January 2017SSPM $7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)$ PRF $0.5435*x + 10.0861874396207$ February 2017SSPMPRF $0.5157*x + 5.3918$ March 2017SSPM267.05*Nugget+844.75*J-Bessel(233170,0.01)PRF $0.353951048927083*x + 23.4768407446735$ April 2017SSPM232.82*Nugget + 2080.3*J-Bessel(194470,0.01)PRF $0.2216*x + 87.9910$ May 2017SSPM94.699*Nugget+1346.9*J-Bessel(201320,0.01)PRF $0.304747671720388*x + 86.5815975679705$ June 2017SSPMPRF $0.34858*x + 140.7880$ July 2017SSPMPRF $0.34858*x + 140.7880$ July 2017SSPMPRF $0.346777*x - 144.57026(2012)$		PRF	0.432390024159167 * x + 20.1213030430473
PRF $0.5455 * x + 10.08618/4396207$ February 2017SSPM $0*Nugget + 212.95*J$ -Bessel(37917,0.01)PRF $0.5157 * x + 5.3918$ March 2017SSPM $267.05*Nugget+844.75*J$ -Bessel(233170,0.01)PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $232.82*Nugget + 2080.3*J$ -Bessel(194470,0.01)PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget+1346.9*J$ -Bessel(201320,0.01)PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J$ -Bessel(185810,1.2106)PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6*Nugget + 5933.1*J$ -Bessel(186820,1.2692)	January 2017	SSPM	7.2046*Nugget + 294.95*K-Bessel(25056,0.81312)
February 2017SSPM $0^{+}Nugget + 212.95^{+}J-Bessel(37917,0.01)$ PRF $0.5157 * x + 5.3918$ March 2017SSPM $267.05^{*}Nugget+844.75^{*}J-Bessel(233170,0.01)$ PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $232.82^{*}Nugget + 2080.3^{*}J-Bessel(194470,0.01)$ PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699^{*}Nugget+1346.9^{*}J-Bessel(201320,0.01)$ PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2^{*}Nugget + 3889.7^{*}J-Bessel(185810,1.2106)$ PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6^{*}Nugget + 5933.1^{*}J-Bessel(186820,1.2692)$	E 1 - 2017	PRF	0.5435 * x + 10.08618/439620/
PKF $0.5157 * x + 5.3918$ March 2017SSPM $267.05*Nugget+844.75*J-Bessel(233170,0.01)$ PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $232.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget+1346.9*J-Bessel(201320,0.01)$ PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106)$ PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$	February 2017	SSPM	0*Nugget + 212.95*J-Bessel(37917,0.01)
March 2017SSPM $267.05*Nugget+844.75*J-Bessel(233170,0.01)$ PRF $0.353951048927083 * x + 23.4768407446735$ April 2017SSPM $232.82*Nugget + 2080.3*J-Bessel(194470,0.01)$ PRF $0.2216 * x + 87.9910$ May 2017SSPM $94.699*Nugget+1346.9*J-Bessel(201320,0.01)$ PRF $0.304747671720388 * x + 86.5815975679705$ June 2017SSPM $3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106)$ PRF $0.34858 * x + 140.7880$ July 2017SSPM $4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)$	Manah 2017	PKF	0.515/ * X + 5.3918
April 2017 SSPM 232.82*Nugget + 2080.3*J-Bessel(194470,0.01) PRF 0.2216 * x + 87.9910 May 2017 SSPM 94.699*Nugget+1346.9*J-Bessel(201320,0.01) PRF 0.304747671720388 * x + 86.5815975679705 June 2017 SSPM 3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106) PRF 0.34858 * x + 140.7880 July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)	warch 2017	DDE	207.03 INU89017082 * x 1 22 4769407446725
April 2017 SSPM 252.82 *Nugget + 2080.5*J-Bessel(194470,0.01) PRF 0.2216 * x + 87.9910 May 2017 SSPM 94.699*Nugget+1346.9*J-Bessel(201320,0.01) PRF 0.304747671720388 * x + 86.5815975679705 June 2017 SSPM 3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106) PRF 0.34858 * x + 140.7880 July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)	April 2017	PKF SSDM	0.33393104892/083 "X + 23.4708407440733 222 $93*N_{Wagget} + 2080.2*L Deccel(104470.0.01)$
May 2017 SSPM 94.699*Nugget+1346.9*J-Bessel(201320,0.01) PRF 0.304747671720388 * x + 86.5815975679705 June 2017 SSPM 3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106) PRF 0.34858 * x + 140.7880 July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)	April 2017	DDE	232.02 (Nugget + 2000.3 J-Dessel(194470,0.01) 0.2216 * $y \pm 87.0010$
May 2017 SSFM 94.059 (Nugget+1340.9 (J-Bessel(201320,0.01)) PRF 0.304747671720388 * x + 86.5815975679705 June 2017 SSPM 3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106) PRF 0.34858 * x + 140.7880 July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)	May 2017	I NI SSDM	$0.2210^{-1} \text{ A} \pm 07.7710$ $0.4 600 \times \text{Nugget} \pm 1246 0 \times \text{I} \text{ Bassal}(201220.0.01)$
June 2017 SSPM 3874.2*Nugget + 3889.7*J-Bessel(185810,1.2106) PRF 0.34858 * x + 140.7880 July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692)	wiay 2017	PRE	$0.304747671720388 * x \pm 86.5815075670705$
July 2017 SSPM July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692) DEF 0.2477 * g = 114.5700 cont 0.2477 * g = 114.5700 cont	June 2017	SSPM	3874 2*Nugget + 3889 7*LRessel(185810 1 2106)
July 2017 SSPM 4830.6*Nugget + 5933.1*J-Bessel(186820,1.2692) DEF 0.26777 # get 114.57005604	June 2017	PRF	0.34858 * x + 140.7880
	July 2017	SSPM	4830 6*Nugget + 5933 1*I-Bessel(186820 1 2692)
PKF $0.366 / / * x + 114.52945 / 006694$		PRF	0.36677 * x + 114.529437006694

Table: 3. Results of Modelling of Statistical Spatial Prediction of the Monthly Precipitation
based on the time series between 2015 and 2017 in the Aquifer of the Municipality of San
Diego, Carabobo State.

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function,

ł,	Ł,	4			Ľ,	4		K,	ł,		Ű	Ľ,		
m) n)		°	(q	q			S)	K.		u)	V	K.		x)
aa)	b)	.c)	dd)	00)			99)							
		а	b	с	d	e	f	g	h	i	j	k	1	
	Min.	115	170	151	157	162	123	128	137	117	132	137	109	
	Máx.	123	174	155	158	167	128	132	147	119	134	143	115	
		m	n	0	р	q	r	S	t	u	V	W	х	
	Min.	141	137	185	138	117	122	142	122	98	121	85	90	
	Máx.	142	138	188	141	122	125	144	125	103	125	86	91	

a) 🧂

h)

	у	Z	aa	bb	сс	dd	ee
Min.	29	80	105	85	108	116	122
Máx.	64	90	124	97	113	121	123

Fig: 9. Spatial prediction of the monthly evapotranspiration (mm/month) that occurred over the aquifer of San Diego Municipality during the 2015-2017 period: Figure 9a - 1: January-December 2015, Figure 9m-x: January-December 2016, Figure 9y-e: January - July 2017.

a)	b)	c)	a)		B)	Ð		g)		h)		i)	D	K)	D C C C C C C C C C C C C C C C C C C C
m)	n)	o)	ľ)	q)		r)	s		t)		u)	V)	w)	x
aa)	bb)	cc)	L	dd)	ee)		ff)		ga)						
		а	b	с	d	e	f	g	h	L	i	j	k	1	
	Min.	0	0	0	0	0	0	0	0)	0	0	0	0	
	Máx.	. 19	19	19	19	19	19	19	- 19	9	19	19	19	19	
		m	n	0	р	q	r	S	1	ţ	u	V	W	Х	
	Min.	0	0	0	0	0	0	0	()	0	0	0	0	
	Máx.	19	19	19	19	19	19	19	1	9	19	19	19	19	
															-
			Γ		у	Z	aa	bb	cc	dd	ee	;			
			Γ	Min.	0	0	0	0	0	0	0				
				Máx.	20	20	20	20	20	20	20)			

Fig: 10. Spatial prediction of the monthly pumping flow (*l/s*) that occurred over the aquifer of San Diego Municipality during the 2015-2017 period: Figure 10a - *l*: January-December 2015, Figure 10m-x: January-December 2016, Figure 10y-e: January - July 2017.

Table: 4. Results of Modelling of Statistical Spatial Prediction of the Monthly Evapotranspiration based on the time series between 2015 and 2017 in the Aquifer of the Municipality of San Diego, Carabobo State.

