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SUMMARY :

This report deals with the solution of natural vibration
problems in structural machanics by means of frequency dependent
mass ard stiffness matrices and the solution of structural response
problems by classical modal analysis,

The frequency dependent matrices for each structural member
are contructed bty means of the solution of equations of motion or
by means of its normal modes, The overall frequency dependent
matrices are formed by conventional assembling process, The
nonlinear eigenvalue problem thus obtained is solved by Sturm
sequence technique and inverse iteration, A1l normal modes in
a specified frequency range are obtained accurately, Emphasis
ic on skeletal structures, The computed results of a plane frame
wvere verified by experiment,

Numerical examples are given for the response analysis of
three dimensional frame works, Computer programmes for natural
vibration problems of space frames, for response analysis with
arbitrary excitations, and for numerical linear algebra for matrices

of different forms are given in FORTRAN,
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CHAFTER O

INTRODUCTION

1.1 DYNAMIC EFFECTS _OF STRUCTURES

During recent years, the dynamic effects of structures are receiving
much more attention than before due to the increased:precision called for
in design.

Modern civil engineering structures are required to span larger
distances thén in the past and to stay within the economic limits set down
for them, This leads to slender structures which are very sensitive to
dynamic effects. It is further aggravated by the fact that the dynamic
loads they are expected to support grow continually during their working
lives as a consequence of the ever increasing speeds of vehicles moving
over then, the intensified soil vibration induced by incessantly heavier
traffic, and by the dynamic effects of the machinery they carry,etc..
Static analysis in itself can no longer ensure the safety of such structures.

In ship dynamics, problems of propeller and wave excited vibrations
have recently been accentuated by the general growth in ship size and
resulting reduction in natural frequencies of primary and secondary
structures, The increased power and speed and the decreased structural
damping of many modern ships have also contributed to these problems.

Certain types of buildings will increase in height and will be
contructed of new lighter materials with less internal damping during the
naxt decade, The buildings could suffer from wind generated oscillations
as well as earthquake excitations, Such matters should be considered at

the design stage,



In agriculture mechanics, the dynamic effects of resonance have been
applied to fruit harvesting machines by treating a tree as an assemblage of
beams with viscous dampings. In biomechanics, many mechanical organs
which take the advantages of the natural vibrations of structures are in
their design stages. As far as applications to manufacturing industry
are concerned, the efficiency of conveyors and assembling machines reaches
the maximum if they are operated at their natural frequencies, Therefore,
it is nessary for research organizations to study accurate and reliable

dynamic analysis procedures,

1.2 DYNAMIC ANALYSIS OF STRUCTURES

A structure is considered as a system whose primary function is to
support loads, and also an assemblage of discrete structural elements
interconnected at a finite numter of nodes or generalized coordinates
( to be defined in chapter two ). The word "analysis" referc¢s to
the evaluation of the displacements of the assemblage and of the element
forces acting at the nodes. And "dynamic" implies time-varying; hence if
the structure is subject to time-varying loads it represents a structural
dynamic problem, So far the analytical tools are mainly confined to
the study of the dynamic effects of structures which are in states not far
away from their static equlibrium configurations,

For the convenience of study, the dynamic protlems are classified
as the dynamic stability problems and the dynamic response problems, The
latter are further divided into asymptotic responses and transient responses,
The analysis under the heading of dynamic stability involves the study of
the effects of cyclic loads on the structure and intends to answer under
what circumstances the structure will fail to hold it static equilibrium

configurations, And the dynamic response analysis is the study of the



relationships of displacerents and loadings in the time history under the
assumption that the structure is in a dynamically stable state. Tran-
sient response analysis is the study in short time duration while the
asymptotic response is the study in long time duration, This report
will consider the dynamic stabtility problems and the response problems in

structural dynamics.

3.3 RELIARILIITY AND ACCURACY CF SOLUTIONS

A procedure in dynamic analysis involves four major steps, They
are the idealized description of the structural system by a mathematical
model, the establishment of a system of governing equations of motion,
the solution of this set of equations, and the confirmation of the
solution by experiments. By reliability, we mean that every solution
obtained by such a procedure is a solution, exactly or approximately, of
the original systen, and tkere are no solutions of the original system
are missed out by the procedure within any domain of interest. And by
accuracy we mean the closeness of a solution from the procedure to the
corresponding actualhsolution of the original system, In other words,
the reliability of a dynamic analysis procedure is determined by the
. "completeness" of its results to the solutions of the original system and
the accuracy is determined by their "closeness", The requirements of
"how reliable"” and "how accurate”" of the results within some economic

limits of computation will determine the choice of procedures of analysis,

Thi$ report is concerned mainly with a computational procedure
of vibration analysis in the branch of dynamics of elastic systems by a

reliable and accurate method called the dynamic stiffness method,



1,4 ImTHCDS OF STUDY

The analysis of structural response in this report is basicalw the
classical modal analysis, This modal analysis is a special application
of the method of Galerkin and uses the normal modes of the structure as

the respome problem
basic coordinate functions, and reduces,.essentially to the problem of
comput ing natural modes of vibration of the structure, The natual modes
of vibration are studied by the method of dynamic stiffness. The method
ig outlined as below,

We first choose a finite number of nodes of the structure, in such a
way that at any instant the coordinate systems associated to these nodes
can describe the configurations of the structure sufficiently,. If we
denote the displacements of these coordinates by the displacement vector
{%} and the forces at these coordinates by the force vector ‘kg} , then
the following relationship between f‘ﬁ} and {CQ} is s~t up by considering
the dynamic equilibrium of the structure and its members,

[(9){g}={Q} (1.4.7)
The matrix (D) in equation (1.4.1) is a symmetric matrix and is called the
dynamic stiffness matrix, The setting up of this matrix of the structure
occupies a very important position in this report,

The requirement for free vibration is that the loadings {G} vanish,
therefore,

(2] {3} =10} O (1.4.2)
represents the equation of motion of free vibrations, The necessary and

sufficient conditions for having nontrivial solutions of ?%} is that

det (D] =0 (1.4.3)



This equation is to be solved for natural frequencies by a reliable Sturm
sequence method which has only fair accuracy. Then the matrix fSD]
is separated into two positive definite matrices [3(] and [nl] by a new

theorem such that equation (1.4.2) becomes

[(K1{3}= «* (M {4} (1.4.4)
where (W is the frequency of vitration, t}(] and {]71] are the stiffrness
and mass matrices respectively, The nontrivial solutions of equation
(1.4.4) for W and h%} , when approximated values of w are known,
are obtained by a very stable and accurate method of inverse iteration in
conjuction with the Rayleigh's Quotient of the system, Since the method
is iterative in nature, the accumulative numerical errors of arithmetic
operations are eliminated,

The response of the structure to arbitrary excitations are then

studied in terms of the free vibration modes. The structural damping

effects are taken into account by considering complex elastic modulus.

1.5 HISTORICAL BACXGROUND

A brief note on the history of the development of wvibration theory
of continuous systems is presented in this section,

The first mathematician to consider the nature of the resistance of
solids to rupture was Galileo ( 1638 ), Discussions of the vibrations
of solid bodies were first given by Euler (1744) and Bernmoulli (1751) who
obtained the differential equation of elastic vibrations of beam by
variational methods, The formulation of the general analytical tools in
vibration theory had their forms during the time of Rayleigh (1842-1919),
Since then, more accuracy theories of vitrations which take into account of

secondary effects such as rotatory inertia, shear, etc, were formulated and



particular attention was given to the t eories of «ingle 2lements suc:

beams, plates,and shells, These analytical methods had their limits
when sclving structural vibration problems due to the resulting highly
complicated toundary value problems,

The urge to know the natural frequencies of complex éystems to predict
the flutter speeds of aircraft in the 1930's forced the scientists to
investigate simple solution methods, The methods involving piecewise
representation of the continuous system weré found reliable and convenient,
The three most frequently used methods were known as (a) the finite diffence,
(b) the lumped-mass, and (c)the finite element methods. Of these, the
finite element method is probably the most popular and useful currently,

The finite difference method involves the replacement of the differential
operators in the governing equations of motion by their finite difference
equivalents, Collatz (ref 101) gives a comprehensive list of finite
difference equivalents to differential operators, The resulting equations
can be conveniently solved by hand using tie method of relaxation ( ref 102).
The method of lumped-mass assumes that the masses of the original system are
lumped at discrete points, each connected by a massless elastic element,

The contribution of Argyris is outstanding in this field, The mathematical
model of lumped-mass system will give a closer representation of the
potential energy than of the kinetic energy since the elastic properties
remain distributed while the masses are arbitrarily lumped, The kinetic
energy would be represented to the sume degree of accuracy as potential
energy if the mass were considered distributed in the same manner, To
accomplish this without reverting to the exact classical method, it is
necessary to assume the displacement ( and/or stress ) distribution patterns
eyerywhere In the structure before the analysis is carried out. The

solution involves using the so=-called "finite element"” approach, Clough(re?lo4

introduced the concept whereby continuous systems were represented by a



connected set of finite elements, the synthesis being possible by Argyris's
method, In Clough's original paper the method was applied to the
analysis of static plane stress problems, but since then it has been applied
to the a.wide range of static and dynamic problems,

Complete understanding of the influence of the selected displaccment
function on the results of most system has not yet been achieved,
Consequently, their selection for a particular system is still an art and
many workers prefer to make the selection at the shape function stage, where
they may also use their physical insight in guiding the selection, For a
system represented by a given number of finite elements and a fixed number
of degrees of freedom per element, the number of natural frequencies which
may be found within a given accuracy increases as the accuracy with which
the deflection function satisfies the governing differential equation increases,
This was illustrated indepently by J. S. Przemieniecki ( ref 8) and Cohen
and McCallion (ref 105) for beam structures, Both authors found difficult
in solving the resulting eigenvalue problem, because at some frequencies of
vibration, the matrices involved become non-definite,

This report will base on this concept to improve the finite element
representation of the original system so that higher modes of free vibration
can be obtained accurately without subdividing the system, The dynamic
matrices resulted are always positive definite, The method has been

extented to simple twc- and three-~ dimensional elements.

1.6 THESIS

The construction of the thesis is given in this section, The domain of

interest is the frequency parameter instead of time variable in this report



so that the amplitudes of displacements and forces are related to each otler
by means of the conditions of dynamic equilibrium and compatibility, The
formulation is similar to the displacement finite element approach in static
analysis of structures, Therefore, the knowledge of the fundamentals of
finite element method is assumed,

Although the method is based on the well-known slope-deflection
equations and dynamic stiffness, the formulation of the dynamic stiffness
by adding frequency terms in the conventional finite element formulae, and
the solution of the complete nonlinear eigenvalue problem thus obtained for
natural frequencies and the corresponding modes are new, The solution
is exact in classical sense for skeletal structures and is accurate and
stable for other structures,

Therefore, the report is in four parts, Chapter two contains the
basic knowledge required for the remaining part of the report. Chapter
three, four, and five present the theory of the method, from a single struct-
ural member to the solution of the overall system, Chapter six refers to
the development of the relevant computer programmes and the comparison of
theorectical and experimental results, And finally, chapt;f:SZmonstrates
the applications of the resﬁlts to various branches of structural engineering,

Chapter two, Configuration, Energy & vibration, has an introduction
on general vibration analysis, and is followed by a discussion on generalized
coordinates and discretization of the overall structure into elements whose
properties and performance are convient to study, Then the various forms
of energy are discussed and a special set of generalized coordinates, i,e.
normal coordinates, is introduced. The basic equations in elasticity are
then summarized, and, finally, the finite elerent method in vibration is

outlined,



The properties and performance of a single clement are studied in chapter
three, New methods of constructing the dynamic stiffness and separating
the dynamic stiffnesgmatrix into two positiiglgéirices, which enable a
numerically stable and accurate method of inverse iteration for natural
frequencies and modes, are discussed in depth, These matrices are listed
explicitly for some one-, two- and th;ee— dimensional members,

The standard routine of composing the overall matrices from individual
members is carried out in chapter four, New methods of transforming the
local coordinates of elements to the same orientations of the overall systen
by Euler's angles which minimize tle storage requirements and additional
calglations are also prescnted., The methods are extended to general
structural elements,

Chapter five deals with the solution of the overall nonlinear eigenvalue
problen, After a general view of the nonlinear eigenvalue problen, a
complete and accurate mcthod of solution which combines the advantages of
the classical Sturm sequence technique and the modern inverse iteration
method, is studied in detail, An example of a simple structure is
given and compared w}th the classical methods,

The development of relevant computer programmes and the confirmation
of results by experiment are presented in chapter six, Most of the
programmes are newly designed because of the distinct nature of the nonlinear
eigenvalue problemn, The experimental results prove the completeness and
the closeness of the theory to the behaviour of a typiaml structure,

Chapter seven is concerned mainly with the applications of the natural
frequencies and the vibration modes of a structure, Examples given

include the response analysis of a ctructure due to loadings of stationary

and nonstationary, deterministic and random natures,
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Finally, chapter eight contains the general discussion, the

possibility of further development and the overall conclusion,
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CHAPTER TWO

CONFIGURATION, ENERGY AND VISIATION

When describing the motion of a vibrating body at any instant, a
coordinate system to where the states ( displacements, forces, etc, )
of the body can be refered must be chosen, To describe the vibration
of an assemblage of bodies, a single conventional coordinate system, e, g.
Cartesian, cylindrical, etc.,, can be undesirable, because they all result
in a system of coupled equations of motion with very complicated regions
and boundary conditions, However, we may choose one coordinate frame
attached to each body, then the motion of the set of the bodies can be
totally described by the motion of it individual members in their own
frame of reference, and in addition, the kinematic relations between these
frames, The coupling effects of each individual body are ghxvu
by the conditions of constraints. The motion of a body ccul ie described
in many ways, Since the vibration phenomenon is basically a process of
transferring energy from one form to the other for every vibrating body,
therefore one of the best ways is by reference to its energy.

Therefore, after a review of the basic terms in vibration analysis
in the first section of this chapter, we discuss various types of
coordinate systems and the forms of energy referred to these coordinate
systems for later use inthe remaining chapters, Finally the method of

finite element in vibration analysis is briefly outlined,
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2.1 FUNDAMENTALS OF VI3SRATION ( ref 1,2,3 )
An assemblage of coupled objects is called a system, A mechanical
system possesses inertia and elasticity. When a small disturbance is

applied to this system, the propagation of this small disturbances in the
medium of the system is called vibration. Most machines and engineering
structures experience vibration in differing degrees,

If the medium of abystem vibratés sinusoidally in time, the vibration
is harmonic, -The geometric state ( displacements, strains etc,) of the
system at any instant is called its configuration, When a harmonic
vibration exists, the configuration of the system will repeat itself in
equal intervals of time, The time elapsed while the motion repeats
itself is called the period; the motion completed during the period is
referred to as a cycle; and the number of complete cycles in a unit time
is the frequency of vibration; and the peak value of motion is called the
amplitude, The set of parameters needed to specify the confiquration
is called the set of generalised coordinates, and the time rates of change
of generalized coordinates are called generalized velocities,

The vibration of a system is generally nonlinear in nature, However,
if there exists an equilibrium configuration of the system, i,e, a config-
uration in which the system can remain permanently at rest or about which
the system undergoes a prescribed steady state motion, we can expand all
the nonlinearities ( geometric, material etc,) in Taylor series about the
configuration of equilibrium in terms of the generalized coordinates and
their time derivatives, When the vibration of the system is not far
away from its equilibrium configuration and when the disturbances are small,
we can study the vibration approximately by the first two terms of the

Taylor series of the nonlinearities and we say the system is linearized,

Lst 1
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Vibrations of linear systemsfall into two general classes, free and
forced, Free vibration takes place when a system vibrates under the
action of forces inherent in the system itself after the starting point
of vibration, and in the absence of external applied forces, Yhen a
system describable by a finite number of generalized coordinates is
subjected to arbitrary initial conditions, the free vibration is periodic
with several frequency components, However, among these there will be
some simple harmonic motions called principal modes or natural modes of
vibration. These are characterized by a certain distribution of amplitude
over the body, in which each point in the body undergoes harmonic motion of
common frequency ( the natural frequency ) with all points passing through
their equilibrium configuration simultaneously,

Vibration that take place under the excitation of external forces is
called forced vibration, When the exciting force is harmonic, the forced
vibration take place at the frequency of the excitation ( independent of
the natural frequencies ), Vhen the frequency of the exciting forces (s
coincident with one of the natural frequencies of the system, a condition
of resonance is encountered and dangerously large amplitudes may result,
Consequently, the calculation of natural frequencies is of interest in all
types of vibrating systems,

Vibration systems are all more or less subject to damping because
energy is dissipated by friction and other resistances, Since no
external energy is supplied in free vibrations, the motion in free vibration
will diminish with time, and is said to be damped, On the other hand,
forced vibration may be maintained at constant amplitude with the required
energy supplied by an external force, For the convenience of study, we

shall assume no damping effect present unless otherwise stated,
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an
The behaviour of,oscillatory system may be examined in terms of the

type of excitation to which the system is subjected, These forces of
excitation may be divided into the headings of harmonic, periodic, non-
periodic, and stochastic, where the applied forces are stgtistical,

Since a periodic excitation can be expressed as a Fourier series or a
trigonometric polynomial in terms of frequency excitation, non-periodic

and stochastic excitations can be expressed in terms of Fourier integrals,
the time variables are transformed to harmonic frequency spectra, and the
free vibration of a system can be considered as harmonic motion with its
natural frequencies, Fherefore, we will study the harmonic vibration of a
mechanical system with great detail; wieem the free vibrations and the other

types of forced vibrations are treated as applications of the harmonic

vibrations,

3.2 CONTRAINTS AND DEGREES OF FREEDOM ( ref 2,4 )

The essential characteristics of a system is that the objects are
coupled, and hence restricted or constrained in their motion, 1f we
consider a degenerated system of only point, such as a bead, this bead or
point is unconstrained or free; whereas if the bead slides on a wire bent
to some space curve, the system is the bead and the wire, and the bead is

constrained, as shown in fig ( 2.2.1 ),

Fig (2.2.1) A system consists of a constrained bead on a wire
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The wire is called the constraint and the resultant of the surface

traction at the wire-bead interface yields the forecof constraint, or

o U

reaction, In this particular example, onlyhgeneralized coordinate, such
2s distance along the wire, is needed to specify the configuration if the
wire is stationary.

Consider a system whose state is specified by a number of N generalized

coordinates, If each one of these generalized coordinates can vary
separately without affecting the others and without violating the conditions
of constraint, the system is called holonomic with N degrees of freedom,
If these generalized coordinates are not capable of varying in this manner,
this set of generalized coordinates in nonholonomic, If the constraints
are moving ( for example, a bead sliding on a moving wire ), the system is
called rheonomic; otherwise it is called scleronomic,

Contraints are further classified as bilateral if they satisfy an
equality and unilateral if they satisfy qn inequality. The conditions of
constraints which the displacements must satisfy are conditions of compatibi-
lity and the conditions of constraints which the forces must satisfy are
conditions of equilibrium ( dynamic or static). The displacements
satisfying all constraint conditions are compatible displacements; and
the forces satisfying all constraint conditions are equilibrium forces,
Constraints will be assumed scleronomic and generalized coordinates are

holonomic in the remaining part of the thesis unless otherwise stated.
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2.3 COORDINATES AND COORDINATE SYSTEMS (ref 4)

In order to fix the meanings of coordinates, the coordinate system
identifying the coordinates must be specified, If a system consists of
two mass points, m, and my, on the plane of the paper, as shown in fig (2.3.1),
the generalised coordinates may be chosen as x,, y,, X,,y, referred to the
Cartesian coordinate system (OXY) as shown in fig (a); or, alternatively,
Xy X, X3, X4referred to the codérdinate system (0X,Xp) as shown in fig(b);
or, alternatively, x,, X,, X, X4 referred to the coordinate system

consisting of two Cartesian coordinate system (0,X,Y,) and (0,X,Y) as shown

in fig ( c). - Y2
. Y,
i k b 4
Y2 ‘?mz_ Xe Q My X4 my
X,
m X LS m, X, % m O,
X| XI 11
O —> X O ?l Ol 9")(.

Fig (2.3.,1) coordinate systems of two mass points

For.the convenience of systematical study, the coordinate systems of
£igs (b) and (c) are often used because the notation can be unified to xg,
L=1,2,3,4.

If£ two small disturbing force vectors in the plane are acting on the
two mass points and causing them to displace, the projections of these force
vectors onto the generalized coordinates are called the generalized coordinates
of forces and the projections of these displacements onto the generalized
coordinates are called the generalized coordinates of displacements. The
projections of the pcsition vectors of these two mass points onto the

generalized coordinates are called the generalized coordinates of positions,
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And so on. The generalized coordinates of forces are referred to briefly
as generalized forces and the generalized coordinates of displacerents
generalized displacements, If ﬁo confus-ion exists, the word generalized
coordinates will include generalized forces and generalized displacements.

There are two forms of coordinate systems: distrete coordinate systems
and distributed coordinate systems. When the mathematical model of a
vibrating system consists of discrete parameters only, discrete coordirate
systems are convenient, Otherwise, distributed coordinate systems are
employed to obtained a more realistic approximation, We describe these
two types of coordinate systems separately,
DISCRETE COORDINATE SYSTEMS

Consider a mass spring system with four mass points which are undergoing
deformations in the lateral direction at a, b, ¢, and d associated with
four coordinates as shown in fig (2.3.2). The initial displacements are
assumed zero, The vectors { u} and {F} describe horizontal displace=
ment configurations and force groups associated with the four mass points.,
The components of { u} and {F} represent amplitudes of displacement
configurations and force groups identified at discrete points, For
instance, u, is a scalar which amplifies the shape identified by the unit
vector {e[} = [1,0,0,0 Ir, and F3 is a scalar which amplifies the force
group identified bty {es} = [0,0,1,0'JT. No information is ¢iven for
the displacements or forces at points other than at the discrete points
a,b,c and d ( the dashed lines between mass points in fig (2.3.2) can have
an arbitrary shape ), Coordinates that identify information at discrete

points will be referred to as discrete coordinates,
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1 a ’J—bf ) (=]
/ A
28 b ¥ L
t‘ [+]
,a'/ \\ 2‘64)],
| (o,
3 c o 0 -t{ J 'Y
{ey=10 fea} = (') ?-L/A’ 0 \
0 0 A 9 l\\
4- d (o] ey =
r o 1
0
77717 777 rrlf-z

Fig (2.3.2) Discrete coordinate systems

The displacement { u}- at any mass point is given by
fu) =% wiey
(3

The discrete coordinate system in the example is the collection of base
vectors {eL} 5

If the points a,b,c, and d are given more degrees of freedom such that
displacements along the three dimensions ( X,, X, X3) are possible, then
there will be twelve generalized coordinates. Each three of these will
describe the displacements of the same point, this point is imagined as the
origin of these three gencralized cocrdirates, - it will be called the
generalized origin of these three generalized coordinates for the convience
of the coordinate transformation in chapter 4,
DISTRIBUTED COORDINATES

Consider a cantilever beam with four mass points at a,b,c, and 4 and
four coordinates as shown in fig (2.3.3). Again, the initial displacements
are assumed zero and only transverse displacements are considered, Now

the displacel configuration associated with u;=1 is a distributed function

C,b, (X) , such that

¢ (Xa) =1,
Qbf(Xb)=0,
@, (X9 2o,
¢, (xa) =0,
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#1”9 gives information of displacements at every point on the structure,
Hence, the displacement u(x) at any point x is

4

u(x)= 2 i Pi ().

t--
The displacements uj represent amplitudes of corresponding shapes th (x).
The collection of (p[(x) is a distributed coordinate system, Coordinates
that identify distributed displacements (or forces ete,) will be referred to

as distributed coordinates.

| —% Q ! ‘

2—p9 b !

3—Pt C plx) P, () 1) PO Pa (O
N ¢,00) Do) ®3(1) RS

4—sp d >

e 4 . T2
Fig (2,3,.3) Distributed coordinate systems

In this example, although the system consists of a continuous member,
the knowledge of the four displacement amplitudes ui,i=1,2,3,4 will define
the whole deformed configuration, Thercfore the system is said to have
four generalized coordﬁnates associated with the distributed coordinates,
These distributed coordinates are functions of coordinates and sometimes
called coordinate functions or modes (ref 50).

Beside the polyncmial coordinate functions, the mcst widely used ones
are the trigonometric coordinate functions. For a three dimensional
vibrating body, a possible way to express its displacements ui,i=1,2,3

is by N terms of a sine series, dqwads on boundﬂfv tonditisng ,

N
3. TX. -
ui= z qirs*n 2.1 i=1,2,3
r=1 1
| 2. . . TIX,
Vhere;i} is called the wavelength of the coordinate functions 51n-i"4 :

p
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For every r, there are three conponents qUp corresponding the displacements
Usy i=1,2,3, The point from where these three generalized coordinates
are measured will be called the generalized origin of them when we carry
out the coordinate transformation in chapter 4,

In the following, we shall discussion some more forms oi distributed
coordinate system, because our formulation of vibration analysis is based
on this concept,

[« S
As an example of, two dimensional elastic member, we consider a membrane

Al
whose continuous boundary displacements at x=0,a and y=0,b are described by

functions W (y), Ys(y), Us(x), Wu(x) respectively as shown in f£ig(2.3.4).
The deflected configuration of the membrane may be approximated by
wey)=[(1=- WU+ )] ((1- L) yaix)+ %w;(x)] )
When the functionsl+ra, i=1,2,3,4 are represented by their Fourier series
with finite number of terms, N say, then,

W) = £ b+ 3 (QP6in ™Y & p0cogMY)

Y2(4)= % m+}: (asin g + pPcos M)

VANE zb‘” 5_‘( Rsin 28X + b cos LX)

Uz (0 = m-iri(d:'s MY 4 B osnRX)
and therefore, there are 8N;4 parameters (b () . a,PJ , b (L)) which must be
specified with the associated coordinate functions (51n~—¥ cos—Ex , etc,)
in order to described the deflected configuration of the membrane. Under
these conditions, the system consisting of this membrane is said tc have

8N+4 generalized coordinates.
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| A%

I//
X F ‘"JZ

Fig (2.3.4) Continuous boundary displacements of a membrane

When a uniform beam is vibrating with angular frequency w , the
displacement of its transverse vibration can be expressed as
u(x,t)=(Acos )—f-( -+ Bsfnﬁf + C cosh é} + Dsinh )-}1) sinwt
where ,L“' =u)‘f'A.14/ ET denotes the frequency parameter
EXL =flexural rigidity of the beam
L = the length of the beam
PA,
A8,C.D

mass density per unit length

integration constants independent of
X = the coordinate of the axis of the beam.

If we chc‘:ose cos%: @ (x), sin Af': @, (x), cosh%: ¢s(x), and sinh)-%= ¢4.(7()
as distributed coordinate functions, four parameters A,B,C, and D are needed
to define the configuration of the beam and the beam is said to have four
generalized coordinates associated with these coordinate functions,

So far, only the linear form of generalized coordinates are considered,
e,g, a state vector {u} of a system at any instant is cxpressed inithe
following linear form,

fuf= 3 g oin,n, %))

where IQSL (X, X, 15)3 are either coordinate base vectors or coordinate
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functions, "Then these generalized coordinates are holomonic, we call
them linear independent generalized coordinates.

It may be convenient to use nonlinear generalized coordinates in
vibration analysis in some cases, For example, in the study of non=-
stationary vibrations, where the vibrating frequency w is a function of
time, we may express a state vector { u} of the system at any instant by

fuf= a@)sin(y(t)+wt) {v}
where iv} is the shape function of the system in stationary vibrations,
a(t) is the amplitude of {v} , and Y (t) is the difference of phase angle
between the nonstationary vibration and the stationary vibration,

+If we choose q and \J as generalized coordinates, we have a non-
linear generalized coordinate system, If a set of non-linear generalized
coordinates (q1,q2......,qn) are chosen, the configuration of the system may
be expressed as

fu} = {uGeigixgia sagagseniagiagiageesya,it))
This is the most general form of expressing the state of a vibrating system,

Now, we have discussed all forms of coordinate systems which will be
used in the remaining chapters, The next concept to deal with is the
discretization of qéontinuous systen, This device is designed to make
the numerical calculation and analysis of complicated continuous systems

in vibration realistic,
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2.4 DISCETIZATION (ref 6,8)

On a macroscopic scale, every engineering system is continuous,
For many vibration problems, it is not possible to obtain analytical solutions
which give tke values of desired unknown quantities ( displacement respon
etc.) at any location in acontinuous system, In most of the numerical
methods, the solutions yield approximate values of these unknown quantities
only at a finite number of coordinates in the system, The process of
selecting a finite number of coordinates to represent the configuration of
the system can be term:i discretization, This discretization process can
be classified into discretization by disxrete coordinates and discretization
by distributed coordinates, Consider two of the way:that a system
consisting of a plate may be discretized as shown in fig (2.4.1).

-
g{s ) J;;'?'é( a) discretization by
"' J‘.
3 " (IN Py

go7 MG Betfouis discrete coordinates

'w -;"""-:“, \s\r’“""
/ / /\/\/\/\/(b) discretization by
T~ /\/\/\/\/ o

distributed coordinates

Fig (2.4.1) Two of the ways to discretize a system consisting of a plate

The first way is the discretization of the system by twenty-five
discrete masses to which tre discrete coordimates are attached, and
seventy-two springs ( storing potential energy and having negligible masses)
connecting the masses as shown in fig (a). The displacement amplitudes
at each coordinate are the generalized displacements, the number of which
is twenty-five if transverse deformation is considered, There are

certain criteria to choose the masses and springs, one of which is by

the condition that the kinetic energy and the strain energy of the citiginal
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system are being stored by the masses and the springs of the discrete

model during the process of deformation. No matter what criteria we have

chosen, the displacements are not defined anywhere except at the mass points,
The second way discretized the plate by forty triangles as shown in (b)

such that the whole region of the system are occupied by these triangles,

These triangles are called the finite elements of the system, These

elements are considered interconnected at joints which are called ncdes,

To express the displacements of each element in terms of the displacements

at nodes, we first choose the generalized coordinates to attach to these

nodes and determine the associated coordinate functions, If the plate

is undergoing flexural deformation, there are three generalized coordinates

( one linear and two angular ) attaching to each node, If we approximate

the displacement of an element by a polynomial in X and Y , i.e,

3 po W 3
wooy)= 2 ag xSy =5 g dejey) = [wdiaf
tg=t % Gyt T
where 4%j(x,gi=: Xf"g*”‘ i 51£;are parameters to be determined by the

nodal displacements f%} ; [5(;_] = [¢..,¢:z,-“,¢;3] , and {Cli =[O..,a.,,---,a“}1'

If (i, were chosen as generalised coordinates, ¢(_j would have been the

coordinate functions, . If there exists a relationship {Cl! = [“’]{‘%i '
variaples x4, ¥

where [PJJ is a transformation matrix independent of coordinaten’ and f%}is

the vector of the nodal displacements of the element, then the displacement

within a triangle element is given by

wOi) =[x ]{a) =[2](NI{%} {v-@y)]{%)

where (U-OUY)k (2 ][N] is the matrix of coordinate fuactions required.

The nodal displacerents ':3%are often Kalen as coneralized coordinatoes

tecanse t e eonditinon af e pati {14+ of dizplac @ments will “e actomatically

satisfied if all the elements of !, lare single-val cd,
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2.5 WORX AND ZIT3RGY (ref 2,7,9)

Now we have a base, i,e. the set of generalized coordinates, to described
the forms of energy. There are two main forms of energy- involved in the
vibration of a body, which are kinetic energy and strain energy, If the
body is rigid, we consider it as a special case where the strain energy
vanishes at all time; and when the body is massless, we consider it as a
special case where the kinetic energy is zero at all time, These cases

do not exist in nature, their introduction is just to simplfy the process of

analysis,
Consider a continuous elastic body, We define
T=% [ {FY (P dwt
=3 [ fWT[pT{A} dnt (2:5:1)

as the kinetic energy of a tody, where {T’f is the position vector, which
has three compornents for a three dimensional bedy, {Lt{ is tre displacement
vector of the body at any instant, Lf’] is a scalar mass density in linear

motion or an inertia tensor in angular motion, wl is the total volume of

the body, The strain energy of an elastic body is defined as
u=v-[tu'(u")d"°L (2.5.2)
where (Lo(W.) is the strain energy dé%ity and is given by
dU.=dy dE (2.5.3)

where 6i; and E;i are the components of the stress and strain tensors
respectively.

In order to describe the relation between the kinetic energy and strain
energy, we shall use tke principle of virtual work in dynamics. The
principle states (ref 7):

Assume that the mechanical system is in dynamic equilibrium under

applied forces and prescribed geometric constraints, Then the
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sun of all the virtual work done over a prescribed time interval by the
external and internal forces existing in the system in any arbitrary
infinitesimal virtual displacements, which satisfy the prescribed
geometrical constraints and which vanish at the ends of the time
interval, is zero,
In mathematical expression, the virtual work principle for a dynanmic
problem states: :
JE ) fouydvots [ {3 {5u}d 5+ 5T - SuUuldt=0(2.5.4)
L% T 5
where t,{t{t;is the prescribed time interval,
iJLLi is the compatible virtual displacement vector which vanishes
at t,and tp,
iX} is the body force vector,
fﬁéi is the surface force vector,

If there exist two potentials of the fovces,-‘ﬂ and“VE_such that

FVi = - [XiT{duj (2.5.5)

and dVo == {d}|"{du} | (2.5.6)
mthe above principle reduces to ‘

UTZLT—u‘_J‘\V'Ml-év" dg Jdt=o (2.5.7)

This expression represents the Hamilton's principle applied to the dynamic

problem of a elastic body, which states,
Among all admissible displacements which satisfy the prescr ibed
geometrical constraints and the prescribed conditions at the limits
t=t1 and t=t2, the actual solution makes the functional
j:l’[nueiv,awt—gwds] dt (2.5.8)
stationary,
HNow, we are going to express the various forms of energy in terms of
the generalized coordinates of the vibrating system, Yle assume the

generalized coordinates £q1.q2,...,qﬂ) are of holonomic and non-linear type,
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then the state or configuration of the system at any instant is given by

U= Xy, X2, Xs 3G ,F2, o, G, ) {2.5.9)
where the time derivatives of a5 arc omitted, since they are expressible
by the generalized coordinates and the time variable, ( Note that a

holonomic system satisfies all geometric constraints,) From cq(2.5.9),

we obtain
- & QL_& : ou <
R au
Suc= 3 5o5d%r (2.5.11)
=,
The Lagrangian is def:ned as
L. = T -1 (2.5.12)

which is a function of generalized coordinates, since T and TX are functions
of u, from equations (2.5.1) and (2.5.2). The last two terms of

equation (2.5.4) of the principle of virtual work are transformed to

[rovae JOLZ(3 7. + * 35 468.)] de

=Z ai‘; 5‘? ,tz 5 (f?t BLr é.%.r)aﬁg, dt
L_. i'_ft;% - 5@-,] §¢rdt (2.5.13)

since for t=t,and t=t,, Jq'r=0.

The remaining terms of equation (2.5.4) become

. N
f fXITfJULMW'L*l féifigu';dsizl Qedgr (2.5.14)
m =
where
Q= Jix]71%% o {dwl s f{ﬁ’i?—%}ds et N
ygL S (2.5015)
are the generalized force components, Therefore, by equation3(2.5.13}

and (2,5.174), thre equation (2.5.4) of the principle of virtual work gives

®2 804 oL _ 2L
.L E[ at 2% 2%, “&r]é‘ﬁ'rdt -0 (2.5.16)

! =1
Since it holds for any prescribed time interval, thercfore the integrand

nust be zero, 1855

d
2l -3%-a 5o (2.5.17)

If the property of holcnomy of 9y is used, i.e,, JIqr are independent,
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equation (2,5.17) leads to N simultanecous equations describing the motion:

a oL _ oL _ = 8
& 93 age G Gty 2w (2.5.18)

These are lLagrange's equations of motion of an elastic body,

If the vibrating system consists of many elastic bodies, which are
interconnected with each other, the set of the generalized ‘coordinates (2.5,
9) are not independent (i.e, non-holonomic), the system of equations (2.5.
17 ) still holds true, but the system of equations (2.5,18) needs to be modified
to tak-account of inter-body constraints (ref 2), Assume that the Jqr

are connected by n<l differential constraint equations of the form

¢L‘(?'f?}'l“"%ﬂlt).‘:ol f_'—'—“l,z' \s-’n, (2.5-19)
which, for a virtual displacement, takes the form
5 BL} J‘Z-J =0 ] l:",z, “‘;ﬂ.- (2'5.20)
}
d oL _ oL _
If we denote Al‘ at I)%r ‘3( Gr )
Ga b 2, N (2.5.21)

then a system satisfying both systems (2.5.17) and (2.5.20) is found to be
z( 4L 2L 5 ?"— § o
dt d* 3‘@:’ (‘3‘1() ?r - l_=1 kLr-__{BL' 0‘1:*0
or i (A —z reBir) 04r=0 . (2,5,22)

r=i

where Al are arbitrary constants with respect to 9
Equation (2.5.22) can be written as
N

i [Ar- 2 ()\.CBCr)] §9¢ +2 (Ar -i A Bir)dge =0 (2.5.23)

r=t (K] =N+ =)
Since n<N, we can rearrange the generalized coordinates such that the
variations of generalized coordinates inthe second part of equation (2,5+23)
are independent, Further, we can choose the parameters )\L 0121,2,000,0,
such that

Ar-i AcBir =0 r=1,2,--,n (2.5.24)

L=t

With condit:i.on(2 5.24), equation (2.5.23) becomes

z ( Ar - FA\_B\.J)J?r =0 ,

[ -\

But é(k“ r=n+1,n+2,...,1l, have been chosen as indeperdent, therefore

n
Ar-2 N Brr=o | F=ntl, n42, o, N, (2.5.25)

L=



29

Combining equations (2.5.24),(2.5.25) and (2.5.21), we have

d oL _ 2L _ : Be re),2, -, N 2.5.26
T -5%-‘_ gﬂ_r— Q"'i"é )\._B;_(" re, s N, (2.5, )
which is Lagrange's equations of motion for a nonholumonicsystem, The

n4N parameters q , r=1,2,...,N and A, i=1,2,...,n, can be determined by N
equations (2.5.26) and n equations of (2.5.29). The Al are called
Lagrangds multipliers,

From equations(2,5.26), we can see that E% ALBir may be interpreted
as the addition of generalized forces corresponding to any constraints which
exist,

In the formulation in this section, no assumptions about the forms of
elasticity and displacement patterns have been made, If we sdy the materials
composing the elastic bodies of the systems are linear elastic, the
generalized Hooke's law relating the stress components and the strain
components holds, i,e,

aip = Cyre e Lkt = 1, 2,8 (2.5.27)
where C«',;&( are the elastic constants and are independent of the state of
stress and strain, i,e, constant repective to dy and Ea¢. If we say
the deformation is small so that the higher terms and products of displacement
gradients are negligiBle, therefore, the following strain-displacement

relationship holds,

£ =% (Woi+upi) (2.5.28)
h L. ew
wnere Wy, = 5"{) etc,,

From now on, the word "elastic" impliec "linear elastic" and deformations
are assumed small, unless otherwise stated, From equation (2.5.28), we can
see that deformations are the gradients of displacements, Large
displacements do not necessary imply large deformations, although the geometr:

of the whole system could change considerably as in the stability analysis,
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Under the assunption of small deformations and linear elasticity, the
energy can be expressed as )
T - fLufuJTUﬂia}¢“L (2.5.29)
W= % [ fe57[CTieldnt
{2,5.30)
where {u} and {€§ are the displacement response vector and the strain
vector repectively, [f] is the mass density in matrix form, [C] is the
matrix of elastic moduli, The dimension of {“} , denoted by N, is six
when the rotatory inertia are included, The elements of [f] are mass
density per volume if linear inertia are concerned, and are moments of inertia
per unit volume if rotatory inertia are considered, The dimension of 522 ;
denoted by ) is nine if the rotatory inertia are included, Vhen the
rotatory inertia are neglected, the strain tensor is symmetric and 2 may
be reduced to a vector having six components, The dimension of [C] is

dependent on the state of strain vector, i,e, whether general three-dimemsion

or plane stress or plane strain,

2.6 MASS AND STIFFNESS MATRICES (ref 8)

.

It is possible to express the displacements and strains in terms of
generalized coordinates in linear form, i.e,
{ul = La]{gi (2.6.1)
jey = [b11F1 (2.6.2)

where [0] and(b] are independent of {«} and{g 1t , then, the two forms of

[

energy in equations (2.5.29) and (2.5,30) become,
T =4 [ 157 (a1 LRI al{gtave.
Fi1 | CarCPl talav {1
5§93 (M 1! (2.6.3)

n L}

-

L]
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and W =%/, $317(bI(CIbI{gidwt
= 53517 J Cb1LCTLbIdunt §9i
= 3 {117 (KUY (2.6.4)
where (m] - fv,t[aT[P][uMwL (2.6.5)
(XK1= Ju b (CTIbTdwL (2.6.6)

are defined as mass matrix and stiffness matrix of the system respectively,
They are positive definite symmetrical matrices for the positive definite
nature of the energies. Therefore the kinetic energy is expressed as
a bilinear form of generalized velocities and strain energy of generalized
coordinates,
With equations (2.6.3) and (2.6.4), the Lagrange's equations of

motion become

MI§§5+ (€151 =i} (2.6.7)
whereﬂ(l} is the vector of generalized forces given by equation(2.5.15).
If {Q} is harmonic in time and represented by iGllu{é i e."“’t , then, after

introducing {9{={%t e“t, equation (2.6.7) becomes,

~wr[m]{71 + [K]F1=1R} (2.6.8)
or (21131- Q1 (2.6.9)

vhere LG@] =[3{J -uF[TY[] is called the dynamic stiffness matrix in
harmonic vibrations, If we reduce the amplitude of féi} until it
reaches zero, equation (2.6.9) becomes
(2103} =fo) (2.6.10)

which is the equation describing the harmonic free vibration of a system,
The necessary and sufficient condition for equation (2,6.10) to have non-
trivial solution of {%'} is that

det((D] )=0 (2.6.11)
which is the frequency equation determining the natural frequencies of the

free vibration and the nontrivial solutions of ffi thus obtained are the
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modal shapes corresponding to each natural frequency.