Evapotranspiration	Models	Ordinary Krigging
January 2015	SSPM	131.04*Nugget+3673.6*J-Bessel(1115100,0.51397)
5	PRF	0.648144684643057 * x + 44.8318716808285
February 2015	SSPM	26.814*Nugget+835.17*J-Bessel(189670.0.49692)
	PRF	0.416364435864507 * x + 73.584673262016
March 2015	SSPM	89 766*Nugget+659 11*J-Bessel(419760 10)
	PRF	0.289067209546218 * x + 103.401744641693
April 2015	SSPM	683.27*Nugget+ $2433.1*$ LBessel($837650.0.19588$)
April 2015	PRF	0.418465402182432 * x + 72.846971262649
May 2015	SSPM	$67773*Nugget \pm 10971*LBessel(110/800.0.173/8)$
May 2015	PRF	$0.308536599665459 * x \pm 109.010056119058$
June 2015	SSPM	507.84*Nugget+650.26*I Bessel(357100.0.045011)
June 2015	DDE	0.400550285080068 * x + 55.0044687002200
July 2015	SCDM	72.5228 Nugget + 1505.6 K = Passal(422240.6.6714)
July 2013	DDE	72.522 (Nugget+1595.0°)-Dessel(455540,0.0714)
August 2015	r NI ^V	0.514457004001104 + X + 55.5551410707041 200 57*Nugget + 1560 1*L Deccel(227540 2 8901)
August 2015	DDE	500.57 (Nugget+1500.1 J-Dessel(557540,5.8871) 0 510745057176105 * $x + 62.7070220208845$
Santambar2015		$0.519745957170195 \cdot X + 02.7979559208045$
September 2015	DDE	$0.440520061125821 * \pi + 81.2847071626071$
Ostabor 2015	PKF SSDM	0.440529901125851 * X + 81.5847971050071 100.02*Nugget + 626.1*L Deccel(616450.7.6867)
October 2015	55PM	100.95° Nugget+050.1*J-Besset(010450, 7.0807)
N		0.40280210/52/901 * X + 77.855551870508
November 2015	SSPM	29.762° Nugget+1504.5*J-Bessel(493500,1.6511)
D 1 2015	PRF	0.5863/321415166/ * X + 41.9363699462318
December 2015	SSPM	6.7862*Nugget+897.98*J-Bessel(276050,0.01)
	PRF	0.652092696696923 * x + 43.1883763030934
January 2016	SSPM	25.41*Nugget+147.81*J-Bessel(640110,0.01)
	PRF	0.606574268874103 * x + 52.5646550558943
February 2016	SSPM	50.958*Nugget+820.86*J-Bessel(5/6190,0.01)
	PRF	0.425546455395108 * x + 75.0265716584644
March 2016	SSPM	383.7*Nugget+1125.8*J-Bessel(809450,0.069314)
	PRF	0.511460801790995 * x + 81.3187313879988
April 2016	SSPM	66.79*Nugget+472.82*J-Bessel(175960,0.01)
	PRF	0.517198103028205 * x + 59.7907894634429
May 2016	SSPM	544.59*Nugget+2779.3*J-Bessel(1495900,0.01)
	PRF	0.496469645128778 * x + 56.6210390938054
June 2016	SSPM	454.16*Nugget+1579.9*J-Bessel(920530,0.23501)
	PRF	0.544958507204842 * x + 52.2452100084431
July2016	SSPM	0*Nugget+156.85*J-Bessel(361330,0.01)
	PRF	0.547061432183571 * x + 65.1935275619968
August 2016	SSPM	457.58*Nugget+3812.9*J-Bessel(57392,0.01)
	PRF	0.237744317274072 * x + 132.879894776294
September 2016	SSPM	875.24*Nugget+2093.3*J-Bessel(537350,0.01)
	PRF	0.437168668133696 * x + 61.0411283732782
October 2016	SSPM	44.13*Nugget+1077.6*J-Bessel(807180,10)
	PRF	0.53483301523759 * x + 57.51928145705
November 2016	SSPM	27.944*Nugget+43.078*J-Bessel(896040,0.01)
	PRF	0.151289289956767 * x + 73.5036117426325
December 2016	SSPM	1.116*Nugget+5.2092*J-Bessel(1119900,10)
	PRF	0.339562300412332 * x + 59.7123877816331
January 2017	SSPM	0*Nugget+1454.4*J-Bessel(348960,0.01)
-	PRF	0.367191150290792 * x + 87.4054993937792
February 2017	SSPM	0*Nugget+2191.4*J-Bessel(287670,0.13157)
	PRF	0.241741119572014 * x + 69.9514440235173
March 2017	SSPM	0*Nugget+4904.3*J-Bessel(404920,10)
	PRF	0.382304965087937 * x + 81.2556034373932
April 2017	SSPM	0*Nugget+2895.7*J-Bessel(289230,0.79683)
-	PRF	0.439171522881292 * x + 58.5641155446115
May 2017	SSPM	0*Nugget+853.12*J-Bessel(704130,0.01)
-	PRF	0.662843928659694 * x + 33.9482360629718
June 2017	SSPM	17.219*Nugget+2233.5*J-Bessel(1674300,10)
	PRF	0.699152931433195 * x + 43.0269990160359
July 2017	SSPM	129.05*Nugget+779.39*J-Bessel(704130,0.01)
-	PRF	0.547168253081016 * x + 59.7716031267275

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function,

Month	SSPM	Ordinary Krigging
January 2015	SSPM	9.5403*Nugget+62.577*J-Bessel(25571,1.4722)
,	DDE	0.556118740851363 * x + 1.18158774020576
E 1 0015		0.550110740051505 X \uparrow 1.10150774020570
February 2015	SSPM	9.64/*Nugget+62.604*J-Bessel(25980,1.3762)
	PRF	0.551860056019546 * x + 1.17686109803643
March 2015	SSPM	9.279*Nugget+62.96*LBessel(258/3.1./23/)
Waten 2015	DDE	0.55271124771(250 * 1.100407(000500)
	PKF	0.553/1134//16352 * x + 1.18949/68295886
April 2015	SSPM	9.3262*Nugget+62.661*J-Bessel(25843,1.4234)
1	PRF	0.549781907249476 * x + 1.19371554328239
16 2015		$0.3757701907279470 \times 11.19371334320239$
May 2015	SSPM	9.2/55*Nugget+62.584*J-Bessel(255/1,1.4822)
	PRF	0.553480748468507 * x + 1.17749047282423
June 2015	SSPM	9 336*Nugget+62 81*LBessel(25980 1 3949)
Julie 2015	DDE	0.550000664570071 * 1.10000462400057
	PRF	0.552200654579871 * x + 1.18989463480857
July 2015	SSPM	9.4146*Nugget+62.41*J-Bessel(25843,1.4234)
	PRF	0.550391387170895 * x + 1.17803888649086
A	CCDM	0.4210 × N = 2 + + + + + + + + + + + + + + + + + +
August 2015	SSPM	9.4319*Nugget+62.16/*J-Bessel(25/06,1.4525)
	PRF	0.549502416610134 * x + 1.17896064397254
September2015	SSPM	9 4319*Nugget+62 167*I-Bessel(25706 1 4525)
September2015	DDE	$0.540502416610124 \pm 1.17906064207254$
	PKF	0.349302410010134 * X + 1.17890004397234
October 2015	SSPM	9.4232*Nugget+62.073*J-Bessel(25436,1.5125)
	PRF	0.551209178749551 * x + 1.19256718827733
No	CCDM	$0.2028 \times 100000000000000000000000000000000000$
November 2015	SSPM	9.3938*INugget+62.529*J-Bessel(25845,1.4254)
	PRF	0.550404392467648 * x + 1.19548014888526
December 2015	SSPM	9 039*Nugget+61 096*I-Bessel(25843 1 433)
2010	DDE	0.553512096057056 * 1.19670022097492
	PRF	0.552515080957950 * x + 1.18070952287485
January 2016	SSPM	9.8914*Nugget+75.072*J-Bessel(24844,1.2864)
	PRF	0.542306516083507 * x + 1.4958392412262
February 2016	SCDM	$0.9557*N_{\text{Warret}} = 72.762*I_{\text{Deccel}} (24569 \pm 2577)$
February 2016	SSPM	$9.8557^{\text{Nuggel}+72.762^{\text{J}-Bessel}(24568, 1.5577)$
	PRF	0.532760750576408 * x + 1.49964950015477
March 2016	SSPM	9.3634*Nugget+78.103*J-Bessel(25548.1.3039)
10141011 2010	DDE	0.545495522027794 * + 1.51545694249124
	PRF	0.545485552057784 * X + 1.51545084548124
April 2016	SSPM	9.7713*Nugget+64.612*J-Bessel(21727,1.6849)
	PRF	0.544024854508689 * x + 1.44969237065449
May 2016	SCDM	$0.510*N_{\text{Magast}} = 77.62*I_{\text{Dagasl}} (25405.1.2205)$
May 2010	SSEM	9.519° inugget + 7.02° J-Dessei(23405,1.5505)
	PRF	0.542212194265383 * x + 1.50137847925103
June 2016	SSPM	9.9482*Nugget+69.591*J-Bessel(23626.1.3949)
	DDE	0.526194124109626 * 1.4940221090906
	PKF	0.330164134196030 · X + 1.46423312696690
July2016	SSPM	9.9463*Nugget+69.561*J-Bessel(23494,1.4234)
	PRF	0.538166412931703 * x + 1.47937043930584
August 2016	SCDM	0.0561 * Nugget + 72.840 * I. Passel(24205.1.4128)
August 2010	SSEM	9.9501 Nuggel+ 72.049 J-Dessel(24295,1.4156)
	PRF	0.530790183980625 * x + 1.49426289215953
September 2016	SSPM	9.8249*Nugget+77.107*J-Bessel(25548,1.2864)
1	PRF	0.530402716930797 * x + 1.51485235728876
0 1 0010		0.0100*N = 0.72.050*1 P = 1(24044.1.0051)
October 2016	SSPM	9.9192*Nugget+/3.852*J-Bessel(24844,1.2951)
	PRF	0.531615422320182 * x + 1.50916070078153
November 2016	SSPM	10.066*Nugget+72.458*J-Bessel(24295.1.4138)
	DDE	0.528628170701612 * x + 1.50622662100016
	ГКГ	0.328028179791015 + X + 1.30023002109010
December 2016	SSPM	9.6822*Nugget+77.073*J-Bessel(25548,1.3039)
	PRF	0.531289375607921 * x + 1.50599017554534
Jonuory 2017	SCDM	$0.5769*N_{ward} + 77.600*I P_{accol}/(25925.1.2271)$
January 2017	33FW	$9.3/00^{\circ}$ Nugget+//.099'J-Desset(23053,1.22/1)
	PRF	0.546091243785124 * x + 1.53103281010088
February 2017	SSPM	9.5655*Nugget+77.347*I-Bessel(25264.1.3486)
	DDE	0.54614704444955 * x + 1.51129151594240
	ГКГ	0.34014/94444033 + x + 1.31130131304349
March 2017	SSPM	9.9752*Nugget+66.132*J-Bessel(22343,1.5023)
	PRF	0.548614406792208 * x + 1.50673566587642
April 2017	SSDM	0.0752*Nuggat 66.122*I Deccel/02242 1.5022)
April 2017	SSPIM	9.9752*Nugget+00.152*J-Bessel(22545, 1.5025)
	PRF	0.548614406792208 * x + 1.50673566587642
May 2017	SSPM	10.279*Nugget+57.126*J-Bessel(20205.1.629)
, =,	DDE	0.551295010206217 * 1.1.46029426094292
	rkf	0.33128301029031/ * X + 1.40938426984282
June 2017	SSPM	9.8673*Nugget+66.186*J-Bessel(22094,1.5749)
	PRF	0.551324155213397 * x + 1.46790008990546
$I_{\rm M}$ $I_{\rm M}$ 2017	SCDM	$0.9496*N_{100}$
July 2017	SSTIVI	9.0400 mugget+00.444 J-Bessel(22218,1.5454)
	PRF	0.551393994087057 * x + 1.46943069576528