2.7 ENZRGY AMD NORMAL COORDINATES (ref 10)

By the methods of piecewise representation, the vibrating behaviour of a
continuous elastic system can be described approximately by a finite number
of generalized coordinates, The energy forms are expressed in terms of
these generalized coordinates, Since the choice of these generalized
coordinates is not unique, transformations of coordinates are required when
the same vibrating system is described by different coordinate systems,

As mentioned in section (2.1), there is a special coordinate system which is
uniqﬁé for a specified system and is called the normal coordinate system,

In this section we shall discuss the expression of energy in terms of

the normal coordinates,

Consider the free vibration of an elastic system whose vibrating
configuration is defined by the initial conditions only, Let us assume
the initial conditions are such that this gystem will oscillate freely in
two of its normal modes simultaneously while the other modes are not excited,
Now, the two normal coordinates, P, and P, say, associated with these modes
are varying harmonically at their cooresponding natural frequencies W and w,,
The equations (2.6.3) and (2.6.4) will have the forms

2T = My F’,z + m:zfs-,2+ 2myp, f.’, P.Z

{2:741)
2W = %y p2 + R2pl+2kap e
where my, &i; are components off Ml]and[I¢].
Assume that the free vibration modes are
Pe = Al sinwit L=1,2 (2.7.2)

Substitute equation (2.7.2) into equation (2.7.1), and sum together, we

obtain the total energy of the system at any time,
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o T+W)= A2 (Muyedlcos?it + K Sin*dit ] + A [0t cos?wit + £12 Sintoat. )
+ 2 AA: (M Qiacosdtosint + £ Sinvort siadt] (2.7.3)
The right- hand side of equation (2.7.3) must be independent of t because

there i< no force acting on the system and no means by which energy may be

dissipated or created within it, For this to be so, it is necessary
that I"Ylnt.ﬁi)l.}"“-= ky Myos= T2 ;
My = m;.: ﬁu:ﬁ lel = 0. (2.7.4)

In this case, equation (2,7.3) has the form
2( T+ W) = my AT+ m AW
Eu A+ B AL (2.7.5)
and equations (2,7.1) become |
2T
2

B i
-kn rlt“"’ ﬁnrz‘x (2.7.6)

Similarly, when the number of normal modes excited is more than two, the

fact that the coupling terms of principal coordinates in energy expression
vanish can be proved. The con-ditions (2.7.4) are called the conditions
of orthogonality of normal modes,
I¢£ the displacements and strains are expressed in terms of normal

modes tﬁi y U=1,2,..%,n, i.e,

DEPRIRTNY

€3 =5 fedre, (2.7.7)

Cot

then the kinetic energy and strain emergy in equations (2.5.29) and (2.5.30)
become
Pnf (63 *[mwm
‘Li F’:.F;j [C]s‘&;’[duﬂ_

gt
or, when the conditions of orthogonallty are introduced,

T =13
U =

=1

PeMe

,..
3 %

N Nk

W PE My (2.7.8)

-
L
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where the generalized mass corresponding to the Lth normal mode M, is given
by, M= jwl§¢c¥‘[f]{¢c}iwt (2.7.9)

The generalized force , £l , associated with the U th mode is obtained from
equation (2.5.15) as

B = Jo XV {55} 4wl | 1237135145

i.=1 2,....n.
But (33> > (&, fclp) =fded,

for Pr are independent: coordinates, then we have,
SN AT S J;t23T{#3ds o
I =1,2; sas N
By means of equations (2,7,8) and (2.7.10), the Lagrange's equations take the
form, P._ e 0 PE = B L=1,2, 0. 40 (2:7.11)
with initial conditions
fu@}= 2 pa 3 el PO
§ L ()] >f ERTAC)
or PO =i [ (BT [PT] woF dwl
PO = 1, JWL{‘?SC}T [(P]} udwl (2.7.12)
where {W} = {%(‘UI and P = po(t) .
One of the significant features is that the principal coordinates are uncoupled
in these equations,
The solution of a vibrating system by means of its normal modes resulting
in the set of differential equations (2.7.11) with the initial conditions
(2.7.12) is called tle modal analysis, This technique in vibration analysis

will be discussed in some details in chapter seven,
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2.8 RAYLEIGH 'S THEQREM OF ONT CONSTRAINT ( ref 3)

The Rayleigh's theorem of one constraint on a vibrating system is of central
important in solving the frequency equation in chapter five, We shall
study the theorem in this section,

Considering what effect the imposition of an additional constraint
has on the natural modes of a dynamical system vibrating about a configura-
tion of stable equilibrium, we suppose that the motion of the system is
approximated by N terms of its normal coordinates (p1,p2, einn ,pN), s0O

that the kinetic and potential energies have the forms
N

Ttz R (2.8.1)
U =73 iihfff (2.8.2)

where the generalized masses are assumed unity, i.e, , the normal modes

are normalized, A. are parameters proportional to original natural freque-

ncies, Let an additional constraint be expressed by
f(ﬁvﬁzy”fﬁ] * 0, (2.8.3)

'For small disturbances, we can expand the function f in ascending powers of
Pc and retain iply the first terms, We can thus express the constraint
by cz AlLPc =0 . (2.8.4)
where Al are constants with respect to P . As the equilibrium

configuration is supposed to be compatible with the constraint, there will
be no constant terms, By means of this equation , we can eliminate,[ly say,
in the equations (2.8.1) and (2.8.2), and we have

T &% ?‘ Pl o+ ‘;\f—ﬁ(g AcpeY (2.8.5)

U =35 .Z AP+ ﬁ‘i (iZ:ALFc)I] (2.8.6)

The Lagrange's equations of motion (2.5.26) of the modified system are

therefore the N-1 equations

Pr + Atpr + /AAI‘ =0, Fole®i wae » W1
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N=1 P RN

PN %:'IPN
* T A An
or §“+A;PN+}AAN =0 .

So that the equations of motion of the constrainad system ars the N egquations
ﬁ~+AH%+ﬂAr=o, r=1,2, ... , ¥ (2.8.7)
where }A is undetermined,
Now consider a normal mode of vibration of the modified system, we
can express PL = olcCosAt C=1,2,++, N,

/.{ = Y cosAt |

Substituting in the equations (2.8.7), we have
2
dr( Ar— )C)-l— YAr =0, f=1,2, ... ,N,. (2.8.8)

With the contraint eguation (2.8,4), we sum all equations of (2.8.8), and

obtain N Al‘
= 0 - . 2' 8.9

This equation in A has N-1 roots, which, from the form of the
equation, are evidently interspaced between the quantities )L1| ' /hz § e
)\_:; ; it follows that the N-1 natural frequencics of the modified system are
interspaced between the n natural frequencies of the original system, This

is the Rayleigh's theorem of natural frequencies with ane additional contraint,

4

2.9 DISCXETE VISRATING SYSTEMS ( ref 11)

In order to demonstrate the apPlication of the materials in the previous
sections, an example of mass and spring system is given in this section,
Fig (2.9.7) shows the scrematic of a conscrvative spring-mass system of n

degrees of freedom with one end fixed and the other end free, let the
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magnitudes of all masses be m and let the springs have the same spring cons-

tant k., The generalized coordinates of the n masses are denoted by Qq1959

cee 9q each of which is measured relative to the static equilibrium positicns

of each mass,

?ﬂﬂ 3n

Fig (2.9.1) a conservative spring-mass system of n degrees of freedom

The kinetic and potential energies of the system are given by

. 2
. T=%Z‘I'm

c=l "1
1[5 2 2
Lt E[.-_Zzz k(ag-q;_)% k]

For free vibrations, the generalized forces, 01 , associated with q; are

zero and the Lqgrange's equations (2.5.18) become

(M{g}+ [(Xg)={e}

(2.9.1)
where the components of [ 1) ana[JK ] are given by
‘ 0 if 3§
m,. = { when
ij ..
m 1=]
2k i=jfn
and Ris = i-k vhen ifj (2,9.2)
J k isj=n
repectively, The dynamic stiffness matrix (2,6,9) has the fornm
¢ 9 5
2k=wn -k
-k 2k-cdm -k Y
=k ~ >
[9] s % \\\\ ( 2.9.3)
g L
0. : “k  2keco'm =k
L -k  k-o'm

V.
The vanishing of det(?)] gives tre natural frequencies of the system,

These natural frequencies are given by

v e )R
= - =}, 2 s 2.9.4
W 2,‘—-— "'12(2"._'_' ) 1,2 s ( )
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Y . ; : h
and the corresponding vibrational mode for the Jth mass with the rt

natural frequency is
r(2-1)7

¢rd:..": SIRW r'j=‘l’2, ese 3 N (2.9.5)

WVhen the generalized forces, Qi(t) , are not zero, the solution of the
vibration problem for qi(t) can be preceeded by a coordinate transformation
transforming the qi(t) to the normal coordinates pi(t) according to equation
(2.7.7). That is

qi(t)= é qbijpj(t) i=1,2, ... ,n (2.9.6)
vhere @ i is given by equation (2.9.5).
The generalized forces Pi are obtained by using equation (2,7,10),
which is Pr=fvi{xi"{¢,-}dunl+js {37 {P 1ds
= jaliedg
- CZ:! QL Pre r=1,2, ... ,n  (2.9.7)
The Lagrange's equations of motion in terms of normal coordinates are given
by equation ( 2.7.11), i.e.
Pi+ W(P; =Py i=1,2, ... ,n  (2.9.8)

and W{is given by (2.9.4), The set of equations (2,9,8) will be solved

in conjunction with the initial conditicons

PiO = 23, Lo fPcIT(P]] o} duad
n
) JZ:‘ bij )0

- n .
P = 2 AN A0 (2.9.9)
since M, =j Pdud = m,
el

For a system of discrete masses, the product termsof the generalized
coordinates in the kinetic energy expression vanish and hence the mass matrix

is always diagonal,
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2,10 INT20DUCTION TC FIFITE ELEMENT MSTHODS

Since our method of study is very close to the finite eclement methods, a
brief introduction of these methods to elastic systems may be worth to
mention, .
To the best of our knowledge, the finite element method dates back to
a paper by Courant on torsional problems in 1943 (ref 9¢), It was
mathematically based, The term "finite element method" was not
introduced until the middle of the fifties, At that time electronic
computers were rapidly entering the field of technical computations, and
matrix method of structural analysis was proved powerful, An extension
of these methods to general structures was natural, P neers in this
development were Langefors (ref 97), Argris (ref 98) and Clough (ref 99),
and this time the approach was based on simple engineering arguments,
The continuous material was regarded as being split physically into finite
elements., Each element was analyzed as being aseparated piece of
material, making up the complete structure when joined to the other elements,
For a thorough study of the finite element methods, textbooks like the one
by Zienkiewicz (ref 100) should be recommended. Here, only a brief
account of the theory may be included,
Elastic problems are governed by fhree categories of field equations,

iz stress equilibrium equations

stress- strain relations ( constitutive material laws)

strain- displacement relations (kinematic relatioms).
In addition, boundary conditions may be given as

specified boundary stress

specified boundary displacements

specified relations between boundary stresses and boundary

displacements,
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For linear theory of elasticity, these equations are pafticularly simple,
In terms of retangular Cartesian coordirates and by means of standard tensor
notation, they may be written
1. stress equilibrium,

g ij,j+Fi= o, i,3=1,2,3
where dij= stress tensor components-

Fi = components of body forces

2, stress-strain relations,

o 15" Cijklgkl i,33%k,1=1,2,3
or inversely, Eijz Sijkldkl
where the new notétions‘are

-

Eij= components of strain tensor

C.. .= etastic stiffness coefficients
ijki

Sijk1= elastic flexibility coefficients

3. strain-displacement relations for small displacements,

E'ij= % ug g+ uj’i) i, j=1,2,3
where u, denotes displacement in the direction i,

For the formulation of stress boundary conditions internal stresses
must be related to surface tractions. The surface traction ¥i in direction
i at some part of the boundary S may be written

f. - S35V 5
where s’jis the direction cosine of the outward unit normal vector of - the
surface S ,

All energy principles may be used as §£asis for numerical analysis
by the finite element method. ‘The finite element discretization implies
a dévision of the total volume V into subvolumes or subdomains denoted

finite elements, The functions chosen to represent approximate displacement

and stress field are specified within each elenent, and conditions imposed
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on certain parameters at interelement boundaries provide the necessary
continuity requirement of field functions,
In the case of the standard displacement method the displacement field

is assumed to be {Ll(X;‘.’J:?)i-‘-'[CI’("r'ﬂ»Q)]{d}
where {¢’(be,§ﬂis the vector of chosen modes of displacement

§0(Eis a vector of constants to be-determined by the nodal
displacements, At any node i, the vector of displacement components
is given by

§30] = fulxe,ge, 2 =[ (X e9e, 20T { ¢}
where (X, Yg,2¢) are the coordinates of the node, If all displacecment
components of the nodes of the element are arranged in a vector {‘3} .
then (31=027{ %]

where the constant matrix [ &7 is given by

((P(X09., 2]
[¢ (xhtd'—! ?Z)J

3=

| (P (Xn,9~ 24)]| , n=number of nodes,

and the displacement field is expressed in terms of nodal displacements,
fuCey = [y, »T(2]17 {31 = (alx,v2) 17}
wvhere [a(x.y®))= [P,y 2)1(E]".

The strain field is obtained from the kinematic relations as

{eCvu )= b(x,9,2)1{%} (2.10.2)

For vibration analysis, if the external force can be expressed by a potential

{2101

V, the most convenient energy principle is tne Hamilten's principle, which
states, see section (2.5):
Among all admissible displacerments which satisfy the prescribed
gecmetrical constraints and the prescrited condition at the limits

t=‘c1 and t=t2. the actual condition makes tle functional

Jolr-w [ vaw]dt (2.10.3)

stationary,
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Now the kinetic energy and the strain energy are given by

T:%fw., HATLRIT duet (2.70.4)
and =5 J.. L&17(cligd dwl
respectively, From equations (2.10.1) to (2.10.4), we have

G283 M98+ 219" [K1ig)-RiT{al)= 0 (2.10.5)
where the mass matrix [YHJ. and the stiffness matvix[}(] are given hy
(m)= (@l (rilal (2.10.%)
and [(5X1= b1 {c](b]
respectively, and {Cli is the load vector resulting from the volume
integral of tne expression (2.10.3).
Since the kinetic energy of the system is the summation of the

kinetic energies associated with the individual elements, therefore,

T=‘é":% vt (U [ L] {kel dumt (2.10.7a)

dements  thment
and so is the potential energy

Vet % Jue i TGS dut (2.10.75)

themete tlement
where the subscript ¢ denotes tre juanties referred to the individual

elements, applying thre requirement of stationary energies (2,10.3)
and with reference to equations (2,10.1) and (2.10,2), we have

§( 2 5147 tMedigd - 3, £15:0 TReliol- E 1307 Qel )=o

thments _ elomovcts thwanty ( 2.10,8 )

Now, if all the coordinate vectors {@a}are transformed to a cormon

cooordinate vector base {?} by

§9el= [neliy}
then we nave

S5 [e]) 13-4 101 (3, [ReD)is1- 1345 {@el)=o (2.10.9)

thoments emats dtmwat ¢
[Ke1=[ne T [Ke1[Ne]
[Me]=[Mel"[1He1ne)

[Oe] = [ﬂe_f[@e]

where
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Comparing tie equations (2.10.@} and (2.10.9), we have, for the system,

IMJ=2 [Me]

themerts .
[K]= E [Kel
\eme ity _
(G)= 2, (el (2.10.10)

. Uevne vty ’ .
Equations (2,10,10) are used to assemble the system equations of motion,

If we perform the variation of equation (2,10.5), we have

[TTL]{"{E-\- []{]{qi:{&i (2,10.11)

which is the governing equation of motion in matrix forn,
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CHAPTEX THREE

FORMULATICHN OF ELEMEINT IMATRICES IN HARMONIC VIBXATIONS

351 INTRODUCTION

As we have mentioned in chapter two, the solution of the free
vibration problem, tre forced vibration problem and the stochastic
vibration problem can be decomposed into the so|ution of harmonic vibration
problems, The investigation of this harmonic vibration problem is
thergfore very important and forms the main body of this report,

To study the harmonic oscillatory behaviour of a complicated
structure, which consists of different types of structural members of
different size and geometry, by the method of dynamic stiffness, a common
coordinate system for all the structural members is first chosen,

This coordinate system is called the global coordinate system, Then the
structure is divided into a set of continuous structural members such that
the harmonic oscillatory behaviour, e.g. the stiffness properties and the
inertia properties etc., of each member can be formulated in.wa systematic
and convenient way suitable for handling by automatic calculating machines,
Their behaviour is usually described by the general three dimensional
theory of elasticity, In order to simplify the formulation, we may

take the advantages of their geometry and approximate their description

by one or two dimensional theory of elasticity.
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To a first approximation a beam may be represented by its centroidal
axis and analyzed as if it were a line element, Because this axis is -
described be a curve of one spatial parameter, it can be regarded as a
one~dimensional member even though the axis itself may be curved ac in
the case of an arch or helix,

On the other hand, a tkhin flate plate or a thin curved shell is
represented, for the purpose of analysis, by its middle surface, This
surface is completely defined by an equation or a set of parametric
equations having two independent spatial coordinate parameters, They
are accordingly classified as two dimensional,

*If a beam is so thick that it cannot be described sufficiently by its
axis or a plate is so thick that two spatial parameters are not enough for
the purpose of analysis, then they will be classified as three dimensional
elements. Although many structural members are three dimensional in
reality, few are analyzed as such because of the complexity of formulation,

It is the aim of the chapter to obtain the inertia and stiffness
matrices for certain types of structural members, These structural
members include one-dimensional structural members such as straight uniform
beams, tapered beams, circular beam segments; two- dimensional ones such
as square plates retangular plates, c,lindrical shells; and thkree-dimensional
members such as cuboids, For more complicated structural members, the
present method of dynamic stiffness is inconvenient, although possible,
because the mathematical functions involved will be too complicated for
practical applications, Forfunately, for the requirements of economics
and ease of manufacture, many engineering structures are composed of simple
uniform members as mentioned above, When the structural memters have

only small deviations from their uniform equivalences, Chi, Dame, and

Basdekas (ref 61) recommended a variational method based on the natural



frequencies and normal modes of the unmodified structures to study tle
dynamic response of the modified structures,

The coordinate system chosen for each individual member is called a
local coordinate system, The harmonic vibration analysis of structural
elements in this chapter will be based on the local coordinate systems of

individual members.

3.2 THE FUNDAMENTAL MATRICES

When an elastic body, which has been separated from a structure, is
undergoing harmonic vibration with frequency W , the kinetic energy |
and the strain energy U are given by equations (2,5,29) and (2.5.30)

respectively,

T=% [ J04T(PT i} duwt (3.2.1)
=% [ telTCC T el dwt (3.2.2)

where §W{ .—-[LLI.uy.bl{aT:-i.s the displacement vector, [ ] the inertia
tensor, (C ] the matrix of elastic moduli and {£] =(Ex,8y.Ex, Evg, Etx,&x)']-'
is a vector consisting of strain components, When a set of N generalized
coordinates '%L, L=1,2, ... ,n is chosen such that

Sucry,zt)i=[alxy, 2,601 163 (3.2.3)

{g (19,20} =[bltyY 2,07 {10)} (3.2.4)
with [ & (X,Y,28)]and[ b (%,y,2,£)]being the relation matrices independent of
generalized coordinates, then the energy expressions (3.2.1) and (3.2,2)

become

T

51317 (L, (a1 (PIaldvl ) (3]
58417 () {7} (3.2.5)

1

ch
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ama W= %310 ), CbIT(CTIbTdwl ) {4}

= 3 (VX7 1%) (3.2.6)
vhere [N1]= LL (al [ rllaldwt, (3.2.7)
(X3 [ (BITLCI(bTdwL. . (3.2.8)

If the body force, excluding the inertia force, is f)(( w,y,;‘t_)} and
the surface traction is I%E(.T;H.?.t.]} then the associated generalized

gorces (<, L=1,2, ... , N are given by equation (2.5.15),

Qi) = u.,L{“T%%L—.} d.uo L-rjwL {8} —‘"—LI d vol

(3.2.9)

Using the Lagrange's equations of motion, equation (2.6.7), we tren have

(M ] {4} ~[K]{g)={Q} (3.2.10)

For harmonic excitation, {QQ} and {4} are represented by
{a} = {@re™t (3.2.11)
fgy = [31e™ (3.2.12/
and equation (3.2.10) becomes
(©911%1{={Q} (3.2.13)
vhere  [@]=[X]-w*(m] (3.2.14)

Note that in forming equation (3.2.13), the strain and displacement variables

have been transformedﬁfrom the time domain to the frequency domain, e.g.
fut)] —= fuw} = fue}
few) — fewn} = {ee™ },
etc., and tkerefore equations (3.2.3) and (3.2.4) are rewritten as, when
the time variable is replaced by the freguency variable,
fu (0 y,2,w) = [ Aty z.e)] { gw) (3.2.15)
Le (1, 2.0) = (b (XY, 2.0)] {4 (3.2.16)
The matrices Ehl], (] andt [ngene the fundamental elerent matrices and

are called mass matrix, stiffness matrix and dynamic stiffness matrix

respectively, The mass matrix corresponds to the kinetic energy;
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the stiffness matrix corresponds to the strain energy; and the dynamic
stiffness matrix is relating the amplitude of the displacement vector to
that of the force vector, It is our purpose to construct these funda-
mental matrices for some structural members of practical interest.
The most common method to contruct these matrices is the method
of energy (ref 8) which may be outlined as follows:
1. find out the relationship between the displacgment vector and the
spatial coordinates, i.e. {Ul= {LA(I.%,E,&J)} £3.2:17)
2. choose a set of generalized displacements {§} and establish the
relation between {U} and {4} , i.e. {W]l=(aT{qg} (3.2.18)
3. ff?m the strain-displacement relationships, i.e.EQp=é(ug}+LU¢K3.2.19)
establish the relation between g3 and {%{ ,
i.e. {€3=(b]1{g} (3.2.20)
4, Integrate the matrix products to obtain the mass and stiffness matrices,
ie. (M]= fm ([a17(PI(al duwl (3.2.21)
(K= jm (b17(C1L b7 dwl (3.2.22)
and obtain (D]=(KT-w[M]. (3.2,23)

Let us consider some elements which are assumed discrete to show the
application of the above formulae to construct the fundamental matrices.

For a mass point as shown in fig (3.2.7.a), where q is the generalized
coordinate chesen along the direction of oscillation, the kinetic and strain
energiss are, respectively,

1 2 1
T=5mgq and U=0 ,
Therefore (Hl}:y“ 'IJ{]=O ,[@]=—nngl'

Similarly, we obtain these fundamental matrices for the other elements

shown in fig (3.2.1) and tabulate the results in table (3.2.1).
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(a) (b) (c)

k-2
‘\1':& b %{’Q' ¥
m - '0\ fpp <+ 2a
& . % %2:&1 L
(a) (e) (£)
Fig (3.2.1) Some discrete elements
fig description mass stiffness dy???:c
(3.2.1) matrix matrix Atitiness
matrix
(a) Single mass m m 0 ~mu’
(v) Single spring k 0 3 k
(c) Rotary inertia I I o) ~Tw?*
(a) Rotary spring k 0 ¥ k
(e) Mass and spring m X k=m0t
(£) Rigid block with | [m ma, o o m oma |
mass m and rotary na ma +I 0 O - 2 Il
inertia I ma ma4+

Table (3.2.1) Fundamental matrices for discrete elements

So far, we have not said any thing about the nature of the furdamental
matrices, From equations(3.2.,7), (3.2.8) and (3.2,14), these matrices are
symmetrical, And also from the positive definite properties of the kinetic
and strain energies, the matrices[111]and(3<f]are positive definite,
These three matrices depend on the properties of the material of the element
and also its geometry etc.. e shall emphasise the dencndency of these
matrices on frequency of vibration, as described in (ref 8), because we

want to study the harmonic vibrations of a system, This frequency
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dependendency is not obvious for discrete systemns, since the relation natricos
of equations (3.2.15) and (3.2,16)- are independent of frequency. For
continuous or deformable bodies, as we shall see in the next section, this

frequency dependency of fundamental matrices becomes explicit,

%“@l ?11@1
1.3, rt\ .0 l"f\
3.2.1 REAM ELENMENTS
Fig (3.2.2)

Consider the transverse vibration of a uniform beam element as shown in

£ig (3.2.2), where q; and Q;, i=1,2,3,4 , are the end displacements and

end forces respectively, The quantities such as u,q,¢ , Q ,etc, are
referred to their amplitudes of vibration, A simple displacement pattern
of the beam may be assumed to be

u(x)= oo+ x4 o(1x2+ cw(_pc3

(3.2.24)
where /¢, U= 0,1,2,3 are constants to be determined, The displacement
vector ia this case consists of one component, i,e, the transverse displace-

~ment, therefore we may drop the brackets for vector notation, Were the
functions xi, is 0,1,2,3 chosen as coordinate functions, {would have been
taken as the generali;ed coordinates, Now since X{'s do not have direct
physical interpretation, we prefer to transform them to the q;'s, so that
the conditions of compatibility lLetween elements can be applied directly
to form the overall system equations, The transformation may
proceed as follows,

In order to determine the coefficients o&, (=0,1,2,3 in eguation
(3.2.24), we use the following boundary conditions

u(0)=q, , u'(0)=q, , ull)=qq, u'(4)=q, . (3.2.25)
Substituting egquation (3.2.24) into egquations (3.2.25), we obtain a set of
four equations for O, (=0,1,2,3, After solving these equations for (<

in terms of ay i=1,2,3,4,the equation (3.2.24) can be rewritten in the
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form  u(x)=(a(x)) {q} (3.2.26)
- T

vhere {qf=[(q, a, a3 9,3"

X \2 X
and  (a(x)] = [1-3(P2FF  (F-2P=EFP)

X\)_ 9/ X\3 X\2 /X3
() - AL R EPN] (3.2.27)

The strain and displacement relationship for a beam is

a2l

Ex(0)= 3¢ =—4 5x* (3.2,28)

where U is the longitudinal displacement and Y is the coordinate normal
to X and in the plane of vibration, From equations (3,2,28) and (3.2.26)

we get the strain and generalized displacement relationship,

Ex()=Cb(x)1{93} (3.2.29)
where. [b(0)] = —% —6+12(1) -4+ 6-2(3) Care)L ]
(3.2.30)

The substitution of equations (3,2,30) and (3.2.27) into (3.2.21) and

(3.2.22) gives the mass and stiffness matrices

£ 156 2212 54 =134 )
_PAL | 23t 41 131 =34%
IMT =555 52 130 156 -224 (3.2,31)
(=130 =3* -220 4| o
and - [ 12 6L -12 6.{:‘
_ 6 & -5 2
(%] = £l -1;\2 _gL e L o 3.2:32)
L6l 2* -6L 4L

respectively,
Instead of assuming the displacement pattern of the form (3.2.24), we

can choose the displacement pattern as

u(x)= Acos AF + Azsin2f + Az coshF + Agsinh 21

£9.2:33)
which satisfy the equation of small oscillation of a beam ,i,e,
el %’%3 - PAW'U =0 (3.2.34)
where A%< WPAL/ET, The boundary conditions rzpresented by eq,

(3.2.25) result in four linear equations for the constants AL ’ C=1.2,3.4.
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After solving these equations for Ay in terms of U i=1,2,3,4, the equation
(3.2.33) is rewritten as

u(x)=[{ax )}

where

(L-Fa EX _ B Fi 4 \

57X 28 T aw 3n

F¢ L Eal F= Fsl

= A+ - A

(000O] =[cos®r sintE coe;}':)ii Jinh‘b’—}] 2» AT 2N ?)5:\; 2N

1 G L. _Eud Fs _Fl

2T 2R N TS N

R A K Fs Fak
v AA ANTZR IR (3285

vhere the fre.quency fanctions F‘i are given by

“F, ==X (sinh A -sinA )/§

1:'2 ==X (cosh AsinA - sinhAcos\ )/d
Fy ==X} cosh ) -cos\ )/&§

F, = X(sinn) sinx )/d

Fg = R(sinins sinX)/d

Fe ==23(cosh Asin A+ sinh)\.COS)\)/‘g

3 = cosh AcosA_ -~ 1, (3.2.36)

mass
The,matrix obtained by means of equations (3,2.21) and (3.2.35) is

(M= [ (@I CPI(a] dwi
= PAL j: (al1"[a] d g

V2-Fa/2R  -Fe/2A V2+FL/2NE R/ 2N
EL2N LOAFEA2ZA =Fol /22X L aa-Fe /2R
=fAL | -F3/2R ~Fe/2N Fs/2,2  F&/2N
Fit/2X ~ Tl /2N -Fi 8/ 2N F3l/2A°

COSAECOSAE  COSAESInXg cosA§coshAg cosAEsinhAg
f SINNECOSAL sinxgsinag sinigcoshing sinAgsinhAg 4
© | coshAEcospg cOSMAESInA  cOShAEeoSIAE  cosingsinhAg

sinhAgcospE sinhAgsinAg  sinhpageoshaz  sinmagsinhag

1/2 - F4/2 X Fa /2N -F3/2A*  FRl2R
SRe/aN WaarRL/2R —Fs/2X3 -F3l/2N
/2 +Fa/2N  ~Fat/2N Fs/2A =R l/2N

Fe/2X  Qfap-Fal/2R Fe/2R  Fsi/2R
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(G 640 G G3h]

Atk Gl Sk 6L
Gy =Gyl G G, L
Y SR SN S L (3.2.37)
where § = x//A, and the frequency functions Gi are given by

G, = (F,F,- Fy- F )/ 4N
G, = (75 £, )/ax
Gy = -(F1F4+ 2r, )/AN
G, = =(F Fye 2F4)/4JL"
Gy = (F4F,- 3F5)/4A‘
G = (F‘g- SFG)/4)\.‘.“ : (3.2.38)

When carrying out the interrations in equation (3.2,37), we have used the
integration tables of section (6,16), Similarly, for the stiffness matrix

we differentiate equation (3,2,35) with respect to x twice according to eq,

(3.2.28), Je have
E(x) = [v(x)1q} (3.2.39)
’ v R Rl Fs Fod )
where r_é_ ~5% PR - = S
I A S 7 S S Y
YN ] 22 XA 2A 20
b(x = 2= | cosAs sir ~cos! -s5inh 1, Fa _Fa F3  _ B
[b()] =55 [eomts siwg W sl 2% —F UL
Fe L _Fal  Fs RA
\ X 24 28 22 Tam
The stiffness matrix ic calculated by equation (3,2,22) as
(X1= [, (6T [CI(b] du \
M N T - S '
2 a2 203 2 T2 20
T F2 AL B4 _FPl A _Fal
= —E—T PN 258 z;L‘" 20 N2 I LN X
L _Fs TS
T 2N 2032 PN, 23
Eid _ Kt _Fu« F3l
A 2ar 2N 22 223/
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| ( cosAE cosAg cosAf sinAg -cosAg coshAf  «cosAS sinhAg
j sin A5 cosAg sinag sinAg ~-sinxg coshag =-sinag§sining
0 ~cOShAECOS A -coshaisinxg coshagcoshxg coshassinhag
¥ ~sinhA§cosAg -sinhxfsinAg sinhﬁgcoshaz singsinhag
(1/2 4:‘/7;»3— Fal /2N -F3/2X  RL/2R
~F/2N oA R /IR R /28 —Fat /2N
X |Y2 +Fa/2N WA WP Fs /22 -Fil /22
\ o Fe/2an® L/2N —Fa h/2X3 F&/ 208 Fal/ 223
. Ge -Gl Gs G L Fe -Fl Py Fal
=WpPAL FGal  Gaf* -Gl G4 EL |-Fat  FRU* -RL RO
Ge -Gy [ G¢ Ge L L | Fs -Fif Fe Fol
Gsl G, {? Gel G2 F3l Y G Fa d Pul
: (3.2.40)

Ifi order to compare the results of equations (3.2.31), (3.2.32) and those
of equations (3.2.37) and (3.2.40), we expand the frequency functions in
Taylor seriesl with respect to A in ascending powers about A = 0,

Fy= %2+.007142857 \* +.000015704.  +.0000000322 4 ...

F = 4-,009523810A% ~.000016262X

-.000000032 A% _ ,
64+.030952381A% 4.000072193X ..000000148A'% , ...

2
3=
F,= =6+.052360952 ¢ +.000076617 X  +.000000149N" 4 ...

F5=.12-.1285714297é -.000329571 X -,000000684 A - ...
Fe= 12-.371428571X" -,000354873X -.000000693 X" = ... (3.2.41)

G,= - .007142857 - 000031408 X - .000000095 ¥

G,=  .009523810 + 000032525 X 4 000000096 X, ...

G.,= - .030952381 - ,000144386 A ' - ,000000443 N - |,

= - ,052380952

.000659142 \* ~ ,000000447 N - .,

Go=  .128571429 4 .000659142 X . .000002053 X . ...

Ge=  .371428571 4+ ,000729746 X + .000002080 X 4 ... (3.2.42)
The corresponding functions from equations (3.2,31) and (3.2.32) are

F1=2, F2=4, F3=6, F4=-6, Fe==12, F_=12;

5 6
G.,=—3/420 = = ,007 142857, G2= 4/420= ,009523810, G3--13/420=-.030952381,

G ;=-22/420=-.052380952, G =54/420= ,128571429, Gg= .371428571.

6
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Therefore, the coefficients in equations (3,2,31) and (3.2.32) are those
- of equations (3.2.37) and (3.2.40) when X or W =0, Actually, the
shape functions in egquation (3.2,27) are the solution of the differential
equation (3.2.34) with the boundary conditions (3.2.25) whén w =0 ,
Therefore, the fundamental matrices of equations (3.2.31) and (3.2.32) are
valid only when the frequency of vibration is small, i,e., about W= 0 ,

The coefficients in equations (3.2.41) and (3.2.42) can also be obtained

as recommended by (ref 8) by assuming

u(x)= S wrar)]{q} (3.2.43)

=0

and substituting into the differential equation (3.2,34), Then ,
oo 4
(ExS o Locladn) ~pa 2 wlar){gy={ol.
M=o - s
For nontrivial solutions of {2},

oo 4 oo "
EI) w' 5‘;+ [ar()]=WPA :Z W larx)]

=0

Comparing the coefficients of the same powers of W', we obtain
a‘—j;[aou)} Lo]
& (e (o]
EL & (aw]- LALRL0O]
EI £ lasw] ralai ] e
By solving these equations , we have
(Qet]=[(1-38%22€%) (g-28%83)K Bit25®) (-5 €3]
[@e]= (o]

PALS 2
’;0‘1@’]=2—§m[(%5‘“ ISCE3+106g — 2 €64 6% )

(125=22¢%+ 21 €5 1484 357)4 (3952854532154 ¢g7)
(=982 1383 7564357 )]
(Qzt)]= (0] etc..
The substitution of these equations in to equation (3,2,21) we obtain the

‘mass matrix in the form
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4

.3714285?1E 2
o .052380952¢  ,009523810

[MI=PAL | 126571225  .030952381L .371428571 ,
|-.030952381L =~,007142857 L* -,052380952{ ,0095238104

symnm,

© ,729745
a| 1532330 .0325248(" Sy, - 103
+PALX | 659122 .144386% _ .729746 , :
-. 144385 L -.0314082 4" =,153233} .0325248 L
+ eces (3.2.44)

When comparing the coefficients of (3.2.44) and (3.2,42), it shows that
the coefficients of (3.2.44) are those of the first two terms of equations
(3.2.427, The fundamental.matrices resulting from this method do not
converge to the true ones when A is large, and therefore its application

is very limited,

353 DWITAMIC STIFFITESS % FCRCE-DISPLACEMENT XTLATICNS

In general dynamic analysis, there are two approaches in obtaining the
equations of motion of a mechanical system, One is the energy method
which is based on the stationary properties of total energy and the other
is the method of Newton which establishes the force and displacement
relationship without involving energies, Likevise, these two approaches
exist in vibration analysis, The general approach of the energy method
in vibration analysis and its application to simple elastic members was
discussed in section (3.2). Now we are going to present an approach
for obtaining the dynamic stiffness matrix from the force-displacement
relationship within the context of the Newtonian method of force,

The internal displacement vector relates to the gencralized coordinates

by suny,)} = (Al Ly,2)]§93 (3:3:1)
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Assuming that the boundary points of the member have the coordinates
(xi,yi,zi), i=1,2, v+ , n, where n is the number of the boundary points,
then the boundary forces Qi’ at these points may be obtained by the
conditions of equilibrium of the member, which is,in symbolic form,
fQi= (2] uctr,ye,20)} (3:3:2)
where [?)] is an operation matrix denoting the process of differentiating
the displacement for strains, transfoming the strains on the boundaries
by Hooke's law to boundary forces, From equations (3.3.2) and (3.3.1),
ve have fay =021 [alxi,y,20)] {4} (3.3.3)
When comparing the definition of dynamic stiffness matrix , i.e,

a} =(8]{%

the dynamic stiffness matrix of equation (3.3.3) is

(2]=(2](a(x,y,2e)] (3.3.4)

Ve shall explain the practical meaning of(:a] by two examples of the

following sections,

3:3.1 TRAIGHT EEAM MEMBERS

We derive the dynamié-stiffness matrix for a straight beam member by means
of force-displacement relationship in this section. Upon choosing the end
displacements of the beam as generalized displacements g9 i=1,2,3,4, the
displacement pattern satisfying the governing equation of a beam is given

by eguation (3.2,35) , which is

wx) = (a(n]ig} (3:3:8)
where (_'. _h Fal o B ‘
2 2% a 2N AN
AX X ) 2
[a(x) J= [cos?y i sm&i— cosh ‘T sinw™% ] __21:;\5 5&4* %}'\13 - ;}_\{3 _E‘:"%
Ly 2Bl Fs _FA
R IR N AN
A5 F4,l Fe fal
\ 228 WO 2N LN
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and the frequency functions F‘i,i=1,2,3,4,5,6 are found from eq (3.2,36).

The generalized forces Qi’ i=1,2,3,4 are obtained from elementary bean

theory,
3 3
Q,= shear force at ( x=0) = EI d"u(0)/ dax°,
02= Bending moment at ( x=0 ) = =EI dzu(ol/dxz,
Q4= shear force at (x=)) = =51 dau(l)/dxs,
Q,= Bending morent at (x=A) = EI dzu(ll/dxz. (3.3.10)
Carry out the differentiation in equations (3.3.10(, we can relate {‘Eiand {@}

through the following expression,

Q Fi =Ryl Fg Far) fq
Q| _EL|- Fak Rl -Fol R ) g, (3.3.11)
o F| Fs  -Fah Fg  Ful| | ag
Q gk Fqlt Pl mL (g
or {03 = [D]{ a} (3.3.12)
where
(r, -F L F v
1 4 5 3

91= EY 4+ 0 Fak o R
(Fab Fak® Fat Fpt¥)

(3.3.13)

is the dynamic stiffness matrix required.

3.3.2 FOLDED PLATE MEMBER3

A rectangular plate with two opposite edges simply supported and with the
other two edges connected to other structures bty prescribed displacement
patterns will be discussed in this section, Distributed coordinates on

the edges will be used in this example, The materials presented in this
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section are independent of the rest of the thesis,
To satisfy the boundary conditions of two opposite edges being simply

supported, the-displacement pattern of the plate may be written as,
N

T(x,y) =mZ=‘i Ym(y) sinmzx (3.3.14)

where N is the number of terms taken, a X b is the dimension of the plate

as shown in fig (3.3.1), and Ym(y) are the functions to be determined to

satisfy the governing equation of vibration,
/: a
——

KMh&ma
Fig (3.3.1) Rectangular plate with x=0 and x=a simply supported

The generalized displacements Cy m=1,2, ... , N and i=1,2,3,4 are

defined by
. . mnY
W(x,0)= g Sin =g~
m=1
w(x,b)= q.,5in m:-x
m=1
oW(x,0) ¥ cin MK
oy &, W Ta
dW(x,b ; %
_._é.y’_)= g q,,Sin MQ (3.3.15)
m=1

and the generalized forces Q*u‘. are defined by

3 N
. < ;T - IRLLE
0(:,0) = ¥ 9 #1E My(x,0)= 2 Qi sin "R,
o . < »PTUX
_Qy(x,b) = E ImasSin “q“() __M),(I’b)z ;‘z\__"Gn\.qsln-a-—

M=l ' (3.3.15)
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where Q_ and !{_ are the Kirchoff's shear and the bending monent of the

plate along y=constant (ref 7). The generalized forces are related to

displacement through the conditions of equilibrium on edges, y=0 and y=b,

PW
o (xy) = - D[ To +-v) 50y |
«3.1

w01 =— ol 3%+ V57 e
where D = Eh%/12(1—)’2) is the flexural rigidity of the plate

h = thickness and Y = the Poisson's ratio,
Before we can apply equations (3,3,15) to (3.3.17) to find the dynamic stiff-
ress natrix, we must find out the functions Yh(y) in equation (3.3.14).
If the loadings are harmonic with time, the governing equation of vibration
of the plate with frequency W is given by

D¥¢W- Phw’ W+ Ny 512+N3-}-’; = p(x.9) (3.3.18)

where Ny and bL,are the compressive inplane load in x and y directions

respectively, <74 is the biharrmonic operator in (x,y) coordinate, p(x,y)

is the downward distributed load intensity and represented by

P(X,Y) = %& P szn5¥%5 per unit area. (3.3.19)
m=1

Substituting equaticn (3.3,14) into (3.3.18), ve have

s mRX §fmn\4 mT " £hwi Nu N Py
,il i S O Yon ~ 2T Yo o Yor' = E5 Yo — 2 (B Yot Yo — B0
=0 ,
Maltiply by sinng%,and integrate over x=0,a, where n is a' positive integer,

and use tre orthogonality of sine functicns,

“’-2{”‘“) }\( - B0~ ii Nx(m'l -

™

m=1,2, oos , (3.3.20)
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The asscciated boundary conditions for these fourth order diffecrential
eyuations are obtained from equation (3.3.15),

Y (0) =qpy s ¥u(0) = q g, ¥ (0)= g, Y2 (D) = qy  (3.3.21)

The auxiliary roots of equations (3.3.20) are obtained by letting Y _ed'y

6= (- DT () (T () R R Yoz

2D a ]
Thercfore, Ym(y) will have four different forms of solutions depending on
whether 61 is positive, negative or complex, Ve study these four cases
as follows, since, to the knowledge of the author, novhere in literature
omplett
has so far consicered the,solutions for all four caces .
Case (1) When all four roots are real, which are X ¢, ,% ¢,, then the general
solution has the form
Sy . ._(1'1)’ T Y r mYy
Ym(y) = A cosh == + B sinh - + C cosh=p + D simn®P (3.3.23)

where A,B,C,D are integration constants and are determined from the boundary

conditions (3.3.21) as

Gi-Fy 2 =5 iy
(d’. 0‘,)‘4 +(6_'.‘- :)que PRI -.)'lna +(0'. d,;)quz;

Ff da
Brileit )1 + _.._...) bq (a ) ( \ b1
\0-11-6'.1 B ( d ? dl m2 o 2"'6; 6 -0’.‘, Tﬂ4

bq
C= =2 D= 12— l&' 3030 24)
™ _D—O'. 3 (

vhere F, = — (@asinhg, - 61 sinha, J(6x- a22) /

F2 = — (g, wsho'.:_::mhd‘;—d;sir\ho’.wshd':.)(fﬁz—df /4

F3 = "-6.161 ({ll—d';z )(CDShd'l -COS}'\GL J/J

Fo = 662 [(6,* 0,7 )(osha coshas -1 )= 266, sinh & sinh 6 1/ d
F5 = @03 (6= 621)(0’| Sinhq, - stfnh(ﬁ_ )/d-

Fe = 6162 (6; ™= 622 )(- G2cosh 6 sinh 62 + 6, sin€, cosh6: )/ J

d =26.62(coshaicoshdy-1) —(g*+6F)sinh@ sinhay (3.3.25)
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case (2) When there are two real and two imaginary roots, and which are
i‘d:, T id;, then the general solution has the form
61 . ql <f|‘/ » dl
Ym(y)= A cos—g + B sm-[.,x + Ccosh—p + D s:mh-bx (3.3.26)
where A,3,C,D are integration constants dJepending on the boundary

conditions (3,3.21), and they are found as

g Fa o
- (G—F—)qs““' + (63-\—6:‘ ) bm +(F'F—3;,—,)?.m3 -\-(GT.EL&) bGma

+67
(TR B (Gl Fa b —F3
B-(‘u"‘d:‘) L a',‘-+¢g) 63-1 (¢a+5'1 G2 +(‘|2+d?)!1lf
C= @m-A  and D= _ib(':ﬂ - %%‘B , (3.3.27)

where the frequency functions are given by

F, == (G Srh6i- €, 516 ) (74532)/
F, = — (6 cosha SInG - d25inha, sind: Na '+ 62)/ &
Fy == 6.6 (67 + 6,* ) wshai- 05 )/ d .
F, = 6 6 [+ (6F =62 ohdicosdy =\ ) +2 6 62sinhaisinda 1/ 8
Fs = 6102 (624 6, X XT2sinG2 + Cisinhdy )/ 5
Fo = =162 (67462 )(GuloshG St 02 +6, Sinh & os 62 )/ &
8 =260 (coshdicos@ar- 1)+ (62'- 61 )sinh o, sinda (3.3.28)

Case (3) when all four roots are imaginary, which are i 0) ,%i @, then the
general solution has the form

Ym(y) = A cosd—.‘_‘i + B sin&g—l 3 G cosgi,x 4 D s:‘_n‘%2 (3.3.29)

wvhere A=(}':?'1—“-F-'-¢—)?ml+(‘&?‘rj‘—f) b%’"'&'*'(o’: d—z)%“"’ﬂ +(4'E' gl)bgr"‘*'

B a0+ Fe
5 (4'1 T )% +(ﬁ)‘qu1 o o _)i“‘j *(G;—Fs )bghq'

C= Jmi— A and D= ‘1%%\3._ 8BS (3.3.30)

where the frequency functions are given by
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= (0’1 Sin 6y~ @, sinda )(0’12— d.")/ 4

F, =
F; = — (€,¢054,5'n€1 - 62SInG cosS: Y G -6>) /8
P, = = 601 (G- §2)( (0861 ~ Cos & )/ & . _
" d 0, [- (02 +a7)(cosq, cosGr—| )—2@ G sinGSinc )/ &
Fg = 6:02(0- @) (®RSInGa-Gsin@i )/ &
Fe = = 0,62 (021~ 02) d1C08G1SING, - £ SInG1€0502)/ S
J: 26,0, (cosGicosTr—1V) +(d|24 0*) singisinda (3..3. 31)

Case (4) When all four roots are complex and which are (0,1 i6, ,- 6% iq, ,

then the general solution will have the form

[Py ¥ ... G . q . .
Ym(x) = A cosa"% cosh—f + B cos—'}smh—g + C sin chosh —‘J.p D s:.n‘.r-‘}__Z smh_%
. (3.3.32)
where the integration constants A,B,C,D are found from the boundary conditions
(3.3.21) as: A=q

m1l

Bzfqm(d'uo‘zsind.cosﬂ'. + 6.5inhgcoshéy) + qu_(d'zsinzo‘,) -
qm3¢|(d',cosO',Sinho‘ﬁd';_sin{.coml(f;) + qu(d',sind'.sinhd’:,)}/d'-

C={-qm‘( fidasinh Gacosha,+ ®'sin6icosd, )-qu d,sinh’d, +
my 62( 61 cOS Gisinh 64 G5indi cosh @ )= ban, (Gsingisinh€y)Y/ &
D= fqmlo'. G2(sin’q, +sinn’a; ) +bq,( @1 sinhdy cosh@r- G35in 4, cosy; )-
~amsl( 02"+ G )sing sinh@, + Bamg( 18indicosh G~ Gcos Sisinh a)l/&
J= &'sin*6, - @2sinhZ6s (3.3.33)
The frequency functions are given by

F, = -260> (62 5InG coshay, ~ 6,056, sinh g, )/ 8
F = - 2‘| 6-3_ (Cleﬂh(z@ﬂh 0y - st;nd‘"(,oso‘l )/5

-

2 :
Fy =2601(63+ &' )(Sincisinha, ) /4
F4 = (X262 SN0+ X 01Sinht @y, )/ &
FS = 26102 (G4 g2 N disinhGacos €, + Tosing; Lash 02 )/ £

Fe ==261 €2 (02 + @’ N aisinhaycosh6r+ 6rcosdising,) /d
§ = 6:25\n’G, = 6,2 sinh*d2
%= ¢’-3662+Q-V)s,
%= G -360. - (2-¥)0,. - (3.3.34)
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The general solutions of the differential equations (3.3.20) in
these forms are not found in the literature, When we study the secondary
effects of a team remter, the same type of governing equations are met, and
we shall refer to these formulae again, However, we have not studied the
physical implication of the various natures of the auxiliary roots and
therefore, these formulae are presented here merely for the completeness
of the formulation,

Having determined the functions Yh(y) explicitly in terms of the
generalized displacements q,; 've can carry out the differentiation in
equations (3,3,17) and make use of equations (3.3.16) and the orthogonality
of sine functions to obtain the relationship between the generalized forces
and the generalized displacements,

After some simplification, the dynamic stiffness relations for all

these four cases have the form

Qﬁ1 FG- -F4b2 F5 F3b2 91
Qo) = 25 -F,b Fb° -Fgb  F.b Uo
U3 b Fg -F3b2 F F 4b2 3
Qm4 Féb F1b F4b sz J qm4
m=1,2, ... ,N (3.3.35)

where the frequency functions Fi have different forms for the four cases

and should be calculated under the individual heading, i.e. from expressions
(3.3.25), or (3.3.28), or (3.3.51), 6r.(3.3.34) according to the nature of

the auxiliary roots, The vibration shape for every m is given by expressions
(3.3.23), or (3.3.26), or (3.3.29), or (3.3.32), and the overall shape of

vibration at frequency W , is obtained from equation (3.3.14).
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3:3.3 THE INTERACTICN DETUEEIT BEANS AYD PLATRS

It is a common engineering practice to stiffen a plate system by beams,
The effect of a stiffening bteam is three fold: axial, flexural, and torsional.
In the following analysis, we just consider the flexural and torsional effects
separately,
The governing equation of a beam in flexural vibration is
EL %% 5.4+ FA a'a_\%/z + Nxa;Nz i (3.3.36)
where Nx is the axial compressive force and V the distributed transverse

load per unit length along the beam, For harmonic excitation of a

simply supported beam, we write

g V sin M mrr.:t eu.ut
sy

v

i iy A gt
ni"msm & € (3.3.37)

and W

From equations (3,3.36) and (3.3.37), we have

N : .
7 sin23= [EI(%T%“ Wiy = PA0O Wi = N ()" Win — vm] =Q.

M=

; . Ny ;
Multiply the whole equation by s:nnzr-and integrate over x=0 and X=a, we have

m= (BT - PA = N T Wi, (3.3.38)
which is the stiffness relation required,
The torsional effect is derived as following,
The differential equation governing the torsional vitration of a beam, when

the shear centre coincides with the mass centre of cross sectional area, is

G:rg f’L Bt‘ + T =0 (3.3.39)
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where T is the torsional moment acting on the beam per unit length, £ 1is the
mass density,iIois the polar moment of inertia, GJ is the torsional rigidity.

For harmonic oscillation of a simply supported beam, we write

T e ST ein™Y vt

ey M a
N "y

Ga S B sinliiE gt ; (3.3.40)
e a

and equation (3.3.39) becomes

S ™ (LG T () 6+ PLOm+ T J=0 .

m=1 a

: X i
Multily the equation by 51n!%%—and integrate over x=0, and x=a then, we have

T - LGT () - PIo?] O (3.3.41)
which is the stiffness relation required.

When the beam member is on an edge of a folded plate then, the general-
ized displacements of the beam wmand 9n1wi11 correspond to the generalized
displacements of the plate either S and qpp OT 93 and Ing respectively,
depending on which edge of the plate where the beam is situated,

Dﬁe to the limited period of research the author was unable to give
any numerical or experimetal example to check the results in these two

subsections.,
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3.4 SEPARATIC OF MASS MATRIX FROHM DYYAVIC STIFFIESS MATRIX

The dynamic stiffness matrix is ususlly obtained from the conditions of
equilibrium without integrating the products of matrices which is unavoidable
in forming the mass and stiffness matrices using energy principles, Therefore,
it is much simpl-er to obtain the dynamic stiffness matrix directly if the
shape functions are complicated, .

For a chosen set of generalized coordinates, the generalized displace-
ments'§7f and the generalized forces {(X} are related by the dynamic stiffness
matrix (@], i-e. (®1{g}={a}. (3.4.1)

When free vibration is concerned, {Q} = {0} , and equation (3.4.1) becomes
(9] §93={o} (3.4.2)

The necessary and sufficient conditions for non-trivial solution of §a}

is that det (PT =0 (3.4.3)

The solution of (3.4.3) for natural frequencies can be ach ved by usual

methods of equation solving. This will be discussed in chapter 5,

Because of the fact that at each natural frequency of vibration, [ 9] will be

singular, any method of solving for {q} directly . is very unstable

numerically (ref 30), other methods must be studied, Oneofthe stable methods

recormended by Wilkinson is thre inverse iteration method for eigenvectors,

The mettod required tkat the matrix [Qf]tm separated into two positive .

definite matrices {)11] and [}(-], such that

(DI=(K]-w2(Mm] (3.4.4)
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The most natural choice is to regard D’(]as the stiffness matrix and [l’\l] the
mass matrix of the system, The purpose of this section is to establish

the following theorem, so that (@] can be separated accor?ing to equation
(3.4.4). To tre best the author is aware, this theorem has not appeared

in the literature. We shall discuss the cdvantaqes of Mmhfi Ha's theovow

in next Section
THEORE!M (3,4,1):

For an elastic body vibrating harmonically at frequency (5, and for
a specific cet of generalized coordinates, the mass matrix, [Y\'l]’and

the dynamic stiffness matrix, [@(w)] , are related by

()] =- 55 2 [(a(] (3.4.5)

In the proof of the theorem, we shall make use the reciprocal theorem
(ref 12), which states:
If an elastic body is subjected to two systems of forces, then the
work that would be Idohe by the first system in acting through the displacements
due to the second system of forces is equal to the work that would be done
by the forces of second system in acting through the displacements due to

the first system of forces,

For a vibrating body, there are two kinds of forces involved, The
first is the external force, If the body is subjected to external body

force {X} et and surface force{@}e“"“’)t ,then we define the equivalent
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: i '
generalized forces (Ar €7 by equation (2.5.15), as

a{u} Tai“}
Q‘.-_-_th(}" >%r d.uoL+_L{§i >%: 45 (3.4.6)

where {L,q e_'“Wt is the displacement pattern of the body,

The second is the inertia fcrce, which is
2 . .
—f{ £} ﬁg fute™™ = wpliuyet*
= w[rllalig} e

where the relation {u1= [a) ;%}

-(3.4.7)

has becen used, Therefore the total force acting on the body{‘:le"“’t is

given by
{Fi=1al+ o' (PIlal{g}. (3.4.8)
Now, we begin to prove the theorem (3.,4.1).
Consider an elastic body subjected to two sets of forces whose equi=-
valent generalized forces are denoted by {G1§€m'tand{ Ql} ghhy . The

respective displacerment patterns are 2‘%.1’2”"'* and{‘g,}] e“""t o The total

force on the body in state 1 is{F,} e** and in state 2 ‘Fi]ec“ht' wiese
{Fi={af+wilriladig},
R} ={Q) + (a3, (3.4.9)

[al=[alyy2,w9)]
(@,]=[a(xyy2,2)].
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Then the reciprocal theorem states,

[ i) wd At = [ TR {w dut (5.4.10)

vel

Substituting equations (3.4.9) into equation (3.4.10), we have

fx fGal fufdual « fL Wi {417 a1 (PT{ widual
- e fwdwt + [ w7 (ad (P cu] dwl
vl

vol

(3.4.10a)
Now, the generalized force at point (xi,yi,zi) is q; if (xi,yi,zi) is a

generalized coordinate of position where the projection of u(xi,yi,zi)
along the direction of the generalized coordinate equals to 93 and the

force
genefalizedhgt other points is zero, Therefore

[ {Qi" {uldul = {@}" 14}

vl
for states 1 and 2, And equation (3.4,10a) becomes

{3719 + 0 %) o (adT0r1 (@ddwl (34
- a3 iqd+wiigd" o (@l CPI0a dwt $9:)  (3.4.11)
Substituting the dynamic stiffness relations
{Q|I= [@t]{%‘} and {Oz}’[%l]{%?}

into equation (3.4.11) and remcmbering that the dynamic stiffness matrices

are symmetrical, we have

(5237 (D159} + 0233.37( [ [@TTLP1[aTdwt ) {3}

= 1‘;.}*[%;]5%,}+ﬂ‘(%.}*(u{LEaJTCPJ(adeL)?%z} (3.4.12)
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ow, since {33 (9] 4.7 is a scalar,
{337 (B 133 12:.17(B g4
ana {307/ (0T P11 det) 130 1 (o [21 TP T dnl )15
we have, from equation (3.4.12),
(-0 ) {37 ( fwt [a.]T[n‘;][ax] dvel ) {93
| 1T ((B1-BD8Y

2.7- (D]
or ﬁ‘ }T j (a1 (Plla:]deel + L K __[Q;a. ) {?li =0.

Since 5% | e a{%.} e“’o‘t arbitrary, then,
(9] - [®
‘L (ad7[Pl(a:]dwl + ] [an‘] = (0], (3.4,13)

If we let W, and W, approach to a identical value W , then (Q7] and (a,]
approach to [Q] and we have

J LAt PItaldwt + 25 59T =(0]. fn.ia,74)
Now, by definition of a mass matrix

[m] = fL La1" (21 (2] A ,

therefore (m]= ‘2'1:) 5 (21,

and ve have prove the theorem (3.4.1),
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In the proof of the theorem, we do not impose any restrictions td the
matrix{ @] , therefore, if the same relation{W} =(a71{%} nas been used for
deriving the frequency dependent dynamic stiffness matrix Lgr]as shown in
last section, than the mass matrix thus obtained is the consistent mass
matrix of thke displacement pattern represented by (al .,

Finally, if one pf the forces systems, say system 1, is a static force
system, then wi = 0 , and from equation (3.4.13) we have

[B:7=[H511 - OF | (a3 (P0G T dwel. (3.4.15)
vel
If we denote the static quantities in equation (3.4.15) by the subscript o,
and the dynamic quantities without subscripts, then

[2]= [90]- 3| (@[ Pl dwl L

If the dynamic displacement pattern Q] is approximated by the static

one [Qo], then we have

(@72 [9e] - Ly (@7 (£ 100 dvel
= (@] - wim.] (3.4.17)

wrere (M= [ (@1TCFICGT AL,
Vol
may be called the consistant mass matrix of static de¥lection curves
because it represents the inertia property of a structural member consistent

with the displacement assumed,

Examples of applications of the theorem are given in the following
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subsections,

3.4.1 UNIFOZI PEAM MEMBIXRS

We are going to apply treorem (3.4.1) to a uniform beam member, Firstly,
we consider the approximated formulation where the displacement pattern is
approximated by equations (3,2,26) and (3.2.27), The dynamic stiffness

matrix thus obtained is given by

ev | 12 ek =12 64 2 156  22L 54 =134
(9]= = 6L 48> 61 22| _ O FAL | 221 4> 13t -3
-12 -6k 12 -6L |- 420 54 132 156 =224
6L 2L =€L 4L* =130 =34 =22L 4L°

[(X]- w(m]

Since(Jffland(YYf]are independent of O in this example, therefore
—k 2591 = -5 & (XT-w(m])=(m]
which is correct,
Now, we consider the exact formulation wherethe displacement pattern is

given by equation (3.2.25), The dynamic stiffness matrix in this case is

Fe TRk Fs Fak

(@] _EL -?41 F.l -Fs.l FA
TI|F i ﬂ F F(

5 3 6 c

31 F,ll F L B L

where the frequency functions are given by equation (3,2,36).
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¢
Now, A?: bdlégg

423dA - 50 DAL f“ dud

Therefore,

12 )"AL
—an 558k - 16 £ [ ] (3.4.18)
In order to carry out the-differentiation of [QIAJJ\fith respect to A , we

must differentiate the frequency functions one by one, For F1, we have

F= - A(Sinh A =stnn )/ (coshatosa—1 ),

oF1  sinhA-sinA coshA- cosA . A(SinhA - sin X ) (sinhAcosA—coshasin A)
X = dshAA-T ~ Neashacea- | (CoshAcosan - 1T

=+ CRR+Fs+Fa) =-4XGy,
where®G.,i=1,2, ... , 6 are given by equations (3:2.,38),

Similarly, for the otker frequency functions,
F ; .
a.a_:'xt" = -'4-A,3&L L=1,2’ e |6

Corresponding to equation (3 4 18),

El p
Therefore,
G ¢ -6411 Gy 31 .
“de HlR W = par [T Do Tt §4f
GyL G2 6 L sz‘J

and which is the same mass matrix as given by equation (3.,2.37).
For a straight team element, the effort required to form tune mass and
stiffness matrices according to equations (3.2.37) and (3.2.40) is more
about
than,ten times the effort required in forming tre dynamic stiffness matrix
according to equation (3.3,10), and it may be the reason why many authors

prefer the dynamic stiffness than tre energy approach in the freguency

dependent formulation (ref 26).



75

The advantages of the existence of the theorem (3.4.1) are listed
below:
1. In deriving the fundamental matrices, it enables the mass matrix to
be separated from the dynamic stiffness matrix, The dynamic stiffness
natrices of structural rmembers can be found from classical methods such
as mechanical receptance, impedence, admittance and mobility etc., which
Tt s Part\'cul:\r uselul when the d\{l\ﬂin;c sliffness
are well docunented in the literature, cﬁnb(d&dntdqu1ﬁ“(n{qﬂvQ“W el Hhe w,ﬁnL?
taustion {{ metion are not kncwn
2l For very complicated dynamic stiffness matrices, where the differ-
entiation with respect to frequency parameter becomes difficult, the theorem

provides a way to approximate the mass matrix by replacing the differential

by d{fference, i.e,

2[D] . S[92]
(l=-50 3o =-5 5

3. For large structural systems having a dynamic stiffness matrix of
large order, numerical instability will result as the rounding off errors
in the elimination process for evaluating the frequency determinant
increases, "7ith the mass matrix, we can apply the Rayleigh's Quotient
and inverse iteration to avoid the Guass elimination process, In this
way, the modal shapes as well as the natural frequencies are obtained
accurately (ref 30, 6;, 65 ), as shown in chapter five,

4, Even if the modal shapes are not required, the fact that the mass
matrix is proportional to the first derivative of the dynamic stiffness
matrix enablesus to calculate the natural frequency very rapidly by

the method of root finding of ewton, Zee chapter five,

5. Moreover, that the positive definite matrix [YYL] is obtained from
the nondefinite matrix [591 through differentiation make many theories on
nonlinear eigenvalue problems applicable to the mechanical vibration
problems (ref 65, 67),

deriving
We shall use this theorem extensively in the fundamental matrices

for various types of structural elenemts in sections (3,6) to (3,9),
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3.5 DPIOVING THE FUIDAUDNTAL MATRICES

In sections (3.2) to (3.4), we have introduced some methods to construct the
fundamental matrices of vibration analysis using the exact displacen=nt
patterns or the approximated displacement patterns, It wvas seen that

the formilation is very conplicated even for a uniform beam member or a
retangular plate member with simple boundary conditions, For other
structural elements, especially for three dimensional elements, approximated
methods are unaviodable, The usual approximated displacement patterns choscn
are frequency independcent, These contradict the fact that displacement
patterns of a vibrating body do change with frequency of vibration,
Therefore, a sufficient number of elements must be taken:to ensure
convergence, Other methods of improving the results by using the frequency
independent functions such as Rayleigh-litz, Galerkin, least square,

hybrid, and collocation can be found in (ref 48), It was concluded that
comparatively large order dymamic matrices are required to give a satis-
factory degree of accuracy even in the first few frequencies, Condensation
techniques are often used to reduce the size of ne matrices which in turn
introduce certain rounding off errors so that the results are unreliable
beyond certain limits, Therefora, there is a need to modify the frequency
independent displacement assumed, This section is devoted to such a
modification,

For uniform beam elements, Przemienicki (ref &9) formed the fundanental
matrices by using displacement patterns in ascending orders of frequency of
excitation, The method was found unsatisfactory Ly himself because the
resulting eigenvalue problem gives negative cigenvalues and the scries
diverges at nigh frequency when the Ffrequency pavamcter HN= ' PALY/ET

is greater than unity, Cohen and licCallion (recf 70) examined the
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Possibility of using deformation functions which partially satisfy the
continuity required and the governing differential equation, 4nd the
conclusion was the closer the shape function assumed to the solution of
the governing equation of vibration the more accurate the results to the
true ones,

For elements other than uniform beams, it seems in available
literature that improvement can only be acheived by employing more general-
ized coordinates, or equivalently, by increasing the number of elements.
However, as a result, large matrices are involved and we go back to the same
problem,

In this section, we shall present a convergent method which improves
on the fundamental matrices by assumed frequency independent displacement
patterns and keeps the order of the matrices fixed at the same time,
~ Although distributed coordinate system will be used in the region of the
element, we adopt discrete generalized coordinates on the boundary so that
the order of the matrices is equal to the number of generalized coordinates,

Since we can not improve the fundamental matrices formulated from
arbitrarily assumed displacement patterns, therefore we are going to improve on
the fundamental matrices resulting from the assumed displacement patterns
with the dynamic terns neglected as those assumed in the finite element
method, By this we can make use of the formulae available in the finite
element formulation, The second tool on which our improvement process is
based is a set of coordinate functions, They are the normal modes of tlie
individual members with all the generalized coordinates vanished, These
normal modes correspond to the partial vibration patterns which occur in

individual members independently of the other parts of the structure,
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These modes will be discussed in subsection (3.5.2). Then the formalation
of the improved matrices is derived in subsection (3.5.3).

Recause the method presented in this section serves as an improvement
to the normal finite element method in vibration analysis and since it does
not seem to houw appeared in the literature, we shall use three-dimensional

theory throughout and give an overall picture to the subject,

3.5.1 FINITE ELEYENT MODELLING

Finitqélement models of Rayleigh-iitz, force, Galerkin, Least sguare, Hybrid
and collocation methods were presented in (ref 68) by Murty et al, for
natural vibration problems, A comparative assessment was also made of these
meYrods, If a fixed numoer of generalized coordinates are chosen, then the
methnod of minimizing the total energy and the method of approximating the
governing differential eguations while keeping the error a minimium
according to some weighting criteria will give more or less the same results,
We shall study the latter method here,

If an elastic body is subjected to small perturbation forces with
exciting frequency W , the governing equations of the displacements
are given by the Navier equilibrium equations (ref 31) as

Gvrur €%ty Dot G U e €%t 4 X =0,
Oy =1,2,3,

where the comma denotes differentiation with respect to spatial variables,
and & and Ao are the elastic constants, When the body is subjected to
harmonic boundary forces only, then

X;--fﬁ%(ureim):fw‘ure"“’t r=1,2,3,

and we have
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Gviur + ( ANo+G) Uy, §r “"fwzblr =0
O r=1,2,3. (.3.5.1)
‘e can write equations (3.5.1) in the following vector fori,

(LIful= ALPTiw) _ (3.5.2)
where[L—]is a matrix of second order linear differential operator of spatial
coordinates, and A is a scalar given by A =", and (£1is a symmetric matrix
of density,

The prescribed boundary displacement conditions of the body can be
written symbolically,

(BeTfu(xe, ye,2od}=4¢ La152, oo o W (3.5.3)
where N= number of generalized coordinates on boundaries and (Bilis a row
of differential operators, Equations (3.5.3) define the generali:zd
displacements,

According to finite element modelling, we specify the "approximate
displacement patterns'" as those functions which satisfy approximately the
equations (3.5.2) with A =0 and the boundary conditions (3.5.3). If we

denote these functions by

fu(auy, 2)i=Tacxy,2)I1{g} (3.5.4)
where [Qo(X,Y,¥) T=(fai(0y,2)},1@.0, v, )3, -+, fan(x,v,2)}] ,
£3.545)
ana §41=(%0 % 0, 317
then {Q(%.Y,2)} vill satisfy
[LY}$act={o} in the region of the body (3.5.6)
ana [Be){azi=dey on the boundaries (3.5.7)

where JC} is the Kornecker delta,
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Before we go any further from here, it is appropriate for us to make
clear the physical meanings of these equations, As a first example, let
us consider a uniform straight beam member whose governing equation of
vibration is

du LALLM
I~ BT W=0

'/
with the boundary conditions U(0)=4., Ul9)=%., u(l)=Fs, W (1)=Q4.
Therfore, in equation ‘3,5.2), the operator (L] = d4/dx4, the displacement

vector contains one element u, and the frequency parameter A = FAQ*wW?/ET ,

The boundary operators are scalars in this case,

[E)l] furpl= ¥ ulo)=% g [B21{u(x,)}= fx U@ = £2) [B3]fulx)}= % ; [Bﬂfu("v)f 34

S IBI~®:)= 1, (Ba)=[B81= 2 | x=Yizo, XsrXus= o,
Equation (3,5.4) represents the solution of
d4v
dx

with the boundary conditions

ve)=%,, V'@ =%, VD=%:, Ul =%a,
which gives U(r)=[ 1-3x%2x? (x=2x% X)L 322 Ve x*)L]1{g} =[adfy]
vhere [a.]= [ 1-3x*+2x" (x-2x+x3)4 3xt 2 X+ X))

£1¢= L% %2 93 3417

and {QCE, L‘.=1,2,3,4- are scalar given by

O = | =30°42x°
A = (X=-2%X2 )L
Gz = 3t%2x3
asg=  x% 13)4

As a second example , consider a more complicated element, say a cylindrical
shell element as shown in fig (3.5.1). The non-dimensional long-itudinal

coordinate ¥ =x / 2 is used throughoat, where R is the radius of the

cylinder, We denote the displacement along the generatrix by et .

the peripheral displacement by V€'  and the radial displacement by
WQ‘:""‘{

e ————— o
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Fig (3.5.1) A cylindrical shell element

The the governing equations of motion in harmonic vibration with frequency

W according to Donnell's theory (ref 55) are given by
g =V 2 @V oo 40
okt T 2L g 2 %3 o 28 u

Y o 2 -y 2
2 333 HETT2 ' 2f MV

P
v 55 55 kevyw W) (3.5.8)
where R = ﬂ"/l2R>}
A = thickness of the shell,
2 o2 22
ATy
and A = PR (- V)W/E .

S
il

Therefore, the operator

LR L L N < L 2
v 7T g T2 s Y 54
(L]= Wy or  r  1=V¥ 2t D
= 2 w33 2' 7 T2 o 3R
2 2
va_a aﬁ 'kvivl )

the vector ;US = {b’:},

K.S.Rao et al, employed seven generalized coordinates aw/ao(,aw/c)ﬁ, W,
20-/&‘3 . a‘f/r)(!v and U for each corner of the shell (ref 72) and totally
28 generalized coordinates per member, Now, the boundary operators are

3 x 1 rovw matrices and examplified by

ow (0, uco,0)
%'.: __\y_a,%_g.}z[o 0 ;;jz(v(oxt;J}:(8|]{U(0,0)}

W(o,o)
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= =
where [81]-[0 o] aj.-,].
The matrix [Q(s43)]in equation (3.5.4) is a 3x28 matrix and {Ql(ad)],
i=1,2, ... ,28 are 3x1 matrix functions of spatial variables o and j3.
The formulae for these matrices are found in (ref 72) and wiil not be

repeated here,

25,2 PARTIAL VIERATIONS OF STIUCTURAL ITWMIERS

A structure would vibrate unstably when one of the natural frequencies of
any one of its composite members with all edges clamped is excited, This

is called a partial vibration and the corresponding frequency is called a

2 0F ; ot bR
partial frequency. Some details, the physical significance can he found
from (ref 28). In this subsection we just give somc numerical consideration

of the partial vibration modes because we shall consider
this again in the calculation of the overall problem in chapter five,

Consider the general elastic body we have discussed in subsection

£3.5:1), The governing equations of vibration are
[L] {"’L}:)‘[f]{u‘} in the region
(8] ‘U‘(x"—fy‘:;?f-ﬂ =i L =1,2, I... ,N on the boundaries,

When partial vibration occurs, i.,e., when all the boundary displacements are

held rigid, we we denote the modal patterns by {¢¢§ , then, they satisfy

Ll f?sj_')s =13 (P1%453 in the region of the body (3.5.9)
[Bc] {qb‘(&, Ve, Be)}=0 on the boundaries (3.5. 10]
L] L - are -
where A )} is the partial frequency parameter. Because there,an infinite

number sets of A and {¢{ satisfying the partial vibration conditions if the
body is a continuum, j runs from 1,2, ,,, , oo , e arrange the values of

J such that
O AN &

For general three-dimensional solids, numerical solutions of the eigenvalue
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problem (3.5.9) with homogenecous boundary conditions (3.5.10) can be done
by the method of shooting as shown in (ref 73). Computer programmes in
ALGOL and FORTIAN languages can be found in " Nottingham Algorithm Group ",
I.C.L 1900 system, Document No, 505, algorithm DO2AGA and D02 AGF, For
simple elements such as uniform beams, the eigenfunctions can be obtained
by solving the equations of the eigenvalue problem directly, The

eigenfunctions of a uniform beam member are given by

Cf)r({): cosh)ﬁi—x -t:o.e;)\—:l—’r - o’r(sinha"f-sin’x—‘?) (3:5:11)

where M =4,73004075
M =7,85320462
N3 =10,995607 84
Na=14,137 16549
M =17.,27875966
. Ae=(r+1/2)%3.14159265 r>s
G =(cosh Ar=cos Ar)/(sinhar=sin Ar)

The eigenfunctions of a semicircular beam member are listed in
£ig(3.6.8) and those of a tapered beam can be found in subsection (3.6.2).
For two-dimensional members such as plates and shells, series form of
solutions only are possible, One of the most effective ways of obtaining
the eigenfunctions of a clamped rectangular plate is the Rayleigh-iitz
method wherein products of clamped beam functions as coordinate functions

are used as shown by Young (ref 74), Ashton (ref 45) generalized the

method to anistropic plates. e describe the method briefly for a vibrating

orthotropic rectangular plate as follows, If the transverse displacement
is expressed in the form

w(x,y)= é‘ n%l ap X (Y (y)
where Xm(x) and Yn(y) are clamped beam functions,p and q are numbers of
terms used in cach direction, am is to be determined, then, the Hamilton's
principle

U4+V-T= stationary in one cycle of vibration,
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will give

- WY, . )a (3.5.12)

e m.(Kijmn"Sijmn 1Jmn mn”
for i=1,2, ... ,P; J=1,2, ... 49
where
b, [ e s [ [
Kijm.:anﬂjox.x dx YYdy+ab( RYX dx ‘YYdyq- dfoYdy)
'y 19“(JXdejYYdy+fxxeleYYdy)

+ 22JXde YYay 4
D’D“(JXdefYYdy+]Xde/YYdy)

+4—%X}{dx‘{YYdy ;

S bN"jdefoYdy+_"§XdefYYdy

ijmn

+ N (J XdefYYdy»,jXdejYYdY) , and
Mijmn=fhab L Xixmdx Yandy .

where a,b the dimensions of the retangular plate
h is the thickness,

D.. i,j=1,2,-6are the flexural rigidities

is

N

<! Hy are the compressive inplane load per unit length

ny is the shear inplane load per unit lehgth .,
As part of the present investigation, a computer program has been designed
for calculating the eigenvalues L% and eigenvectors amn of equation (3.5.12).
The details are given in chapter six, If we take p=q=6, Hxn Nys ny- 0,
a=b=h=D11=D D12 D16=D26=D66=O, we obtain the natural modes of a

isotropic square plate free of axial effects, The calculated frequencies

are given in fig (3.5.2)
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35.9914838

131,63€539
210,602226
243,338633
309.273939
394,120028
458,747070
512.111766
586,183215

73.4132961

132.244824
210,602226
297 .035658
340,963862
395,007 265
459.242959
512,111766
681,683240

73.4132961

165. 153267
220,501774
297 .035658
340,963862
427 .518884
469,043961
565.532410
681,683240

108.270813
165,153257
242,405359
309.043483

372.282395
427 ,518884
469,043961
585,297458
796,936053

Fig (3.5.2) The first 36 natural frequencies of a square plate

(L

In all cases, if the operator,is self-adjoint, i.e,

J,,l (BAT[LT 1 dvol = [ [Pi1TLLIT{ST L

(3.5.13)

than, the eigenfunctions {Cf’d will satisfy the condition of orthogonality,

such that

when j# k.

[o 1837 (P1[$RT dut =0

Ve prove it as follows,

(3.5.14)

s R
Premultiply equation(3.5.9) by f¢%]and integrate over the whole volume,

J‘L (P} [(LT{d;]dud = )\;jm f 1T [P {p,Tdwet . (3.5.15)

Interchange the subscripts i and j ,

[ 18Tt = AL 1951 T TR AW (u5.76)

‘ Substract equation (3.5.16) from equation (3.5.15) and make use of equation

(3.5.13)

0=n; [ 183 CPI{&; Fdud -t [ {517 £ i dul.

But ;tz,cl"[‘f]{qgjlg{pﬁ"'[f]{qbd, since both sides are scalar,
therefore, =()L}'A':)JWL fﬁéi}T[P] ;qﬁj,jde

If i#j , then,

1P 1=j , “then

where C is a constant.

L, (e tPI{dridwl =o .
Je $817IPI it =C,

We can normalize the eigenfunction by dividing iﬁﬁ‘ by JC and we have,

| fe3TIrIdc s Aml = |,

The normal modes satisfy the governing equations of motion completely,

and

therefore, if they are chosen as generalized coordinate functions, the

governing equations will ngt be violated,
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3.5.3 SERIES FORM OF DYNAMIC MATRICES

Having discussed the bockground mateaals , we proceed on 1o the improdewie nt
ok 1\'2 fundamental ymatreices
Assume the solutions | a. (x,y,z)] of
[L] {ﬁ_;l ={o} in the region of the body (3.5:77)
and (g.] {q_}i = &;} . on the boundaries (3.5.18)

i=1,2,... , N, the number of gen. coord.,

are known and the eigenfunctions fcﬁj(x,y,z)f of

(L] Iq%’,i«—-)\a',[f] {$4;3 1in the region of the body (3.5.19)

[Bilid;1=0 on the boundaries (3.5.20)
are given, We are going to solve for fu(x,y,z)j o.?éhe equations

[L] ful=AlPIiul in the region of the body (3.5.21)

[Be]iul= %L on the boundaries (3.5.22)

i=1,2, eee N
in terms of {a.} and {¢;}.
We first look for some conditions for the constants o )I such that we

can express the solution {UL} in the form

fuy = Z oy igs]+ 5 ta i (3.5.23)

L=
Subst1tut1ng equation (3.5.23) into equation (3.5.22), we find that all

the boundary conditions are satisfied, Therefore we substitute equation

(3.5.23) into equation(3.5.21) to see whether the differential equation is

satisfied,
v Ty g GLLY T+ 5 fil LT fac)= X3 =y J[PTEd b A Z 0P )Had]
or Z Gn [Pt = ?\.z JD”]{qu}.L,\Zl s [P1tac) (3.5.24)

To apply the condition of orthogonality, we pre-multiply equation

(3.5.24) by I‘Pﬁ }Tand integrate over the whole volume, we have

oLy Ay = Nolj+ LE TGy (3.5.25)
where we have assumed that the 319en£unct:|.ons are normalized and that
jac)= G“a { &l (3.5.26)

where G‘J’ J X‘ﬁ}}T[P]{aLide (3.5.27)
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Then, from equation (3.5 25) the constants &} are given by

off = = 1\3 = Z‘ Gy ¢ (3.5.28)
Substituting equations(3.5.28) and (3.5.26) into (3.5.23), we have

jui -z (25151 2 G )+ 2, e ladh

c=l

z (1Ze i +{aid) gl =lalfg}, ' (3.5.29)
wvhere {&l= jZ )‘G""’ {QSJ (3.5.30)

[a] = [{%l[ +fCM {xl} +{C\1i e {%N‘ * {-aﬂl ] :

Therefore, we have expressed the displacement pattern in terms of gencralized

coordinates, In the formulae (3.5.29), {ail are assumed shape functions
compatible with the boundary conditions of the body and satifying the
governing equations of vibration when A =0, Oneczzthe choices are those
functions Hsed in finite element methods, The expansion of fai} in terms
of the eigenfunctions {05)'} is convergent. The shape functions are
adjusted to suit the governing equation (3.5.2i) through equation (3.5.29).
The solution vector represented by equation (3.5.29) satisfies both the
governing equations and the boundary conditions, Finally, we can take
‘as many terms of correction as we wish in {4(} without affecting the size
of the dynamic matrices,

Fc;r the dynamic stiffness matrix, we proceed as follows, Assume the
dynamic matrix [@o]and the consistent mass matrix [m=] corresponding to the
assumed "static" displacement patterns (3.5.4) are known. We apply the
reciprocal theorem to two boundary force systers féol and fg" e":“t .

I.@o} denotes static force system and]@i e""“" harmonic force system with
frequency v , Then, we have, from equation (3.4,16),

(@] =(PI-w ) (21T (£ [a] dwal (3.5

where
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[9]= the dynamic stiffness matrix to be determined,
FE,]= the static stiffness matrix corresponding to the "static" displacement

pattern ,

lal=[{zi+fa.} {xal+ia} - fawi+{asl]
=[{xl (%) - jzat] 4 (& {ad - {awnl]

=(2%]+Lao], ' (3.5.32)

(1= [{#l (%} -~ {anl] .(3.5.33)
Substituting equation (3.5.32) into (3.5.31), we have

[9]=[B0) ~wm.] - [ (a7 CLPI[%]dvel (3.5.34)

vhere [mo) = J“L (. T7[P][Q.] dwl
By means of equations (3.5.33) the last term in equation (3.5.34) can be

evaluated as follows, let
(7]= [ [aI7[P]l2ldw
e Jo (1A 1@ - {ad T LPI0I%) (£ -~ {2} dwl
[ S falT(PLI {2y Awm ]

Because of equations (3.5.30) and (3.5.26),

C031- Umtacrte1 (£ 28 19a) dont)

- (;, A& AT PT{PeIdul ]

MNe-X
= [ EZ )ﬂﬁuﬁéhk
D N7
Therefore, from equation (3 5.34)
T CTIkCTﬁ 3. .35
[2]~= [&c] - wWlma- mg[w x (3.5.35)

For mass matrix, we apply theorem (3.4, 1)
(ml- - 2 (91 B |
=im.] =+ i ((wg )R "’,3‘?. - [GerGye]) (3.5.35a)
= (M,] +2I (B 1) /() P GonGje ]

In the following subsections, we shall compare the performance of the finite

element method and the present method for beam members in vibration analysis,

A general consideration of applying these formulae is given below.
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In the development of equations(3.5.35), we have made no assumption about
the size and the shape of an elemental member as long as we are able to
determine the normal modes of the member, For skeletal members, the number
of generalized coordinates on the boundar-ies is finite, the equations
(3.5.35) will give exact dynamic matrices because the eigenfunctions are
always obtainable by the computer programme in chapter six on the
assumption that the computer is big enough to handle the matrices.of such
an element. For example, we can apply the formula(3.5.36) to a space
frame as shown in Fig (3.5.3), where the four free ends are going to be
connected to the other part of a structure, say the earth in earthquake
response problems, thcgén exact dynamic stiffness matrix of order 24 may
be constructed because it is possible to determine the normal modes of
such a structure with the four free ends clamped by means of the computer
programme in chapter six and to calculate the static displacement patterns
when each of the 24 generalized coordirates is displaced by a unit, one
at a time, Vith these displacement patterns and eigenfunctions, the
constants Gij in equation (3.5.27) can be obtained once and for all for
such a particular giant structural mgmber, The internal degrees of
freedom, which are actually not free to move but depend on the 24
generalized coordinates and the frequency of vibration, are taken by the
use of the eigenfunctions already,

The major advantages of forming the dynamic stiffness matrix of a

substructure in this way over the method of condensaticn (ref8), which is
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one of the most effective methods for substructural analysis, are in the
following three three phases, (i) The metnod of condensation requires
elimination processes to reduce the order of the frequency determinant,
These processes introduce rounding off error and are numerically unstable
about the natural frequencies and the frequencies of anti-resonance, but
the present method required no elimination of equations and thus saves com-
puting time, (ii) The method of condensation destroys the Sturm Sequence
property of a vibrating system (see chapter five) and the present method
does not, Eherefore the numerical methods of the vibration problem presented
in chapter five are valid for the resulting dynamic stiffness matrix,
(iii) Finally, although the method of condensation could make use of backing
storabe for its large storage requirement, yet it is a time consuming
process, The only storage requirement for the present method is for the
constants Wg and Gik . Experience ( as discussed in next subsection) show
that six terms of normal modes is enough to give eight digit accuracy of the
dynamic stiffness matrix and therefore the storage used is very limited,

The penalty of the present method is the computation of normal modes
and the integration for the constants Gij' This is very well balanced if
the same structure is. going to be used more than one time Pnd it is often the

case in design methods.
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This approach is particularly useful when the gorvening equations
are not known or these equations are very difficult to solve but the

eigenfunctions can be obtainsd by experiment.
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STRAIGHT
3.5.4  D©UAM SLEMENTS

We now give some numerical examples of the application of formulae (3.5.35)

in forming the dyn%?c stiffness matrices, We shall begin with a simple

straight beam element where we can ccmpare our results with the exact one,

Then examples of two- and three-dimensional elements will also be given,
Consider a co?r.wentional beam elemen4t as shown in fig (3.5.4).