Table: 5. Results of the application of the ordinary krigging space prediction model of the
monthly pumping flow on the aquifer of San Diego Municipality, Carabobo State.

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function

	у	Z	aa	bb	сс	dd	ee
Min.	33	0	11	33	113	34	34
Máx.	69	11	15	69	126	74	79

Fig: 11. Spatial prediction of the monthly infiltration (mm) that occurred over the aquifer of San Diego Municipality during the period 2015-2017: Figure 11a - 1: January-December 2015, Figure 11m-x: January-December 2016, Figure 11y-e: January - July 2017.

	а	b	с	d	e	f	g	h	i	j	k	1
Min.	-14	-	-19	-	-	-12	-12	-96	-12	-12	-13	-13
		21		16	17							
Máx.	-13	-	-17	-	-	-10	-10	-46	-6	-8	-10	-10
		19		14	14							

	m	n	0	р	q	r	S	t	u	v	W	х
Min.	-18	-17	-24	-24	-	-12	-6	-92	-8	-6	21	-9
					21							
Máx.	-17	-16	-21	-21	31	0	-1	-52	-3	-1	26	-8

	у	Z	aa	bb	сс	dd	ee
Min.	-31	-	-13	-10	-	-10	-10
		48			10		
Máx.	40	-9		-5	-5	-5	-8
			11				

Fig: 12. Spatial prediction of the monthly volume stored (mm) that occurred over the aquifer of San Diego Municipality during the period 2015-2017: Figure 12a - 1: January-December 2015, Figure 12m-x: January-December 2016, Figure 12y-e: January - July 2017.

MAT

JOURNALS

Month	SSPM	Ordinary Krigging
January 2015	SSPM	0.19657*Nugget+0.46952*J-Bessel(6035.6,3.9154)
5	PRF	0.914190896029479 * x + 0.253452895027796
February 2015	SSPM	0.67583*Nugget+0.96255*J-Bessel(4674.3.3.3077)
2010	PRF	0.762089612759152 * x + 1.38319018235861
March 2015	SSPM	0.38596*Nugget+0.11568*I-Bessel(5024.3.10)
March 2015	PRF	0.544345605828489 * x + 0.639435525022578
April 2015	SSPM	$10.525 \times Nugget \pm 6.0109 \times LBessel(10781.4.3323)$
April 2015	PPF	$0.650070012100774 * x \pm 8.73857008427838$
Mov. 2015	SCDM	0.059079012190774 $X \pm 0.75057900427050$
Way 2015		24.945 Nugget+17.055 J-Desset(2250.2,4.5416) 0.585765105061821 * $_{\rm W}$ + 14.6805040045012
June 2015	ГКГ SSDM	0.365705195001651 + X + 14.0605940045912 105 67*Nugget 171 5*L Deccel(2821 2.5.7002)
Julie 2013		103.07 (Nugget+71.3) J-Dessel(2021.2,3.7902)
I-1- 2015	PRF SSDM	0.019403013309927 * X + 22.3189308030303
July 2015	55PM	05.5/1*Nugget+50.7/6*J-Bessel(5/60.1,5.0957)
	PRF	$0.694848180252544 \times X + 14.9847075790972$
August 2015	SSPM	118.53*Nugget+86.797*J-Bessel(10781,6.8539)
G . 1 0015	PRF	0.745364051940763 * x + 15.8793762762709
September2015	SSPM	98.435*Nugget+81.538*J-Bessel(/90/.6,10)
0.1.0015	PRF	0.//06419/6651541 * x + 13.5589515649548
October 2015	SSPM	35./12*Nugget+44.64*J-Bessel(4204.7,1.1705)
	PRF	0.75753021951756 * x + 11.9132985428515
November 2015	SSPM	31.3*Nugget+34.363*J-Bessel(4609.2,10)
	PRF	0.789772056113103 * x + 8.16059018119337
December 2015	SSPM	1.1119*Nugget+0.98826*J-Bessel(1732.6,4.7294)
	PRF	0.585803464433969 * x + 7.58240428229607
January 2016	SSPM	0*Nugget+0.00037546*J-Bessel(143.68,7.2339)
	PRF	0.998340562984084 * x + 0.000522546279174085
February 2016	SSPM	0.0093793*Nugget+0.0020918*J-Bessel(194.03,0.1298)
	PRF	0.984383003011847 * x + -0.00285817843860336
March 2016	SSPM	0.081671*Nugget+0.388*J-Bessel(10761,3.6847)
	PRF	0.969167042820265 * x + 0.00199153928813317
April 2016	SSPM	0*Nugget+197.53*J-Bessel(10684,2.0767)
	PRF	0.997294604926262 * x + 0.38027154954699
May 2016	SSPM	69.507*Nugget+53.299*J-Bessel(1923.4,5.7126)
	PRF	0.640999917062122 * x + 16.7204195976351
June 2016	SSPM	71.852*Nugget+72.175*J-Bessel(4302.5,10)
	PRF	0.681839724061845 * x + 15.9604874268722
July2016	SSPM	58.252*Nugget+64.196*J-Bessel(2998.4,4.4508)
	PRF	0.712646362692372 * x + 14.3430878942266
August 2016	SSPM	66.651*Nugget+51.651*J-Bessel(3503.5,10)
	PRF	0.558059828529455 * x + 23.4566811308446
September 2016	SSPM	57.882*Nugget+116.89*J-Bessel(7223.6,3.0712)
-	PRF	0.880727293021719 * x + 5.83936601008649
October 2016	SSPM	36.747*Nugget+29.651*J-Bessel(1481.3,4.0771)
	PRF	0.562940212494382 * x + 21.1948725316548
November 2016	SSPM	43.752*Nugget+98.372*J-Bessel(3131.8,4.3616)
	PRF	0.854140784839132 * x + 7.94536950053569
December 2016	SSPM	0.60423*Nugget+0.90813*J-Bessel(1759.5.4.1605)
	PRF	0.783456526648032 * x + 3.91013289824423
January 2017	SSPM	74.714*Nugget+78.735*J-Bessel(3663.1.4.7614)
,	PRF	0.763988616775912 * x + 12.4957775000195
February 2017	SSPM	0.13892*Nugget+4.7406*J-Bessel(6668.1.2.3449)
1001uu y 2017	PRF	0.991196314259762 * x + 0.0147464002316315
March 2017	SSPM	0.17684*Nugget+0.28616*J-Bessel(10781.3.1765)
	PRF	0.765303364414884 * x + 2.91375268387473
April 2017	SSPM	103.3*Nugget+56.006*J-Bessel(4896.8.10)
	PRF	0.583154841945897 * x + 22.153330573496
May 2017	SSPM	0 079855*Nugget+4 0457*I-Ressel(6915 9 2 3767)
	PRF	0.98481614259524 * x + 1.80465177974914
June 2017	SSPM	80.288*Nugget+102.21*I-Bessel(2946.7.4.7936)
5 and 2017	PRF	0.735500538666666 * x + 14.0729933066227
July 2017	SSPM	$89 (15*Nugget \pm 63.751*I_Resel(3214.7.4.5112))$
July 2017	PRF	0.563641606932269 * x + 24.9208079034558

Table: 6. Results of the application of the ordinary krigging space prediction model of the monthly infiltration (mm/month) on the aquifer of San Diego Municipality, Carabobo State.