;i PN

—

Fig (3.5.4) A uniform beam element

The row matrix of static deflection patterns corresponding to unit genecral-
ized coordinates is B
[a®)) [a®) wE) asE) Aa§)]
=[1-38%+28" (g-2griedyt 3gi2gr (gusy)3.5.36)

where g = X/L., and a;, i=1,2,3,4 are scalar functions of € .
The eiéenfunctions of a clamped-clamped beam are given by

P8 )= oshArE —cos ArE —&¢ (Sinh Arg — ginAr§) (3.5.37)
where the values of i¢ and (¢ are given in equation (3.5,11).
The constants Gij’ i=1,2,3,4; j=1,2,3, ... are calculated from equations (3.
54270y d.€s

!

6 = PAL [ i 4;(5) s

The integrals I, .= L' alig) ¢, 3) dg

hage been evaluated up to 50 modes by using a computer programme described

in chapter six and listed in appendix 16. Since by symmetry,
o (oq)d+]
Iy; = (=1) L;
Y W
I4j (=1) Izj,

ve just list the intepals I1j and IZj in fig (3.5.5).



93

[ SR

R e I

N W

A S
PSR Hha s S TR T,

P

Jok s fub e B vk
O

k%)

©on

23
% 3/
35
36
3%
QH.
\11]
£sin
Kin )

N9

i

-~
1

{.'01

f
j]

2DDO D5 oD

L]

e Pl e e

DD D OO oW

= 2

« 1701 ”"’—_: ;
0]."' f1 bt
11500 n-":)
R B is RAl B | ]
COTARED ANE
el TN R
RS RS BN ch A
s NNANGARAN NG
Bl
eNSATN LI
«NAGTR YOG
AR TIN LD
O r_‘n-"'T‘l ngaxn 8¢
Reeang ‘_.’
NRCE A e
REYI
'“3“-41152
PRINGEGDS
«i2N41 020
NSO 12
NN nong
nosarancy

nas

« 1555

nnas.

“an

(‘—J‘I-Jl

noanea
09231407 i1 .-1
ARAIZI133¢

noyEenayg

r: Ll

rJ."-’r.]:; 'ff”"'f []
«NOODINLSR
o175 i
sN1GiNN2E o
eN1IRARR YN
6 B e e
N1 yaryean
M 27657 5
N163355%9
016115250
n1571919 7%
I e N e £
.f'r1 H )
«N11E3N22Y
«N1 220 A0 G0
L o B e
« 1137730

i

s 1 ) ;,)

:{rlﬁ e

“Il,’;

« 111723 ‘::r'|-;i
.n‘,-':_\"\1 |1 r
NIDENE S

M - n”‘?‘ -:-"-:'f:'\i-
LeNJONAC] 1T
LG O fehe

N0 y0Ann
NeNN3GLH5E
SR e
PR
MeANpR"N0A
NeAN1BRDN Y
MeN1o047 11
NeN11117053
NeNNPD7271 4
Mo AN TS0
NefTON N0
R (RS IR ce
NefBARCYN7Y
NaNNS20MT N
NeDONLIEL NN
NeNNNLERERTR
NefiNNANADT
fNNN2ATLN
nnaa2, R~
ANN311 R4
«NANORE[AD
N0ADGYI57
«NONASD N ]
SN2 - 5y
nanN"1,"5¢a

nnnan '.a__‘._\[-)

- D
.

o e - T
L ]

- i TG |
L]

-5

=

e N1
NeRNNYyu=in
Na N1 EN %05
TeMNN15:2105
NeNfANT51 71
NeNAN13i71 7
NeNAD L,
NeNNAL AT,
NeNBNTYYe -1
NeONAT]T ] ey
-r.lonnnlfl‘;q-:\l
NeONNY NI t90
NenAN 7 '
Ne nqq..; P“;

G T i )
n-nﬂq.,, {,-r(qq
fe 1N 070 na

NefiNMNT 1450 140

A

=t e
AL

ULV AR

rig (3.5

5) The prejoction of the

2o m°“e5<Pj(§) of the same Siam

ctatic curves a.{

a

r:",} onta the



94

Therefore the dynamic sTiffness matrix of such a beam is given by eq(3.5.35)

as, 12 6L =12 6l 156 22X 54 =131
(@1-EI| 6t 4> 6L 20| par| 22t 4l 3L 328
Bl 6L 12 -6t 420 | 54 131 156 =22

6L 21 -6L 4% -13L 38 =220 40

yatiiemt 3T,
- w*PAT L gt[tdl::—lj] (3.5.38)
The lowest natural frequencies of a cantilever beam were calculated by the
method using only one element, The percentage error vis the number of
terms taken is plotted in fig (3.5.6). Ve see that the error reduces

as the number of terms taken increases and that six terms in equation (3.5.8)

will give satisfactory results,

Yo ERROR |
|0 T
o5+
-‘0000
o ‘o NO. OF TERMS

Fig (3.5.6) Percentage error vs number of terms taken to calculste

the natural frequencies of a cantilever beam,
approximate

One of the most copular ways of finding the eigenfunctions of a
complicated member is the method of Rayleigh-Ritz (ref 16), In the
following, the dynamic stiffness matrix of a tapered beam uwhose flexural
rigidity EI and density £ A are varying according to

EI®=ET, n olg X ® (3.5.39)

and PAL) = PA. g 3¢ xR (3.5.40)
where EI, , £4,,0k< !, k=1,2, ... .n1'{31¢4| 1 k=1,2, ... sDy, are ¥nown

constants, and o= [3¢=1, will be calculated with the help of tie Rayleigh-
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Ritz method. If we express a typical normal mode of the tapered beam

with both ends clamped in the following forn

Yyreo= i ALdc ) (3.5.41)

[}

where Aiare constants to be determined and qﬁ.'_(x) are the normal modes of a
uniform beam of rigidity EIo and densityj’Ao. The maximum strain energy
and kinetic energy are given by

U= JE‘.I(x Z A, ¢J" (x)A q&”(x)dx
Z AsAs |, ‘-‘I z X ¢”¢"dx

l;J'l:l

INZORY 185308, (r)ax

Lg-l

[§=|A5-Aj joﬁo Eo xlé( P ¢jdx

where | is the overall length of the beam, Rayleigh's theorem states

=3
L}

that the following quotient is stationary and equals the square of the
corresponding natural frequency if {7 (x) in equation (3.5.41) is a normal

mode of vibration,

n
_tgﬂ Al AJO(L}

w"ﬂ é A AA 6 (3«5-42)
L -3
LJ,‘-.' n k " u
‘where = JE1, 2 X0l @' @'ax - (3.5.43)
* X
Bis j.fn O?:f By P; P ax (3.5.44)

A computer program was designed and presented in section (6.30) to evaluate
the integrals (3.5.43) and (3.5.44), For k=0,1,2,3,4,5,6, these integrals
are explicit#ly calculated and stored in a data file, the details can be
found in chapter six,

The necessary condition for ’in equation(3.5.42) to be stationary
is [y -*BejJ{AF={o]. (3.5.45)
The solution of the algebraic eigenvalue problem will give the natural
frequencies W4 and the corresponding eigenvectors{Ai(k)l

For the constants Gij in the equation (3.5.35) for dymamic matrices

Ve assume the static deflections of the tapered beam are approximately
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those of the equivalent uniform beam, Then, Gij is given by equation
L
(3.5.27) as . PAK @i Yreodx (5516
Gy = 3.5.4

where qri(x) E: A (x )t¢j(x) is the approximation to " node of the
Jal

tapered beam,

The expresaion (3.5.46) can be written as follows,
«Jmcz B 2,0 2 ""qutx))a,/j(z 2 ) ax
=_f’A ﬁm J(k)J X, (x)¢‘ (x)dx/ 'Z (A (k)) (3.5.47)

m-l J-I
And the computation is reduced to the eigenvalue problem of equation (3.5.45)

1
for the constants AJ. (k), if the integrals L xmff) j(:'c) dx are available,
Ve are going to study some common structural members more detailly in the

following sections,

-

3.6 Onz DIMENSIONAL SLENENTS

One dimensional elementgére examplified by beam elements. A beam element
‘is usually represented by its centroidal axis and analyzed as if it weee a
line element, It may be straight or curved, and have uniform or non-
uniform properties over its length, After the time of Buler and Bernoulli
the literature concerning the vibrations of a uniform straight beam is
plentiful, However, the study of the vibrations of complex structural
systems consisting of teams were not found until the second world war.

Bishop and Johnson (ref 10) gave explicit formulae to analyze the vibrations
of ﬁniform straight beam structures by the method of receptances, This
method has been extended to slightly internally damped structures of beams

by Snowdon (ref 83) using complex elastic modulus. The method of receptance
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expresses displacements in terms of boundary forces, A dual method to the
receptance is called the dynamic stiffness method which expresses forces in
terms of displacements. A compakison of the methods was given by Simpson
(res 84).
As far as tapered beam elements are concerned, Sanger (ref 86) gave
explicit formulae of the receptances for some special forms of tapering.
Leung (ref 85) showed the formulation of the dynamic stiffness matrices for
the same types of beams, Kolousek (ref 87 ) expressed the dynamic stiffness
matrix in determinantal forms, Explicit formulae for a general tapered
beam element nas not been found so far,
For curved beams, explicit formulae for deXlections are obtained for
curved uniform beam members only, These can be found from (ref 37) and
(res 38), The governing equations of motion for a generally curved beam
in space was given by Massoud (res 88)
When cosidering the secondary effects, Howson and Williams gave the
dynamic stiffness matrix for a beam member when the effects of axial loads,
"shear deformation and rotatory inertia are taken into account, Rao and

Rao (ref 89) solved the longitudinal vibration of a beam including the effects
of shear and lateral inertia. Carr (ref 90) obtained the torsional modes
when the effect of warping is considered,

Since the frequency deperdent mass matrices for structural members are
newv in literature, therefore we list the mass gnd dynamic stiffness matrices
for some common one-dimensional elements l;i;h;; ;é;;i;;. u"These will
include uniform straight beams, tapered beams, circularly curved beams and

straight beams with secondary effect considered,
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3.6.1 UNIFORM BiAlM SLSMENTS

The simplest one dimensional element is a uniform straight beam element,
As shown in fig (3.6.1), for the convenience of computation we choose the
local coordinate axes to be coincident with the principal akes of the beam,

such that the controid of the cross sectional areca is on the x axis,

)

4 ,

Fig (3.6. 1) A uniform beam member

There are four types of vibrations for this simple element, namely,
flexural vibration in Xy plane,flexural vibration in xz plane, longitudinal
vibration in x direction and torsional vitration along the beam, These
wvibrations are uncoupled when the vibration applitudes are small and when
the shear centre of the cross sectional area is coincident with its controid,

When this beam is vibrating at a frequency w , then it is approximated
by a straight member as shown in the fig (3.6.2). The symbols used in the
subsection are explained below:

W = vibrating frequency

L slength of the beam

Ae= cross section of the beam
E = Young's modulus

P = density per unit volume

Iy = moment of inertia of A about y axis

IE = moment of inertia of Ao about z axis
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J = torsional constant of A,

% Ao = effective shear cross sectional area

G

: Lt
{ule*ts [w,v, wlt e = displacement vector

shear modulus

193 ey generalized displacement vector
{Q}} ey generalized force vector

1.
Vv

]

polar moment of inertia of area Ao

Poisson's ratio

pet. angle of twist

Y, et

x,uet

Q_,WEM

Fig (3.6.2) Generalized coordinates of a straight beam member

The governing equations of motion, for vibration with boundary forces
only,hwe benobtained from Hamilton's principle as below:

(1) Flexural vibration in xy plane,

dév
T Ta

with boundary conditions

- fA.wle—U

v(to)'-'qa! v(")=q8! v'(0)=q6| V.(1)=q12 H
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(2) flexural vibration in xz plane,
- dtw
EIy e PAow 'W=0
with boundary conditions W(O}ﬁﬁz,wu)‘_"{h wey=gc, W) =4, ;
(3) longitudinal vitration,
l“ &
EA. dﬁ' + PAs ' Azo0
with boundary conditions u@=9,, uw =44 ;
(4) torsional vibration
dg 1 _
GJT Fo + PLewd=0
with boundary conditions 6(9 =G« . o =4}

2’

The solutions of these differential equations in terms of generalized

coordinates Tq1dp900eqy, aATE given by

12

(1) v(x)= A cos Az + BistaAzd + C cash A T+ D, stabhn; €

wvhere ¥ - —i—- Ay = PACIYET,

'

and A= (R OW)9/04 Fa () ¢ - F3(12) 72/0 4 FO3) §2)0/2% + §4/2

Bi=b Fe(ra)§u/d+ Fee) G -FsOa) 52/8 —F2Ra)g0) /223 + Ag¢/ 2 e
¢ = 'r’-‘;‘*‘%t ’ D;:’-g‘ <+ ‘-‘\-51/)\?

and the frequency functions are shown in fig(3,7.3);
(2) w(x)= A (0sAy$ 4 B, simry T+ CowshAy £+ D, Shh Ay §
vhere §- x/L - M= PAWAY/ETYy

and Ao EBy)g:/0 +Falrg)gs — F3(0g)59/0 +FONTF0 L/ 22g 2 3272
Br=[-Fe 04/t + Rl gs - By §9 /L ~F3e) §0 T L7205 2G5/ 22y

Ci=-Ar1+%s, Da-= -B24 i 1//\,

and the frequency functions are shown in £ig(3.45.3);
(3) u(x)= Ascosy-$ 4 Bssmy-g
where S =x/4, Vi {1€Aa w¥/ehbo,

PS=%,, B)z-%ltw:l\[f+g‘6.5(¢f‘ :
(4) 8(x)= Agwas¥ L+« B sin ¥
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vhere € =x/U , ¥'=1*PI.w*/GT,
A4= Ay B4= -q4cot ¥ & q.locch .

The generalized forces and generalized displacements are related according

to
% Fo (M) -F, O Fy (A Fy (ML) (g,
% ELI-F, (ML B, O <Fy (AL Py (MC] ) o
%) IR (N Ry (ML Fe (A R 0| ) g
Q10 Py (ML Fy O F, Wt 7, (NS L ay,
Q5 [ Fg (M) Py (NL Py (N) Py ()] (g
o5 { EL|=F, (L F, (R -Fy (M) R (N1 .
9 | B ) F3 04 R Oa) R () | 2
014 gy Ot B (LT R (R, )

.

fo} S )

{04 &3 ¥ coty —l’cchJ(q4}
Q40 T L |\=Ycsc}yY Yot/ 440

The complete dynamic stiffness matrix [Q]which relates the generali:ed
forces and displacements,i.e,
| {al= [2]{%}
where Z&i= (R, B - Q)
and  {431=1[% G §n]’
is given by equation (3.6.1) and the mass matrix (1] by equation (3.6.2).
The frequency functions F,,G,; and Ur,¥s, ¥, Ys are listed in fig (3.6.3).

The torsion constants J for several shapes of cross are listed in fig (3.6.3a).




Torsional Constants J

\

Il a circular bar of constant section and of length I is subjected to a

constant torque T, the angle of twist between the two bar ends is
0= E
GJ

where G is the shear modulus and J the polar moment of incrtia.

When the cross section of the bar is noncircular, plane cross sections
do not remain plane after deformation and warping will occur caused by
longitudinal displacements of points in the cross section. Nevertheless, the
above cquation can be used with good accuracy for noncircular cross
sections, but J should be taken as the appropriate torsion constant, The
torsion constants for several shapes of cross sections are listed below.

Section Torsional Constant J

J = 0.1406b*

e

L mG -
2

J

F'.'j (‘ i Tl (o Sl.(n\-»\.l Contlants




Section

Toesional € onsiant J

1 b b
- 3 - —-—
J =ch [] 0.2];{! ilr"}]

Closed section
‘d”
- ""d_‘_'
{

where a = area enclosed by a line through the center
of the thichness and the integral is carned out over
the circumference.

J

T 2,150h, = r,l_’_{_b, -nP
byty + byty = 1,7 — 1,7

- bt} 4+ hytd 4 by}

’ 3

Open section composed of rectangles

J - !3:"'??
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FilA) = A8t =sinN )/ §

Frn) = = Alosnasina =sinhy woA )/ §
Faw)s = A2 aashx=casa)s

Fa A) = ,\1( SsinhaASAaA )/ S

Felo = Adisimbhae soaA)/d

Fe(y = — A2 (oshashan+ sinhA s\ )/ S
J= coshasA—|

GiA) = (FWF2M - Fa W -G ) /4 4
M) = CEW &) - F2l)) /4N
Gw= — (F W) Fgln+ 2520 ) 7 dat
QeN= = (Fin) T2 W) + 2Tan) )/ A"
Ge)= (Fs 0T ly) — 3Fe))/dar
G = (F30) FaN) — 3Fe ) )/ 4 A%

These functions have a removable singularity at A=0, i.,e, when A\=0,
they are in the forms of 0/0, Therefore when A is small, the functions

are expanded in polynomial forms to avoid the numerical instability when

using computer to calculate these functions,

FdA) = 2 +0.007142857 A" +0.000015704 A +0,000000032 \'*
Fur) = 4 =0,009523810 A" =0,000015262.° ~0,000000032 A
) = 3 40,030952381 (" +0,000072193.¢ +0,000020148 1\

FalA) =-6 +0,052380952 \* +0,000076617 A +0,000000149 A"
Fe(A) ==12-0, 12857 1429 A¥ -0,00032957 1. -0,000000784 A
Fer) = 12-0.371428571AY -0,000364873 A -0,000000793 \'*
Q.(\) ==0.007142857  -0,000031408 ¥ ~0,000000095A°
Gy = 0,009523810  10,000032525, 4 ,0,00000009 A
G ==0.030952381  ~0.000144386 A" ~0,000000443A
O4\)==0,05238C952  =0,000153234 A¥ =0.000000447 A’
GV = 0128571429 40,000359142 A7 +0.0600002053 A

Ge) =0.371423571 200007297457 +0.000002080 AF

Fig(3.:.3) Fresucncy finctions for a straignt nniform keam



When A is large, it has been found that thc subtraction of two exponential
ge,

To
functions involved in computing these functions will give riseAn\unerical

instability, i.e.,, the number of useful significant figure is reduced,

In this case, the following approximations where the cxponential functions

have been eliminated should be used.
Fid) = - A/ Los A
FaAd) = A/ Li-tomA)
FiaV) = - A¥ cos A\
FeA)= AT+anm \
Fe = A/
FeN)= — A7/ (+tnA)

For longitudinal and torsional vibrations, the functions of frequency used
in the element mass matrix are given below,

q/‘; = (U/‘"'Cs‘c‘ v \V(/of'q'/‘)/lkl/‘l

¢ =(recsc - iescy-wt ) /2 ¢

E), — (Yzc,sc_lc)} ~Ywt¥Y)/2 yY?

Ya = (Y cecy —Picscy oy )/ oVt

Fig (3.6.3) cont,
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The above formulae are valid only when the loadings are presented om the
boundaries, These can be modified to include loadings in the region of
the beam as well, The idea is b;arrowed from that of receptance and, as
far as the author is aware, is new in the stiffness analysis of structures,
Consider the flexural vibration in xy plane alone, as shown in fig

(3.6.4). Tre loading f‘(x)ei“")t

may be distributed or concentrated bending
moments or forces., The beam element in £ig(3.6.4a) is separated in-to

an equivalent system consisting of two identical beams, fig(b) and fig(c).
The first onefsubjectsd to boundary forces, 51, 52, 33, o] 4+ and boundary
displacements 9419519319, and the second one subjected to interior forces
£(x) as well as boundary forces P,y Py, Py, B but no boundary displacements,

The displace-ment pattern and the fundamental matrices of the member in fig

(b) are fourdas before as

-ﬁ(x) = A COSAS + B sinN + C coshr§ + D sinhA§ (3.6.3)
whére 2 =(~Fe(MN) g/ L+ FaNg,- BN T/ A+ FA) §1 L7207+ 9./2
Ba[-FeWN%G /L+ FeA) G, =FaQ) §s/L-F3(A) Ga T L2+ 1 /2N
T=-2+9,, D=-Btgl/a,
and (F(A) P NL Fi(A) Ry (AL

(81= 55 [ R ONE m ()2
Fs (N)  =F3 (AL Fe(A)  F, (AL
Fa (AL Fo (A P (AL Fy (A)A%)(3.6.4)

\

The displacement ve““‘of the clamped beam in f£ig(c) is governed by the
differential equation
d*v 2
EL 2 - w'PAV = {(x) (3.6.5)
dx
with boundary conditions v(0)=v(L)=v'{0)=v'(2)=0,
The solution is straight forward and has the fornm
v(x)=Acos AY +3sinA{ +CcoshAf +Dsinnpg + & (x) ‘ (3.6.6)

wvhere A,B,C,D are integration constants and & (x) the particular integral,
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(a) Generalized coord. (b) Generalized coord, (¢) Generalized coord,
of a forced beam of a free beam of a clamped team

Fig (3.6.4) Beam element with interior loadings

The function®(x) is different for differnt loadings and some are listed in
fig (3.6.5). H(x) is a step function, i.e. when X greater than O then
H(x)=1 otherwise H(x)=0, After determining the displacement function,
ve have

v(x)= (3F —8'F) Fie3)/ 28 + (BFs+3'Fs) Folrs)/ 221+ 200

(346.7)

vhere F,=F,(A) and 3=3(1), BL@( 1), 5 x/L.
Stl'., are the frequency functions as shown in fig(3.6.5).

The generalized forces. P1 +F P3 P 4 2are obtained by

2 ’

P, = EIv" 1(0)

e "

P, =Elv (o)

P, =>=EIv" (1)
= n

P, = Elv ()

Therefore the dynamic stiffness relation of the original system,fig(a) ,

is given by

jQt={e{+(B11¢3 (3.6.8)
where {P;-‘- [E. E1 -93 P4]T.
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The particular integral $(x) can be extended to additional mass and springs
on a beam at poit X=c by putting F=-kv(c)- or F=—mwv(c) in fig(3.6.5a and b)
where k is the spring constant and m the mass.

In tle case of uniformly distributed loads over the entire span, the

displacement and fixing forces are given explicitly as below,

v(x)= A cos)§ 4B sinAf 4+ C coshAS + D sinhag (3.6.9)
l&
where A = 5._{;5_11‘ [;\""-_ Fa(A) —FaWV)]

4
B=-D= - £, [ Feoo+ Feu]
4
c ='1%i—)\s [R+ FW+RW]
and P1=P3= % [FeN\) + FS(/\)j
kA
* Py LT IR+ Rw]
vhere £ is the intensity of the U.D.L.,

In the main programme, we have not included this device due to lack

of time, A useful peice of further work would be to code this into a
programme, However, examples of use will be given in chapter seven,
LOADINGS 3 )
Vi Fett 3
(a) Concentrated é . el _
VJ st
(b) Concentrated T*' c e Fl‘. R (1-¢) Fhel (l-(,))
moment F I&ut 3 2EI N ) é
re—" a <
(C) U.D.L. F per VLCIJIIKII QE.: ‘[H(I-Q)('}q(‘%(x'&'” 2)
unit length | - T = 7 N ZH (x-a)( Fq(4 (=) =2)]

F,00) =Sin + Sinh
Felt) = sinx —sinhx o Y &0
Fq) = cofx+ coshx “”’"’5 | x>o
Fiolt) = co3x = Cosh x
Fs(®) = cosxcoch = |

Fig (3.€.5) Particular integrals for beam vibrations
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3.6.2 TAPERED STRAIGHT REAM MEIMBRIRS

A tapered beam i§é defined as a beam whose cross sectional area is a
func:tidn of the coordinate parameter which defines_ the axis, We shall
study the vibration of a tapered beam member whose axis is a straight line,
The governing equation of such an element is given by

2
dd;z)—a"ﬁ-{l)vo‘v:.—. 0 (3.6.10)

5;—, (ET (0
where EI(x) = the flexural rigidity about the y axis,
fA(x) = the density per unit length,
v(x)= the amplitude of flexural vibration,
This ?quation may be solved analytically only for certain distributions of
A(x) and EI(x). One of them is,(ref 87),
PA(X) = PAs (1+ cx/L )™
EI(x) = ETo (14 cx/L)**: (3.6.11)
where :PAO and EIo are the density and rigidity at x=0 respectively, C and
n are constants, With this assumption, the solution of equation (3.6,10)
is V@)= [CTaR)+CYa(B)+ C3Ta )+ (o Kn®)1/ 8", (3.6.12)
vhere (3 =2AE%/c),
E=U+cex/0),
and  Ao= A (w‘fn./EI,)*' ,'

and .In p Yn I Kn are the Bessel's function of the hth order,

n

For prescrited boundary displacements,

UlRo) =%+ V'Be)=Ga, vi3)=%s, VIEI=1%4 ,
vhere 2, =g2(x=0), Bi=3(x=1)

the integration constants of equation (3.6.12) are obtained from

Ta(B) YaR) Ta@)  Kalzo ) (c. Be %

Jaw i (30) Yanlde) —Lan(Be)  Kan @B G = "ll?.:%: /o

TJal3) Ya B Iﬂ({?') Kn{R:) Cs (31“ %3

Tae(B)) Yoe [{3;\ = Lo (‘31) Kaa1B1) Ca -1 (5:'?_4/)“)
where )\ = | (pAUW/ETIDF, - Lo
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After solving {c} = [ c,c, C C4]T from equation (3.6.13) in terms of

2 3
fa} =[a; 9, a5 947, e vrite
{ct =M11%3 (3.6.14)
Therefore, equation (3.6.12) may be written as
vige)) = [xdict =[%1(]{g3 (3.6.15)

vhere [%7= HLIn@) Yo(#) To(p) Ka)]

The generalized forces are defined by

0, = £ (e1v"RY]

02 T £ EI(O) U'”(ﬂn)

03 = — S IETL)V"(B)]

0, = ELV"R) (3.6.16)

And , therefore, after substituting equation (3.6.12) or (3.6.15) into

equations (3.6.16), we have the dynamic stiffness relation

3 3 3 3 3
gQ-} ] r %:’ft:.]-nﬂ(‘go) %_ Yn+|v&) %Z\ In& \(4?‘0) s ’A:: Kpﬁ.\&go) CI
3 °‘
Q _Ef R l«A: :-!‘-"1{30) - LT)\—EYH*'J(%Q) - I_Aqo:nq»j QZ.\ - l"\. K:ﬂ ¢((§u) g C—l
P 8 T m o B &3 Cs
03 —'&L'_j'nﬂ[&) Ar", Yot QSI) _A"Ll InaB0) _Aot K1 (34) ] (%
BI‘ Bt1 G.?. Bl}
08 | BTle) AYaB) rTalt) ke (3.6.17)
\ (2 N ' '

or in matrix forn

R =[81{c}=081[M1{%]
By the definition of the dynamic stiffness matrix, we have
{a}=1[2]{9t

where [(2T=0[8B1(] (3.6.18)

The calcultion of the tapered beam element is not casy because of
the Bessel's functions involved, Moreover, if the geometric quantities
# A(x) and EI(x) can not be expressed in the form (3.6.11), e.g. lincarly
varying width and depth, the method will fail, We shall use our new
method discussed in section (3.5) to obtain tre displacement function and the

related dynamic stiffness matrix and mass matrix for a generally tapered
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beam element,
Assume that the rigidity and density are expressed in the forms
EI(x)=EI, z, g x
45"
PA(x)= PAc2 Ber® (3.6.19)
D
wvhere EI., PA. dg{]’ﬁ.t,zx...,n” Rarct, k=12, j M,
are known constants and ole= 3o= 1., - We obtain firstly the modal shapes
of a single clamped-clamped tapered beam according to Rayleigh-Ritz method
by solving the eigenvalue problem represented by equation (3.5.45),
_ [o(g——:a’ﬁg]{ﬁn;} =fo} (3.6.20)
L 4 g
where ofy;= [ EL, 2, rd"g )" x*dx
Ve L 0 0 "
Bi= ], TA E Bt ¢" @;" x* dx
@i(x)= the i th mode of a clamped uniform beam having rigidity EI, and
|
density on i 333=l025 wes 3N The integralsj. quéc éjol:t and
i g M teen .

j., XS @ @y dx have,calculated for the first twelve modes for k=0 to 6,
A general computer programme has be.n designed in chapter six for this
purpose, If the solution of equation (3.6.20) for the k th mode of vibrat -

“ion is (g and {Aw} , then

n
(k)
Yioo =3 A C;0 (3.6.21)
4=
is the k th mode of the tapered beam with clamped ends, The constants G,

ik
are calculated from equation (3.5.47) as

1, n 1
fA.,E?;, E Ajrm _L x" Q) ¢y o0 dy
Ji- [Aj“"]" (3.6.22)

Gie=

i,k= 1,2,3,4,
|
where Q{(X) are given by equation (3.5,36). The integrals‘/; x"‘a;(mﬁjmdx

are readily alculated for the first |4 modes, as listed in fig(3.6.65).
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A tapered clamped-clamped beam was studied using this method,

elenents were used in the calculation of the natural frequency and six terms

approximation of the series form of the dynamic matrix were taken,

rigidity and density were assumed in the forms

EI(x)= (14cx)>

tapered beam with both ends clamped

4 significent figures.

Fig (3.6.6a) The first four natural frequency parameters of a

The results when c=1 were compared with those calculated from the

exact formulation and found that these figures are accurate up to

and PA(x)= 1+cx. The frequency parameter A , where A_‘“nu‘j’A°14/EIO,
was listed in fig(3,6.6$) for the first four modes and for c=,1(.1)1.
c= first mode second mode  third mode fourth mode

0.1 4,89811 8.13204 11,38589 14,63889

0.2 5.04791 8.38012 11,73286 15.08477

0.3 5.18017 8.59870 12,03831 15.47715

0.4 - 5.29584 8.78957 12.30484 15.81943

0.5 5.396160 8.95491 12,53561 16,11573

0.6 5.48246 9.097 16 12.73417 16,37068

0.7 5.55618 9.21887 12,90415 16,58901
:0e8..00 5.61874 9.32251 13.04913 16,77538

0.9 5.67155 9.41048 13.17248 16.93414

1.0 5.71591 9.48495 13.27726 17 ,06923

f e mee e ——— ——
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Fig(3.6.6b) The values of the integral J xyﬁh(*)‘?kt)‘)dx

for the first 14 modes, the programme is found in section (6.5)
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Fig(3.6.6¢c) The variation of the frequence parameters with the taper const,

C in natural vibration of a clamp-clamp tapered team .
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3:6.3 CIRCULARLY CURVZD REAMS

Analytical solutions are not possible for generally curved beam members,
Even for circularly curved beams, the analytical solutions are very complicated,
As for the tapered beam elements, the circularly curved bean element as
shown in fig (3.6.7) is atudied by the analytical method as well as the
new method descrited in section (3.5). e begin with the"analytical method,
The Following notations are adopted:
fﬁ\ = mass per unit length
W =frequency of vibration (rad/sec)
™ ﬁwt = bending moment
Q et =shearing force

N e*“t -axial force

et - jnward radial displacement

v th = out of plane displacement

W e‘:""t = tangential displacement

¢ ecwt = torsional displacement

g gt = angular displacement of beam axis
I = radius )

o = angle of opening

d+{;+,}) = 180°
= angular coordinate ( from 0 to & )

Ju QL 1=1,2,3,4,5,6 are generalized coordinates of displacement and force
respectively for inplane vibration,
The equations of motion in vibration,(ref 37,38) are obtained from

Hamilton's principle as below:
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Fig(3.6.7b) Forces
and displacements

for in-plane

R

vibration

. Fig (3.5.7b) forces and displacements

for in-plane vibration

\ o Fig (3.%.?d) Generalized coordinates for
ot
\ / in-plane vibration



117

(i) for inplane vibration

W W' = PAr4*wW /ETy,
w'+w' = —pare > w/EIy; (3.6.23)

(ii) for out of plane vibration

vVord'- R(V'+ gt )=~ PAT4 U/ET,

vll - r¢ll+ '&(U“"i- r¢]l)____° : (3.6.24)
vhere %= GI/EL

and GJ is the torsional rigidity.
The uncoupled equations for the inplane vibration are
w’ w2wve (1-2)W'+ aw =0
u” +2u%4 (l“)\)u"-l-)\l*'-O, (3.6.25)
where Roman superscrits denote the differentiations with respect to @ and
A= fAMuf/EIy , and inextensional vibration was assumed, The uncoupled
equations for the out of plane vibration are
"' +2¢"Va (1-RAVP"+ Rgp =0
v'=c(p-fKa")/(1+ %) (3.6.26€)
where N = PA &'/ EIy
From equations (3.6.25) and (3.6.26), the governing equations for w, u, ¢,
have the same form and v may be determined from the second equation of eqs.
(3.6.26). Therefore, we shall give solutions for the inplane vibration
only.
The auxiliary equation for the differential equations (3.6.25) is
%20 L (=X) % A =0 (3.6.27)
The roots are of three type> depending on the value of )_, and the solutions
are given separately below:
Case 1: Yhen 0<A £ 0,113400546, the roots are of the form ( = +di Lt Ol i

146; L- where G:; are real numters, The displacement has the solution,

w(eu:ﬁ,w)]{c} (3.€.28)
where {Cl=[C, G € Ci C C.T

is a vector of integration constants and
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['~P'(9)]= (cosdi0 (05620 05038 sinG. 0 S\nG:8 SinG30 ]
Case 2: %hen 0,113400546 < A £ 17.636599455, the roots are of the form,
14, i(v'-'-/u:-), * (V-ML), where V,/Hare real. The row vector, (W8] in
equation (3.6.28) has the form
(V)] =[cocq,0 COS,uGC‘?ShUO cosuasinhVo sing, o sin,.le;.‘nl,ye Sinupcosh Vo:l .
Case 3: When 17.636599455< A\, the roots are of the form tcr.l:, td, , T0;
and the row vector ,[Yn®)), in equation (3.6.28) is

[‘-PTB’]';-']: cosfi8 CoshB:8 coch6: O SIndi@ sinhG:n Sthheye ],
For the prescribed boundary displacement conditions we have,

CC(0)=U0O)+ w(0)=-%:T7
W(0) osB + w(0)<in 3 = 4,
u(o) sfn@ -W() cos =~y
Fo()= W) +wb=-%¢r
—w () tosY+wl)siny = G4
W) sin ¥ 4w (os¥ =-Ge
(3.6.29)
From equations (3,5.28) and (3.6.29) and the fact of inextensional vitration
that W = %% , we have a set of six linear equations for fC} ,
(y'(0)] Cos %+ [kﬁo)]sfn{g\ C-,\ 9,
“[y-'0)] sinp4 LW ]cocR C, a,
- ((w"@1+Cwo)1)/ F Cq
- (W' ] cos? 4 Cy(at)Isimy 4 |4

P
Q
"
i
Q
w
i

“(W'e0Isiny - (Wi Tcosy | | C5| |9

\ CWv'7 4 fur)7)/ S| {%] (3.6.30)
or in brief, [E’”C}=f‘ﬂ / \
and upon solving, fo} = [\_I(‘T‘ {ﬂ (3.6.31)
The tangential displacement (3.6.28) can be express as
wi(e)= (y-(e] (] {c” (3.6.32)

The mass and stiffness matrices are given by formulae (2,6,5) and (2.6.6)

as
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ol

)= #Ar [ [T (4@ (] 40

(%)= % [[eT (VOTT¢ o011 de (3.6,
Obtaining explicit formulae would be a large effort that would be justified
only if the circular curved elements were used as common structural members
as beams as presently used, Therefore the evaluation of these matrices arc
based on numerical integrations,

Inthe Following, we list the matrix['l;_["]for all three cases.

(1) ¥When 0 <A< 0.113400546, then [1}]:
j 1 0 =-@¢} cosqX ~-dsingx  ~-dcosEidk .
1 0 '-q’zz cos ok =6sin€t = gcosq, o

1 0 =& cosgyx =-gsing -07cosgyol

0 < 0 singiol g,cos6a  =0isingo
o 4 0 sinGA  Geosg,d ~-0%ingo
\ O 63 0 sindyol G3cosqypt ~Gpsing,( )

(2) Wnen 0.113400546¢ A< 17.636599455 , then [Jr)=
4 ~

1 0 -g;>  cosqgot -¢, singid - 6,%o0s @, &

10 yru' cospdcoshl  -psinpdcoshvd Y'= P )cospslcoshye!
+Yeospssinhvel  +2uVsinuesinh ¥

o V 0 cospwlsinhYA - sin sinh ( ¥V’= 1) cosytels inh vt
4+ COS cosh =-2AVs inpolcoshyol
0 6 0 singd ¢ 1cos ¢,k - Gsingo

0 0 2uy sinwdsinhiX  pcogudsinh¥el  (¥'-p)sinudsinhyd
+Vsinpdcoshl  12uvcosudcosh Yol

0 P 0 sinpdcosh /X prcospdlcoshyol (Y= puP)sinpolcosh vl

» +Vs in/.lufs inhyd +2pycospels inh Yol /
' T
(3) When 17.636599455 < A, then (dr]=
r 1 0 _0"7 cos A - J‘ sing.d ‘6:COS A 3
1 02" coshGd  disinhg, ¢ gitoshgof
1 6 coshayt OssinhOiek  Gyosh 0
0o 6 0 sino,ot  4,cosq® -@ising
0 6 0 sinhd« Gicoshfl  Ssinh@iel
o 63 0 sinhG;l  @3coshoyk 03sinh 3ol
. /
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Particularly, when&:lsoo. the natural frequency parameters of a clamped

-clamped end circular ring are all in range (3).

In such a case, the

natural frequencies and the corresponding modes are calculated and

tabulated in fig(3.6.8) for the first five modes,

NATURAL FXEQUENCY PARAMETERS

mode n An Tin dan Gin
1 19.22 2.398 1.514 1,208
2 93,16 3.328 2.834 1.023
3 321.2 4,402 4,045 1.006
4 757 .6 5.385 5;098 1.003
5 1584.0 6,425 6.186 1,001
NORMAL MODES
cos¢, 0 cosh(20 cosh03® sind, o sinh @0 sinh(@i6
v,(8) | 0.4319 3,738  -4,170 0.3317  =3.375 3.987
-V,(8) | 0.3613  0.6272 -0,9885  0.2049 -0.6274  1.071
Wz(6) | 0.2545  0.3380 -0.5925  0.1862 -0.3380  0.5444
Vp(6) | 0,2138  0.2568 -0.4706  0.1476 -0.2568  0.5127
We(O) | 0.1697 0.1925 =0.3622  0,1336 =0.1925 0.3323
sind\9 sinhG.0 sinh03@® cosg.p coshd;0 cosha;p
u(e) |-1.03¢ 5.659  =5,037 0.7475 =5.,563 4,815
U,(0) |-1.202 1,778 1,012 0.6818 =1,778 1.096
Us(e) |-1.120 1.368  -0,5963  0,8196 =1.357 0.5479
Ua(0) |=1.151 1.309 -0,4719 C.7949 =1.309 0.5141
Ux(0) [-1.090 1.191 -0,3527 0.8582 «1.191 0.3324

Fig (3.6.8) The natural frequencies and modes of a semicircular

ring with clamped ends
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The conditions of orthogonality are given by, (ref 39),
. fo when i#j
[Fpac(Uuj+Wew;) dg =
" PA when i=j ,
Next, we establish the dynamic stiffness matrix in series form according to

the method descrited in section (3.5). To begin, the static tangential

displacement function,

wo(e) = C.+ C2 + Cscoséh- 04911164. 05 cos 04 CG sin®é , (3.6.34)
with satisfies, w:'-p 2w:; + w: =0 (3.6.35)
must be defined, For a particular case where the angle of opening o« =T,

and 3 = Y= 0, i.e., for a semicircular beam, the boundary conditions are,

« v, (0) 4wy (0) = =qur

v, (0) = q
v (0) = q,
vo () + v () = —qgr

...w(;('rt) = q,
Differentiating expression (3.6.34) with respect to 6 , we have,
1
: wo(f}) = C,= Cysinp + C,cosf + Cs(coso -0sing ) + Cs(sin0+ pcos O )
"
wo(B) =-03c059- C4sin9 i Cs(-zsine -Qcosh ) + 06(2 cosp - Psing )
Therefore, from conditions (3.6.36) we have the equations for the determinaticn
of the constants Ci’ i1,2,3,4,5,6;
(0 1 o 1 1 o) (c.) Fa, |
1 0 1 0 (o] 0 C
-1 0 C -
0 0 0 =2 403 ﬂJq3r>
o -1 o 1 1 7w|)c ?-ﬂ

1 T -1 0 =T 0 C

| -1 -t 0o o o 2 \06) %7

and the solution is
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(C,) (-.63%62 0.00000 =,59472 .638G2 .00000 -.40529 ] | &
c, ,00000  .00000, .31831 .00000 .00000 -.31831| [9.
Cy .53562 1.00000 ,59472 -.63662 ,00000  .40529 | [{sf
Cy g 1.40528  .31831 =-.25801 -.40528 ,31831  ,89473 [ | 34
Cy| | --40529 -.31831 -.05030 ,40529 -.31831 =-,57632| |93s

or iet= [N)(g!
For inextensional deformation, g = %"—!9 ,
and from equation (3,6.34), we have

v = [1 @ cosb sin€ cosb sing ‘][N]{Qi

and u,= (0 1 =-sinp cos@ (cosb- sind) (sin9+6cos€l)][_r~.\']{%j
Therefore, the static displacement pattern is given by

We

i (01841

1 ©® cosb sin@ cos sing
Vhere [ao'l = [0 1 -5inb cosbh cosf=-Lsing sin9+0cose][—[\l]

= Ll fad g} {2l dast dad],  (3.6.37)

o

And the constants for the dynamic stiffness matrix are given by

T
Giy fArJ°I¢kiT {ai}de,
vhere ¢, = [.LM_; Wk]T,

is the vector of the kth normal mode of the semicircular beam, the first
five of them can be found in fig (3.6.8). The constants G, ; may be
obtained by numerical integration,

As the curved 'cam =lzment i3 not commonly ised as the stradgal

beam mamter, no cempiler proqr.evte was designed for this cloment,



123

I

3.6.4 SECOYDARY ZFFZCT

In vibration analysis, the wave length of vibration is inversely proportional
to the frequency of vibration, Therefore, the higher the vibration
frequency of a beam with finite length, the smaller the ratic of wavelength
to its thickness, Since the simple beam theory we have discussed in the
subsections (3.6.1) to (3.6.3) is based on the assumption that the wave
length of tie beam is much longer than its thiclness, when the ratio

is smaller than about ten, the theory needs to be modified, If the
wavelength thickness ratio is greater than five, corrections can be made

by considering the deformations orthogonal to the beam axis, otherwise,
three-dimensional models should be used,

If the longitudinal vibration is concerned, the axial displacement
will cause lateral displacements because of the existence of poisson's ratio,
and these effects of lateral inertia and shear are regarded as secondary
1effects. For torsional vibrations, the warping effect will cause axial
displacement, and the effects of the inertia and shear resulting from this
axial displacement are considered as secondary. The secondary effeccts of
lateral vibrations will be the inertia of rotation of the crossectional area
and its shearing deflection. ‘e assume these three different types of
vibrations are independent here and their coupling effects are considered
in next subsection,

The governing equations of harmonic vibrations for these caes are given
by:

(i) flexural vibration (ref 33)

44V 2 Fi v x s
EL i+ Ao (e Z8 ) Y g (1- Bl ) oo ;

1'}
(ii) torsional vibration (ref 32)
d'e dre _ .
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(iii) longitudinal vibration (ref 89)
2
VG T %i% -~ (Eho =Y TN ) %; - PAcW'u=o0 3
where { =length of the beam,
Y =Poisson's ratio,
T. =Polar moment of the cross sectional area,
(7 =torsional rigidity,
EAo=axial rigidity,
EXI =flexural rigidity,
=shear coefficient,
=radius of gyration,
=warping constant,

=axial displacement,

S &M =< =

=lateral displacement,

© =torsional displacement,
For the convenience of study, ws represent all three equations by

v+ P+ g =0, (3.6.38)

vhere Y=¢y{(X), pP=pW), &= %(w),
and the associated boundary conditions are

V=%, v'O=9:, ¢ 0=%s, y-' D)= 44 . (3.439)
The auxiliary equation to equation (3.6.38) has Ffour types of roots, namely
(i) four real roots,(ii) four imaginary roots, (iii) four complex roots
and (iv) two-real and two imaginary roots, In. the case of flexural
vibrations, when all the physical properties such as density and rigidity
are positive, we can conclude from the theory of equation that the solutions
will fall into cases (ii) or (iv). Usually, in the ordinary range of
frequency when wW<w,wheretx=kGA/ I, the auxiliary equation has two real
and two imagenary roots. For frequencies greater than this critical
frequency, the transverse displacement of the beam is very small (ref 33),

In fact, (ref 33) shows that the two components of the slope of a simply
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supported beam due to bending and to shear are essentially equal in
magnitude but are in anti-phase at frequencies above u.

Since the governing equations and boundary conditions are similar to
those discussed in section (3.3.,2) for folded plate structures, we are not
going to repeat here, For all the three types of vibrati.ons and four

classes of solutions, the dynamic stiffness relation has the form:

%Gy [Fg T ¥y Esi J“m
G loc[Fah FL SRt FEN g,
04 P, —Fak P Fol || %s
0, (Pt P R Rty (3.6.40)
where -
Cs= E—_I_/Eg for flexural vibration
= GJ/ L for torsional vibration
= EAe /L for axial vibration,
and Oi’ i=1,2,3,4 are the generalized forces associated with q;- Fi'

i=1,2,3,4,5,6, must be consistent with the four classes of solution,

In this example, we have shown that the complicating secondary effects
can be taken into account without complicating the form of the dynamic
stiffness matrices, All these formulae are based on classical solutions
and have been arranged in such a form that the main programme of chapter
six for framed structures can include these elements without particular

difficulty when required.
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3.6.5 COUPLING EFFECTS

Since there are three types of vibrations for a traight beam element, three
coupled vibrations are possible, which are flexural-axial, flexural-torsional
and tosional-axial couplings. There are two clases of coupling effects,
one is the static coupling and the other dynamic, When the axial effects
on flexural vibration is considered, if the axial forces are constant with
respect to time, then the coupling is static, otherwise dynamic, Two
examples are considefed, i,e, static coupling of axial forces on flexural
vibrations and dynamic coupling of flexural-torsional vibration,

It is not our aim here to provide a general computer programme to
include all these elements,but rather, to demonstrate how these elements
can be developed to be incoperated to the general computer programme,
However, céﬁuter procedures have been designed for flexural-axial vibrations,
The details are found in chapter sik,

The mass, stability and dynamic stiffness matrices of a straight beam
member taking accounts of the coupling effects of constant axial force P,
rotatory inertia, shearing forces on flexural vibrations are studied first,

The governing equations of vibration are given by (ref 33,34),

UV 4 b(§+S) u_ b(!-brs) Lo

- sp (- Sp
lP"V 2 l?(_?;;} \P__u _ b"[l_-:;S)\P_HO (3.6.41)

where e zlateral deflection
qrecw&=bending slope
b = PAL1*LY/EIL  the bending parameter
r=1T/ A\ the rotatory inertia parameter

)
r

ET/ GAs ¢’ the shearing paramcter

E,{’/EJ'_ the axial force parameter
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g =p/b+r(1-5p)
§ = ((g-9)'+asplt

f = mass density per unit volume
Ao = cross sectional area

L = length of the bean

W = vibration frequency

E = Young's modulus

I = moment of inertia of cross sectional area
(3 = shear modulus

As = effective area of shear

P = compressive axial force

€ =x/1

Roman superscripts denote the differentiations with respect to § .

The general solutions of equations (3.6.41) have the forms:
(i) when rsb (1
v(g) = Acosﬁg-;. 3sinf3g+ C coshol € + DsinhX §

‘Y(E) =(-AasinBg+Bacosp§ + Cd sinho/§+ DA cosho§ )/

¥hate: A =(bijegea )/2(1-5'?))% B=(b(S+q+s )/2(1-51;’))% :
E]-s:( 1-SP)O< + bs/o( ;,:( 1-513) 5 ~ bs/ﬁ

(ii) when rsb>1

v(%) =A cosgg + B sinf¥+ C cosX§+ D sinol§

y(%) =(-aa sinp% + Ba cosp$¥+C d sin$ + DA cose'§ )/

where 1 i
o =(b(q+s-5 )/2(1-sp)) B =(b(8 +q+s)/2(1-sp) )?

d=(1=sp )l =bs /X a=(1-sp) B -bs/(3 .

If the displacement boundary conditions,
V0)=9: , VU =%z, WOI= %, ylt)=9%q _ (3.6.42)

are introduced, then the constants of integration are determined by
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(i) When rbs {1

A =[(od-F )G+ (Fat )ga-F3s +F L 90 1/ (pa+x d) ,

B= [ ~Feq H(3&+F4) G2 -Fegs -F: L] /alpa+od),

C=q-4 bD=i_ B&
? _} d

where the.frequency functions are defined by
Fo= @A ( cosh cosol—1) + (a2~ 4?) sinhal s'm[g
F =—(a sinhot- Asing M 32 +oldd)
Fo = (& coshot sinB - & sinholasR XR& +otd)

F,= 7 ad (g +3a)(wshol-os3)

A
P BE[ (it -ga) (cosholcose =1) + (God+ 33) siag sinhet
f‘ %—— {dd'-k-l’ia)(a'Smke( +a§m3)

5
.,«:.\.fps J (da_\,{'ga_ (a (.O'Shu(smf;-l- a'gud-\d s )

.

and (ii) When rbs >1
A= =t [—(d+Fa) G + Fal gy = F3gy + Filqa’)
B = m[ Fc‘%.-*-(ﬁi-‘ Fa)lga - Fegs - F3l44 ]
C = q,-A ,D-_fﬂ T*
where the frequency mectlons are defined by
Fo= 2ad (um{wsp -1) 1—(&’4—&’) snd €in B
Fo= = 1= (Ao~ g cin @ N p&-odt)
Fz-——' (& cosetsin B - A sinttcos@ X & B - )
Bys = —* €otd + 33 N osat —as )
F4= = [(déﬂﬁa Weesxcos @ =1 ) = (Gol+&3) st sin )
5= —a%'-[&o(éh. RaV(A sing — & sinel)]

F6=s "—%é_ go(gk.q.(ga)[ O cas ol Sir\(; ——d‘sfn.c( u::/& )
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There is a removable singularity for all the frequency functions at b,r,s,p
=0, and when this is removed, the following approximations apply:
F,=2-36s/(1+12s) + b(1/140 + r/30) + p/30
F2=4—355/(125+1) - b(1/105 +2r/15) - 2p/15

F.=6 - 72s/(12s+1) + b(13/420 - r/10) - p/10

3
F, =6 + 72s/(1+12s) + b(11/210 +r/10) +p/10

NS

F.==12 + 144s/(14+12s) - b(9/70 -12r/10) +12p/10

v

F,= 12 = 144s/(1+12s) - b(13/35 + 12r/10) - 12p/10.

o

The dynamic stiffness matrix in all cases are determined through the force

and displacement relationship as

Q ( - \

1 Fg F4l Fg Fal qQ,
3
EIfat Rl Rt R

Q
3| ¢ Pe -P3£ P Fol| ) g

0 2 = 2
. (Fat  Fib FaL Fal; 94 (3.6.43)

Computer procedures have been designed to calculate the dynamic stiffness

.matrix and the derivatives of the matrix with respect to s,b,r,p. They
are ready to incorporate in the main programme, see chapter six.

As a second example, we consider the dynamic couplina of torsion and
flexure, The coupling effect is due to the eccentricity of the centroidal
axis with respect to the shear axis, and this makes it necessary to consider
simutaneously the translational and the rotational displacements of the cross
section, The governing equations of vibration of a beam member having
cross sectional area as shown in fig (3.6.8) are given by (ref 106):

EAu"™ + L u =0

EI, vWe AV s e 6=0

ET, @Y - A - Ne 6 =0

Ae v - - ! -
2V " AEyV - GG -A(r2 2, e2 )p =0 (3.6.44)
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. )
8 - iqé;\
o - X, = _1 .. -.CE'_' e e s 5,\’

Fig (3.6.8) Coupled torsional-flexural vibration of a beam member

where I , Iy, E, w, v, &, G, J have the usual meanings ,

€, ey are distances of centroidal axial relative to the shear axis

X = W'PA

r = radius of gyration of cross sectional area about the shear centre,

The general solutions of equations (3.6.44) involve twelve generalized
coordinates and it is not advisable to solve them directly because of their
complexity, Therefore the new method of section (3.5) is used, The
natural vibration of the beam member with both ends clamped can be found
by an application of Galerkin's method,

The method begins with the choice of a set of 4N normalized eigen-
functions W(, Vi, wi, B¢, (=1,2, ... , N, where N= number of terms of
approximation, they satisfy

Epul= - Zoue
GTO = - pLog
ERvi= viwe
ET,Wi= o We (3.6.45)
vhere ;CWW’@nd . are known frequency parameters, Ther the solutions are
expressed as  U(x) = ZC' Scug
O(0= 3 A bl
v = %’ BV

w)= T Y wil) (3.6.46)
L
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where O((, /;{_, Xﬂ , J(_, ¢=1,2, ... ,N are to be determined in the following
manners, Substituting equations (3.6.46) into (3.6.44) and applying
equations (3.6.45), we have
ZL_ (A= Z)dcui=0

'{(yc-x)ﬁs_w_-» A€; Z 0l:01=0

z (A FoWe= ney PSR
NG Z RV )LR,Z'__B’L i+ Z (A (el g 6i=0 (3.6.47)
Mutiplying the first, second, third, and fourth equations of (3.6.47) by
‘*j " V}' » Wy and ej respectively and integrating over the length of the beam

member, we have

| 7. ) Lo] fo] (0] (5 ) (T
5 Gl o) ] poo

(01 Efoves] [%] (03 | |iwend] )l

(o] L%J:g}.w,;dx] (0] f] ,. RS B AV

Upon solving this eigenvalue problem for a symmetric positive definite

matrix of the left hand side of equation (3.6,48), we have, for the k th

. . )
mode of coupled vibrations, the frequency parameter Ak =Wk fA

‘ N
and the normal mode §4>ﬁ (I)f= Z {LPE&(IJ} (3.6.49)

L=

wvhere  §@00f= [u(x), B(x), VIn), wio ]y
§wz kool= (Sku) oo ptvam Yrwen]T
and the constants cﬂ;ﬁ, oi;_l,ﬁ.f‘, 8.;*, are the eigenvector components of eq.

(3.6.48) for the k th mode, such that

Lo ey aee £ e L
[ when (=}
The static deflection patterns for unit end displacements can be found
from solving eguations (3.6.44) with ) =0, i.e.,
a0, V%0, W=D, B'=0
(3.6.50a)
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subjected to the displacement boundary conditions
WO0)=q,, wt)=q, ,
V(©)=q,, U(U=qg,
v'(©) =15 -\—I'(’-}--qg ‘
:&(o)=q4, w(0)=
w'(0) =45, wd)=q,,,
0(0)=a;, Q)=a,se (3.6.50p)
And the solution will have the form
{fao=lacn]{q}
where {0} = [TW(X) V) Wex) 8]

{1?‘ = (%| ‘i; T ‘in].r

and r'ui(x) ]¢9) U(x) w(1)
1 |1-8 o (od 0
2] 0 0 |~3g%2¢gd 0
3| 0 0 0 I-3§7+2%>
4| 0 -8 0 0
510 0 0 (-5 +252€3) YL
(0] = 61 0 ° (E~28%EN Q
71 E 0 0 0
8| o o 3¢-2¢ o)
9|1 o 0 0 JeLneh
10 0 3 0 0
11 Q 0 0 (E2-%3)1
2| 0 o (gsg)N o
=[§a-l\* @l - {@nl™) = x/2 . (3.6.51)

As we have secn from equations (3.6.50a) that all the deflections are
uncoupled whenA = 0, therefore, the static stiffness matrix [PoJand the

mass matrix consistent with the static displacement [mo]will be the same
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as in the uncoupled static cases, And the dynamic corrections can be
obtained by applying equation (3.5.35), where Gik is given bty equation
(3.5.27) as
Gip = .(uat {de}T L] {act dwol
= AL jﬂ'g[sfu;m o) BRvtn) nrwi]faddg
Since we have a general computer programme, in chapter six, to compute the
integrals of the type
1 eseretae
where <ﬁ£(§) is either a clamped beam function or trigonormetric function,
the work reduces to the solution of the eigenvalue problem represented by
equation (3.6.48) for L¢ and constants 53*, olf, /%}ﬁ. YJ{‘. Any standard
computer subroutine for eigenvalue problem can solve this eigen-problem
numerically.
Due to lack of time, we have not desigmed a computer procedure for this
element, However, when it is needed,we should not find any particular

difficulty in foming the dynamic mstrices in the manner described atove,

3.7 T°'0 DIIZMSIONAL ELIVENTS

-

A two dimensional element is one whose displacement at any point is described
by two spatial parameters, The smallest geometric dimension,i,e, the
thickness, of such an element is much smaller than the other two dimensions
so that the configuration is usually represented by the configuration of its
middle surface, If this element is a flat one, then it is a plate element
otherwise it is a shell element,

The dynamic stiffness of a general two dimensional element has not
received very rmuch attention in the literature because of its continuous
contour of boundaries and the coupling effects tetween the two dimensions,

The only modelyaih mybe found is that of a plate element whose two opposite
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edges are simply supported (ref 47). In this case,the governing
equation of vibration is degenerated into that of a Peam by choosing a set
of distributed generalized coordinates on the two other edges which are not
simply supported, An approximation method of finite strip (rcf 91) was
introduced by Cheung, Again, this method is limited to plate elements
with the boundary conditions of two opp ite edges prescribed and therefore
the treatment of the plate element is degenerated to that of one dimensional
elements. Dill and Pister (ref 92) introduced a retangular plate elerment
where the displacements of the four edges are expressible by Fourier series,
However, the coupling effects between the two spatial coordinates give rise
to aiarge matrix, and the numerical convergency is very poor,

*In section(3.3.2),we have discussed a retangular plate element whose
two npposite edges are simply supported, In the following, we shall use
the new method of section (3.5)to derive a dynamic stiffness matrix for the
plate where all the edges are subjected to prescribed boundary displacements.

Ve need two sets of informition about the vibrating plate element to
_form the dynamic matrices, One is the modal information when all edges of
the plate are clamped and the other is the static deflection patterns when
the plate is subjected to unit boundary displacements. We study the free
vibration of a clamped plate first. To this end, Leissa (ref 93) summarized
the natural frequencies and the corresponding modes for various types of
plates with triangular, rectangular, polygonal and circular shapes.
Therefore, we could construct the dynamic matrices for these plate elements
as well, However, we shall demonstrate the method by rectangular members,

So far, the most popular method of calculating the natural frequencies
and modes for an individual member is that of Rayleigh-Ritz, Although
polynomial coordinate functions have been used by many authors (ref 107),

Mikhlin has proved that the Ritz system for polynomial coordinate functions

is numerically unstable (ref 16), To eliminate the effect, we use beam
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functions as coordinate functions, If we dengte tre k th natural frequency

by Wgand the corresponding mode byg, for the plate member,then,

ne ny & -
%(Xu‘l):g_ ;Z: Aly XuoYpy)

where xi and Yj are beam functions of clamped ends in x and y dirgctions
respectively, and n., nj are the number of terms takes in the corresponding
directions, The quantities Wkand AS:may be automatically generated by a
programme described in chapter six when the plate dimensions are given,
We list these quantities for the first 36 modes of a square plate when six
modes of beam functions in each direction are used in fig (3.?.1).T%wset%uan5¢&:
are computed by the programme of section (b.£.3)

For the static analysis of a rectangular element by the method of energy
we can refer to Przemieniecki (ref 8), Zienkiewicz (ref €3) and Szilard
(ref 62). The materials of the static analysis can be found frém (ref 8)
and summarized here for the completeness of deriving the dynamic matrices,

Consider the rectangular plate element as shown in fig (3.7.2),qi
i=1,2, ... ,12 are chosen as generalized displacements, A deFlection
function that ensures both the deflection and slope compatibility on adjacent
" plate elements is given by

ucg, )= Lol {5} (3.7.1)

where u(€,7) is the transverse deflection, §=X/a, W =Y/b,{q] = (aq00,0 eeery,17
and (@] is a 1 x 12 matrix given by

(@1=[E: B, b -7  Efs -Elab  -Gia

E:ia -Eiab EaMz  Eyy, Eyab  Eoqp2)  (3.7.2)

where € =(1+2€YX|~€)? =0+ -)?

Ez’EU‘g)? q"'l(“'"‘[)t
E;=(3-2€)€? ;=(3-)11rf
=B (v-%) N = "1’[!-?]} (3.7.3)

By substituting e-uation (3.7.2) into esuation (3.2.21), we obtain the

consistence mass matrix



Lm—l: ]16.4!}0 7

For the

[9"] 12{!-1»\01;.

[Ku]:

144

3

4

1] 24,336 o - "'“’"“‘—‘
2 | 3,4322) 628
s ! S |
3 [—3,432q —gxtub | 24a?
¢ | 8,424 |2,0282]—1,1884a] 24,336 ] SYMUSTRICAL
e e e e e e e -
& |—2,0285]|—1680% ) 28Lb =, n‘q 6b2
—1,18%a |—286ah | 21ew? (=3, =szn| 4%4ab 624a3
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(3.7.4)
'tigfness matrix, if we denote,
f / Al
X Koo }
and @ = b/a then
L]\-L‘ K)) / ! ’
(3.8)
150 -
‘3‘{'(5" rp3) =
72 '
¥ay
22 g T (3 s2. 1
[3§ ”‘+ 35}3 2 X3 2+ SSB-‘
+ :55( 1 -5v) ] " SN ps SYMMZTRICAL
‘ 25
78, 22 1 R I
- : - '\_: L= 23 -
PR YU ol e GERY B ( P2 B '
-iﬂg-(] LS\’\-. a a...; . R I
25 ¥ _‘:l 50(1‘1‘60()] uh +-——25— a2
Ir\ I 13 -r- '''''' e
.._ﬁ:_ gl ga shaa 21 AR
35 Tilas B P14+ L " (BB ?)
72 I's ) é
—ite I U F ) sy 72
25 %S 25(1+5v) ) a +
13 | e e e
(___ 3 i 12 1 2 2 i
Fr ( "f: [.. 2...8-3 Me.,, TR il 84
> 0" 7 g5B SRR VY RN
R 6 2 ?
+ﬁr4+~—)a B 2Nl d - 6 -
2" 25 ]'i.h” -_:;.} : :'-{\(1 ‘*‘r\',:} ahl 4 33 (1, fv) _] b 4 -;_.-) 3 ,'
27 22 i 1t v |, T e A e et
~2nag Hgiel [0, 71 22 Iy
P - yf ) w2 : 2 I 2.,
6\. A 5 35 f 3P * ' f PGP % [Ty (BYED ) (.:.“ s :.n"
1 .
‘*""“'"‘-‘)] e+ 21am ] oA - BN\ ! : !
6

§



{ K]

[ j{n-] =

145

—AE e pon| (-3 - ol (Glore e |0 i | [wetloes |Gl
7 .
| ey | ] s o] o)
T T T [T [P (T
A ._'.2“?) b .}hs—) L3 ‘_Is!d':]"‘" . 2‘)(1 b)) b -——'—';-) b3 —ﬁ'uu' i +!nr)] al
[ (IS PSRl (G RN (LR ()
¥ +—§--) a +-5'.; ] ab +—-zz§-) a3 "‘".!65") a +§L( 1 +.w)] aly - ?-’;~) o |
OO SR S I S0 e s Lo
B P [ P (e P [ [T
g2 —pgC1tm] ol 4y e +35 sryyh | gy
TN RPN [P [ T e [
-’“-—5‘55(1.+ s ] b ——f&—) 6 |40 +.w)] ali +~§;-) b +—225—) br —--5%-' b
- (—;{BH-;-:B 2 [_;;p‘:.} ':z“ 2 (E:ﬂ:_fb”-a ._.i.:fp_iiﬂ-: [_:3”314 fi-3) (;[13<I. iﬁ 2
=) e aaesm]al - ) e | *';5") ‘ —g0) * | O
- 1 2 o3 T s T
156 T T
HE (pa+6-2)
7
Ry
DY (2SR
8 p 8 SYMMETRICAL
+§s(l+5v)]b +—55—) b3
| e
+§3\' 14 Sv)J a +5".\“ + (.rrv):] uls +—}%—) as .
e e [ S F |
.....%E-. l.-—f—._,-)b -—-;is(l +5v}:| a +—:%- !
) O S (o R (IR |
"":':_)b i - ';?;" b2 *':;J( ¥ “."] ably ;5( 1 4.5\')] - 4o ‘, b3 | l[
S e
12
_..'2-6;( 1 +5\')]a |+ g‘ﬂ( 14 EV)] a&i ..-:L) al +;5( 1 +57)],1 |.;b.r“ GD\'}} ,.*E 4 i :.,-: I
T & . 9 RO . e 2 i



146
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Fig (3.7.2) retangular plate element
The constants G, can be found from equation (3.5.27), which is
Gyy = .fwl { e}’ (PI{ad) dwt
= fﬂ%tgj‘ chc_]:j: X{ )Yy aeuyydxdy
J (3.7.6)

where ¢,and Qg are scalars and (g is the ! th element of the matrix Q.1
of equation (3.7.2). In order to evaluate the integrals of equation (3.7.
6), we must calculate integrals of the form

Jn' V() Em(E)AE m=1,2,3,4 £3.7.7)
- where Y represents either X(¥)orY((y)and (€ hre polynomials of E as given by
equation (3.7.3). The values of the integrals (3,7.7) arc calculated and
listed in fig (3.6.65).. for thre first 50 modes, And from equation (3.5.35),
we have the dynamic stiffness matrix of the retangular plate,

N 3 4§~ [GC{: Gjk
[@]_ [(D"]"w [nh*] - w*g' W]

where n=number of terms taken,
Note that since the expression (3.7.1) is not exact and the modal coorections
are made in the interior of plate,to satisfy the differential equation, but
not on the btoundaries, we can not expect exact results for the dynamic matrices,
The accuracy may be increase by increasing the number of generalized coordinates

on the edges, This element could be a possibility fer future work,
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3.8 THREE DIMENSIONAL ELEMNENTS

The dynamic stiffness method can be extended to three dimensional elemants
by the method of section (3.5). We consider a typical element of a pora''clapiped

as shown in fig (3.8.1).

G470 yv

Fig (3.8.1) A three dimensional element

Two sets of information are needed, One is the normal modes of vibration
of the element with the displacements on all six boundary surfaces reduced
to zero and the other is the mass and stiffness matrices by finite element
method of static displacement functions,

For the normal vibrations, when the higher order terms of derivatives
are neglected, the governing equations are given by equations (3.5.1), which

are, in full forms,

\I ot 2t ot
(z\n-t-G')a"( ) (1(31:“"3-‘3+§"31)L\+J°L~)‘u=0
?V IW 92 o
(/\n+(:|')ay( +az)+6-(ax; 7 az=)“'“‘f"“" 3
(Po+@) 25 (57 -l-a'“’ + LG +aay Y25 W A PRIW=(

(3.8.1)
where A. and G are Lame's constants,

To solve the system of equations, we apply the Galerkin's method,
Although tne method is very popular in two dimensional cases, it does not seein
to appear in the literature for three dimensional solids, Assume the

displacement vector function {u% =[u,v,w]T has the form
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= __.:‘ W AEY o PR 8.2
Ul 3;{ Ay sin sin =g sinE2 (3.8.2)
where §h}={h(mn,p)}=( h., 2,-h3]T, and m,n,p are integers, The

series of equation (3.8.2) are to be summed over a prescribed number of terms

and § h} are the constant vectors to be determined for different m,n,p.

The function {u$ is satisfying the boundary conditions on the surfaces of

the cuboid, We substitute the equation (3.8.2) into the equations (3.8.1)
and multiply all the equations by s:l.n{-“-z{-15 sin*—?' s:'tn'ffic’-z , Where i,j,k

are integers, Integrating over the whole volume of the body, by the

orthogonality of the trigonometric functions, we have, after simplfications,

(Tt G+ o “ 0 f u
0 (BBfe+a)armt o f =P LA,
0 0 (B (norG)+n? Zﬂ; A3)(3.8.3)

2 mniy2, rmae n,2
wnere = 6 (U () + (B
Therefore, for every specific value of m,n, and p, there are three values for

. 2 .
the natural frequencies W, which are

wi(m,n, p)= (M) (Ae+G)+ 22
W (i p) = (B0 ) etG )+ 01
Wy Py = (B2) (At @)+ (3.8.4)

and the corresponding eigenvectors are given by

(L, mn,p)y=01 o o]7

frR@mnpe)=[o0 1+ o7
{ﬂ(srm'n'r)j’r‘: [o 0 { jT (3.8.5)
independent of m,n,p. For the static deflection patterns, we work with

local dimensionless ccordinates (E.Yz . ;) referred to the centroid:
€ =(x=x_)/a, n=(y=y )/, G=(z-2)/c (3.8.6)
where (xc,yc,zc) is trhe coordinate of the centroid of the cuboid, The

coordinates E,?l » 7 range from -1 to +1 and only one coordinate varies along
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one edge, A first order model using eight nodes and a seccnd order model
using twenty nodes are shown in fig (3.8.2). Note that there are three
generalized ccordinates associated with each node, The displacement

patterns are given by
{0 =(fa, faa), -, fantd (393, 351, 09307 (3.8.7)
where {uj =(u,v,w1is the static displacement vector
;qil, i=1,2, ... ,N are 3 x 1 generalized displacement vectors,
N=8 for linear model and N=20 for quadratic model,

{a;} are function vectors of spatial coordinates.

Z g
3 * g 5 f 20
| 17 I - 19
6 3 1
P 13 i 0'6
5 o S —
1L Z 4 { 1 : < = qis )?
Ve ) 12 4
£ £~ ,
2 -
(a) first order model (b) second order model

Fig (3.8.2) Generalized coordinates of a cuboid element

The functions { aii are given by

{ch::-é-(I+£(E}(i+)]cvl\([+c¢;)fei fa1.2% seis 8
for a linear model, where £ N& Q¢ are position coordinates of node i,
either +1 or -1, and {e} = (1 1 117 is a vector of unity, For a

second order model,

facl=g C+Ec T (1+€L YEc g+ +8e5-2)8€d i=1,2, ... .8
fact= 2 U-)(+£celimyen)fey, i=13,14,15, 16
fad = 2 O=890+ o) *se5) fel, 19,11, 17,19
fact = F (=)0 +EE 1458 ) e, i=10,12,18,20 .
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The dynamic stiffness matrix is given by

[©]=[2.]1-*[n. ]?Zi’;[

=\ n=\ p=t

G&mnpl GlmnFL]
bO (m aY ) Wt v e
& r 1,j=1,2, «eayN
where [Do]and (Mdare the stiffness and mass matrices consistence with the

displacement pattern (3,8.7) respectively, and

€ jmnp1 = $R(L,m,n, p)i"'f j! sl‘n"““

sM_nrtY sn P2 an ;a) 3 Jid‘{dE

Implementing the technique for three dimensional continua would involve
a considerable effort and no doubt, a number of difficulties would arise,

We have not pursued this further from here,
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3,9 STRUCTURAL DAMPING EFFECTS

Internal energy dissipation within the structural material is called the
structural damping or hysteretic damping, It is essentially nonlinear,
Therefore, an equivalent linearized form is required if the effect is to
be included while keeping the computational efforts t6 a minimum, It has
been found experimentally (ref 83) that the energy dissipated per cycle by
internal damping is independent of frequency for most material and that
periodic vibrations are chacterized by a shift of phase between stress and
strain, as shown in fig (3.9.1). The energy dissipated per cycle of
harmonic vibration is proportional to the area of the loop in the figure.
For the convenience of study, as recommended by Snowdon (ref 83), internal
damping may be modelled using a complex stiffness term, i.,e,
{6]=([cl+c(»])}E} (3.9.1)
where [¥)is a diagonal matrix, [ c) and (¥ are real matrices while {6 1
. and ftfare complex vectors whose real parts are representing the stress and
the strain components respectively, This idealization represents the
stress- strain relationship as shown in fig (3.9.2), Since only real
quantities have physical meanings, both figs(3.9.1) and (3.9,2) are plots
of the real parts of stress against the corresponding real part of strain,
If viscoelastic material is concerned, botth:]andf)’]are frequency dependent

matrices,

//7_ i)
7

|
Fig (3.9.2) Complex modulus approxima-
Fig (3.9.1) hysteretic damping tion for hysteretic damping
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Under the assumption of complex modulus approximation of internal
damping, the governing equations of motion of a vibrating body may be
obtained by replacing the elastic constants in the governing equations of
the corresponding undamped vibration by complex quantities: These complex
quantities are chosen such that the energy dissipated per cycle of vibration
is equivalent to-the area of the loop of fig (3.9.2). Therefore the
governing equation of lateral vibration of a beam has the form

(E+Cq)l4§¥ + FA %1—2’1 = f(x.t)
where Ylis the damping coefficient, The displacement patterns and funda-
mental matrices have the same forms as those for undamped elastic beam when
‘replacing E by(E +iq). Computer procedure to take account of internal
damping for beam member was designed in a convenient form to be included in
the main programme, Tais will be discussed in chapter six, Numerical
examples will be given in chapter seven,

For more complicated structural elements, analytical solutions may not
.be possible even for this linear model, We shall discuss the possibility
of applying the method of modal analysis to the damped vibration for

complicated structures in chapter seven,
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CHAPTER FOUR

FRO:! ELZITNTS TO SYSTIL

4.1 INTRODUCT ION

Vhen a structure is regarded as an assemblage of elements, it is preferable,
from a computational point of view, to generate the dynamic matrices, or the
governing equations of motion of the system with reference to global or
system coordinates by : o
(i) generating the element matrices with respect to coordinates local to 5
and convenient for, the element;
(ii) prior to assembly of the elements, the element properties are rclated to
the global coordinates by a coordinate transformation; and

and e@uillheium
(iii) the assembly is then effected by the compatitility,required among tle
elements to give the governing equations of motion of the system,

In chapter three we discussed in detail the various aspects of the
analysis of an element by the dynamic stiffness method, This chapter is
concerned with generating the governing equations of motion of the system
in step (ii) and (iii) for harmonic vibration. The solution of these
equations will be dealed with in chapter five,

The transformation of the local coordinates to the corresponding global
coordinates is done in two stages. Firsfly, the orientations of the local
coordinates are transformed into alignment with those of global coordinates,
and secondly, the alined local coordinates are related to the corresponding
global coordinates by a 3Boolean matrix of transformation, In section(4.?}

we discuss the requirements of compatibilty of displacements, equilibrium

of forces, the invariarcy of energy, and their relation to the transfomation
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of coordinates. Then a straight beam member in space is taken as example
to give explicit formulae of transformation in section (4.3), and the gencral-

ization to the other structural elements is discussed in section (4.4).

4.2 TRANSFORMATICN OF COORDINATES

These conditions in elasto-mechanics will be used to derive the formnulae
relating to coordinate transformation in the section. These conditions
are equilibrium of forces, compatibility of displacements and invariance
of energies with respect to transfomation of coordinates, Suppose there
are N elements in the structural system considered, The kinetic energy
of the j th element is
TH 21§97 (] 5?‘@} (4.2.1)
where {?Jﬂis the vector of generalized displacements in the directions of
the local generalized coordinates of the body and [Y]'lm]is the corresponding
mass matrix, Before a Boolean matrix relating the global and local
coordinates can be formed, the vector {%q’fis transformed to i%};Wby a square
matrix of direction cosines [TLQ‘}J , Where f%tpsis the vector of local
generalized disPIacem;nts projected onto the corresponding global coordinates,
The lawv of transformation of vector gives .
{99} = (NY1{3"} (4.2.2)
Substituting equation (4. 2.2) into equation (4.2.1), we have
T4 OO IMOIIGEY (a20)
However, the kinetic energy of the same body with respect to the coordinates
alyged to the global system is
TG:!— é!c”f [y)L‘“_‘g% ¥ (4.2.4)

where [))L 115 the mass matrix corresponding to 54 '?
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Since the kinetic energy is invariant under coordinate transformation, the

comparison of equations 4.2.3) and (4.2.4) shows

e sy v : >
(M) = (" TIMP 1) (4.2.5)

Similarly, for the stiffness matrix and the dynamic stiffness matrix,
[Rm-‘\ﬁ [nt})]'r[}(l}‘}][ ng}')] (4.2.6)

(D9]= (TR (a.2.7)
After the alignment of coordinates, the vector iiw}is further transformed
to coincide with the generalized coordinates of the system P{mi by a Boolean
matrix [B"'], i.e.

{%-m B(H] zu: (4.2.8)
vhere [dell] is a rectangular matrix consisting of zeros and ones such that
when the.i’th element of iimf is coincident with the k'th element of
then B(:L, =1 otherwise zero, The actual values of the components of the
dynamic matrices under such a transformation are unchanged, but their

relative positions in the local and global matrices are changed. The

transformed matrices according to eguation (4.2.8) are

(M P 1= 8¥T [m¥1 8] (4.2.9)
(KP)=(8"T (X"I(8"] (4.2.10)
(B91=L BT [ D1 B¥) (4.2.11)
where [%@‘],[’Ktj’] and[gu"] are the dynamic matrices of the element with
respect to the generalized displacements of the whole system 5?{“"}.
From the definition of dynamic stiffness matrix,
fa®} = [Cb";’]{%"“’} (4.2,12)
where EQ@}} is the vector of generalized forces corresponding to {‘6.9.’f.

For the transformation corresponding to equation (4.2.2),

(@ =[D¥1{7*) (4.2.13)

W
" .

U, : . . (e
where %Q }15 the vector of generalized forces corresponding to ,q
From equations (4.2.7) and (4.2.2), we have
8% - (1T [PV I(n®]{7¥}
= @) (o] )
e 99549
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and from equation (4.2,12),

{5(5’} - [n(&:’]'l' f Gﬁ')} (4.2014)
which is the law of transformation of forces. Similarly,
(Y = (8171} . (4.2.15)

where lam}is the vector of generalized forces corresponding to § ?f"’"}.
Within the theory of llewtonian mechanics, the summation of all forces,
including inertia forces at every point of a body must be zero in order to
reach the state of dynamic equilibrium and the displacement vector at every
point is single valued at all times, These are the requirements of
equilibrium of forces and compatibility of displacements respectively.

In mathematical terms, we have

N . ~

ﬁ—_‘z&vmizjo\}.—.{o} ' (4.2.16)
and g%_'m} = i,im} S — =§’i(mi '—*i%’% | say (4.2.17)

where the superscripts dencte the element numbers and N is the total number

of elements in the system,
Now we have the dynamic stiffness equation,
u‘ ~S j') Al o~ )" _~
@ (BVIFOR 1871
Equation (4.2.16) gives

ﬁi&"‘”}=(§@“‘]) {3}= {o} ,,

or (§ 719} ={0} (4.2.18)
~ H ¥
where [(D1=2[3Y] (4.2.19)
3=
is the assembled dynamic stiffness matrix. Equation (4.2,18) is the

governing eguation of free vibration of the assembled system required,
Note that in generating [%q"]according to equation (4.2,11), we do
not literally carry out the triple matrix product, Because [Bm] is
large and sparse, this performance is very wasteful in time and storage.
In fact, wve form an algorithm which is an assembly code emerging from the

: . )7 .
Boolean nature of the connection matrix [B} ] in global codes, More
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precisely, we record only the non-zero element of the connection matrix

in a vector { CPIE. The dimension of {CP‘Eis equal to the number of

. th
generalized coordinates of the j th member of the system, If B:& =1 then
the ith component of {Cthakes the value k otherwise zero, Suppose there

are r generalized coordinates with each element and s generalized coordinates

with the overall system, We have reduced the storage requirement of N
Boolean matrices of order r x s to N code vectors of order r, The saving
is Nxs x (r -1). Ve can reduce the storage requirement even further by

the fact that for every point on the boundaries, three (for tranmslation),

or six (for translation and rotation) generalized coordinates will come
together in groups, Therefore the storage requirement is three or six times
less if we give one code only to each group. For example, a straight beam
member in space requires 12 generalized coordinates to specify its config-
uration, but six of them are associated with the same point and there only .
two (12/6) components are needed for the code vector. This saving is even
more obvious for distributed generalized coordinate system on boundaries,

-If we express the boundaries of a membrane in terms of Fourier-series,.:as' in
section (2.3), all the Fourier coefficients on edge will come together in a
group and the saving of storage in designing such an algorithm is considerable,
The computer procedure designed for such a purpose is presented in chapter

six,
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4.3 STRUCTURE OF STRAIGHT BEAMS

We obtain the explicit formulae of the transformation matrices presented in
section(4,2) for a straight beam member in space,

We begin with the transformatiom matrix of rotation [rffﬂ, For the
straight beam element as shown in fig (4.3.1), the complete dynamic matrices
for the twelve generalized coordinates qi,i=1,2, «+es yn are given in scction
(3.6). XY?Z is the local coordinate orientation and XYZ is the global
coordinate orientation, To fixed the relative orientation of XYZ with
respect toliff, at least the coordinates of three points on XYZ relative to
XYZ mast be specified, For the reasons of ease of measurement, the coord-
inates of A,B, and P are chosen; X is coincident with the axis of the becam
and Y,7Z are the two principal axes of the cross sectional area prependicular
to X, If we denote the coordinates of points A,B, and P by A(§;,§;,E;),
B(Eﬁ};s’;b) and P(x ,;é,gé) , then after a translation movement such that

P
"PAB is translated to P'A'B' as shown in fig (4.3.2), the coordinates of

B'(xb,yb,zb) and P'(xp,yp,zp) are given by
xb= xb- X b Yb= Yb"' yq; zb= zb" a
*a

xp= X : yb= ;;- ;L; z = To Zas (4.3.1)
Now we are in a position to decide which quantities shall we retain to
specify the transformation matrix {rL“D{. Although the matrix fﬂﬁh§is of
order 12 x 12, the generalized coordinates can be separated into four groups
(1,2,3), (4,5,6),(7,8,9),(10,11,12) such that the rotation matrices for each
group are the same. This groufing is possible whenever the local generalized

coordinates are in the directions of a Cartesian coordinate system, In this

wvay, we write
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Fig (4.3.1) The coordination of a space beam member

ZJ&
B (Xb, Yo, Bt)
PO, Yp Bp)
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Fig (4-3.2) The =Zuler's angles and a Space beam member
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[11] 0

. (n]
[n(J)] _ ok
0 (n) (4,3,2)
where [n] is a 3 x 3 matrix of rotation. In analytical geometry, the
components of [n] are called the direction cosines, There is no need

to store all nine components since they satisfy three normalizing conditions
and three orthogonal conditions, However, it is not economical to store
three components and then solve a set of six second order equations each time
for the other six components, We choose a set of angles, the so=called
Euler angles to specify the transformation for the following reasons:
(i) only three real gquantities needed be retained
(ii) these are transformed to direction cosines by a simple calculation
(iii) these are extensively used inthe other branches of mechanices,
especially in aerodynamics, and no major changes are needed when modifying
the present method to the vibration about steady motion
and (iv) the formulaec are already available,

Euler angles are the angles ¢~ , ¢ , and § as shown in fig (4.3.2) and

they are calculated from the coordinates of B' and P! as

" = arctan C%%)
Zh
= t e
P owprctay (x2+¥e)k
9 = arctan X z-: dL (4.3.3)

And the matrix of direction cosines is given by, (ref 19),
cosgcosy~singsingrosp  -singcosy=-cospPsinfrosd singsiny~
[Yl}T: cosPsinjusincosytosd  ~singsingwcospcosyrosd -sindcosyr
singsind sinfBcos ¢ cos @
(4.3.4)
Therefore, the rotational transformation of coordinates of a beam is obtained
in the following manner:
(i) calculate the transformation matrix (n] according to equation(4.3.4);

(ii) rartition the 12 x12 matrix [D] into 16 submatrices of order 3 x 3,i,e,
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(9,0 (9] (91g) (214)
@211 [Dz2] (D29 (92)
[(B)=1(0,,] (93] @35) ©34)
(D41) Ds2) ©043]  Bad),
(iii) the transformed matrix [§))is given by
(D)= LI % [Dy] #(n])
i,j=1,2,3,4 (4.3.5)

After aligning the local coordinates in the directions of the global
system, we transform the matrix[@ﬁ}ﬁbf the j th element of the space frame
to coincide with the global coordinates represented by {q'} .  The code
vector {C(j)} has two components since every 6 generalized coordinates of
{E(j)fcome together, We partition the matrix [gﬁd{]obtained from equation
(4.3.5) into four submatrices of order 6 x 6 such that the first six

generalized coordinates are associated with point A and the others associated

with B'_ (D @::J [g:}B)J

—

(271=1(z3) Y

Now every node of the overall structure is numbered from 1 to P, where p is
the total number of nodes of fhe structure, The overall stiffness matrix
will have the form
[g:‘:[(grsl] Py8=21,2, wss 3P

where [@l,.s] are six by six submatrices, Before the assenmbly is effected,
we initialize all the components of[TaS] by setting them zeros,

The vector {C(j)z retains the information that if the node A of the
element corresponds to the rth node of the system then the first element
of {C(j)iis equal to r and if the node corresponds to the sth node of the
system then the second element of {C(j)i is s, otherwise O, When the

superscript j is running from 1 to N, the number of clements, the submatrices



[@’rr] @rs] ’@sr]’ and[g ss] are being added by the suhmatrices[(‘{)ﬁ;&:] "
['gj{ié] [@91_]. and[@;g] respectively, The overall dynamic stiffness
matrix is formed, All the other dynamic matrices can be formed in the same
vay. The related computer programming techniques are discussed in chapter

six,

A simpler formulaticn is possible if the structure is of two dimensions.