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function

Table: 7. Results of the application of the ordinary krigging space prediction model of the monthly volume stored (mm/month) in the aquifer of San Diego Municipality, Carabobo State.

	0000	o
Volume	SSPM	Ordinary Krigging
stored in aquifer		
January 2015	SSPM	0.041056*Nugget+3.2377*J-Bessel(10625.2.4253)
5 and a y 2010	DDE	$0.003552816661224 * x \pm 0.750641410388350$
E 1 2015		0.975352010001224 X = 0.7500414175005357
February 2015	SSPM	0.026382*Nugget+1.48//*J-Bessel(5085.1,2.8324)
	PRF	0.988024466461108 * x + -2.00027558421908
March 2015	SSPM	0.09486*Nugget+0.61309*J-Bessel(10393,3.5148)
	PRF	0.970700418662774 * x + -4.44967185158484
April 2015	SCDM	$1.2162*N_{Wagget} + 4.0762*I_{Pagge1}/(2005.9.6.0002)$
April 2015	SSEM	1.5105 (Nugget+4.9705 'J-Dessel(3985.8,0.9005)
	PRF	0.949568599135324 * x + -6.68087583116392
May 2015	SSPM	1.2286*Nugget+15.824*J-Bessel(2284.2,5.8689)
	PRF	0.953110919779727 * x + -6.14271947584258
June 2015	SSDM	8.4411*Nugget+67.306*I Bessel(2671.4.7.9504)
Julie 2015	DDE	$0.960000661664007 \pm 0.500506246440146$
	PRF	0.962020661664087 * x + -2.58595346440146
July 2015	SSPM	21.787*Nugget+50.749*J-Bessel(5909.5,10)
	PRF	0.945160360976187 * x + -4.41891030483822
August 2015	SSPM	18 234*Nugget+76 713*I-Bessel(4363 3 10)
August 2015	DDE	0.054902212627405 * x + 2.62145194229214
G 1 0015		0.934003515057493 + X + -5.05145164226514
September2015	SSPM	2.3296*Nugget+64.085*J-Bessel(3653.8,5.8689)
	PRF	0.986850520970233 * x + -0.901183257315651
October 2015	SSPM	5.8315*Nugget+48.236*J-Bessel(4039.7.10)
	PRF	0.965162376033881 * x + -2.91520876926374
Name and a 2015		$0.7690 \pm 102570055001 = X + -2.91520070920574$
November 2015	22bm	0.7682*Nugget+31.272*J-Bessel(2152.5,5.9086)
	PRF	0.976624249596379 * x + -2.37810700126352
December 2015	SSPM	1.7909*Nugget+2.6196*J-Bessel(10781,3.5386)
	PRF	0.786060703544889 * x + -20.0498633992544
Jonuary 2016	SSDM	0.00010747*Nugget + 0.0022722*I Passed(2205.2.2.6476)
January 2010	SSEM	0.00010747 Nugget+0.0055752 J-Dessel(5295.2,2.0470)
	PRF	0.994398326672517 * x + -0.790366381117337
February 2016	SSPM	0*Nugget+0.10606*J-Bessel(10709,2.1772)
	PRF	0.997756201797346 * x + -0.308619005881496
March 2016	SSPM	$90.44*$ Nugget $\pm 72.897*$ LBessel (2803.4.7.2339)
Whaten 2010	DDE	0.660646171224700 * - 16.7464200411452
	PKF	0.0090401/1224/09 * X + 10./404300411433
April 2016	SSPM	28.724*Nugget+82.37*J-Bessel(5820.1,10)
	PRF	0.951337738214618 * x + -4.29620083527587
May 2016	SSPM	3.4619*Nugget+49.494*J-Bessel(1954.9.8.7379)
1149 2010	DDE	0.047561154050222 * x + 2.82252624541626
1 0014		$0.947501154050225 \times X + -5.62555054541050$
June 2016	SSPM	13.141*Nugget+72.373*J-Bessel(4273.1,10)
	PRF	0.957942906872725 * x + -2.87766112223862
July2016	SSPM	12.484*Nugget+66.14*J-Bessel(4328.2,10)
5	PRF	0.956887885868877 * x + -4.04333542667264
August 2016	SCDM	54 726*Nugget 45 050*L Deccel(1547 2 4 1047)
August 2010	SSEM	34.750 Nugget+45.059 J-Dessel(1347.2,4.1047)
	PRF	0.558117809950964 * x + -30.7730924590625
September 2016	SSPM	9.6115*Nugget+133.14*J-Bessel(7720.4,10)
-	PRF	0.984052363513413 * x + -0.821785068752504
October 2016	SSPM	$1/4 30/4 \times Nugget \pm 115 72 \times I_Bessel(726/43.4.8916)$
0000001 2010	DDE	$0.00007504500((50 \pm 1.10))$
	ГКГ	0.9029/3043990030 m X + -1.20000009/03083
November 2016	SSPM	15.071*Nugget+96.349*J-Bessel(4632.2,10)
	PRF	0.974591562997573 * x + -0.799680854587752
December 2016	SSPM	0.17135*Nugget+1.0259*J-Bessel(4374.9.10)
Detember 2010	DDE	0.072052024004664 * 1.07045020210256
	PKF	0.973932834084004 * X + -1.87943028218230
January 2017	SSPM	95./1/*Nugget+212.43*J-Bessel(10/81,3.5386)
	PRF	0.877752221734397 * x + 1.23544591597926
February 2017	SSPM	0.01916*Nugget+2.3556*J-Bessel(10741.2.3607)
	DDE	0.005658648603613 * x + 0.344724668651608
Manah 2017		$0.555050040055015 \times 1^{-0.5447240000051000}$
warch 2017	SSEM	0 inugget + 12.222 "J-Dessei(10/45,2.1192)
	PRF	1.0000118105764 * x + 0.000914147703568347
April 2017	SSPM	0*Nugget+3.4151*J-Bessel(5547.3,2.3449)
-	PRF	0.999953461566654 * x + -0.00363462687616334
May 2017	SSPM	$0*N_{ugget} \perp 1.45*I_{Bessel}(6157.7.2.2067)$
way 2017		0.0008(102(140516 * + 0.00087224(054(4022))))
	rkf	U.999801950140510 * X + U.0008/254685464852
June 2017	SSPM	8.8374*Nugget+93.683*J-Bessel(2839.1,7.3818)
	PRF	0.959384954503971 * x + -2.80136450280715
July 2017	SSPM	34.599*Nugget+108.63*J-Bessel(10745.6.762)
	DDE	0.020004005040400 * -0.07220550501202
	I KI	0.20000+002042447 X + -2.27307237301000

SSPM: Statistical Spatial Prediction Model, PRF: Predicted Regression function

a)	b)	c)	d)	e)	C. M.	°	g)	h)			D	k)		m)
n)	o)													
		а	b	с	d	e	f	g	h	i	j	k	1	
	Min	. 81	5	0	0	0	6	0	0	87	27	188	6	

Máx.	333	81	461	18	123	45	219) 1	7	1384	28	2341	8
			Γ		n	1 I	n	0	1	р			

	III	п	0	Р	
Min.	91	52	0	22	
Máx.	318	618	295	232	

Fig: 13. Spatial prediction of the physico-chemical parameters that occurred over the aquifer of San Diego Municipality during the period 2015-2017: a) Bicarbonate (mg/l) b) Chloride (mg/l), c) Sulfate (mg/l), d) Nitrate (mg/l), e) Calcium (mg/l), f) Magnesium (mg/l), g) Sodium (mg/l), h) Potassium (mg/l), i) Dissolved Solids (mg/l), j) Temperature (°C), k) Electrical conductivity (μ S/cm), l) pH, m) Alkalinity (mg/l CaCO₃), n) Total Hardness (mg/l CaCO₃), o) Calcic hardness (mg/l CaCO₃), p) Magnesium hardness (mg/l CaCO₃).