This should be used to save effort whenever possible, e discuss this

as follows, For a beam member in a plane, the dynamic matrices arc of

order six by six, The generalized coordinates are as shown in fig(4.3.3).
5 - X

Ty«
k

& > X
Fig (4.3.3) A beam member in a plane

The dynamic stiffness is first partitioned into four submatrices, each of order

-

three by three, /

(97~ [P (9]
a1 (D2)
The transformation matrix is
cosX' sinyY 0
(NT"=| -siny cosy ©
0 0 1
where Y is the angle of crientation of X relative to <. In this case,
the code vector fC? will have two components and its function is exactly as

that of space béam except that three coordinates go together instead of six,




CHAPTER FIVE

NATURAL
SOLUTION OF THE OVERALL,VIERATION P:ROBLEM

541 INTRODUCTION

The vibration analysis of elastic structural systems involves essentially
two distinct procedures, the setting up of governing equations of motion of
the structure and the solution of these equations, The first phase is
achieved by discretizing the overall structure into structural elements,
whose dynanmic properties can be studied conveniently and whose motion can
be described sufficiently by a set of generalized coordinates; and by
forming the equations of motion of the overall structure according to the
t’ﬁui“\ar?um of {trces and
requirement of,compatibility of displacements among the adjacent members,
This yields sets of simultaneous algebraic ¢quations for equilibrium and
-stability (eigenvalue) problems, or sets of simultaneous differential
equations with prescribed initial conditions for reponse problems, For
the equilibrium problem, we have discussed the formulation of the equations
for individual members in chapter three and for the overall system in
chapter four, This chapter is devoted to the solution of these equations
for the eigenvalue problem,

The solution of the eigenvalue problem is as important as its
formulation since solution efficiency in terms of economy and reliability
plays a vital part in the overall analysis of practical engincering structurecs,
The eigenvdue problem to be solved has the form

(2] { 21 =fo} (5.1.1)

where ) is the eigenvalue and fq] is the eigenvector, Both X and {q !}

are to be determined, The matrix (@] is a non-cefinite matrix. Eq(5.1.1) I




164

may be written in an equivalent form,

(KM ]Egt = A lmon]{sh (5.1.2)

where []ﬁj;{hnd]fhu})]are positive definite matrices, and

(D] = [xn]- Almn.

The necessary and sufficient conditions for having non-trivial /q} is
det [T =0. (5.1.3)

We solve equation (5.1.3) instead of equation (5.1.2) for eigenvaluc, because
equation (5.1.,3) represents a nonlinear algebraic equation which is much
easier to visualize th@n the unfamiliar nonlinear eigenvalue problem (5,1.2),
when no approximation is at hand. The conventional method of solving
equation (5.1.3) is by regarding it as an algebraic equation in the unknown
NG Since det [E)OJ]is hignly irregular, the main difficulty of the
equation by trial-and-error methods is that some roots may easily missed,

If the matrices[J{ Jand [M 1in equation(5.1.2) were independent of A , then
a linear eigenvalue problem resulted, For linear eigenvalue problemg
Wilkinson(ref 30) suggested a method of Sturm sequence which ensures a
-complete solution of equation (5.1.3), Note that, although for linear
eigenvalue problems,[rYl]amdf]{:]in equation (5.1.2) are eigenvalue
independent,[}b] in e;uation (5.1.3) is eigenvalue dependent, Williams and

Wittrick (ref 26) extended the method to the eigenvalue problem when (M ] and

(XK Jare functions of eigenvalue,  The success of the algorithm was reported

in (ref 75,76). However, the difficulty remains in obtaining the cigen-
vector {q § from equation (5.1.1) when det (@] =0,which was also reported
(ref 77). A new and stable algorithm which combines the inverse itcration
technique, recommended by (ref 30) when approximate eigenvalue is available,
and the theorem (3,4.1), for tre calculation of the eigenvector {g{ will bve

presented in section (5.9).
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5,2 THE NATURE OF NONLINEAR EIGENVALUE PROBLEMS

Eigenvalue problems arise when the question of stability of an equilibrium,
dynamic or static, configuration of a structural system is concerned,
Strictly speaking, every eigenvalue problem is nonlinear in nature, although
within a certain limits, a linearized tréatment gives satisfactory answers,
A brief review of a general nonlinear eigenvalue problem (ref 21) is given
in this section because the solution of equation (5.1.1) is a particular
case of such a general problem,
A nonlinear eigenvalue problem is defined as the problem of finding
appropriate solutions fui of a nonlinear equation of the form
SFL (U, us, - um, A =4{0]  i=1,2,...,N (5:2:1) .
where Fi are nonlinear operators, depending on the parameter A , operating
on the unknown function fuj = [u,l, Uy eee s lﬁ{]r One of the first
questions to be answered is whether or not equation (5.2,1) has any solution
{u} for a given value A, If it does, the question of how many solutions
arises, and then how this number varies with A, Of particular interest is
the so-called bifurcation process whereby a solution of equation (5.2.1)
splits into two or more solutions as A passes through a critical value p,,
called an eigenvalue, The main problem is to determine the properties of
the solutions {u} and how they depend upon A .
To illustrate the idea of bifurcation, let us consider the linear eigen-

value problem

(Lfuw]l= iy (5.2.2)
where [ | Jis a constant matrix and 2 is a real number,  The equation
represents a natural vibration problem of a discrete system of mass and

springs., A corresponds to the excitation frequency and fll}the vibration
amplitude, For every value of ) , a trivial solution of equation (5.2.

2) is ful= o : (5.2.3) I
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For some particular values of A , {u }h&s nontrivial solutions as well,
These particular values are the eigenvalues and the corresponding solutions
of {u} are the eigenvectors, Because of the homogenecou@ nature of equation
(5.2.3), tre eigenvectors are only determined to witkin a constant factor,

An eigenvector is said to be normalized if the constant faétor is so chosen
that the norm of the vector JJull, i.e. the sum of the squares of its componc-
nts, is equal to unity,

Suppose now there is a sequence of eigenvalues Oé)ﬁéazé i éan
corresponding to a sequence of normalized eigenvectors {u1l, {uzj, sen {uN}
such that

(LTfwl=ngtust (5.2.4)
where Ku, =1, 35152y wus 3 N {5i2:5)
The norm of {u} of equation (5.2,3) is zero while that of equation (5.2.5) is
unity. A graph of the norms of the solutions versus the parameter A. is
called the reponse diagram, One of the possible plots of such diagrams is
shown in fig (5.2.1).

This shows that the norm|luf splits into two branches at each of the

eigenvalues lJ. The points A = A, are sometimes called the bifurcation
points, C:
Agqun
1 —
0 " M A e Ay it

Fig (5.2.1) A respond diagram corresponds to linear eigenvalue prcblems

Consider now tle nonlinear eigenvalue problem represented Ly equation

(5.2.1) which has equation (5.2.2) as its linecar approximation. One of the
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possible plots of the response diagrams for the nonlinear eigenvalue problem
is shown in fig (5.2.2). We give some examples in mechanical vibrations

which are represented by the branches of fig(5.2.2).
At

[ C:YC

N

) : l ! : ol
0 Moo\ A3 Ny Pty A A

Fig (5.2.2) A response diagram corresponding to Yonlinear Eigenvalue

Problems

The branch emanating from Aywhen Ju Il =0 corresponds to the vibration
problems of beam columns withlthc influence of inplane loads. The natural
frequency parameter A decreases with the increasc of the loading and becomes
zero when tke respond curve cuts the axis A_ =0, This signifies that even
when the exciting frequency is zero, i.e, static, the structure will be unstable.
This is an example of the so-called divergence instability, For the bifur-
cation at point A,, ; typical example is the free vibration of a structure
with large amplitudes, Since the internal forces increase with the amplitude
of vibration, the natural frequency will increase as the amplitude of vibra-
tion increase according to the Rayleigh's theorem of constraining forces,

At point A3, a phenomenon of dynamic instability occurs when a non=-conscrva-
tive structural system reaches its bifurcation point where several branches
may be emanating from an eigenvalue of its linearly approximated systcm,

For the problem of post bulking tehaviour, the branches sprouting from M4 is
an exemplifying plot wherec a secondary tifurcation may occur. As shown by

the curve connecting Ayand As, the phenomenon is called the flutter instability,
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There may be branches that do not emanate from the eigenvalues of the lincar

approximation, such as the branch C, This is a typical example of variable
damping, Finally, there may be a discontinuity as shown in tnec branch
associated with Aq, This corresponds to the snap-through instability of

the vibration of shells,
Let us come back to the eigenvalue problem which represents the natural

vibration problem dealt with in this chapter, i.e. equation (5.1.2),

(KT i = An1ig} (5.2.6)
where the matrices (I ®)Jand[1®) ]are symmetric and positive definite for
all positive values of A , In this case, a typical reponse diagram is
given® in fig (5.2.3), where N, i=1,2, ... are the natural frequency parameters
corresponding to the linearized approximation of the nonlinear eigenvalue
problem, and)ﬁi, i=1,2, ... are the respective exact values, Because in
the linearized model artificial constraining forces are presented, the
respective natural frejusncies are higher than the exact ones according to
.Rayleigh's theorem on constraints, In the following sections, we shall
retrict ourselves to the eigenvalue problem (5.2.6) and describe a new

method for solving the problem and contrast it with existing methods,

fud |

e b g SR e ) - S — - e A
o Ny N1 s Al A3 N A

Fig (5.2.3) Response diagram for free vibration of continuous

elastic system

I
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5.3 STURM SEQUENCE FOR A POLYNOMIAL ( ref 22)

Determining the natural frejuencies (eigcnvalues) is essentially a problem
of solving a nonlinear frequency equation, There is a long list of available
methods for such a purpose, Which method to use depends upon a number of
factors, such as whether one needs all the roots or a few, whether tie roots

are complex or real, simple or multiple, whether a first approximation is
available, and so on, In the case of vibration analysis, the

only information about the roots is that all the natural frequencies are
real and positive, The first problem is to locatk the roots and find the
first approximation. this is usually done by trial- and -crror methods and
the question of whether all the required roots have been isolated is difficult
to answer and is a source of uncertainty, A procedﬁre ultilizing the so-
called Sturm sequence is a significant improvement, Before discussing tiic
Sturm sequence more fully for our purpose, we illustrate it by determining
“the roots of a polynomial equation,

A way of solving the polynomial equation

3 . 1.03 x° 40.6 x - 0.32 =0 (5.3.1)

£ (x)=x* - 2.4 x
[s] -
is as follows, We first construct a series of polynomial functions fi(x),
i=1,2,3,4 according to
£.(x) =d fo(x)/ dx
where fi(x) is a polynomial of degre¢ +-iL in x , and a;x + b, are the

quotients of fi-z/ fi 1 and fi is the remainder, Thercfore, we have for

equation (5.3.1),

4
£o(x) = x =2.4% 41,032 +0.6%=0.32
f_l(x) = 0 =192 40.515%40, 15
fz(x) = ¥ -1.3434%+0,407 1

P (x) = x =0,6645 , £ (x )=1,
%) =)
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Since we are only interested in the signs of these functions, the highest
terms in x of these functions have been normalized to unity, The signs

of these functions at various points of x are tavulated in fig (5.3.1).

% fo £1 f2 £3 £4 sign changes
-0o + - + - e 4
-1 + - + - - 4
0 o + + - + 3
1 - - + + + 1
2 + 4 + + + 0
R % + + + + + 0

Fig (5.3.1) Changes of sign in a sequence of polynomial '

The last column are the number of sign changes in the sequence lf1 ” fz, f3'
f4tfor various values of x, Such a scquence is called the Jturm sciuence
of fo' A property of this sequence is that the number of real roots of fo

in tke interval (a,b) is precisely the difference Letween the number of sign !

changes in the sequence i.fo(a), £1(a), —_ f4(a)} and the corresponding a
number in s fo(b), £1(b), — ,34(b) 1 " Therefore from fig (5.3.1), we /
know that there is one root in (-1,0), one in (1,2) and two roots in (0,1),

etc,. In this example, the roots turn out to be -0,5, 0:5, 0,8 and 1,6,

One of the disadvantages of the Sturm sequence technique for polynomial

equations is that, the number of polynomials to be evaluated at each value

of x is equal to the order of the original polynomial equation. This is

very uneconomical as far as computing time is concerned. it may be the F
reason why tlis t~~hnique is not widely used althougih it guarrantees the
completeness of solution,

In the case of the eigenvalue problem of free vibration analysis, the

eéXtra calculations involved in determining the Sturm sequence is very small

‘—;
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when compared with the total so that its use is then worth while,
A Sturm sequence is defined as follbws:
A sequence of functions {fo(x), f1(x), fz(x), o fn(x)} which satisfy
on an interval (a,b) of the real line the conditions,
1. each fi(x) is continuous;
2, the sign of fn(x) is ponstait For all X3
3, if fi(x)=o then fi_1(x) and £i+1(x) not equal to zero;
4, if fi(x)=0 then fi_1(x) and fi+1(x) have opposite signs;
5. 12 fo(x)=0 then for h sufficiently small
sign fo(x-h) . £1(x-h) = =1,
. sign £ (x+h) / £,(x+h) = 41
is called a Sturm sequence,
A sturm sequence has the property that:
The number of roots of the function fo(x) in the interval (a,b), is the
difference between the number of changes of sign in the sequences
{£.(a), £,(a), ... , £ (a)} and { 2,(b), £,(0), «oo o B AB)T o
This called the Sturm's theorem (ref 22),

-

5.4 STURM SEQUENCE FOR THE LINEAR EIGENVALUE PROBLEM

Ye shall study the solution of the eigenvalue problem represented Dy

(<) 2} = w0 [M] ¢} (5.4.1)
where[jfiland[}Tﬂ are symmetric positive definite constant matrices with
respect to the frequency W . . Equation (5.4.1) represents the free vibration
of a system of n generalized coordinates where the coordinate functions are
linearized to the first approximation with respect to frequency, The

frequency equation of such a system takes the form
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b( 11 0(12 e 0<1n
K21 A2 ve.  KAon
det [%]2 DoL)= =c
An1  oln2 veo  CAmn (5.4.2)

where [9]:[](] - M] ,O(rs(w) are real continuous functions of W and
symmetrical with respect to r,s, In a particular case of equation(5.4,1)
when[XKlis a tridiagonal matrix and (MJa diagonal matrix, Givens (ref 78)
proved that the principal minors of (Pl gorms a Sturm sequence with respect
to W of equation (5.4.2). Wilkinson (ref 80) and Gupta (ref 79) gave a
proof for a more general form of D‘(.] and[YYL]based on a method of matrix
transformation. All these proofs involved advanced linear matrix theory
and are difficult to extend to the nonlinear eigenvalue problem, For the
nonlinear eigenvalue problem in vibration analysis,Williams and Wittrick
(ref 26) gave a proof based on physical arguments,

In readiness for the construction of Sturm sequence of a nonlinear
eigenvalue problem in free vibration of continuous system in next section,
we design a new proof of the Sturm sequence property of the principal minors
of [D] for general symmetric positive definite matrices[nl(W)]and (K]
without the assumptio;m of the independency of frequence, The proof is
based on a formula for the symmetric determinant (5.4.3il;:d the Rayleigh's
theorem of one corstraint, This is extended to matrices with discontinuity,
as in the case of free vibration of continuous elastic system, in next
section,

We begin with the equation (5.4,2) where the components C\’rs(w) are
assumed continuocus, For vibration frequency eiuation of a continuous systen
discontinuity of O{rs(w) may occur, “Ja shall discuss it in next =section,
Let A4, denote the determinant obtained from Qo by striking out the first row

and first column; let A, denote tie determinant obtained from A. by striking
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the first two rows and the first two columns; and s0 on, Finally, since
Z&mis obtained from by striking all rows and all colurns, vhich is meaningless,
we assume that Anp=1 to fulfill the second condition of a Sturm sequence,
The first condition of a Sturm sequence is automatically satisfied by the
continuity ofcirs(hﬁ.

The physical meaning of Alis that, AL =0 is the frequency equation of
the original system with the first i generalized displacements comtrained to
be zeros, For example, if we consider the vibration of a discrete system

in section (2.7), which is shown in fig (5.4.1a) with n=4,

ok % 4%
Fig (a) £ & . mim

Fig (b) ﬁ-—mw—E%«vw_u—Nw—ﬁ—W 7

ridd
: 5k = it
Fig (c) 4““’VV~"~ nl-—¢VVN——112J——”VVEHml;:;TﬁAwww—- ﬂl/

_ ,:1:%l =1 " e g =i
Fig (d) ﬂ-——NvV——IL\I-—Am—j’_T’r«MN m/ ml'

TR IOV . 0% W 100 L
ig (e 1 - ry ‘|
7/ T d Fr s,

Fig (5.4.1) Sturm sequence and mass-spring system

The the frequency equation for the original system as shown in fig{a) is

T
k=UOm -k
0
-k 2k~(o'm -¥
—_ =0,
A : -k 2k=td'm X
0 -k 2k=to'm

When the first row and the first column are struck out, we have the frejuency
equation to the system shown in fig(b) where the first generalized displacement

q, is constrained to be zero,
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2k= m =k
-k 2k= m

Similarly, we have the frequency equations for the system shown in fig (¢)
to fig (e) as 2k- m =k

ﬁ'l — =0 '
-k 2k~ m

Az=|(2x=- m)0,
and Aa=1, which is chosen deliberately to fulfil
the requirement of constant sign.

The rest of this section is devoted to the construction of a Sturm
seque;'lce by means of Ao' A‘I’ e ¥ An and the proof the sequence
f(-!)iAi {, i=0,1,2, ... ,n is a Sturm sequence,

From the theory fo determinants (ref 24), it is known that

0dc, JOL. [ IBL P, e G (5.4.3)
DAL 24 uar ol L, L4 Dol (& P41, )

i=0’1’ LU B ] n-1-
This ensures the third and the fourth conditions of a Sturm sequence, i.e.,
- . - f et gk Y
if A;_, bﬂi / oA ;; vanishes, the quantities Aiand Ai-e = Bﬂi/
bdiiadiﬂ,in mast have opposite signs, Now only the condition 5 is to
be fulfilled, The Rayleigh's theorem for one constraint upon a finite
number,say n, of the generalized coordinates system states, see section (2.8),
that, if one extra constraint is imposed on a vibrating system with natural
- . AL LT,

frequencies w1éw24 o~ éan, then the new natural frequencies w1éw2—

sk eﬁfn_.l separate the old ones in the sense that wks f«b’ké “')k-i-‘l’

k=1,2, see n-1.

This is possible only if the plots of éo(w) and A,!(f»?’) against « have the

forms shown in fig (5.4.2a) and (5.4.2b) respectively.
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Fig (5.4.2a) ) Wy N W We .

A S
Fig (5.4.2b) !\\/"m\/ -

Therefore, for sufficiently small positive number h,

A,(u);-f\) Do(W+R)
sign -—-A. (o) +1, and sign —_A.(ua;,-ﬁ)

.
which violates condition five, However, introducing a small modification,

A,

1, i=1,2’ see yIN

the following sequence, f (-1)nAo,(-1)n-1A1, — ,(—1)An_1.
satisfies ali five conditions required to be a Sturm sequence, It is well
known that the principal minors er, r=0,1,2, ... sn can be obtained from
triangularizing tuhe determinant Ao using the Gauss elimination method without

- interchanges, This will be discussed in section (5.6). Actually, if the

diagonal elements of the triangularized determinant are d1, d 'dn’ then

2. eee

the primncipal minors are given by

(=) Ar=did2 -~ dn-r.

The Sturm number of f(-—‘l)rb.r} is equal to the number of negative elements

f Do __4_! (’*f\-‘ An-i 3 . . - .
?-—b. By * M (——'u)n A } , Which is the number of negative elements
Of { d1’d2' see dni .

Therefore, we come to the conclusion that:

The Sturm number of the frequency determinant of the form (5.4.2) is equal
to the number of nagative elements on the diagonal of the triangularized form

of the frequency determinant by Gauss elimination without interchanges,
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There is a minor disadvantage of the method that the Gauss elimination without
interchanges is unstable numerically when approaching a root (ref 30). A
new method similar to the Yewton's iteration process for scalar algebraic
equation which is not subjected to the restriction and converges very fast
when approaching a root will be discussed later in section (5.7 ). We
proceed on to cowstruct a Sturm sequence of the frequency determinant of a

vibrating continuous system,
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gieroAr  waRtesse P TR YrepiaT  CRRRATION TL0TTIE

il
-
N

Yhen analysing t".e harronic vitration of a frame structure as represented
in fig (5.5.1) by finite element method, the bteam members such as AR,
BC, etc, are being subdivided into smaller elements by the internal points

b

11 Boreees bj, o1 e etc, The harmonic forces are prescnted at the

a
nodal points, such as 7,C, and are arranged in a vectorjplﬁojt. If we
arrange the generalized coordinates of displacements at the internal
points to a vector {{]e¢‘“tand those at nodal points to {QYe“t, then the
following e;uation of motion is obtained:

SEALIN Rt [an]JH‘iE):HD?]

(§ j (Day] [Daa) IHR?] )iPiJ (5.5, 1)

where [D 2] [K;z] (A} [M;z] etc.,,

and [Kg3] ane [M5;]are the submatrices of the mass and the stiffness

[D)]

matricas —erectivelr, These are of constant coefficicnts For tie
finite element method, Since the coefficient matrices in equation
(5.5.1) are linear functions of uﬁ, therefore there is no discontinuity
over the whcle f{equency range and the natural frequency counting rule
obtained in the last section applies. For a real structure, the
dynamic stiffness 2-uation can te set up by the dynandc stiffness method
as: (P28t = {P3 (5.5.2)
where [D;] is a matrix cof coefficients depending on o ; Since
discontinuitizs may happen in[P!]for some values of freguency, the
natural frejuancy counting rule fails to apply,
Yow, lat us return to the equation (5.5.1). If we apply a
Gauss elirination process to elininate [DajJ ve Lave
(D437] [Ps] J;‘ial"l
{a

)1 o
[o] D’ ] {P1) (5.543)
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vhere [-Dc. ] = [DSQ ] - [Da;][DGQT‘ [Dis] v which is a matrix containing

coefficients wihich are complicated functions of & ,due to the present of(Ds %

c. . D> .,  F . H

bt :

blg“‘ E..\ é-ll 1

@t A AX

a(- -
/LfL

A
Fig (5.5.4) A framed structure

We try to analvsis the results from equation (5.5,3), which is

rewritten as :

(D5 1553+ [DiediQl = {0}

(5.5.4)
(Da14§@} =3P} ’
: (5.5.5)
Firstly, if we denote t»e Sturm number of (D7 by s[D) then
5[D,1= S[Dﬁ;]+S[Da] (5.5.6)

Secondly, if the number of internal subdivision increases to approach
to the real structuw, then t'e eguations (5.5.3) and (5.5.5) will be

marched up eventually, Therefore,

¢[D1=5[Dgg1+ SID, 1 (5.5.7)

Thirdly, consider t®e case of partial viltration, i,e,, when {Q}= {0}
and {2{£ {o} . Then from equation (5,5.4), a free vibration

proiiem to te sclvad is

[Dgs 1545 = {0t (5.5.9)

The physical protlem represented bty t-e equation is the natural vibration

-

protlen of ti:e stricrra with all nodal noints, sich as points T and 7,

-

; : . Cfian : r
o £3505..5.70) BEZEY S elunpag, “ler~fore, the Sturn number of lD-]';]
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is equal to the total number of partial frequencies of the individual
memters of tihe structure, Therefore, we can conclude from eguation
(5.5.7) thar:
the Sturm number of a real structure in natural vibration analysis
is equal to the sum of all the number of partial frequencies of the
individnal members of the structure and the Sturm number of the
overall dynamic stiffness matrix associated with the generalized

coordinates at all tne nodal points.
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5.6 ISOLATION OF NATURAL FREQUENCIES BY GAUSS ELIMINATION

The solution of the eigenvalue proévlem, linear or nonlinear, [9]{-{“ ol ;OL
for natural frequencies, by the Sturm sequence technique needs tle informa-
tion of the values of det{®Jand the Sturm numbers at various values of o ,
The information is obtained through the Causs eliminaticn process: of
triangularizing the matrix (D] into its upper triangular form, If the
elements on the diagonal of this form are denoted ny di,i=7,2,...,n, where
n is the order of the matrix, then

det (D] = Lﬁl d, (5.6.1)
and the Sturn number is equal to the number of negative elements of the
sequence {di§ .

The Gauss elimination is equivalent to a triangular decomposition which
reduces [P] to the form

(@1=[LI(u] (5.6.2)

where [L] = fij is a lower triangular matrix with unit diagonal elements

"and [Lt] = UC}' is an upper triangular natrix, The algorithm for both

methods is o
s o 5 : :
L= w5 ( @9 -Z fieug; ) when j<i
-
uy =Dy - 2. Likugy when j>i {5.6.3)

where 1i,3=1,2, ... , n and [Qﬂ is symmetric, and
d.=u,, i=1,2,...,n . (5.6.4)
To illustrate, suppose we are going to decompose the matrix
wWow |
[2)'&-3\1]=‘- %) o w
f w w'
(5.6.5)

by Gauss elimination method at td =2 and evaluate det[D (2)] and its Sturm

nunber, Now,
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[D(2)] =

B

Applying forrulae (5.6.3), w=

1 0 0
fLi= |2 1 0 _
3 3/2 1
Then, det [9(2)] =E"-_T‘3' U= B4
all U, s i=1,2,3 are positi:r..

determinant as  det[D()] -
when &> =2, then, det[®(2)7
which provides a check,

This is a part of the -
eigenvalue preblem which will

programme has been desigmed U

six,
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2
4
4 2 1
:{ul =fo 1 3
o 0 3/2

x 3/2 =6 and the Sturm number =0, since
Alternatively, we can develop the

Gz s AR,

“ate algorithm for the solution of the
disscused in section (5.11), A computer

~nis purpose and this can be found in chapter

JATION BY MODIFIED NEWTON'S METHOD

5,7 SOLUTION OF FREQIETT

By the Sturm sequence teciz.’
linear or nonlinear eigers=’" .
This was discussed in tke s:7:
sclve the fregquence equatzi:z
A (ot =
for the natural frequencis:.
an algebraic equation at =z T ...
modified to solve tha der:v-

to the root O is denotec .

. the eigenvalues (natural frequencies) of a

roblem in vibration analysis are isolated,

s (5.4) to (5.6). We are in a position to

2wl=0 (5.7.1)

~“he classical method of llewton which solves
»f quadratic convergence (ref 81) is
:al equation (5.7.1). If an approximation

, then the Newton's method give successive
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approximations according to

W o) %g%;:% n81,2,3,000  (5:7:2)
vhere A= dﬁ (5.7.3)
Now, from the Gauss elimination, we have decomposed the matrix [@]
into [@@)]: [ L(LO)J[U(L,Q)] . (5.7.4)
therefore, A(det [(D(LO)] = ‘H’ U (W) (5:7.5)
where IT is the order of [?)] c Dif;:rentiating both sides of equation

(5.7.4) with respect to L,
g%, (D] = [ L] (f;,[tlcuoﬂ) + (g‘%[uwﬂ)([u o)
or, in view of equation (3.4.5)
—2wiMme]=(LI(wWi+LL' Iln] (5.7.6)
vhere (MW)]= (M ]is the mass matrix and
(Wi=&(ul, [KT=5L]
In the matrix equation (5.7.6), the unknowns [L'J= [0 Jana LV} [u ]
are solved as

Lif =g, (=201 - Z i “*J '2_ Lig Yej ),y <l
W}_ _)wYY’LLJ—é L..tuk;-z La;,_Uch p s> C
L8 2ye0san (50TT)
where {4 and Uy are‘elements of (L] and (U] respectively. Differentiat-

ing both sides of Equation (5.7.5) with respect to «J), we have

A _
A = d u\ ]T (/l .?oa
~TR8= 'Z S " (s )
L]
where u,; are obtamed from equations (5.7.7). Therefore, the Newton's

successive approximations are given by

N
bdm= (/Otnq) - T Ui /( ZML\. :

u\.
L=\ L.—'I l.FJ J} )
El‘"} S | /Z L:‘LTL':‘ 1’1=1,2.... (5-7.9)

This technique for vibration problem is new and effective and is rccommended
whenever the eigenvector is not wanted, Trke analysis of a cantilever beam

is given in section (5.11) and compared with other methods,
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5.8 FREQUENCY EXTRACTION BY INTERFOLATION METHODS

In the case where the mass matrix is difficult to obtain, or the frequency
determinant is not behaving well in the neighbourhood of a natural frequency
e.g. multiple roots or discontinuity, Newton's method is not convenient,
Interpolation methods of extracting roots are alternatives, The
interpolation methods discussed in this section will include the method of
bisection, linear interpolation and quadratic interpolation. Then, we
shall described a mixed combination of these methods to achigeve the best
convergency. -

*The bisection method is characterized by obtaining a better approximat-
ion ¢ to a root of £(x)=0 within two bounds a and b using the formula c=0,5*
(a+b). Although the algorithm converges very slowly to a root, it is able
to take care of the numerical instability induced by any badly behaving char-
acteristics of the function,

The linear interpolation acheives a better root c by

c= a - (a-b)f(a)/(£(a)-£(b)}

Ostrowski (ref 108) has shown that if £(x) is continuous up to the second
derivative in the neighbourhood of a simple root,then successive linear
interpolation from a sufficiently good approximation give superlinear conver-
gence to the root, The convergence is better than the bisection, but it
suffers from the numerical numerical instability of the irregularity of the
function,

The direct quadratic interpolation (ref 108) is based on fitting a
quadratic, y=Ax2+Bx+C , through three previous approximations X 1 Xq9 X,y Uses
the formula x, =x, - 2¢/ (B ir{52:hZ;E;

3 2

where x3 is a better approximation,

A= ((X-I—?E, )Yg*- (xo-xg)}'ﬂ(xz'x 1))"0) / ((xz-x1)(x1-x°)2) ’
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B o= [(X =1 (2X0= %, = Yo )Ya - (Yo X )y 4 Ae-2 )90V L0x e - X )2 )" ]
C= (N-Y)Y+/ (A=)
yi=f(xi), is0,1,2,

and the sign which makes the denominater larger in absolute value should ‘e
chosen, For well-behaved functions this device saves about half the numler
of function evaluations per root on the average when compared with the lincar
method, The condition for applying this method is that all three values of
Xq1X,0%, are to be distinct and the function is single-valued within the
interval, A computer programme has been designed for this purpose of

extracting roots in the main programme, The programme is to be discussed

in chapter six,
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5.9 DETERMINATION OF EIGENVECTORS

Upon locating the natural frequencies (eigenvalues) by Sturm sequence method
in section (5.5), reducing their bounds by Newton's method or interpolation
methods in sections (5.7) and (5.8), we are in a position to find the normal
modes (eigenvectors ) and to improve the approximated natural frequencies,

Suppose Wois an approximation which satisfies

det (P =0 | (5.9.1)
If W= p +Jois a better approximation, where p is a small correction to be
determined, and {q} is the corresponding eigenvector, then the free vibration
problém is governed by

(K1ig1= wimlisjy,
or (<1193 = Cped) [MIf3 Y,
or [D1ig31=-pe[M]{%3 (5.9.2)
Here,E@]is an indefinite symmetric matrix, i.e. its principa! minors are
_either positive or negative, and (Ml is a positive definite symmetric matrix,
i,e. its principal minors are positive, We have a reduced problem of solv-
ing the linear eigenvalue problem represented by equation (5.9.2) now. Here
[gbl and [NM7] are evaluated at ) = tJdo, and it is ficeded to solve for the
smallest eigenvalue p and the corresponding eigenvector {é* only,

If the complete solution of equation (5.9.2) were wanted, the House-
holder transformation method recommended by Wilkinson (ref 30) would be the
most economical method in computing operations. Since we need the smallest
P in absolutr value, this method becomes uneconomoic. One method of solving
the largest eigenvalue ) in absolute value for the eigenvalue problem

[AT§>Y=A{x] (5.9.3)
is the matrix iteration method characterized by

(AL x4 = A{x*"]
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n”‘;,__[l, T _ i=0,1,2, ... _
To apply the scheme to our problem, we premultiply equation (5.9.2) by ﬂﬂi]?
(M1 (D19t =r {93 (5.9.4)
When comparing equations (5.9.3) and (5.9.4), we have the following iterative
algorithm for the largest eigenvalue p_in absolute value,
(M7 [21F3 ) =p i)
FIM =05 137 £%0,1i2s sas
If the smallest eigenvalue p in absolute value is required, the iteration
is performed backward.according to
[m]17(D1§ ] = pig"]
. 15 o [ 6 biven s 'Y 0,105 ues (5.9.5)
The numerical stability of the algorithm was proved by Wilkinson (ref 30).
An improved eigenvalue for the original system of equations (5.9.1) may then
be obtained from % i f-+uJ: . (5.9.6)
Unfortunately, when the order of the dynamic matrices are large, which is the
_case in practical engineering structural analysis, this small value p will be
affected substantially by rounding off errors, Therefore, the improvement
of the eigenvalue is more reliable when applying Rayleigh's Quotient with the

improved eigenvector,
_ 91ty
T [ 183} (5.9.7)

For the economical use of computing time and storage, however, the above

i,e,

algorithm is not directly applicable to actual computation, It is because

of three reasons, Firstly, thg inversion of the mass matrix is undesirable;
secondly, the matrix product on the left hand side of equation (5.9.5) is
unsymmetrical; and finally, the process will involve a large amount of equation
solving routine for each cycle, The following algorithm is recommended

by Vilson (ref 64) to improve the efficiency of the process.
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The procedure begins with the solution of an initial sarting iteration
value Wb for the required frequency (v from the root isolation and extraction
algorithm, as described in the last few sections, It fol}ows by the
evaluation of [Dland [ﬂfl]at W= ), and thre decomposition [?)]= (L3C D-l TL]T
where (I>]is the diagonal matrix and (L7 10wer triagular matrix as described
in section (5.6). An initial vector {Y{o]= [1,1, ..., 1] "is chosen as the
starting iteration vector and the following steps are performed during a
typical ( k+1 )’th cycle for the determination of $§{.

(i) Solve the following set equations by backward substitution
(LILDTILLTT X pard = {9
19t = (N 13 X}

(ii) Compute a new estimate of p from

il’b~t37§‘dfel
e 7 oot

(iii) Test the relative error
Lal
T

"1If it is found less than the accuracy required for (O then ( ¥e 3t pk+1)%

Pty =

is accepted as the required natural frequency else if |pk+1|<lpkl then go to
step (i) else decompose [D]- ph.]['hl]: (LICD] [ LT and goto step
(1). |

This technique is called the inverse iteration and is able to take
advantage of the band form of the dynamic matrices, ) A computer programne
was designed for this method and is built into the main programme in chapter
six, In case where a number of n close roots are discovered during the
root isolation routine, the numerical convergence of inverse iteration is
very poor for each eigenvector, 7ilson and Bath (ref 64), recormmended a
block iteration methed by which all these n eigenvectors are found simultan-
eously with the corrections to the natural frequencies, This is also

incorperated in the main programme for repeated natural frequencies,
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5.10 COMPARISON OF METHODS OF SOLUTIOM

As mentioned in the previous sections, there are two numerical methods to
solve the complete vibration problem of a structure for natural frequencies
and the corresponding modes by dynamic stiffness, 7ith the Sturm sequence
technique, one locates the natural frequencies by Gauss elimination and
determines the eigenvectors by solving the displacements from the sets of
resulting singular linear equations, and the o er ehplys the inverse
iteration technique, For the comparison of the performance of tnese
methods, a cantilever beam of unit geometric and elastic parameters, i,e.
1=A=EI=f =1, is used, Suppose the cantilever is clamped at the left hand
end and the displacement and slope at the other end are u, and u, respectively,
Then from (ref 10), the natural frequencies and the corresponding modes for
the first three modes are shown in Fig (5,10.1).

For the first mode of vihration, we round the frequency parameter A to
.1.88. Since there are two homogeneous linear equations in two unknowns
for the eigenvector, the direct solutions of Uy from these equations when u,

is set to unity are 1,36894 and 1,37514 repectively, as shown in fig (5.10.2).

The percentage error of u, is about the same as that of the eigenvalue,

2

For the second mode, the percentage error of u, thus obtained is about three

2

times that of the eigenvalue and for the third mode, the percentage error of

u, is about seven times that of the eigenvalue, Therefore, we see that the

2
accuracy of the eigenvectors are uncertaincd relative to the eigenvalue Dby
this method, Alternatively, the inverse iteration methed gives very
accurate results of u2 for all modes, regardless the accuracy of the eigen-

value assumed, The improved frequency parameters by 2ayleigh's quotient

are very close to the true ones,



end end
mode natural freq, | displacement | slope
no y etwt u et
: 1 2
1 1.87510 1 1.37650
2 4,69409 1 4,78077
3 7.85476 1 7 .84867

Fig (5.10.1) Normal modes of a cantilever
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mode number 1 2 3
exact « freq, param, 1.87510 4,69409 7.85476
valuas
1
u, 1.37650 4,78077 7 .84867
approx,
e . 1.88 4.70 8.00
° error (0.260) (0.125) (1.85)
Gauss u, from 1st eq. 1.35894 4.75899 6.82347
elimina-
tion % error (0.584) (0.456) (13.052)
u, from 2nd eq. 1.37514 4.75820 6.97429
% error (0.205) (0.472) (11.140)
; u 1.37650 4,78285 7.83332
inverse 2
iteration % error (0.000) (0.087) (0.020)
improved A 1.87511 4.69409 7.85476
% error (0.000) (0.000) (0.000)

Fig (5.10.2) Comparison of results by Gauss elimination and inverse

iterat

ion methods
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In engineering practi 2, the order of the dynamic matrices are very
large . The solution of the frequency determinant for natural frequenciecs
by Gauss elimination is subjected to rounding off error and very close
estimations of natural frequencies may not be obtained in many cases.

The direct solution for eigenvector will involve the solution of a set

of homogeneous equations with their determinant singular, The solution
is unstable (ref 30), as shown numerically in the above example, Further,
an improvement of a natural frequency can not be found if the precision of
the arithmetic operations is fixed,

The inverse iteration method is iterative in nature, This means
that the rounding off error will not affect the overall accuracy of the
eigen-solution, As shown in the above example, if the approximated cigen-
value is reasonably close to a real eigenvalue, then the process will approach
to the corresponding eigenvector, The eigenvalue can be improved by the
stationary property of the Rayleigh's Quotient of the system, The

algorithm will be summarized in next section,

5.1 SUMMARY OF THE METHODS OF SOLUTION

The chapter is concerned with the determination of natural frequencies and

corresponding modes from the matrix cquation

(Ken]fg)= o [mwn] g1} (5.11.1)
or [D2]{§3=7303 (5.11.2)

We summarize the methods of solution as following:
Since equation (5.11,1) may not te solved without an initial approxi-
mation, the natural frequencies are first determined approximately by solving

an equivalent determinant frequency equation

det [DW)]=0 . (5.11.3)
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This includes.the isolation of natural frequencies by means of the Sturm
sequence technique and the extraction of natural frequencies by means of
the Newton's method or the interpolation methods, These methods were
discussed in sections (5.5), (5.7), and (5.8) respectively,  Every
determinant evaluation in equation (5.11.3) involves a routine of Gauss
elimation as shown in section (5.6). Since the elimination process suffers
seriously from rounding off errors in the neighbourhood of a natural frequency
the resulting natural frequencies are considered as approximations in this
stage. The matrix iteration technique mentioned in section (5.9) by using
these approximations gives the corresponding eigenvectors, Then the
improvement of the natural frequencies are obtained by the application of
Rayeigh's Quotient, Further refinement of the eigenvectors may be acheived
by performing the inverse iteration again using the improved eigenvalues.