Fig: 14. Spatial prediction of the Dynamic Level expressed in meter above sea level (masl) that occurred over the aquifer of San Diego Municipality during the period 2015-2017: a) Dynamic Level for 2015, b) Dynamic Level for 2016, c) Dynamic Level for 2017.

Fig: 15. Spatial prediction of the Hydraulic Gradient expressed in percentage that occurred over the aquifer of San Diego Municipality during the period 2015-2017: a) Dynamic Level for 2015, b) Dynamic Level for 2016, c) Dynamic Level for 2017.

Table: 8. Results of the application of the ordinary krigging space prediction model of the monthly Physico-Chemical Parameters in the period 2015-2018 in the aquifer of San Diego Municipality, Carabobo State.

Physico-Chemical	Unit	SSPM	Ordinary Krigging
Parameters			
Bicarbonate	mg/l	SSPM	6617*Nugget+3660 3*I-Bessel(9786 1 5 1282)
Dicarbonate	1116/1	PRF	0.425827322519084 * x + 81.2268753366656
Chloride	mø/l	SSPM	264 95*Nugget+483 32*I-Bessel(9386 6 947)
	<u>8</u> , 1	PRF	0.486048978022043 * x + 5.49184970765876
Sulfate	mg/l	SSPM	6738.9*Nugget+25336*J-Bessel(9771,10)
	8	PRF	0.349967778608995 * x + 14.8980871444998
Nitrate	mg/l	SSPM	12.952*Nugget+14.159*Stable(5492.9,2)
	8	PRF	0.0122495930970624 * x + 0.27473123657915
Calcium	mg/l	SSPM	634.52*Nugget+1740.6*J-Bessel(10349,7.089)
	C	PRF	0.367722826720686 * x + 16.1406609252905
Magnesium	mg/l	SSPM	229.49*Nugget+318.88*J-Bessel(21347,0.91193)
-	-	PRF	0.314111548128062 * x + 6.7453870344574
Sodium	mg/l	SSPM	828.52*Nugget+1593.5*J-Bessel(9129,3.134)
		PRF	0.569176969134538 * x + 9.72058527320901
Potassium	mg/l	SSPM	50.336*Nugget+96.802*J-Bessel(11719,10)
		PRF	0.125352671552489 * x + 1.9716072738805
Silica	mg/l	SSPM	140.82*Nugget+328.96*J-Bessel(4679.5,10)
		PRF	0.295522537341314 * x + 22.325936878676
DissolvedSolids	mg/l	SSPM	45756*Nugget+104210*J-Bessel(9492.7,4.3323)
		PRF	0.481170950272245 * x + 109.913217854712
Temperature	°C	SSPM	1.0368*Nugget+1.1653*J-Bessel(42219,1.7903)
		PRF	0.280641432307401 * x + 19.3332817803927
Electric conductivity	µS/cm	SSPM	82890*Nugget+221200*J-Bessel(9839.3,4.8261)
		PRF	0.54105814683103 * x + 138.314187003829
Ph	-	SSPM	0.37515*Nugget+0.44952*J-Bessel(10650,1.6963)
	_	PRF	0.229237983403226 * x + 5.49145154485519
Alkalinity	mg/l	SSPM	4349.1*Nugget+4949.9*J-Bessel(22035,0.11652)
		PRF	0.457614421912662 * x + 66.6682678330272
Total hardness	mg/l	SSPM	13/05*Nugget+3/920*J-Bessel(10028,7.5837)
		PRF	0.43/956501549915 * x + 5/.56556/0814896
Calcichardness	mg/l	SSPM	4048.2*Nugget+109/6*J-Bessel(9989.5,7.3322)
		PKF	U.5/0/5144845/521 * X + 40.2905328839105
Magnesiumhardness	mg/l	SSPM	8/30.2*Nugget+10342*J-Bessel(1058/,8.2232)
		PKF	0.2/2421185584/3/ * x + 36.41/2496252133

Table: 9. Results of the application of the ordinary krigging space prediction model of the monthly dynamic levelin the period 2015-2017 in the aquifer of San Diego Municipality, Carabobo State

Dynamic Level (masl)	SSPM	Ordinary Krigging
2015	SSPM	1281.6*Nugget+5000.7*J-Bessel(14136,10)
	PRF	0.886789498938431 * x + 55.0733317327875
2016	SSPM	821.68*Nugget+4282.7*J-Bessel(12219,10)
	PRF	0.89821359094478 * x + 48.1367583450571
2017	SSPM	176.81*Nugget+4675.5*J-Bessel(7560.2,10)
	PRF	0.969348388121472 * x + 13.9818799467086

Table: 10. Results of the application of the ordinary krigging space prediction model of the monthly hydraulic gradient in the period 2015-2017 in the aquifer of San Diego Municipality, Carabobo State

Dynamic I evel	SSPM	Ordinary Krigging
(masl)	551 11	
2015	SSPM	2.0954*Nugget+6.1085*J-Bessel(795.48,10)
	PRF	0.779008025304863 * x + 0.592618823186321
2016	SSPM	3.7767*Nugget+15.52*J-Bessel(3227,5.7513)
	PRF	0.976192672636932 * x + 0.0976006080717546
2017	SSPM	24.011*Nugget+16.047*J-Bessel(12496,0.039596)
	PRF	0.842709213319876 * x + 0.875085452933433

Fig: 16. Spatial prediction of the Flow Velocity expressed in m/d that occurred over the aquifer of San Diego Municipality during the period 2015-2017: a) Flow Velocity for 2015, b) Flow Velocity for 2016, c) Flow Velocity for 2017.

a)	b)	c)	d)	e)	Ť	9)	h)		D	k)		
m	n)	°)	p)	q)		s)	t)	u)			x)	
	а	b	с	d	e	f	g	h	i	j	k	1
Min.	4	1	1	0	0	0	0	0	0	0	0	0
Máx.	155669	75610	99757	186280	88514	149459	6888	2117	2772	170899	73035.5	98479.3
												-

	m	n	0	р	q	r	S	t	u	v	w	х
Min.	3	1	1	0	0	0	91	17	16	59	16	46
Máx.	153160	72383	103108	13285	18103	11655	1E06	456294	456294	962123	383595	474531

Fig: 17. Spatial prediction of the mass flow of physico-chemical parameters that occurred over the aquifer of San Diego Municipality during the period 2015-2017: a) Chloride for 2015 (kg/d), b) Chloride for 2016 (kg/d), c) Chloride for 2017 (kg/d), d) Sulfate for 2015(kg/d), e) Sulfate for 2016 (kg/d), f) Sulfate for 2017 (kg/d), g) Nitrite for 2015 (kg/d), h) Nitrite for 2016 (kg/d), i) Nitrite for 2017 (kg/d), j) Calcium for 2015 (kg/d), k) Calcium for 2016 (kg/d), l) Calcium for 2017 (kg/d), m)Sodium for 2015 (kg/d), n)Sodium for 2016 (kg/d), o)Sodium for 2017 (kg/d), p) Potassium for 2015 (kg/d), q) Potassium for 2016 (kg/d), r) Potassium for 2017 (kg/d), s) Alkalinity for 2015 (kg/d), t) Alkalinity for 2016 (kg/d), u) Alkalinity for 2017 (kg/d), v) Total Hardness for 2015 (kg/d), w) Total Hardness for 2016 (kg/d), x) Total Hardness for 2017 (kg/d).

Water Classification

The water classification of the San Diego aquifer based on the Piper-Hill-Langelier diagram using the physico-chemical parameters measured in the aquifer during the period 2015-2017 is shown in Figure 18. Four water classes are found in the aquifer, which are the following: 1) Bicarbonate of Calcium and/or Magnesium, 2) Bicarbonate of Sodium, 3) Sulfate or Chloride of Calcium and/or Magnesium, 4) Sulfate and/or Chloride of Sodium. These water classes have been located in the aquifer regions as follows: and Middle: 1) North the water predominantly contains bicarbonate of calcium and/or magnesium in an area of 95.17 km^2 , 2) Middle and South: the water contains bicarbonate of sodium in an area of 19.32 km^2 , 3) South: the water contains two constituents: sulfate of sodium in an area of 0.96 km² and sulfate of magnesium and/or calcium in an area of 1.68 km^2 . The equation is identified by the following a general coefficients in structure: a*nugget+ b(J-Bessel (c, d)). The values of according coefficients vary to the neighbors values in each dataset of water classification are as follows (Table 12): a: 0.027285, b: 0.14414, c: 10781, d: 2.7384.

DISCUSSION Geophysical parameters

With respect the geophysical parameters, the effective porosity varies according to the unconsolidated sediments as follows (Matthess and Ubell, 2003): 1) silt: between 0 and 12% corresponding to mean grain diameter between 0.001 and 0.01 mm, 2) sand: between 12 and 40 % corresponding to mean grain diameter between 0.01 and 1.0 mm, 3) gravel: between 40 and 42 % corresponding to mean grain diameter between 1 and 10 mm. The San Diego aquifer includes alternating layers of soil material predominantly between well-graded sand and clay of low plasticity, being confined aquifer. The gravel is the unique aquifer material in the three profiles close to the mountain zone identified as: PW5, PW19 and PW27 where the recharge zones might be located (Figure 2, Figure 3, Table 1). The permeability or hydraulic conductivity varies with respect the effective porosity as follows (Marotz, 1968): 1) silt: between 0 and 12% corresponding to permeability between 10^{-4} and 10^{-3} m/s (from 8.64 to 86.4 m/d), 2) sand: between 12 and 40 % corresponding to permeability between 10⁻ 3 and 10^{-2} m/s (from 86.4 to 864 m/d) to , 3) gravel (Figure 4): between 40 and 42 % corresponding to permeability upper 10⁻² m/s (> 864 m/d). The San Diego aquifer has a permeability varying from 100 to 1000 m/d, the trend is close to 100 m/d.

Fig: 18. Spatial prediction of the water classification based on Piper-Hill-Langeley diagram from physico-chemical parameters that occurred over the aquifer of San Diego Municipality during the period 2015-2017:): 1) Bicarbonate of Calcium and/or Magnesium, 2) Bicarbonate of Sodium, 3) Sulfate or Chloride of Calcium and/or Magnesium, 4) Sulfate and/or Chloride of Sodium.

Table: 11. Results of the application of the ordinary krigging space prediction model of the monthly mass flow of constituents in the period 2015-2017 in the aquifer of San Diego Municipality, Carabobo State.

Physico-Chemical		Unit	SSPM	Ordinary Krigging
Parameters			~~*	
Chloride	2015	kg/d	SSPM	2.7582e7*Nugget+3.0076e7*J-Bessel(612.15,10)
		U	PRF	0.970690931345482 * x + 259.192635711595
	2016	kg/d	SSPM	5768300*Nugget+2.2261e7*J-Bessel(307.93,1.64)
		e	PRF	0.932617217315471 * x + 220.549027200017
	2017	kg/d	SSPM	5.4886e7*Nugget+8.609e8*J-Bessel(25720,3.8891)
		•	PRF	0.99183140652004 * x + 50.8787834846989
Sulfate	2015	kg/d	SSPM	9.4394e7*Nugget+4.0232e8*J-Bessel(17171,10)
			PRF	0.967680617047796 * x + 347.182270055646
	2016	kg/d	SSPM	4.0905e7*Nugget+1.9622e8*J-Bessel(17183,9.866)
			PRF	0.892678880928101 * x + 594.383967807894
Nitrate	2015	kg/d	SSPM	86107*Nugget+174540*J-Bessel(22001,0.01)
			PRF	0.923387631591934 * x + 20.0989303819858
	2016	kg/d	SSPM	29152*Nugget+73549*J-Bessel(22053,0.01)
			PRF	0.809999637134594 * x + 28.4474817066939
	2017	kg/d	SSPM	14804*Nugget+86384*J-Bessel(3286.8,10)
			PRF	0.984961006977312 * x + 3.84440804336509
Calcium	2015	kg/d	SSPM	2.4252e7*Nugget+4.2065e7*J-Bessel(714.39,10)
			PRF	0.963078986607316 * x + 442.425606849161
	2016	kg/d	SSPM	2.2757e7*Nugget+1.3405e7*J-Bessel(1130.2,10)
			PRF	0.877518240681205 * x + 736.330752917085
	2017	kg/d	SSPM	6.8854e7*Nugget+6.3276e8*J-Bessel(25717,8.4481)
			PRF	0.990036693326733 * x + 89.1459920155085
Sodium	2015	kg/d	SSPM	3.012e7*Nugget+3.5688e7*J-Bessel(640.28,10)
			PRF	0.961534926414707 * x + 510.47664313321
	2016	kg/d	SSPM	1.9998e/*Nugget+1.8/4e/*J-Bessel(6/8.6/,10)
	0017	1 / 1	PRF	0.8865410509426 * x + /15.621954863157
	2017	kg/d	SSPM	8.0612e/*Nugget+/.5696e8*J-Bessel(25/20,4.6035)
	2015	1 / 1	PRF	0.990014885086545 * x + 101.015426514978
Potassium	2015	kg/d	SSPM	130/800*Nugget+1.6216e/*J-Bessel(25/20,4.666)
	2016	1./1	PKF	0.991118//4032033 * x + 10.436/055/432/4
	2016	kg/d	55PM	$548/30^{\circ}$ Nugget+21/3/0 ^o J-Bessel(1484.8,10)
	2017	lea/d	PKF CCDM	0.8838494/1080117 * X + 95.410040431220 1207800*Nugget 1 6216a7*L Descal(25720 4 666)
	2017	kg/u	DDE	$150/800^{\circ}$ Nugget+1.0210e/*J-Desset(23/20,4.000) 0.001119774622622 * $\pi + 10.4267655742274$
Allealinity (CoCO)	2015	lta/d		$0.991118/74032035 \cdot X + 10.4307033743274$
Alkalinity (CaCO ₃)	2013	kg/u	DDE	9.060266 Nugget+1.574369 J-Desset(509.2,10) 0.068612727458134 $*$ v ± 2466.5208020074
	2016	ka/d	T KI' SSPM	1.3508 = 0.703012757436134 + X + 2400.3208730774 1.3508 = 0.8Nugget + 7.2014 = 0.81 Bassel(22264.0.01)
	2010	Kg/U	PRE	$0.883987346847367 * x \pm 4529 45395386129$
	2017	kg/d	SSPM	1.3508e9*Nugget+7.2914e9*LBessel(22264.0.01)
	2017	16/U	PRF	0.883987348817566 * x + 4529 4538884111
Total hardness	2015	kø/d	SSPM	6.2119e8*Nugget+9.7618e8*I-Bessel(539.3.10)
(CaCO ₂)	2013	16/U	PRF	0.96995138734539 * x + 1901 07717660229
(00003)	2016	kø/d	SSPM	9.7562e8*Nugget+4.6656e9*I-Bessel(20405.0.01)
	2010	11 ₀ / 4	PRF	0.886670763670727 * x + 3551.48127009171
	2017	kg/d	SSPM	1.9452e9*Nugget+1.8055e10*J-Bessel(24494.10)
	/	8, 4	PRF	0.991113718713541 * x + 416.62067036287

Table: 12. Results of the application of the ordinary krigging space prediction model of the water classification in terms of the constituents according to the Piper-Hill-Langelier diagram during the period 2015-2017 in the aquifer of San Diego Municipality, Carabobo State.

Physico-Chemical		SSPM	Ordinary Krigging
Parameters			
WaterClassification	2015-2017	SSPM	0.027285*Nugget+0.14414*J-Bessel(10781,2.7384)
		PRF	0.9999999999999892 * x + 4.18687307046639e-12

Land Use / Land Cover

Most of the wells are located in the north and middle regions of the aquifer, where 20 wells are used for human consumption in residential zones. The rest of the wells located in the south region, being used for agricultural industrial and activities (Figure 5). According to Bear and Cheng (2010), an aquifer is used as: source of water, storage reservoir, conduit and filter plant. The San Diego aquifer is a source of water and storage reservoir; being a resource renewable because of the precipitation; which depends on the distribution of storms, land topography and cover, permeability of soil, infiltrates through the ground surface and replenishes the underlying phreatic aquifer. Hydrological processes in the San Diego aquifer such as infiltration and permeability are influenced by the impermeability in the urban area of the Sand Diego aquifer, which is around 20% of the total area, reducing the contribution rates to the aquifer water. The San Diego aquifer is not used as a conduit and filtration plant; implying the application of artificial recharge techniques, because in Venezuela it is prohibited by water regulation. The land use and land cover in the San Diego aquifer expressed by the mean and standard deviation of the area varies during the period 2015-2017 as follows: urban: 34, 8 km², agricultural: 7, 7 km², vegetation: 49, 15 km², degraded soil: 26, 11 km². By comparing, Marquez et al., (2018) analyze results depicted by the area change detection methods in the Pao river basin based on post-classification using Maximum Likelihood (ML) during the period 1986 - 2018 expressed by the area change detection percentage according each class finding the following results: a) U: Urban: 18 to 40% b) A: Agricultural: 85 to 95% c) R: Rangeland: 80 to 95%, d) W: Water: 10 to 20% e) V: Vegetation: 5 to 10%, f) D.S.: Degraded Soil: 55 to 60%. In the period analyzed the urban and agricultural classes shows a variation compared with slight the vegetation and degraded soil and the changes found in the pao river basin.

Groundwater Balance

1) Precipitation: the annual seasons in Venezuela are divided in two periods: dry and rainy. The first comprises between November and April of each year, and the second between May and October of each (Ramirez, 1971; Guevara year and Cartaya, 2004). Ramirez, (1971) develops a procedure to determine spatial and time variations of precipitation in Venezuela based on 126 stations of measurements, finding that the precipitation in the Aragua de Barcelona station located in latitude of 9.28 °N and longitude of 64.5° W, in April, is 5 mm for the 50 percentile value and 23 mm for the mean value for month. while in June, is 148 mm for the 50 percentile value and 151 mm for the mean value for month. In general, this indicates that for the larger precipitation amounts that occur in June the variation is much less than for the dry season months such as April. By comparing with San Diego aquifer, it can be found that the variation of the precipitation is few significant between the north, central and south region during dry season regarding to the

variation occurred during the rainy season. These results are in contrast with the variation analysis reported by Ramirez, (1971) for the precipitation station used as a sample.