Upon determining the eigenvalues and the corresponding modes, the
diaplacements and stress distributions over the complete region ¢f the systen
are obtained in terms of generalized coordinates. This is achieved by the
internal displacements and generalized coodinates relationship

futny, = acny, 21§41 (5.11.4)

for every element,

The decision diagram for the methods of solution of natural vibration

problems in a simplified form is given in fig (5.11.1).
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FORM THE FUNDAMENTAL MATRICEZ OF
VIBRATION OF INDIVIDUAL MEMBEKS

CHAPTER 3

v

FORM THE OVEJALL DYNAMIC MATKICES
BY MEANS OF COO&DINATE TRANSFCLMS

CHAPTER 4

4

ISOLATZ NATUXAL FREQUEZIICIES BY
STURM SEQUENCE AND GAUSS

ELIMINATION METHODS

Y

LOCATZ VATU.AL FAD)ULNCITS BY
NEWTON 'S ETICD CR INTRRPOLATION

METHOD3

v5

-yes ———{ARE THEXE ANY CLC3s 10078 >—-—no

l

| 1

OBTAIL!! EIGENVECTORS BY

BLOCX ITEXATION

"-' 1
O3TAIN EIGEXMVICTORS BY

INVERSE ITERATION

1 l

DaTELIINE DISPLACEILNTS AUD

STRAIN DISTRIBUTION

Fig (5.11.1) Decision diagram of the natural fregquency problem
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5,12 EXPERIMENT

An experiment was carried out to verify the computed natural modes
of a plane frame structure,

A steel strip of cross section 12.7mm x 3,175mm and length
863.6mm was btent into an orthorgonal frame as shown in Fig(5.12.1).
Two cast iron blocks of size 50.8mm x 50,8mm x12.7mm were welded
to each end of the frame, The elastic modulus of the steel frame
is 0.2119 x 1012 ﬂ/hg; then shear modulus is 0,822 x 1011R/h2; and
the mass density is 0,79 x 10% Kg/hs. The whole structure was
clarmped to a solid rigid foundation as shown in Fig(5,12,2).

Three holes of diameter 4mm were drilled at position A,B and C so
that harmonic displacement excitation was applied by means of an
electrical excitor E, to the frame at these positions, one at a time,
An accelernoiicter D, was attached to the frame at various position
to measure the response, The frequencies at which the response
reached its maximum were the natural frequencies of the structure,
These natural frequencies were also calculated by the computer
programme presented in secticn (6.2) example 2,

The measured natural frequencies and the calculated natural freg-
uencies were compared to Bishop and Johnson (ref 10) and listed in
Fig (5.12.3) for the in plane vibration.  The calculated natural
frequencies and the measured natural frequencies are differed by less

than four percents,



194

"_-.. .. 354 mm -

50.8mm
250, B,

L
Fig(5.12.1) The frame model
) B
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\ 2 whlfrn
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Fig (5.12.2) The setting up of the experiment
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o measured results at
results of]| results positions
ref. 10 computed in
chapter 6 g B c

425 40.57 42 (43.52) | 42 (4352) | 42 W3s2)
147 133.29 43¢ 2.59) | 139 (-0.03) | 140 (+o0.04)
115 20! .42 19 C1.69) | 125 (~2.18) |j94 (3.68)
377 358 .4 354 (-123) | 356 (©°) [358 (o0.9)
415 44843 458 (243) | 458 (2:13) |450 (0.35)
98 €05.7| ¢20 2.30) | 622 (2.67) | —

-

Fig (5.12.3) The comparison of results
The listed natural frequencies are in unit of Hertz
The figures in Brackets are the % differences from the

computed results
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CHAPTE " GIX

DEVELOPITUIT OF ONVPHTE.L PG A NES

6,1 INTLODUCTION

Most of the programmes developcd during the period of rescarch were concerning
with the following areas:

(i) tue computation of natural frequencies and the associated modal shapes
of arbitrary space frame structures;

(1i) tne calculation of dynamic responses of such structures when the
natural frequencies and the associated mndes are given; and

(iii) the operations of linear aritnmetics.

Therefore, the chapter iérfive main sections, The first section is the
introduction, The second section descrites tie various sabroutines of
natural frequencies and modal shapes computation and the main driving
programme, The methods used are based on the methods of chapter five,
The third section.concerns the modal analysis tecﬁnique. Although
the modal analysis is to be presented in chapter seven, the programmes

are given here for the convenience of reference, This involves mainly
tne integration process and the calculation of interior beam deflections
when the nodal displacements are given, The fourth section contains

a package of programmes of linear analysis., Particular interest is
given to the matrix manipalétion when the matrices are stored in different
forms, e,g. full matrices,fixed banded matrices, and matrices of variable
bandwidtns, This is to speed up the programming officiency, In the

last section, all other programmes developed will be presented. These

include
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include the integration of .beam functions,special team elements, plate
elements,etc..

All programmes are written in FCRT<AN IV to be used for computers
of ILC1900 series George 3 system and ICL system 4, In case there are
differences, prograrmmes for ICL system 4 only arc listed. However,
all computer programmes submitted in card forms with the these are ready
to be used for ICL1900 George 3 system, The only major difference in

these two systems are the application of MNAG subroutine package,

6.2 PROGRAMMES FOR WATH2AL VIRKATIONS OF FAAMR SYSTEMS

A FCRTIAM programme was written to compute the natural frequencies

and the associated modal shapes of a space frame structure, The
programme consists of‘a main driving programme, called MAINP and eleven
subroutines called FIYF),HALF,JJ,DYMAT,ARIAYMG,SELECY,TMMAT,5PMA2,DECFL,
ASSEM and FQFN1, These programﬁes are decribed in detail in the

following sections,

6,2.1 Main proaramme MAIYP

MAINP contains the declarations of variables and arrays, the readings of
input daté, the convertion of input data to a form suitatle to store,

the calculatianrof partial frequencies in tue intcrested frequency range,
and tie call of FINF] tc f£ind the natural frequoncies and the asseciated
modes betwgen two n2iqghbouring partial frea.encies, ariables are read
by statements 1 t;;. 3ince FORTRAMN does not have the device of
"variable dimensions" as in AIGTL, the arrays are declared explicity in
statements S5 to 7, Input data are read bv statermante 10,13,35,5%,77,74,

and the data are printed as read, Statement 10 reads one card which

contains the following parameters:y
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IPRINT: an integer paramzter specifying the output requirenent,
IPRINT=1 gives full information for checkirg, IPTIVT=2 cply
natural frejquencies and modal shapes will be printed, TP2IMT=3

output will ¢ ttoved on wmalneTctaD 0 ) )
ORTH: a variable of integer 'type specifying the ortiagonality of the

struéture to make the héndling of data casier in tle case of
orthogonal structures et ORTH=1 if the structure is orthogonal,
set ORTI=0 otherwise,

NNG: number of element member groups. The elemente in the same gqroup
will have the same physical properties altlioug! the positicms or
the orientations may te different, T e grouping of tie individual
members is to reduce the book keeping work of input data and to
speed up the computer programme cfficiency,

NES: total number of elements of the structure,

NDF : total rumter of degrecs of freedom of the system,

MPD:  tandwidth parameter of thre overall stiffness and mass matrices,
such that the overall tandwidth = 2N=D-1, Set MBD=0 if Ffull
matrices are used,

NEg number of nodes per clerent, MPU=2 for leam wmemiers,

NPD: number of degrees of freedom per node, NPD=( for space heam membters

NK: the first dimension declared of matrix KOV,

NR:  the largest number of multiplicity of natural frequencies expected,
If there happens that a natural frequency of multicity greater than
M7 exists, then the programme will print:

THERE AXZ () MODES I TEE 2ava: (A),(R), TEEKEFCAE oMLY (1) nop
ARE VALID, where M= actual number of multicity and A,” are the
frequency btounds for the natural frequency. Furtner, if M2 is
greater than 30, the declaraticn of FIVF) needs rodification,

FMD:  the total number of deqrces of freedem per clement = PR “PD,

MD= 12 for space frama renlers,

MW the Ffirst dinercsicn declared for matrix ¢

MM the first dimension declared for natrix MOV
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338 60 the first dimensicn declared for ratrix Y.,

Statement 13 reads n cards into the array *"%("™G), where n=
( the largsst integer less than T?W;’16 L Zach card contains 1€
items of integer type, There are MNG items totally, The ith itqm
is equal to the number of elements of group i, The elements-&ﬁjghz
same elastic properties and dimensions although the positicns and
orientations may he different.

Statement 35 rcads n cards, where n= MG, the total number of element
groups., The ith card contains the elastic properties and dimensions of
the elements in group i, The items read are in the following order:
HL: length og the beam in meter
BY: width of the beam in meter

BZ: depth of the beam in meter

DN: density of the beam material in Kg/h3

YM: Young's modulus in ﬂ/ﬁe
T™: Shear modulus in m2
TI: torsional inertia of the whole team,i-¢.the polar moment of ertia. .

These data are converted and stored in the matrix PG(7,'™G) in the Ffollowing

manner ., For the Ith group,

-

PG(1,I) = length

PG(2,I) = axial rigidity

PG(3,I) = torsional rigidity

PG(4,I) = flexural rigidity in the XZ planc
PG(5,1) = flexural rigidity in tle XY plane
' PG(6,I) = total mass of the beam

total torsional inertia of the heam,

I

PG(7,1)
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Hote that the conversicen is based on rectangular beam elements, For
other tvpes of team crossectiong, the conversisn part 'i1) nead medific -t ,
Statement 55 reads the Zuler angles cof rotatien for each team,
Tnae Huler angles specify the orientaticns of the tean wmemi2r and are
stored in the matrix T'(3,MES), The numler of data cards cquals
the number of elements (MES), If ORTH was set to 1 for orthogonal
structure, then the Fuler angles are either 1,0, or -1, Otherwice
the angles should be given in units of radian.
Statement 67 reads the code numbers for each beam into the matrix
1c(2,MES), Each card contains PE code numiers,
The last read statement 74 reads the value RG, This is the
upper bound of the frequency range interested, The lower bound is
assumed to he zero, All the partial frequencies telew G are first
calculated and arranged in ascending order bty the subroutine ARKAMG and
then all the natural frequencies between two neighbouring partial frequencies
and the associated normal nodes are computed !y the sul.routine PRIV
The resulting modal shapes are normalized such that thc generalized
mass associated to every mode is unity,
The arrays declared in the statements 5,5,7 have the following

meanings :

WG(mG): such that MG(i) is the number of elements in group i,
™(3,N85 ) such that T'(J,I) is the Jtn Zuler angle of memter I,
PG(7,MMG): such that PG(7,I) are the elastic properties and

dimensions of the elements in group I.

1c(2,¥Es): such that IC(2,I) are the code numbers of member T,
wiI(200): contains the partial frequencies,
XOV(1DF, DR ) contains the overall dyramic stiffmess matrix,

MOy (SR, ) : contzins the overall mass matrix,
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VEC(YDF,NR): contain the eigenvectors,
LY(IDF): a working array of type LOGICAL.,
ID(>DF): a working array of type integer,
YW(NDF, 11): a working array of type REAL.

6y 202 SITRINITIYTE FITY

The subroutine FINF) calculates all the natural frequencies and the

associated modes within frequency tounds AV and BY by the dynamic stiffness

method and inverse iteration, The parameters enter into the sulprogramre

are:

Al lower freqjuency bound,

BW: upper frequency bound,

KOV: working space for the dynamic stiffness matrix,

MOV: working space for the mass matrix,

NDF: the total numbter of degrees of freedom cf the structure,

NMG: an array containing the number of elements in each beam group.

NNG: number of element groups,

PG: a matrix containing the elastic properties and dimensions of each
beam group.

TN: a matrix containing tne Zuler angles for cach beam,

IC: aninteger matrix containing the code nurbers for each leam,

NES: total number of elements,

VEC: working space for eigenvectors.

NV: the first dimension declared for VEC,

Y working cpace for inverce iteration,

NMYY: the first dimension declared for Y.



202

ID: working space for row interchanges in the inverse iteration,
L'': working storage for counting frequency numbers,
NR: as defined in section(§,2.1).

The sutroutine calls FIN'CTICI JJ, and SUPROUTINES DYHAT, SELECZ, and
HALF. JJ counts the frequency number; DYMAT forms the dynamic stiffness
matrix; SELEC? performs tre inverse iteration ; and HALF bisects the
interval when the distribution of natural frequencies is very irregular,

The organizaticn of the subroutine is to be described below,

Statements 1 to 9 are declarations,

Statements 10 to 38 check the input data and subdiyide the interval
(§W,B?) into convenient size for inverse iteration,

Statements 39 to 214 consist the main body and statements 215 to 220
check the results see if there are any natural frequencies missing,
The performance of the main body iS separated in the following four steps:
Ts Statements 39 to 55 calculate the frequency numbers correspondina
to the two frequency bounds of the interval and print thke results if
needed, i.e, when IFRINT=1, If there is no natural frequency in the
interval, start the tesf for the next interval of frequencies,
2. Statement; 56 to 91 scan the interval for initial approximations
of every natural frequency lying in the interval. This is done by
forming the overall mass matrix and stiffness matrix in statements 56 to €5;
extracting the approxinate natural frequencies between two bounds in
statements %5; and checking that if these are really approximations
in statements 68 to 91, “hen the distribution of natural frequencies
are reqular, i,e,, the predicted approximations are really approximations
to the corresponding frequencies of natural vibtration, then goto step 4,
otrerwise goto step 3 for halving the interval, If enough natural

frequencies are found, goto return,

e e
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3. Statements 92 to 149 extract natural frequencies and modal shapes
by the method of bisection and inverse iteration. The lLisection of
frequency interval is performed by the subroutine HALF in statement 59,
The upper and lower bounds resulted are stored in arrays V2 and VAL
respectively and the corresponding frequency numbers a;e stored in JVQ
and JVAL repectively, nen the natural frequencies are well separated
tre accurate natural frequencies and the associated modes are calculated
by the subroutine SZLEC? in statement 130 and print out by statements
133-146, Goto step 2 for testing next interval of frequencies,

4. Statements 150 to 214 extract natural frequencies and the
associated modes by means of Rayleigh's Quotient and inverse iteration.
Rayleigh's Juotient improvements for all the initial approximated natural
frequencies are done in statements 153 to 169 and printed in statements
170 to 175 if required. Inverse iteration is carried out in statements
178 to 213, The computation consists of setting the frejuency bounds
for the natural frequencies in statements 179 to 18G; forming the
overall dynamic matrices in statements 187 to 193; extracting the
accurate natural frequencies and tre corresponding modes in statements
194 and 195; and,” finally, checking and printing the results in statements

196 to 211 according to the requirement, Goto to step 2 for next

frequency interval,

6.2.3 SUBRCUTITME HALF

The subroutine TALF reduces the bounds fer natural freguencies ty the
metnosd of tisection, i,e,, halving the interval, Tlie parameters

entering to the subroutine are explained as follcws:

=

e
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A: original lower bound of the natural fre-uency interval,

B: original upper bound of the natural fregquency interval,

JA: frequency number correspoﬁding to A.

JB: frequency number corresponding to B,

EPS: the accuracy required,

XOV, MX, ¥DF, MG, ™G, PG, T, IC, MBS, as in section(6.2.1),

IAGIN: an indicator, Set to O when a decomposition of the overall
dynamic stiffness matrix may te saved Ly the information given in tte

previous bisection process, Otherwise or not sure, set IAGAIN=1,

Output from the subroutine are

X: new lower bound of natural freguency interval ,
Z: new upper bound of natural frequency interval,
JX: frequency number associated with X,

J2: freguency nunier asscciated with 7,

Lgue t information for mext tisaction precess,

6,2.4 TUNCTIOY JJ

-

JJ calculates the frequency number of a specified frequency Y, The

input parameters are

Y: the specified frequency.

KOV, NX, YDF, NMG, ™G, PG, TM, IC, NES: as in section(6.2.1).

The subro«tine cz21ls DYI/AT and DiCFL, DY.IAT forms the dynamic stiffnoces
matrix and DECFL decomposes the dynamic stiffness matrix bty Gauss
elimination wvitlout interchanges. The information of the numter of

partial frequencies Selow Y is obtained throuch a common bLlock JJTVi!

accessing to DYIIAT,
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6.2.5 SINROUTINE DYVAT

DYNAT forms the dynamic stiffness matrix or the mass matrix of the whole

structure, The input parameters are

Y: the frequency of vibration,

MX: an indicatcr specifying whetker the dynamic stiffness matrix or mass
matrix is needed, For dynanmic stiffness matrix set MK=1 and for

mass matrix set iK==1,

NX, WDF, WMG, I'NG, PG, TN, IC, NES: as in section(6.2.1).

Output from the subroutine is the matrix KOV, which is the dynamic

stiffrness matrix or the mass matrix depending on the parameter MK,

.

The subroutine calls SFilA2, TITIAT, and ASSEM, SPHA2 gives

the element dynamic matrix or the element mass matrix, TNMAT

T e ————

transforms these individual element matrices from the local coordinates

to the global coordinates and ASSEM assembles the transformed matrices into

the overall matrix,

6,8.6 SUBR0UTTTE ARRATG

ARRANG calculates all the partial frequencies below a specified frequency
RG and arranges them into ascending order into the array ‘U, The input
parameters are

RG: the specified frecuency.

PG,MIG: as in section(6.2.1).

The output from the sutroutine are

WU an array containing the partial frequencies in ascending order,
N2 the total number of partial frequencies below the frequency Y,

The subroutine calls '01AMF of ¥AC package.
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SELEC? calculates all the eigenvalues and eigenvectors of the eigenvalue
problem Ax=A>x within two eigenvalue bounds, The matrices A and ©

are full syrmetric natrices and B is positive definite, Since A and T
are full,they are transformed to tridiagonal forms lefore the inverse
iteration process starts, This is to increase the computing efficicncy
because after transformation a decomposition of d tridiagonal matrix is

required for each iteration, and the decomposition of a full matrix is

avoided, The input parareters are
ALB: lower bound of eigenvalue
UB upper Lound of eigenvalue
N: the order o0¢ the matrices

F(ne,n): containinc the matrix A

G(¥G,™): containint the ratrix 2

ne LG tre first dimensicns declared for F and G respectivelvy,
K: the estimated numhcer of eigenpairs in the interval,
The output parameters are

M: the actual number of eigenpairs calculated

RT(Y): containing tke eigenvalues

VEC(MNV,K):containing the eigenvectors,

and D, E, E2, DG, IC, X, IN are working spaces.

This sutroutine czalls FO1AZF, FO1A3F, FO2ASF, FO1AHF, FO1.TT of

IAG subroutine paclage.

b

1]

el i
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A 2,8 JURROMPIYVS TIAT

TNMAT transforms the element matrix XE in local coordinates to EX in
global coordinates of a beam member when the Euler angles of the orient-
ation of the local coordinates relative to the global cocrdinates, T1,
T2, T3 are given, Tae method of transformation is according to chapter
Four, The input parameters are:

X2(12,12): matrix in local coordinates tefore transformation

T1, T2, T3: Euler angles of orientation,

The output from the subroutine are:

E¥(12,12):the transformed matrix, The original matrix is kept unchanged,

62,9 SIMUTIIE 5Pli42

SPMA2 maleculatas the elerment dymanic stiffness matrix er the mass rmat»ix
of a rea™ memter wren tre ~ivsical properties and dirmensions are given,
This sutroutine calls FIrF™1 to cbtain the frejuency fuanctions and access
to FJF'T1 through the cormon tlock BLF1,

The iuput parameters are:
W: a circular freguency whers the dynamic matrix is calcul;ted at.
L: lenat of the 2lement heanm
EA: axial rigidity,
GJ: torsional rigidity,
fleoxaral =%

rin YT planes

£ & lexaral rigidity in XY plane,

bt
3
)
3
5

W

Ty
5
P

rarm =arhar

.3 tota il .

TI: tots) +-ars5irpal inertia oftie leanm membar,

b
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w
.
]
(5]
r]
rt

£7 and %V are set negative when mass matrix is rejuired, M

negativ: if tre dymamic stiffness matrix is requirad,

The output paranaters from the subroutine are:

¥3: tle elamant Iymanic stiffness matrix or the mass matrix depending

on tre input values of 7, IV, MS

L]
ta

t¥e number of partial frequencies below the frequency ",

£.2,10 GARDNTRTIS 2 ey

DECFL decomposns a symmetric matrix A into a product of lower and upper
trianglliar matrices ! and 1T repectively by Gauss elimination method
wvithout interchances,

Input paranzsters are:
A(MA,17):  symmetric matrix of order N, the strict lower triangle of the

matrix is not used and unchanged,

HA: the first dirension declared for A,
M: the order of A,

The output parameters from the subroutine are:

A(FA,M):  such that the upper triangle of A contains the matrix U,

N
o
.
—
=T

ey TIOTINTATN Ao TaAr
J!r: -.'_T_J_. "R U 1 e’

ASSEZM assembles all the transformed element matrices into an overall matrix
when the code numbers of each element are given,

The input paramaters entering into the sulroutine are:
IC(*F=,2%):  an intecer array containing the code numhers of every bLean,
T element lream nuntar,

—~ar

jdd 2R mimter ¢f nodes of element TV,

DP¥M: degrees of freedom per node of element RIT,
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BD: a bandwidth parameter of the overall matrix, such that the
total *andwidth = 2¥°D-1, Set 2D=0 when full matrix is

required, The bandwidth is obtained by mspection .

KE: transformed elament nmatrix resulted from TIMIAT,

NES: the total number of elerents, .

DOF: the total number of degrees of freedom of the structure,
WD: the total numter of degrees of freedom per element.,

Ny the first dimension declared of the overall matrix,

The output from the subroutine is XOV the overall matrix.

65,2:12 SURROUPIVE PR

FQF"1 calculates the freguency functions of ap-uler Leam element,
Singularity of the function at frequency eguals to zero is removed by
expanding the function in Paylor series and the overflow of the these
functions are avoided ty asyympotic expansion for large values of frequency.
These have been studied in chapter three, The number of partial
frequencies of tne element below the specifiad frequency is computed at
thelsame pima, ®
The input parameters are:

s t-e specified circular frejuency.
MS: the total mass of tre element
L: the length of the element,
R7: the flexural rigidity,
EA: the axial riqidity.
TI: t*e total torsional inertia of tre learm,

The output from tie sutroutine is JE the number of partial frejuencies

telow ™ The frequency functicns access to TITIA2 through the block PRI,
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£.2.13 SYAITPIES

The programme is capable to calculate all the natural frejuencies and
the associated modes in a specified range of freguencies, These
include close patural freguencies and equal natural frequencies of
any multiplicity, In this section, three examples are given to
illustrate the application of the programme, The first one is a
space frare witl. equal frejuencies of natural vibration, The second
one is a plane frame whose natural frequencies have been obtained
experimentally in chapter five, The last one involves inclining

members in space.

EXAMPIE 1

As a first example, we consider the space frame made from mild
steel as shown in fig(%.2.1). It consists of eight beam members of
identical elastic propertiss and dimensions, The four clampad ends
are having code number O and the four upper ends are denoted 1,2,3,4
as shown, The space frame will have repeated natural frequencies of
maltiplicity of order two in flexural vibration and unrepeated modes
for torsional vibration and axial vitration, It is chosen to test
the numerical performance of the programme when repeated natural
frequencies are presented. e want to calculate the natural frequenciocs
and the associated modes below frequency 200,0 rad/sec.

The input cards are shown in fig (6.2.2). The explanation is given
below:

THE FI2ST LOT OOVTALNING ™= CAZD

e want t'.e cutpit to be stored on file for later use in the response

analysis t. araefore set IF2INT = 3, Jecause the space frame is an

orthogonal structure, we set CiTli=1 to reduce the work of preparing data.



224

Turiter of groups T3 = 1, Total numier of elements T8 = 8, Total

num.er of degrers of frecdon UDF = 24, Decause btand structure of

ratrices has no advantaces for this structure, full matrix arithmetic

R ]

set D = D Tariier of nodass for cach eleoront VTS o= 2,

s usod

Fie

’
Humber of degrees of freedom for each node MNPD = 6, The first dimension
of the matrix XCV declared X = 40, Maximum number of repeated
frequencies expected 7. = 12, Total number of degrees of freedom for
each rmemter D = 12, Tre first dimension of the matrix MOV declared
NM = 50, The first dimension of the matrix ViC declared NV = 50,

The first dirmension of tke matrix Y declared ' = 60,

THE SECOND LOT COCTTAINS n CARDS

(0]

Where n=|+71NT{w ccc2o0rs/16). Since there is only one group of
aight elements, *"G(1) = 2,

THE T1™D LOT CCMTALLS n CARDS

Yhere n = numler cf groups, S5ince there is one group presented,

tieve 1s enly uwie caxd in t£l.is lot. The order of data is as follous:

length = 10 meter, width = 0,5 meter, depth = 0.5 meter, density of mild

3, Young's modulus = 0.2119*1012 N/ meterz,

shear modulus = 04822*1011 Tv%eterz.

steel = 7.9*103 Yg/meter

THE FOURT&&CT COITAINS YES CARDS

Since tlic total nunter of elements YES= 8, we have eight card
specifying the Tuler's angles of rotations for cach element, Becawise *he
St.t\'-({\.\fc ol Tt ;.;.:""\" i and ,uc ~ac@ set f/lg‘,-"l":l, atl culer aqﬁ!gs vall 'oe "0’ or =1,
THE FIFPTH 10T S2NDALYS 22O £ASD3

Since t..c total nunier of elements IE5 = 8, we have eighit cards
specifving £ 2 cod> nurtar for cach elerent,

TS PIPT:. 170 OTI2A30. 72 CASD

0+ 1205, rai’sae is tle fre-usnc:” range interssted,
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Fig (6.2.2) The input data cards for example 1
Note 1, Start reading from bottom,
Note 2: The Euler angles and the order of code numbers are chosen in

such a way that the gbsolute value of each angle is less than 180°.
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Fig (6.2.4) The first three mocdes of natural vibration for example 1
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The computer outpit for the natural fre~uencies and the associated rodas

2434 The first line spoecifices tre first natars?

(931

are printed in fig (.

¥

frequency, i.e, 38,805332 rad/sec. The next two lines contains the
displacements of the point 1 in the first mode, *The first line of tlecse
contains tlie three translational displacement in the directions E,?}E,
respectively and the second lines contains the three angular displacements
of this point in the direction i,?,i respectivly, Similarly fovr the
other modes, All these modes are ortnogonalized and normalized, and ave

ready td be used for the modal analysis, The first three modes are

depicted in fig(6.2.4).

EXAMPIE 2

As a second example, we consider the plane frame as shown in fig(3.2.5).
The iuput cards are presented in fig(s,2.6). The reader should refer:
to section (6.2,1) and the example 1 for the details of the input data.
IPRINT was set to 2 in order to get outfut from line printer, The
line printer output for all the natural modes are shown in fig(5.2.7).
The upper frequency‘*tound for the calculatien was set to 6000 rad/%ec.
Note that the out of plane vitration modes are also calculated, These

can be verified by tue modal shapes,

EXANPLT 3

As a third example, we consider the space frame as shown in fig (6,2.8),
This space frarmc is made from mild steel as the last two examples, The
input cards are presented in £ig(5.2.9). Tne manners of inputing data
is similar to example 1, IPRIT was set to 1 to get detailed informa-
tion about the compuatation, e.g. which modes are - :ined vy root extrac-

tion and */hich modes are calculated L:- isection,2tc. The outputs ave

w
%]

.

printed ozt in £ig{Z,2,10), The modal parameters are also svored on

file Ffor the us=2d of modal analysis in next section,
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X
Fig (6,2.5) The plane frame of mild steel for example 2

*
See foot notes of Fig (6.2.2)
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1UENVECTUR= , _ o -
3=0.G0U00  N.37740 H.0207%  55.50503  =1.00800  =0.09000

U 00000 G.375068 =u.ul237. aTe45887 7 wa0udu0 ¢.0u000
IGEN Nunhﬁu_11***++;*+**** GaTeFREWS 3000.7559 /S OR 606.1822
IGENVECTOR= '

3.18566 L0060 CIULD00 6 000000 - 1.03183 3.50046

~0a14352  0.u6Q000-=0.00y000 06200 L =5.041070 =1.76973

[GEN NUHBER 120%%s*skkarbtw HaTe FLEUS 3014.0337 /S OR 607.¢223
IGENVECTR= ' '

U 02208 =0 uL0UD T=ralgi el =U,000000 =.,073813 =2.74311
“«0e1560062 =il.duhun ettt b =Yl =Z.04170 3.55009

LEON NUNGER Toasaarddssdrs L TOFLEGE 49963427 R/S OR 795.1926
IGENVECTORS

~0.10474 ettt Mg =2 M000 L vl 261800 =3.30909

-1,
- =3 - E - 3
=220 Daiidprniy =00

O U Ta0NUD =204l 3.77397
[OEH NUNLER Tlrsserrrrwxxsx  (aToFREU= 50C1.7453 {/S UR 796,u525
IGENVECTUR= -

Uu'u::fs"lz U-UC”‘UO l,_}.ol_;tj--‘,) "'{’-'1‘)“00 S-:;B,*”i:' I')-:,:["](')
“1e 08647 0L UOUD =D DD - D0y =0, 72008 1.35%248
=

IGeN N!H-:hz'.[;a ]2+1_t-k**k*-**¢.+* daTeFREU= 50U5.3130 R/S OR  796.6203
IGENVECTOR=E | B ‘ |
dalZ:10 U HULY =iy ity =Ja2u000 1.95773 =4.74831

-

=~ 10884 =D,U0000 - =d.00000 DJOL0UY  =T.53231 . =2.993%4

FERTZ

HERTZ
ucnff
HERTZ
HERTZ

HERTZ

RERTZ
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rLTsFLRNE S002.T15% pls or 2014083

-————— - -

1106759

FEGEN NUIBER 13w x%skkksdssn
.Uy *3-31569

:1IGENVECTUR=

=3.11122 . . 0. 00080 Y.t D
trathirty = Mgy ":-25"3,"‘_ 3-‘)?4[6 T

225 OR 90U2.2493 HERTZ

—~0e23710 Je orli0
Ivr

:iGEN ﬁUHUEK Thxtrsxxkrrrnre [ TeFiiEu= 50006.7995

TGENVECTUR= e s feik ' ;
-0.05391 Davuoy  latiofe ) D300 =5.525302 =9.%1514

Ja.CS5787 de GUBLO d LU =Ly =t 200220 =(,30434

'IGEN NUNBGER 15%%assasxdkar UATLFREU= 5071.5241 R/S OR 992.6511 HERTZ
IGENVECTUR= R _ . o L )
.00 00 O B dr 2 P.ﬂ13d$ u?.32735 G}, 00 -G.OOOOG - N ’
1.240633 ~22.01700 .. ~Ja0DT0U0 =Ua0D0GY -

S R/S OR 9U2.7745 HERTZ

Ualfraf" e

-0.06700
TGEN HUMBER 1o*%adesxsvrre 1 T.FREUT 5072.2°
2,904 =4 32991 5

-0 UYL
fu.wuoasl =3.24371 -

"IGENVECTOR=
il g () e
D titryyi

0 00G27 ~ =0, 20000
=0 QU et SRR T L ERE 4
USER RAEUCL, TASK YTLS1

-0.07031.

Fu
-

WYTL51.USETOU(S3425) /0 Fult

r*FORTRAN *# STUP
IULTIJOS PRIMNT OF KAEDUL:

B =
"_':"' - = R o -l S e b g . =
I = o, S G e " 14 = ow
= 5 - K B =
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Fig (6.2.8) The space frame for example 3
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Fig (6.2.9) The input cards fo example 3

See foot ﬁotes of Fig(6.2.2)
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F1g (6:2:19) (ponpilor OuXput fov Lxamplel3)
FORTRAN IV PROGRAM

ORTHZ KNG HES, HOF e HBD, NPE . NPD o 1K, HR o HEED  HH, HY 2 YUY

312 30---0 - 2. 6 72 12 12 72

- (=

HUHMBER OF ELEHMERTS IN_GRQUR?HIH‘LH R

I i T Gt L
ELEHEKT PROPERTY TN GROUP LU{BER 1 - -
0.10900 v2 ~ 0.50000 Co ¢l50n0D 007
ELEHENT PROPERTY IN GRGUP LUIBER 2

0.14140 02 0.50C0D 0O 9,.7000D 00
ELENMENT PROPERTY IN GROUP HUIIBER 3
0.1732D0 02 0.50000 00  0.100¢D 01
ROUVERTED QUAHTITIES - CE
0.1C00 02 ©.530D 11 0.727D 9% 0.110D 10 .0.110D
0.1410 02 0.7420 11 $.1350 12 0.303D 10 9,155
T 0.173D 02 0.106D 12 0.2350 10 0.333D 10 0.221D

U,7200D b4
L UL79DUD Uk

10
10
10

239

72

0,2119D 12

0.21190 12
0.198p 05
0.391D 05

0.684D 05

(COilPUSED AS oLS51 P51 ) STARTED 07/06/70 18:31:2

12 ==

0.7900D U4 0.2119D 12 0.52200 I

- 0,8220D 1

G.8220D 1

0,823D. 0
0.241D O
0.713D 0/

G oammEngTy o @smemess oo R BT T : o ARG - ."‘-‘_' by .
ANGLES OF ROTATIUN FOR EACH EU3ER
0.00000 =1.57080 =1.57059 -
0.00900 «1,.57080 =1.57vul - ! mo¥eon _-;
0206600 =1.57080 =1.572050 - - : e
U.U_O:}UU "1 IS?OE’U -1 -5_!"{’:.!!-) . .
1.57080 0. 00000 1.57050 = o T
0-C0G00  0.¢00C0  DIDYLGO
1.57080 0.00000 1.5709069 B
0.0C000 -0.00000 .0.000C0 - .
U.LU;}OU "'1 .SYOdO -1 IS?‘.‘L;.J
- 76540 =t,01548 157006Y
Q.C0700 0278560 0178540 ;
1-57':.‘80 -U.?€5540 "f105f{.’uu i -z
CODE NUMBERS k-3 5 .
B Ry Tl : T e T
n“ T 2 =% :...:';. ) - = 7 - e
0 _ O . s L ~
BT B Sl e e = 5 SmiLiLig
1%~ 2 =E
%' N E - E _ = s _t-'_ iy
.2’:-:_ .:.g,-;;'___: B o= 2 N _ 5 ) - _I
B T s sl Gl e TR L 5 e i
5 2 .. o T )
B .8 SaEd ‘ ZEAr T ks eiie =ens n
FredRahGes 27 0l Goo0v0rnonnb/sEe IR LR TERET LB R R IAE
NUNMGER OF PARTIAL FREQ.= 1 I e
PARTIAL FREQ..OF THE STRUCTURE= = iz T
50.0000 e e



wvw*FREG, RANGE= 00

rtie BUUNDS 0,00 0el5 FREQ. NUVBERS © 0

FRREQ. BUUNDS 0.25 1245 FREQ. NUIBERS ¢ 2

INITIAL APPROXe UF NAT. FREU. )

1139730930006 11.50415C07540 .

RAYLELIGH'S IMPROVENENTS o

11.3916502749 11.5006290559
EIGEN NUMBER 1 129.7605 MNAT.FREuU=  11.3916 R/S Ok 1.8130
EIGENVECTOR= .. . _ _ e g s SR
0.00180  =0.00011 =0.00081  =0.00001  0.00008  0.00001
0.00163 ~0.00011  N.6306u  0.00002  0.00006 0.00004
0.00180 =0.00025  0.00000  0.90001 0.,00010 0.00001
S 0.00162  =C.C0025  0.00000  0.00001  9.00008  0.00002 .
0.00174 =u,00026  0.00021 =0,00000 . =2,00002 0.00003

EIGEN NUMBER 2 ~~ 132.2045 NAT.FREQS  11.5006 R/S OR. . 1.8304

FIGERVECTORs A . o .

C =0.00002 =0,00161 =0.000C0 0.00008 ~=0.00001 0.00003
~0.00039 =0.00161 7 0.09000  0.00007 =0.00001 - 0.00004 -~ =
~0.000602 =0.00183 =0.00001  0.00005 =U.00000
~0.00039 -0.00182  0.000C1T  0,00009 =0.00001  0.00002
~0.00024 =0,001385 - 0,000¢1 =0,00003 0.00001 000000

*RED. BOUNDS - 12.50 - - 18.75  FREU. NUIBERS 2 2° -

FREQ. BOUNDS - - 18.75 . ~25.99  FREQ. NUKBERS ..2. 3570707

INITIAL APPROX. OF NAT. FREQ. :

19.9944519436 - : : =

IAYLEIGH'S IMPRCVEMENTS™

~ 19.9587578282
I1GEH NUMBER '

3 398.3271 - NAT.FREQ=

SIGENVECTOR=® = : T ol o 0 "o . =it e
S 0.00199. 0.00171. =0.00000  =0.00011 0.00009
S =0.60216  0.00171  =0.00001 =0.00002 =G.000006
0.00199  =0.00075  0.00001  0.00003  0.00U14
=0.00216" «0,00075  0.00000  0.00004 =0.00002
C=0.00045 C0,00074 . 0.000u1  ~0.00003  0.00011
RLo. BOUNDS -~ 25,00 . . 31.25  FKEQ. WUBERS . 3
FREO. BUUNDS 31.25 | 37.5)  FREu. HUNBERS 3
TBTLs BOUEDS 37.50 43,75  FREW. WULBERS_

B Tl ORI b

N £ . e o g %
50,00 CORRe FREQ.HUMBER= U 1%&***

hERTZ

HERTZ

0400003 - 25 T s £ - 17

0.00035
0.00018
0.00027

0.00035 "= vT
.0,00033.m

19,9581 R/S OR  3.1764 HERTZ

31._:_...'._:" 2o it

g

h

P S (N



e R G g S - : - - - . [ T, v i

INITIAL APPROX. OF NAT. FREU.
40.4102254333
KAYLEIGH'S INPROVEMENTS
SO eIy - - B VT S
EIGEN NUNBER & 1632.5300  linT<FREQ= 4024040 /S OR 6.,4306 HERTZ
t!ﬁ&hJECTUR- ST - e ke : .
O 0.00029 0.00065  0,00001  0.00010  0,00000 =0.00005 -
“0.G0047  9.00064  0.900u2  =0.00045  0.00028  0.00027 -
0.00029  0.00029 =0,00003 =0.00014 =0,00001 _ 0.00002
000246 " 0.00029 0.00044 =9.00000 ©0.02002 =0,00002
Ul 00916 . 0.00015 T 5.00003  0.00030 =0.09042 =0.00035 . .. . -

FREQ. BOUNGS  43.75 . S50.us  FREQ. NUIBERS 4 5

INITIAL APPROX. OF NAT~ FREQ. .
' © 47.2604017547 o
RAYLELIGE'S 1MPROVEMENTS = - = - g’f"'“'-'-"-: TV nRTLLE T R T

| C47.2532609370 e v ze afkL woEp, SgESA oD g 2 e
EIGEN NUMBER . S 2232.8691 HAT.FREU= 4?.2532 u/S ur 7.5206 HERTZ_ .

FIUENVECTOR—;J 'l___ ) o o - T o | o

0.00145 0.00082 =0.00080 =0.00005 0,00007 -0.00068 . - - -~ -

© =0.00008 0.00081 =0.00042 =0,00003 =0,00914 000035 == e om0

0.00143 =0400013_  0.00000 . €.00001 =9,00937 0.00053 .
~0.00008 ;0‘00613.' U QU0GY 0.00000 =0.,09001 =0.,00007

._ 0000053 -I-U.U(Jf-)'lé' F 000001 ':O-UUOUO 0. 00U25 -0.00032 - "':_': seTzL e

72643 END OF FILE FHCOULTERED, MO .END ADDRESS SPECIFIED. -~ - 77 1. —or

ruuncnr DATA SET REF._&U. 1s 97 e

CUPh&NT FORIAT STATEMENT. 15:- (2413

| “POINTEK xs_AT CHARACTER " o o N )

IFCHRD LEING PROCFSSED 15- s oy e e e
 POTATER 1S AT cunvacTEx o o T e

tuurnba uﬁs Rt llu 03 . _
(LEVEL 1) AT LOCATION ©41590,= PROG. ORIGIN +000933
TUWAS CALLED a8Y " 777U, ConpILER 07/06/76 BY VERSION 30 . STATEMENT CARD NUM

!I

I/O 03 +024350

o
ﬁ'
AULTIJ0B PRINT OF RAEGOL:GLS51 L0SETY9(53741)/D FOR Us:glknéodL. Tmsx LJ1 }




o3

Ry

242

FUR USER RAECOL

(sodye)

_Fig (6.2.11) Output from the computer when IPRINT=3 for example 3
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6.3 PROGRAMES FOR THE RESPONSE AMALYSIS

‘The dynamic response analysis based on the modal analysis technique
is to be discussed in chapter seven, Wnen the modes of-natural |
vibration are given, a programme for the analysis was §esigned and is
presented in this section, The programme consists offa main driving
prograrme and four subprogrammes, namely, INMOD, CFORCE, PCOOXD, and
GDISPL. INMOD integrates the differential equation F" +1uo;g._-,[5;_..gaf; f’-.‘.--a)‘
CFORCE supplies the different forcing functions at different points

on the structure; PCOORD superimposes all the responses to the individual
forcing functions; and GDISPL calculates the generalized displacements
and velocities at points of interest, The functions of the various
segments of the programme are described in the following sections,

9

6.3.1 THE MAIN DRIVING PROGRAMME

The main driving programme consists:of statements in three parts, which
are the declaration statements (1 to 4), the input and print statements
(5 to 29), and tke execution statements (30 to 38);'
The decléfation statements declare the following arrays:

QG: contains the normal nodes of the structure.: |
XC: éontains the generalized coordinates which are subjected to forcing
functions, coordinates
XX: contains the displacements of the generalized,which are subjected

to excitations,
¥D: contains the velocities of the generalized coordinates which are

subjected to excitatiens,

F): contains the natural freguencies in raq/ sec,
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DM: contains the damping ratios for each natural mode,

RX: contains principal displdcements of response P;-

RD: contains principal velocities of response pi

U: contains the displacements of the generalized coordinates q;.
V: contains the velocities of the generalized coordinates éi'

The read statement number 6 reads the following parameters:

ﬁo: the number of generalized coordinates.,

NFORCE: the number of excitation forces,

_NMOD: the number of modes taken in the analysis,

NC1: the lower bound of the generalized coordinates where the responses

o-f-.

arejinterest.-,

NC2: the upper bound of the generalized coordinates yhere the responses
aréﬁinterest i

NSTEP: the number of time increments assumed,

TEND: the ternination of the time intcrva{iinterest . in see,

Statement 14 reads’ghe generaiized coordinate numbers where the
excitations are presented into the array XC, Statement 17 reads the
dambing ratios for each mode, Statements 20 to 24 read the natural freq-
uencies and the Associated modes as resulted from MAINP by setting IPRINT=
3.