2) Evapotranspiration: according with Trezza, (2006), the evapotranspiration measured for water management in an irrigation system in Venezuela uses as a meteorological reference the station identified as "Biologica Los Llanos", estimating monthly the mean evapotranspiration (ET) in the period 1968-2002. The ET varies between 5.0 and 7.6 mm/d (150-228 mm/month) for the dry season, and 4.5 and 5.5 mm/d (135-165 for the rainy mm/month) season, respectively. By comparing with San Diego aquifer, it can be found that the spatial variation of the evapotranspiration is insignificant between the north, central and south region during dry and rainy season. These results are lesser than those reported by Trezza, (2006) for the ET station used as a sample, being the minimum ET value estimated in San Diego aquifer the 20 % of the minimum ET observed in the "Biologica Los Llanos" station. Likewise, the maximum ET value estimated in San Diego aquifer the 80 % of the maximum ET observed in the "Biologica Los Llanos" station.

3) Pumping flow: the pumping flow (PF) extracted from the San Diego aquifer is estimated based on a sample of 53 wells: including domestic and industrial uses. For 2015, the PF is $129,769,378.56 \text{ m}^3/\text{y}$. For 2016, the PF is 125,975,597.76 m³/y. For 2017, the PF is $132,612,033.60 \text{ m}^3/\text{y}$. Pumping flow extracted has a tendency to increase over time, as the PF decreases is because pumping equipment damaged or water management company decisions of water regulating for well maintenance. By comparing with the Nile's Delta, the groundwater abstraction by wells in the Delta has consistently increased, if judged by the number of wells inventoried (Molle et al., 2018): from 5600 wells in 1952, to

13,000 in 1991, 22,905 in 2011, and finally 32,054 agricultural wells in 2016 (Zeidan, 2016). The PF was a total of 0.2 Bm^3/y in 1952, 2.77 Bm^3 in 1991 and 3.5 Bm^3 in 2003 (Zeidan, 2016), abstraction reached 4.9 Bm^3 in 2008, according to Morsy (2009); being comparatively higher than the San Diego aquifer.

4) Infiltration: according to Perez and Romance, (2012) the infiltration measured in an agricultural field in Venezuela corresponding to soils of type silty sand to organic silt varies from 2 mm/h to 1200 mm/h; being the mean value of 400 mm/h. The infiltration in the San Diego aquifer is influenced by the urban zone because this can reach to 48.6% of the total area of aquifer. For that reason the infiltration takes low values. Guevara and Cartaya, (2004) indicates that the infiltration for a soil type corresponding to clay with organic matter allows the inflow to a rate in stable state of 30 to 70 mm/h as it is found in the San Diego aquifer for stable state. The infiltration in rainy season takes values higher in the vegetation and agricultural zone. Guevara and Cartaya, (2004) indicates that the infiltration for a soil type corresponding to agricultural soil with organic matter allows the inflow to a rate in stable state of 20 to 290 mm/h as it is found in the San Diego aquifer for stable state.

5) Volume Stored: the volume stored in the San Diego aquifer is giving negative results based on this is estimated only by three variables: 1) infiltration, which is the unique water inlet, 2) evapotranspiration and 3) pumping flow; which are water outlet. It must be considered other sources of direct recharge from the San Diego River. As it has been discuss, the San Diego aquifer is confined, the clay layers is alternating with the sand well-graded and gravel well-graded. In general, the first clay layer has a thickness that varies between 2 and 22 m creating a top, reducing the direct recharge of water (Table 1). One of the variables associated

to the direct recharge is the infiltration, which represents between 34 and 41% of the monthly precipitation. It assumes that this infiltration occurs in some parts of the aquifer where there is not the clay top as it is found in the profiles 1, 2, 5 and 12 (Table 1). As a reference, in the Guarani aquifer, The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation estimated in 1410 mm/y (Wendland et al., 2007) .For example, according to Molle et al (2018), the aquifer of the delta of Nile river is semi-confined, as its top is covered by a thin clay layer whose thickness varies from 5 m in the south to 20 m in the middle and 50 m in the north of the Delta, while disappearing in some places (Mabrouk et al., 2013). The infiltration values are associated with a total recharge rate of 6.78 Bm³/y (FAO 2013). However, this key term of the water balance is extremely difficult to measure or estimate and is not known with much accuracy. Groundwater modeling studies generally neglect the contribution of rainfall with an average between 25 and 200 mm/year to recharge since it is very small compared to the recharge rate (Mabrouk et al., 2013). It is therefore not considered. Groundwater in the Delta is not a separate or additional resource and is directly fed by surface water brought by the Nile River.

Physico-Chemical Parameters

The origin of the physico-chemical composition of the water of the San Diego aquifer depends on the geological formation; requiring a hidrogeochemical analysis. The San Diego aquifer is included in the igneous-metamorphic units belonging to the "Cordillera de La Costa", being constituted by a metamorphic association where gneiss and marbel predominate (Urbani, 2016). The San Diego aquifer is divided by rocks of two geological periods, which are: 1) triasic covering the north and central region and

2) quaternary in the south region around the Valencia Lake (Hackley et al., 2005). The gneiss is a metamorphic rock composed of the minerals such as quartz, feldspar and mica. Marble is а metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. The water of San Diego aquifer has been classified by the diagram of Piper-Hill-Langelier (Piper, 1944), in four classes (Figure 17): of Calcium Bicarbonate and/or 1) Magnesium Ca-Mg-HCO₃ (North and Central regions, 95.16 km², 81.25%) 2) Bicarbonate of Sodium Na-HCO₃ (Central and South regions, 19.32 km^2 , 16.5%), 3) Sulfate or Chloride of Calcium and/or Magnesium Ca-Mg-SO₄ and Ca-Mg-Cl (South region, 0.96 km^2 , 0.82%), 4) Sulfate and/or Chloride of Sodium Na-SO₄ and Na-Cl (South region, 1.68 km², 1.43%). The division between the main water compositions corresponding to the water classes 1 and 2-4 of the San Diego aquifer is coincident with the division of rocky material according to the geological periods. The conditions under which the interactions between solid and liquid phases occur depend on mainly of the weathering of rock-forming minerals. For the weathering of rock-forming minerals, the solution kinetics is determined by the solubility product and transport in the vicinity of the solid water-interface. If the dissolution rate of a mineral is higher than the diffusive transport from the solid-water interface, saturation of the boundary layer exponential decrease and an with increasing distance from the boundary layer results (Merkel and Planer-Friedrich, 2005). The reaction rate mainly depends on the concentration of reactants and products, pH, light, temperature, organics, presence of catalysts, and surface-active trace substances can have a significant influence on reaction rates. In the case of San Diego aquifer, the conditions to carry out the reaction rate are (Figure 12): pH between 6 and 8, Temperature between 27

and 28 °C, Electrical conductivity between 188 and 2341µS/cm. The pH and insignificant temperature have an variation, while the electrical conductivity changes significantly between the north and central regions with respect to the founding south region, a low mineralization in the north and central regions (188 < CE <2341 μ S/cm) where there is a boundary between the classes 1 and 2, likewise in the south region, the water is highly mineralized and its composition corresponds to the classes 2-4 (Figure 12). By comparing with other studies, Martos-Rosillo and Moral (2015) have found that the water of Becerro aquifer, Spain, is fundamentally HCO₃Ca. In some particular points, the water may become HCO₃Cl-CaNa, points in which there is a near contact between Jurassic and Triassic materials; being relatively low in mineralization ($269 < CE < 813 \mu S/cm$). while the waters with sodium chloride are highly 256 mineralized (2280 < CE < 9196µS/cm); being a pattern observed in both aquifers.

Hydraulic Parameters

The water dynamic level in the San Diego aquifer shows the minimum values to the central region of the aquifer (Figure 13). The zone, where the minimum water level occurs is rounded by the maximum water level in the aquifer during the period 2015-2017. This is a residential zone, being the water use of domestic type. The maximum hydraulic gradient is estimated that occurs in the central and mountains regions (Figure 14). The maximum hydraulic gradient combined with the minimum water dynamic level allows to detect a potential zone where а water overexploitation of aquifer might be occurring. Likewise, it might be due to the lack of maintenance of the grids belonging to the perforated pipe that protects the walls of the well, causing the water that supplies to the well has a small discharge, increasing the depth where the piezometric

head can be found and justifying the maximum hydraulic gradient. In the mountains zone, the hydraulic gradient is maximum because of the natural relief. The flow velocities estimated of San Diego aquifer vary between 1259 and 2023 m/d; being close to those measured in the aquifer system in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy) reaching values between 1344 and 2280 m/d, which vary between 1344 and 2880 m/d (Vižintin et al., 2018).

Mass flow of physico-chemical parameters

Mass flow of physico-chemical parameters give as a result that, in general, the maximum mass flow occurs in the highest terrain elevation zones of San Diego aquifer and there is a slight trend to occur in the south region in the proximity to the Valencia Lake (Figure 16). In the north region, the mass flow is influenced by terrain gradient and the soil type, increasing the dissolution rate of a mineral is and the diffusive transport from the solid-water interface. In the south region, it might be occurring an inverse hydraulic gradient from Valencia Lake to San Diego during the dry aquifer season, incorporating the water of the Valencia Lake to the San Diego aquifer and the concentration of increasing the physico-chemical parameters in the south region of the San Diego aquifer (Figure 16). Gorai and Kumar (2006) have applied of spatial distribution models of groundwater quality parameters such as Ca, Mg, pH, Mn, Fe, Nitrate, Turbidity, Na, K, TDS, Alkalinity Total Hardness concentrations were carried out through techniques, GIS and Geostatistical founding that deterioration of ground water quality is not very serious problem except few areas.

CONCLUSIONS

-The San Diego aquifer includes alternating layers of soil material predominantly between well-graded sand and clay of low plasticity, being confined aquifer. The gravel is the unique aquifer material in the three profiles close to the mountain zone identified as: PW5, PW19 and PW27 where the recharge zones might be located.

-The San Diego aquifer is a source of water and storage reservoir; being a resource renewable because of the precipitation; which depends on the distribution of storms, land topography and cover, permeability of soil, infiltrates through the ground surface and replenishes the underlying phreatic aquifer. Hydrological processes in the San Diego aquifer such as infiltration and permeability are influenced by the impermeability in the urban area of the Sand Diego aquifer, which is around 20% of the total area, reducing the contribution rates to the aquifer water.

- The volume stored in the San Diego aquifer is giving negative results based on this is estimated only by three variables: 1) infiltration, which is the unique water inlet, 2) evapotranspiration and 3) pumping flow; which are water outlet. It must be considered other sources of direct recharge from the San Diego River.

-The division between the main water compositions corresponding to the water classes 1 and 2-4 of the San Diego aquifer is coincident with the division of rocky according to the geological material periods Triassic quaternary, and respectively, being the water classes: 1) Bicarbonate of Calcium and/or Magnesium Ca-Mg-HCO3 (North and Central regions, 95.16 km², 81.25%) 2) Bicarbonate of Sodium Na-HCO₃ (Central and South regions, 19.32 km^2 , 16.5%), 3) Sulfate or Chloride of Calcium and/or Magnesium Ca-Mg-SO₄ and Ca-Mg-Cl (South region, 0.96 km^2 , 0.82%), 4) Sulfate and/or Chloride of Sodium Na-SO₄ and Na-Cl (South region, 1.68 km^2 , 1.43%).

-With respect the quality of water in the San Diego aquifer, the pH and temperature have an insignificant variation, while the electrical conductivity changes significantly between the north and central regions with respect to the south region, founding a low mineralization in the north and central regions (188 < CE <2341 μ S/cm) where there is a boundary between the classes 1 and 2, likewise in the south region, the water is highly mineralized and its composition corresponds to the classes 2-4.

-The maximum hydraulic gradient is estimated that occurs in the central and mountains regions. The maximum hydraulic gradient combined with the minimum water dynamic level allows to detect to the central zone as a potential zone where a water overexploitation of aquifer might be occurring.

- In the north region, the mass flow is influenced by terrain gradient and the soil type, increasing the dissolution rate of a mineral is and the diffusive transport from the solid-water interface. In the south region, it might be occurring an inverse hydraulic gradient from Valencia Lake to San Diego aquifer during the dry season, incorporating the water of the Valencia Lake to the San Diego aquifer and increasing the concentration of the physico-chemical parameters in the south region of the San Diego aquifer.

- The modeling of the hydrogeochemical parameters is represented by J-Bessel function.

REFERENCES

- 1. Box, G. E. P., Jenkins, G. M., and Reinsel G. C. (1994). Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
- 2. FAO, 2013. Monitoring of Climate Change Risk Impacts of Sea Level

Rise on Groundwater and Agriculture in the Nile Delta. TCP/EGY/3301.

- Gandin, L.S., 1960. On optimal interpolation and extrapolation of meteorological fields. Trudy MainGeophys. Obs. 114, 75–89.
- Guevara Pérez, E. (2000). Diagnóstico de la situación ambiental y ecológica del Estado Carabobo. Revista Ingeniería UC, 7(1).
- Guevara, E., & Cartaya, H. (2004). Hidrología ambiental. Facultad de Ingeniería de la Universidad de Carabobo. Valencia, Venezuela.
- Gorai, A. K., & Kumar, S. (2013). Spatial distribution analysis of groundwater quality index using GIS: a case study of Ranchi Municipal Corporation (RMC) area. GeoinformGeostatOverv, 1, 2.
- Hackley, P. C., Urbani, F., Karlsen, A. W., &Garrity, C. P. (2005). Geologic shaded relief map of Venezuela (No. 2005-1038).
- 8. Hengl, T. (2009). A practical guide to geostatistical mapping (Vol. 52). Hengl.
- 9. INE (2001). Censo 2001. InstitutoNacional de Estadísticas. Available: http://www.ine.gov.ve/index.php?optio n=com_content&view=category&id=9 5&Itemid=9. Date: 08-11-2018.
- 10. INE (2011). Censo. Instituto Nacional de Estadísticas. Available: http://www.ine.gov.ve/index.php?optio n=com_content&view=category&id=9 5&Itemid=9. Date: 08-11-2018.
- 11. IESA (1998) Carabobo: Competitividad para el desarrollo volumen XI.
- 12. Kranjc, A. (Ed.), 1997. Karst hydrogeological investigations in South-Western Slovenia. ActaCarsologica 26 (1) (388 pp).
- 13. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African

Institute of Mining and Metallurgy, 52(6), 119-139.

- 14. Mabrouk, M.B., Jonoski, A., Solomatine, D., Uhlenbrook, S., 2013. A review of seawater intrusion in the Nile Delta groundwater system –the basis for assessing impacts due to climate changes and water resources development.Hydrol. Earth Syst. Sci. 10, 10873–10911, Discussions.
- 15. Marotz, G. (1968). TechnischeGrundlageneinerWasserspe icherungimnatürlichenUntergrund.
 Eigenverl. d. Instituts f. Wasserwirtschaft, Grundbau u.
 Wasserbau d. Universität Stuttgart.
- 16. Marquez A., Guevara E., Rey D. (2018). Assessment of Land Use and Land Cover Change Detection Using Eleven Techniques of Satellite Remote Sensing in the Pao River Basin, Venezuela. Journal of Remote Sensing GIS and Technology, 4 (2), 1-70.
- Martos-Rosillo, S., & Moral, F. (2015). Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain). Journal of Hydrology, 528, 249-263.
- Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.
- 19. Matthess, G., & Ubell, C. (2003).
 AllgemeineHydrogeologie,
 Grundwasserhaushalt–Lehrbuch der
 Hydrogeologie Bd. 1.
 GebrüderBorntraeger, Berlin, Stuttgart.
- Molle, F., Gaafar, I., El-Agha, D. E., & Rap, E. (2018). The Nile delta's water and salt balances and implications for management. Agricultural Water Management, 197, 110-121.
- 21. Morsy, W.S., (2009). Environmental Management to Groundwater Resources for NileDelta Region, PhD Thesis. Faculty of Engineering, Cairo University, Egypt.
- 22. Pérez, E. G., & Romance, A. M. (2012). Modelación de la infiltración

en un campo agrícola de la cuenca del río Chirgua, estado Carabobo, Venezuela. RevistaCientífica UDO Agrícola, 12(2), 365-388.

- 23. Piper, A.M., (1944). A graphic procedure in the geochemical interpretation of water-analyses. American Geophysical Union. Papers, Hydrology, pp. 914–923.
- 24. Ramirez, L. E. (1971). Development of a Procedure for Determining Spacial and Time Variations of Precipitation in Venezuela.
- Trezza, R. (2006). Evapotranspiration from a Remote Sensing Model for Water Management in an irrigation system in Venezuela. Interciencia, 31(6).
- 26. Urbani, F. (2016). Synthesis of the nomenclature of the igneous and metamorphic rocks units of the

cordillera de la costa, venezuela. Revista de la Facultad de Ingeniería, 31(2).

- Vižintin, G., Ravbar, N., Janež, J., Koren, E., Janež, N., Zini, L., ...&Petrič, M. (2018). Integration of models of various types of aquifers for water quality management in the trans boundary area of the Soča/Isonzo river basin (Slovenia/Italy). Science of The Total Environment, 619, 1214-1225.
- 28. Wend land, E., Barreto, C. E. A. G., & Gomes, L. H. (2007). Water balance in the Guarani Aquifer outcrop zone based on hydrogeological monitoring. Journal of Hydrology, 342(3-4), 261-269.
- 29. Zeidan, B.A., 2016. Groundwater Monitoring, Modeling and Assessment in the NileDelta (Unpublished chapter).