The executicn statement number 25 works out the time increment DT,
The subroutine GDISPL is called for every time step and every generalized

of

coordinate wnose displacements and velocities of reponses are,interest ,
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6.3.2 SUBROUTINE TIIMCD

The subroutine INMOD was desi-éned to calculate the reponse *c(t) to an
arbitrary forcing function £(t) with the consideration of damping effects

as described in section (7.8). The differential equation to be solved

is X +2¢wx+ wtx= £k)
?:here L is the damping ratio and W is the natural frequency.

The solutions are given by equations (7.8.11) and (7.8.12): ‘

xLk)=& j:: {"(t)eb%-t)sfn ale-T)d Tt X2 Cosat + o ~bXo)RE" Snak
A = ff " Ppsat) T+ %J,cé-bw_‘c fOsTaak-T) AT
+ ';foe"’twscgk % (BXo -3 %0) 'é: Q,"’C.S’C'nd.t

' where a:@{CE;' b==-Cw
The input datd to the sﬁﬁréutine.aré
XX init?al displace;ent X
XD: initial velocity ko.
FQ: the natural frequency,
S: the modal damping ratio,
DT: the increment ofltime interval,
Ts .the terminaticn of the time interval,
The output parémeters frém the subroutine are:'
XX: the final displacement, x(t).
XD: the final velocity, x(t).

Fq,S5,DT,T unchanged.

i)

e

e i
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6.3.2 2BAL FITTCTION CFORME

‘CFORCZ returns the forcing functions at different points on the structure,
The number of excitzfions is obtained through the common block PCOCFO,

This subprogramme should be changed for each new forcing function,

6.3.4  SUBROUTINZ PCOORD

PCOORD superimposes all the responses to the individual forcing functions,
This subroutine calls INMOD n times, where n= the number of the excitations

presented,

6.3.5  SUBROUTINE GDISPL

GDISPL calculates the generalized displacements and velocities at points
of interest, This subroutine calls PCOORD n times, where n= the

number of modes taken in the modal analysis,

6.3.6  EXAMPLE

'As an_example, we consider the space frame structure shown in fig(6.2.8},
whose natural modes - calculated in example 3 of scction (6.2.13).

The input data are snowvn in fig (6.3.1), .*here 30 is the numter of
generalized coordinatés vhich coﬁsist'of'the'whole structure; 5 is fhe
nuriter of excitation forces; 1C is the number of modes taken; 25 and 30
are read such thkat the displacements and velccities at generalized

coordinates 25 to 30 inclusive are reguired; 10 is the number of time
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steps assumed and 1.C00 sec is the upper bound of the time interval
interested, For the second'line, 1,8,10,25 and 26 are the generalized
coordinate numbers-which are subje;ted to excitations as supplied by

the subprogramme CFCRCE in that ofder. The remaininq part of the input
data contains the natural frequencies and the associateé modes of the
';tructure.

The output from the programme is printed in fig (6.3.2).
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6.4 THE LIMEAR ALGERBRA PACKAGE

In the structure engineering analysié 5y computer, 1inear'matrix
oﬁerations appear: very often and perhaps. are the ﬁost computing fime.l
consumin§ operations, A package for linear matrix'oberations was
designed to speed up the programming efficiency. - The package consists
of the following subroutines, SET1, SETO, DEC1, DEC2,DEC3, FOX1, FOX2,
FOR3, BAC1, BAC2, RAC3, MULT?, MULTZ2, MULT3, MULTO, MULT21, MWULT22, and

HULT23. The functions of these subroutines are surmarized as follows:

SET1: sets up an unit matrix

SETO: sets up a zero matrix

DEC1: decomposes a symmetric matrix in full form

DECé: Aecomposes a symmetric matrix stored ig fixed band form

DEC3: decomposes a syrmetric matrix stored in variable band form

FAR1: performs.the forvard substituticn of a system of linear equations
stored in full form,

FOR2: performs the forward substitﬁtion of a system of linear equations

stored in fixed band form,

FOR3: performs the forward substitution of a system ofllinear equations
stored inﬁzariablé band form,

BAC1: performs the backvard substitution of a system of linear equations
stored in full form,

BAC2: performs the backward substituion of 2 system of linear equations
stored in fixed tand form,

BAC3: performs the backward substituion of a system cf linear equations
stored in variable band form,

KULT1: performs the matrix multiplication { D} = [AJ{C} ,.whereLA] is a

symmetric matrix in full form,

A
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MULT2: performs the matrix multiplication §D} = [n]%c} , where A is a
symmetrie matrix in fixed band form,
IULT3: performs the matrix multiplication {D{ = [AT{c], where 4 is a

symmetric matrix stored in variable band form,

(B)[c1vith

MULTO: performs the matrix product (A] = (BI[C] or (A1}
options to overurite-the result [A] onto [(B]or (C.]

hULT21: performs the matrix poduct (Al = (XJ'[31(X1 , where [B] is a
symmetric matrix stored in full forn,

MUiTzzz performs the matrix product (Al = [X)'(81(X1, where [B) is a
symmetric matrix stored in fixed band form, |

. MULT23: performs the matrix product [A) = (X1(81(X1, where (B]is a

symmetric matrix dtored in variable band form,

The individual subroutines are described in tke following sections,

6.4.1 SURNCITINE SETI

SET1 sets up a matrix {A]_of size (NA,N), such that the diagonal elements

are unities and the off diagonal elements are zeros. The input parameters

are: "? K
YMA: the first dimension declared for the matrix A.
o] the second dimensicn of A,

The output parameter from the subroutine is the unit matrix A,

L2 ]

6.4.2 SUBRCUTIM™= S=TO

SETO sets up a matrix [A Jof size (14,r), such that 2ll elements are

equal to zeros, The input parameters are:

NA: the first dimension declared for the matrix A,
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N: the second dimension of A,
The output from the subroutine is the zero matrix A,

.

6.4.3 SIMRCUTIME DEC1

DEC1 decomposes a symmetric matrix [(A) when it is stored in full form
into a product of an upper triangle and a lower triangle, i.e,[Al=(L (U]
ﬁy Gauss elimination without interchanges, The resulting upper triangle
[ulis overwritten on [A) .« The matrix (U] is stored in the samé‘form
as A. The reéiprocalSof‘the diagonal elerments are stored instead of
the_ordinary diagonal elements, The input parameters are:

. At the original symmetric matrix of size (MA,N), where NA W, Only
the upper triangular elements are used and the strict lower triangular
elements are-unchanged after the call,

NA: the first dimension declared for A,

N: the actual order of the matrix A,

The output parameter is the upper triangular matrix overwritten on A,
The reciprocals of the diggonal elements are stored instead of the
ordinary ones. This is to munimize the number ot Awnsions |

=

.

6.4.4 SUBROUTINE D=C2

DEC2 decomposes a symmetric matrix [A] stored in fixed band form into

a product of an upper and a lover triangular matrix according to (A)=[L}{U]
by Gauss elimination metheod with out interchanges, The resulting upper
triangular matrix (U] is overwritten on {A) and the reciprocals of the

diagonal elements are stored instead of the ordinary diagonal elements,
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The elements are stored in such a vay that the Ith diagonal element is
AL, 1), The input pafameters are:
A: the original réal gymmetric matrix stored in fixed banded form

with the Ith diagonal element stored in A(I,1). -
NA: the first dimension declared for A.
IBY: the b;ndwidth parameter, such that the overall bandwidth = 2*IB%-1,
N: the actual order of matrix A,
The output is the upper triangular matrix oyerwritten on A in the same
form as A and th; reciprocals” of the diagonal elements are stored instead

of the ordinary diagonal elements,

6.4.5  SUBROUTINE D&C3

DEC3 decomposes a symmetric matrix [A]) stored in variable band form

in to a product of an upper triangular matrix and a lower triangular

matrix according tc (Al= fL]rU]by Gauss elimination method without
interchanges. The resulting matrixl[lrlig overwrittn on (A] and the
reciprocals of the diagonal elements are stored instead of the ordinary
diagonal elements,  The gatrix [A] is stored in one dimensional form
such that the Ith.diagonal element is stofed ir. A(TU(I)), where IU(I)
is an addreﬁging array of integer-type.

The input parameters to the subroutine are:

A: the input one dimensional array of size IUN, such that the Ith
diagonal element of the original matrix is stored in A(IU(I)).

IU: @-one dimensional integer addressing array of size N, such that
the Ith element of the main diagonal of thre original matrix is
stored in A(IU(I)).

UM: = TU(Y).

MAX: a - one dimensiona) integer array of size N, such that MAX(1)=1,

e
-
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and MAX(X)=¥-TU(X) + IU(X-1) 4+ 1.
N: the actual order of the original matrix,

The output from thé subroutine is the matrix U overwritten on A

such that the reciprocals of the diagonal elements are.stored instead of -

the ordinary diagonal elements,

6.4.6 SUBROUTIIE FOR1

FOR1 solves [UJE%} = §B{ , when the upper triangular matrix (U} and [B{’
the coefficient vector, are giVEP' {ul is of the form output from DEC1,
such that U(I,I) contains the rééiprocal diagonal elenent instead of the
ordinary diagonal elemeﬁt. The input to the subroutine are:

U: the upper triangular matrix as result from DEC1.

MU:  th

r]

first declared dimension of matrix U,
N: the actual order of the matrix 1,

B the coefficient vector,

3

The output from the subroutine is the solution vector . The

vector Z can te overwrittem on 3 ,
Al .-‘:.a .

6.4.7 SUTROUTI™E MACT

BAC1 solves [L}{x} =1z}, when the upper triangular matrix (U] and the
coefficiant vécéor {71 are given, The organization of (U] should te
the same as the outpué from DZC1, A combined use of DEC1, FOR1, BACY
wiil seive: & set & insar equations (4){} = {3{ in the follewing manner
Decomposition: fa) = (1]
Forward substitution: (Ul{z} = {2}

Backward substitution: [L}{X} s {z}

-
.
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‘“The input parameters are:
U: the upper tr{angular matrix as result from DiIC1,
NU: the first declared dimension for U,
M: the actual order of the matrix U,
2: fhe coefficient vector,
The output from the subroutine is the solution vector X, The

vector ¥ can be overwritten on Z.

6.4,8° . SUBROQUTINE FOR2

FOR2 solves (U){Z| = {B} , whén the upper triangular matrix [Uland the

© coefficient vector {Bf are given, (U] is of tke form as -output from

‘pEc2, such that U(I,1) contains tﬁe reciprocals of the diagonal elements

-instead of the ordinary diagonal elements, The input parémeters are:

U: the upper triangular matrix stored in band form as result from
DEC2,

YU: Ithe first dimension of the deciared matrix U,

N: the actual order of the matrix U,

" B: . tre coefficient vector,

| The outpﬁtqgs the solution vector Z, The vector Z can be

overwritten on B, IBY is the bandwidth parameter of U,

6.4.9  SUBROUTINE BAC2

BAC2 solves [L]{x} = {z} , when the upper triangular matrix {U] is given
in fixed band form, The organization of (U] should be the same as the
output from DiIC2, - The input parameters are:

U: the upper triangular matrix stored in band form as resulted from

DEC2.
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U: the first dimension declared for U,
N: the actual order of U,
IBY: the bandwidth parameter of U,
Z: the coefficient vector Z,
The output from the subroutine is the solution vector X, The

vector X can be overwritten on Z.

. 6.4.10 SUBROUTINZE FOR3

/

FO23 solves (U]fz} = {B} , when the upper triangular matrix [U]is given

in variable band form, [U] is of the form as output from DEC3, such that

U(IU(I)) contains the veciprocal of the Ith diagonal element instead of

the ordinary diagonal element, The input ﬁarametefs are:

U: the upper triangular matrix stored in one dimensional form as output
form D=C3,

IU: an integer addressing array-as in.DECBt

IUN: = IUu(1).

MAX: an integer Q?rayias in DEC3,

N: the actual order of ;{9

‘B: the coeffici&nt ;ector.

The output from the subroutine is the solution vector Z., The

wvector Z can be cverwritten on B,

6.4.11  SUBROUTINE BAC3

BAC3 solves (L]}¥X} = {2} , when the upper triangular matrix (U] is given
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in variable ﬁand form. [U] is of the frcm as output from DEC3,
The input parameters are:
U: the upper trianéular matrix stored in one dimensional form as output
from DEC3., ' .
IU: an integer addressing array as in DEC3,
s = 1u(N). |
MAX: an integer array as in DEC3,
N: the actual order of U,
Z: the coefficient vector,
The output is the solution vector X which can be overwritten on Z.

o

6.4.12 MULT1

MULT1 performs the matrix product {D{ = [Al{cC}
where [A] is a full matrix.with symmetry,
Input parameters are:

A: the symmetric matrix of size (NA,M), The upper triangular elements

-

. are required only,
NA: the first dimension declared.for the matrix A,
N: thre actual order of A,

C: a vector of size M.

Tne output is D the product reguired, D can be overwritten on C.

The function of HNULT2 is the same as MNULT1 except that the symmetric

matrix[A]is stored in fixed band form with bandwidth parameter I3Y,

Input parameters are:
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A: tke symmetric matrix stored.in band form,
MA: the first declared dimension of A,
N: the actual order of A,
IBW: the bandwidth parameter of A,
C: a vector of constants
The output from the sutroutine is the product vector D, D can
be overwritten on C,

6:4.14 SURROUTINE MULT3

The function of IULT3 is the same as MULT1 except that the symmtric matrix

is stored in a one dimensional array and takes the advantage of variable

bandwidth. = The organization of [A] is the same as DEC3, The input

paraneters are: |

A: the symme;ric matrix stored in one dimensional afray as the input
matrix of DEC3,

IU: an integer addressing array as in D2C3,

IUN: =IU(X). ' .

MAX: an integer array as in DEC3,

N: the actual dimension of A,

. A

C: the constant vector,

The output is thke product vector D, D can bte overwritten on C,

MULTO performs the matrix multiplicationé
(A} =(BMc] or (a}=(n17(c)
with options to overuritten the results [A] onto (Plor [CcJ,

The input parameters are:
B: a two dimensional matrix of size (NB;H) containing the matrix (3].
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C: a two dimension matrix of size (NC,N) containing the elements of [C].
L: the first dimension of B
M: the second dimension of B
N: the second dimension of C
Z: working vector of size I,
OPT: an integer iqdicator, such that when
OPT=1 replaces (Al by [B][C]
OPT=2 replaces [3]by (31[c])
OPT=3 replaces {C)by [B](C)
OPT=4 replaces (Alby [B)[c]
OPT=5 replaces [Blby (B1fcC)
OPT=6 replaces [Clby [B1[c]
MA: the first dimension declarea for A
NB: the first dimension declared for B
NC: the first dimension declared for C
Tae output is depending on the value of OPT, Note that the
dimensions of the matrices must be éble to match so that the product

can te performed,
P
6.4.16  SURROUTINE MULT21

MULT21 performs the matrix product [A] = [Xij?]fK]
where B is a symmetric matrix in full form,

The input parameters are:

X: a two dimensional array of size(¥X,¥) containing the elements of X



The input parameters are:

X: as in MULT21

B: as the matrix A in DEC3 containiné the elements of LB] .
NA: the first dimension declared for 4,

NX: the first dimension declared for X,

N: the actual order of matrix {B}-,

IU: the addressing array for B as in DEC3,

Iun: =1u(N),

MAX: an inteder array as in DEC3,

NP: the actual order of A,

s

=1

266
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B: a two dimensional matrix of size (™,1) containing the symmetrix matrix
B , the upper triangular elements are required only,

NA: the firsf dimcn;ion declared for A,

NX: the first dimension declared for X,

WB: the first dimensicn-declared for B,

M: the actual order of B,

1TP: the actual order of A,
The output parameter is A containing the product {X\[2)(X].

6.4.17 SURROUTINE NULT 22

e

The function of FULT22 . is the same as MULT21 except that the symmetric
matrix {8) is in band form,
The input parameters are:
X: as in MNULT21
B: as the matrix A in D3C2 containing the elements of [B],
NA: the first declared dimension of A
NX: the first declared dimension of‘x
NB: the first declaréd dimension of B
N:- the actual.d{ﬁension of B
IBY: thé bandwidth paraméter of 3
NP: the actual order of A.

The output is the preduct [K]T[E}[K] teing stored infal,

6,4.18 SURROHTINE MULT23

The function of. MULT23 is the same as MULT22 except that the matrix (7]

is stored in a one dimensional array and is taking advantage of

variable band form.
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6.5 MISCELLANECUS PRCGRAMMES

6.5.1 SUBROUTINE GBMS

GBMS calculates the integrals f‘: x¥ Emb) P n000A L

where ¢ is a positve integer,gwbﬂare polynomials of order m,
¢,MMis the kth mode of beam function with two ends clamped.
Input parameters: R
GM an integer constant equals toa)
IA the kth frequency parameter of a clamped beanm,
EQ a two dimensional array such that EQ(M,I) contains the Ith

| coefficient of the Mth polynomial in accending orders,

g0 d
The output parameters are the integrals () X' Sm(®)@p&rdx

and are shown in Fig(3.5.5).

6.5.2 PROGRAMME YT15

This programme calculates the natural frequencies of a clamped-
clamped beam by Newton's method foi' eigenvalue problems as described
in section (5.7). Finite element method is employed, Two
subroutines DECSYM and DECS1 are used in this programme, These
subroutines are“described as fo-llows:
SUBROUTINE DECSYM

This decomposes the matrix A into a product of lower and a
upper triangular matrices stored in LU for the use of Newton's method .
for eigenvalue problems as described in section (5.7).
Input parameters:
A(NA,N)  a positive definite matrix
NA the first dimension declared for A

N the order of A,
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Output parameters:

LU(NA,N) a matrix storing the decomposed matrices for the use of
DECS1

A(NA,N)  unchanged.

SUBROUTINE DECS1
This calculates the first derivatives of the upper and lower
triangular matrices LU when the first dervetive of matrix A is given
for the use of Newton's method in solving eigenvalue problems as
mentioned in section (5.7). |
Input parameters:
DA(NA,N) a matrix defivative of A
N the order of DA
NA the first declared dimension of DA -
LU the output from DECSYM
Output parameters:
LU1 a mgtrix storing the first derivatives of LU,
D ' the derivative of the determinant of A,

-
- . *
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6.5.5 GENERATING THE COEFFICIENTS OF BEAM FUNCTIONS

Once the natural frequencies and the corresponding modes in terms of
nodal displacemeénts are determined by the programme of section(6.2),
it is necessary to know the internal displacements of ‘individual
beam members between nodes, if the forcing functions in response
analysis happen to be on the internal region of a member, It is
.bec:ause the pricipal generalized forces Pi are calculated according
" to, c.f. chaﬁtc“ two,
RO RN T PR R AR TR PE

where {x’f is the body force vector and {é]thc surface force vector,
For a general beam member, the internal modal displacement vector j&.'(*)f
consists of six function components of spactial coordinates,
These are
(i) axial displacement function Py @) =4 (0sY-S +Aasin~$
(ii) flexural displacement functions,

Pir €)= As os A2 S+ AgsinheE+ Ascosh Ne S+ Afcinh Ax 5

Pe3(5)=Ar Los Ay §+ A8 SinAy €+ Aqeothay I + Arosinhay g

(i11) torsional displacement function
Be )= Ay cosYE+Apsta ¥$
(iv) flexural rotation or angular displacement functions

Bes @) A1 Cos Ay + Arp StmAs E+ A CoshAy S+ A sinhay €
Ple(5)= Ay (BSA2E + A9 StnALE +A1q CoshAaE - Are Sah AR &
;I'he constants Ai, ia1,2,...,2d are expressed in terms of the nodal.
displacements a3 i=1,2,...,12 in section(3.6). Thc.following two

subroutines BMDFFI and BMDFTN are designed to determine Ai's.

A third subroutine BMDFTN was designed to give the deflections.
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SUBROUTINE EMDFFI

The subroutine calculates the beam function coefficients Ai's
when supplying the vibration frequency, the elastic properties of the
beam, and the nodal displacements. The subroutine uses BMDFCN to
compute the frequency functions. -

.Input parameters:
v frequency of vibration
PG(7) a one dimensional array containing the properties of the beam

member as described in section (6.2).

Q(12) a one dimensional array containing the nodal displacements.
?mltput paraneters:

*“A(zo) the beam function coefficients,

SUBROUTINE BMDFCN

The subroutine calculates tke frequency functions to be used
“in BMDFFI, i
Input parameters:
v - frequency of“g}bratiOn
MS total mas; of the beam member
H length of the beam
RZ moment of inertia of cross sectional area about the Z axis
TI total polar moment of inertia of cross sectional area
EA axial rigidity

U1,U7,U2,U6,08,U12 nodal displacements
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A1(2) coefficient of beam function of axial displacement
A2(4) coefficient of beam function of flexural displacement

23(4) coefficient of team function of flexural angular displacement

SUBROUTINE BMDFTN

.The subroutine calculates the six beam deflection components q&;@)
i=1,...,6 at cross section X,
Input parameters:
v ~ frequency of vibration
X the distance of the cross section from the léft hand end
PG(7)  an array of beam properties as in section (6.2)
A(20) an array containing the beam coefficients output from BMDFFI
Output parameters:
FF(6) the six components of the beam deflection at X

A simply supported beam was taken as checking example, The

nodal displacements Q and member properties PG are input by the data

statements.,  The calculated flexural deflactions are compared with a

sine curve and no real difference was found,

LTy

JEL

T
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6.5.3 PROGRAMME PLATE

This is an ALGOL programmne to calcula&c the naturél frequencies and
modal shapes of an:aniSbtropic_retangular plate as dexcribed in
section(3.5.2). The equation (3.5.12) is used to f;nd the natural
modes, The product integrals of beam functions are stored in a data
_file ORPTDT. This data is to be read by the programme. The first
" line of the file ORPTDT contains
DIF an integer specifying the bourndary conditions, DIF is equal to O
for a plate with all edges clamped and no other types of boundary
conditions are being implemented,
Q is the number of beam modes used in the expansion,
DN is the density per unit area
H dis the thichness of the plate
D11,D12,D22,D16,D26,D66 are the flexural rigidities of the plate,
NX,NY,NXY are the axial compressions in X and Y directions and the
shearing load respectively

U is a parameter controlling the intensity of axial and shear loads.
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IRRPRRRARFERRUKRARKR LRI QRECPRRECRARVOKIILNRRRRRAKRKIGARRKRRKARRKRRKRIR < w K AP AKKR
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STING OF ;EMPO708,-CP273(1/E1R0) FRODUCED ON 27JAN75 AT 21,645,07

WD AT ASTOM I 'LEAPO7GE,90FR73" O R27JANT?S AT 21,643,3¢

UMENT {EMPO708,aP273(/31R0)

RTED 1EMPUZOR,MOP273,27JAN75 21.26,.06 YYPEsBACK
26,07« RJ MOP273,0PpTRPROG,JDCIT 200,12 32000)

26 . U7¢ QRPPTPROS

26,07¢ UAALGOL PrROG ORPTLD,NPATA ORPTDT,LIB NAGA, EXIT
26 ,09¢ Ta CE,pP,NLsLE

27,07 - 27101475 COMPILED BY XALV MK, 3A
E STATEMENT g

0 0 "PROGRAMT (AXXX) '

1 0 _VINPUTU Q=CRO o o SR D TE W Fat e e

2 0 VINPUTY 3=TR0

I -0 'oUTPUT'O=L PO

4 0 S YAUTENY L= P

5 0 "COMPECTDATAY .- e

6 0 TCUMPACTY S W s o B .

7 0 'T2 X . : 2

0" 0 "BEGINY

1T 0 T AR R I N I P o 0 B 2 - T )
2 1 PREALINT oN? (NX, HY ) NXY A 0B, AB BAYCIDNIH,AY ¢ACPB2,D11,DT2,

3 2 B22,016,D26,066,T,U;

6« 2 DIF:=READ; 0:=RF/D; A;=PEAN; As=READ] NN:=READ] Hs=READ:

s 9 D11¢=KEAD; D12:=PEAD; DP22;=READ; U16:=READ; D2O6:=READ;

6 14 DéAr=PFAD; MXy=rFAD: NY;=READ; NXY:=READ; P:=Q%Q: U:=READ;
7 29 913:1,((.51*5'): A2:=21/(AaxA); =1/ {bep)] RAas=n/ats:

8 24 ABe=A B3 nlsamywk/A) N2:=hYwA/HB] DISONFHRAWH

9 28 'EEGI“"ARRlY'XnY[1:6013Q;1!QJ1C:E;F!R,SI1:P!1SP]JV[1:P]:

0 28 VFROCEDUPEYFOZAFACA, b, NyR,V, IFAIL); 'WALUE'N]

1 3N .- . VINTEGER'N,IFAIL; 'AKRAY'A,R,R,V; _ _ g -
2 33 © 1ALGOL'; S e

3 33 VFOR'YL3=142,3+64,6'D0!

4 35 PFORYKy=4 44,7, 10'DU' YFQRY ] 330 'STEPY1 ' UNTIL" 12 DO v
5 37 .lFQR'J-a-1 0,1,2'00" ' f
6 38 'BFG!H"IF'I =C'ORYI=«] Y THEN'PRINTCREAD,2,0) "
7 39 "ELSE''IFPI>Q'CR K4IDQ  THEN"Hy SREADVELSE®

8 39 XLL,1,ked)=READ]

Q L0 VENDY )

0 VENEY ] ang ETEFYY D U'TIL'O'DO"FDI'J =T'STLPYITURTIL QP
1 43 ¥YU50100):5=Xx12,1,4d133

2 bt

3 46 VCUNMENTYTHE ABGVE TWO STATEMLMTS SHUULD BE MODIFIED

[A L FOR NON=SFLF ADJOINTY BOUNDAKY CONDIYIONS:

5 44 :

6 L VIF'DIF=q " YHENYIRFGI oY

7 Lé TFORYLe=1¢7,5/4,6'D07"

8 Lé VENEYKs=144,7, 10!PJ"FﬁR']==u'515P'1'UNTIL'1£'DO'

9 L8 "FORY )=l ,n,1,2 00"

0 45y -bcﬁlm--:r':-n'nn JE=1 ' TREN'PRINTCREAD,2,0)

1 50 PELSFU IFYIDN OR 4 D0 " THEN "y SRFADYELSE?



32 50
33 51
34 22
35 54
36 55
37 5%
18 55
39 55
50 55
£1 55
L2 57
"3 59
L4 60
WS 61
“6 63
47 65
A 68
Y 68
30 68
21 68
»2 68
3 68
4 69
25 69
6 70
¥4 71
58 r7e
39 73
50 75 *
5! (43
b . ?8 o
'3 80
G 82
»S 83
6 84
7 84
i 86
9 87
' 89.
"4 90
'2 91
3 93
T4 94
'S 95
6 96
T 97
'8 98
'9 99
0 100
MENT AXRXYX

OF BUCKETS USED

iIPILED #RXXX

GRAM AXXX

YIL,1,Ke)3READ;] 288
VENDY S :

'H)R'I::‘l'STI-F"'I'UNTIL'Q'DO"FOP'J:::'I'ST[:P"I'UNTIL"J'D“"
YIS, 100 :==Y[2s1,d)0

*COMMENT'THE ABOVE TWO STATEMANTS SHOULD BE MODIFIED
FUR MONaSFELF ADJOINTY ROUNDARY CO&DITIUNS;

*ENDYYELSE!
VEEGIN' ' pUR'T:=1'STEP A UNTIL QO
VFORYG =9 'STFP"T'UNTIL'Q'DO" YFOR'K:s=14293504¢5.06'00"
Y[K:I-Jh:)'.[K,I.JJ: 4
VENDY:
VFORY I =1 "STEF"T'UNTIL'C'DC " FOR!'K3a] "STEPYT'UNTIL' QDD

WFORYMs=1'STEPI1UNTILIQYDQF Y FUORING=T1'STEPTTVUNTIL QDO

'BEGIN' Ji=(1=1)#0Q4K; Li=(M=1)w0ah;
_F[J:L]==D11‘K[3pl.M]*Yt1:K:N]*u“

DT Z2a(X[S, T aMI*YIS, NykI*+X[5,7,1)%Y[S)KeN])*AY
+D22%¥ 01,1, MIRY([3,K,M)¥aN

+2%D2AR(XLL 1 oM)*YLO o NgKI*XLL,Mp1daYLOskNI)DBZ
FORDTER(XTE MY YL hok g NI+XLE, Tov )Y 4N, K])"A2
*LeDAGY(XLEp ] MIeY[2:Ken]IYAT ]}

ECI L) sanN X2l o MInYLT , KoeNIoN2ay[1,1)MI*Y[2,KsIN]
ENXY R (XLL, D oMI*Y LA N KIOXLG ot , 1) wY[4eK,N));
RIJ,LYimpaX1,1,MIey[1 Kk, MN]g

T VEMDY;

TFOR'Te=n'Dn? Sl
TLEGIN'H:=T;

'"FORY1:=21'STEP"T UNTIL'P'DO'YFUR'J:=1"STEP'I1'UNTIL'P'DD

S{l e di=fll pddeh*el],d1;
T1=1: FODARA(S P,P,ViCol); '
URITEYEXTC (VY CIPYY VY HeY ) PRINTCH,Q004);

VIF'PY36 " THENIP =36

TEOP Yy =], 34K ' WHILE'PHK' DO

'"REGIN' _
WEITETEYT(VCP Y (Y1CP)'FIGFRVALIIEY) V)
CEORY Y20, 1" LOY VIR K+ LE'PYTHEN!
CRFGINIPRINTCVIK®J)0,9) " END';
ErubLINEC(Z): ‘ :
YRR =1 STERPYTTUNTILP DO
'"REGIN'PRINT(1,2,0)1

"FNR'J:1=0,1,2'PO Y IF 'KeJ ' LE"PYTHEN"
- PRIMTCCIJ+K,11,5:9):

. NEWLINE (1)}

= A ERD Y

CYENDYYS

TEXDETS

TErpYAKRAY;
"enD'"oplG:

PACT DATA (15A%)
PACT PROGKAM (DRM)

E

10422

LelGTn 1375
33 -

EC

1a

B

U P Y g e e A YT

e S e




DOCUMENT ORPTDTY
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: Yt

0: G Yo s Vo % Ve %5 45 0y

0

o

IS W Y

NSO TN W B WA =

N

1 &
LI [P SRS S

TN OO NO VWA

o

[ —y

‘-
~nN

N=2O0VXTNCOWVI™WN -2

2 O CENDPWVLWN -

1
1.000000000
0.000000000

=0.000000rQ00
v.00o0yeQCo

=0,0000000060

=0,000000000.
0,V00000000
0,000006060
0,0000000C0
0,000000000
=0.0000000G0
0,000000000

. 4
0,U00000000
=0, 600000000

~.0,000000000
1,000000000

0.0000Q000u0

- =0,0000000C0

=0,0G0000000
0,000000000
0,000000000
=0,00009000C0

S =0,000000000
__hQO.UOOUQOUUp

7
0.000000000
=0,000000GV0
0,000006000
=0,000000000
0.000000000

~=0.000000000

1.000007000
0.00000000C0
=0,0000000C00Q
0,000000000
=0.000000000
0.LogvoO0O0OV

10
0,000006000
0,000000000
0,VU00000V0

=0,000000000

=0,000000000
0,000000000
0.000000000
=0,000000000
=0,0006000000

“1,000000000

=0,000000000

=0.000000000

<
0.000000000
1.0V000G000
=0.n00000000)
=0,n0020091¢
0.000000000
0,000000000

=0,000000000

0.000h0000Q
0.0000n00000
0,.000000000
0,006000000
=0,00000000n0

5 »
=0.0000000N0
D,0U0NA00N0
=0,000000000
0.000000000
1.000000090
=0.000000090
0.000000000
=0.000000000
=0.6V0000000
=3,099)00090

0.000300090
=0,000900000

5
=0,000n000000
N,.020800050
0.000000000
0,00090000¢C
=0.0001900000
0.030200090
0.000900000
1.000000000
0,000000000
=0,009000000
0,000000000
=0,0V0N000000

11
=0.009%000000

0.000000000 T T

=0,0V000000¢0
=0.000700000
0,0C0700000
—U.QUHWQOUUH
=0,000nh00000
O,0C3Inponn
O,0C0000000
=Q.nu0ANCCY0
1.00090000¢0

0,00900G000

0! nc 1! 1! 1!‘1

3
=0,000000000
-0,000000000
1,910000000
H,00000N0ULY

=0,0%0000000

0,000000000
0,0000000vY
2,029330044
=0,00090000y
0,000000000
=0,000000000
0,000000000

6
=0,000000p0C0
0,0900000vV0
0,0000900VC
=0,000000G00
=0,000000009
1.09700000U0
-0,000000n000
0.000V000090
0,000900000
0,090900QVY

©=0,000009000
- =0,000000quu

9
0,000000000
0.09020000Y

-0, 0u0UUANYY
Q,0000090UV

=0,000000000
0,000000000

=9,000000000
0,000000000
1,0000000UY
=0,000900000
0,000000009
0,0000000V0

1
‘0.000000000
=0,000000000

U, 0J0u00vu
'O,OOUQQPOUU
=-0,0000000u0
=0,00099%5000

O.0903000U0
=0, 000uv0npuR

Ob,00uLOrGaC
-0,00u00000

¢,020000000

1,000900000
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1

. gy _
[ U S e S

ik ?i T s
N—‘Q‘le‘\lo\u"huwﬂ.

N2OVCENOWV W=

N2 OVENCOV~WN

VONOWV AN =

|
-12,502614625
=-0,000000001
9.730/92214
“0.000000001
7.61563%5410
-0.,0000U0N006
6.,108042876
-0.0000000C2
5.066528018

.-=0,000000003

4,81R182720

" T=p,000000004

e
-0,000000001
17,128920873

. =0,000006G600%
~171,585655%705

-0,000000015
31,276649256Y
0,00000000"
"30,578550230

© =0,000000002

28,664289448
-0,000000007
26,502745158

- 4
6,108043872
0,000000001

22.,9842174746

0,00000000¢
38,03018003%
0,0n0002070

-508,0415570665

=“0,00000C050

T 751,22984A1065

=0,000000001%
92,202717575
=0,00000006¢

=0,000000000
11,450114083
=0.00000000¢4
2B BAL2RNLLTS
Q.v00000002
45,157137481
'U.UUGUO“Ub"*
37 ,73508%045
=0,000002007

=0 . a6G0nann a1
=46 927120149
0.000000003
17128920875
“0.00600C0D3
15,194569853
0000060000
13 154572173
0.0V00000004
11.4301160%6
=0,000000003
10.0655014651

5
7.615435409
«0,000000002
24369371974
=0,00000001%

-263 097080742

0.00000C015
38.050180032

0.000000021
37.960697384
-0,000000001
36,396419¢25
=0,000000006

8 - -
=0,000000000

T 15,136473170

=0,0000n00072
30,.57555082%
0.000000019
L, (5546357
=0,000000047

=639 671842884,

=0 000000094
57,7350890438
-0.000000041
99 .,1¢4737053¢

. 11\-

b 3186182721

«n, 000AnN00ONT
18, 785424526
-0, n00n00N2
36,396419300
=0.0000n00C01
52.702717572
=0,.000000037
64.199765365

5
Q,730792214
0.006u000V 4

- VTS 1)k RAVES
26,3849871975
=0,0000000V7
2?2.,944L217477
-G, LUbULENYYS
20, 8652897944
-0,000000007
18, 785624517

- =0,000000008

A 7
-0,0060000001
15,1945875380
-, 0000U00CV6
31,2764L49266

0,000000015

=~376,1500834Y5

0,000v0n00067
L4 ,66914R571
=0,000000003
45,157137484
=0,000000008
43 091876374

- T '9 -7 B
S.,06032801¢

S =0,00000000C

20,852b979358

=0, 00080C0V3

37,960697387
=0,0200060 ¢
91,2/9044610%8
=(),03000097V1

=831,041558E03

-0,000000013
64 19974635265
-0,00000004C

14
=0,020000000
10,065501452
“0,000000004
2A,5027451434
-0,000000001
43,99187A320
«0,020L00020
59,12787053¢6
=0,0000000354
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Vel B
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=1022,1504 30539
0,000000023
(0,633724043Y
1

500,2639014827¢7
0.,0000000%0
0,000000134
0.000006054
=0,000000475
0.0000002383
0,00000n674
-0,000000130
=0,00000083¢4
‘0,000001140
=0,000001140
*0,000002459

4
0,000000054
=0,000000209
0,000001125
39943, /99006505
_ 0,U00004676
-0,000002891

- =0,U00005841
©0,000001845
0.0000003588
=0,000009894
0.U00009894
=0.000021994

. . -’ - .
0,U00000667
-0,000001490
0,000003517
-0,000005697
0.U00014275
=0,00003%140

- 308208,452152030

0.000016G550
-0,000053287
0,U0004C4%2
=0,00003R981
0,0000694%9

10
= 0,00000113¢
=0.U00002474
0,0UDNU0ARTIY
=0,0000004894
0,000014603
“0.000021219
0,0000417¢3

LT e —— e

e BiE e mC e _——

0,00000G024
-1232_.9985510493
=0.00090014¢

2
6.000000004
3303, 5570807%4
=0.000000388
=0,0C0n00224
0,0000012839
=0,.000%00827
=0.0009014060
0.000000298
S 0,.000002950
=0.0000n251R
0.0vI003129
-0,000n06714

5 .
=0,000900443
0.000nn1231
=0.,000Nn035159
0,000006646
89135,4074520£45
0.000001252
0.600094305
-0,0000033%8
=0,000014186
0.000016186
=0,000016749

0,000032%907

=-0,000000123
0,000000258
=0,000000507
h, nlnnan1758
-G 0009003159
¢,000007153

0.000020%62

508431.54T278321
0.000089884
=0,00006413%
~  0.000n49353
=0,000105381

11
=0.000001125
0 _nb0AN3114
=0.000007510
0,.000009716
”ﬂ.hoﬂﬁ1ﬁéq?
n.n0NN20747
=0.0000396%7

il ot I e R S R T A s Bl ot

70.633940436
-0,00000M145
=-14635,5%58¢1370
L)

(VAVRVEVIVEV AR T
~0,020200376
14617 ,6%0132300
0,0000011¢5
-0,00000311%
D,0N009217¢
V,000003627
-0,000000307
=0,0000044541
0,000006139
-0,000007421
0,000013441

6
0,000000288
“0,00000084¢
0,000002235
-0,000003070
0,000001281
173881,315475227
-0,000032200
0,00U007155
0,000018895
-0,000L21336
0,000020266
“0,00006m00x

0
-0,000000834
0,000002965%
-0,000004560
0,070002807
=0,0000145464
0,0000109252
-0,00005%167
0,000092149
7936403,134513937
0,000055644
-0,000045061
0,000106096

12
“0,000002466
“0,00000ARYY

0,000V13535u
-0,00002199¢
. nnpds2por
“0,000047207
0,000069380
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8 =0.000064Y069 ~0,00004R787 =0,000104904 292
9 0,UNQU3N4SE -0),0000450061 0,0N01072648
10 1186013,55958141¢ - n.unn0169¢4 -0,00015%018
1 0,005020027 1703491,00020A120 0,000317576
12 “0.006153780 0,.000315428 2376151 ,636%K3155
0 1 P2 5
1 0,000000000 3.342016046 0,60000006V0
' =3,3620160406 0.000002000 S5.,51610NK834
3 =0,000000000 =-5.51610083¢L -0,000000000
&L 0, Y08926112 0. GG0000000 ~7,632/94044
5 =0,00000C00C =1.726226938 -0,00000000
B s -0,630472416 0.000000000 ~2,5352454174
7 0.Vv000U0C00L0 =0 AY981974581 0,000000000 N
8 =-0,25%1257213 CTD L, p0nNnA0DND =-1,396557351 h
9 0.,U0LLONQUD =“0,5%6575201 ~0,0000000U0
10 =0,164560293 0.000000000 =0,900005630
11 0.0000000U0 ~0.378842207 =-0,000v00000
12 - =0,11608508¢8 =0.000000000 =0,631082503
0 ) 4 _ 5 6
1 0.90692611¢ 0.000000000 - 0,4304724106
é 0,000C00000 1.72622608% 0,0ub0LBNVY
- 7,032796yc8 ~0,000000000 2.55243419¢4
T4 0,00c000000 9.7030547R9 0,000000000
Ea - =9 703954989 0,000000000 11.7522991¢5
6 0.000000000 =11.75229912% 0,000000000
7 =3,35085822649 0.0U0000001 “13, 787164577
8 0,000C00000 =6, 0014402258 0,000000000
9 -1.890174102 =0,000000000 =4 ,7963050¢2%
10 0,00000n000 -2.3727099A35 0,000000000
=41 . =1,25456155¢ - =0,000000000 ‘mp 846259152
- =0,000000000 =1.605111039 -0,0000000V0C
0 7 8 . g
1 0,000000000 0,251252213 “0,000000000
Z 0,899817481 0, n0npnnnng T n,856575201
3 0,V00000009 1,%76557550 0,0200000v0
b 3,308822649 0.000000000 1,8901749v2
- =0,000000000 L. 061440228 =0, 000000000
6 13,787164596 =0,.n000000600 b, 763505030
iy 0,000000000 15, 818472745 0,0000000901
8 =15,813472766 0,00G0000000 17,836017074
9 -0,000001r001 =17 R324017098 -0,00000000Y
10 ~5,518018019 -, =0,000000000 “19, 850498752 !
11 =0,000000000 =6,229369601 =0,000000000
12 -3,308823529 ~0,000000001 ~4,934200013
0 10 11 . 1?
1 0,1045602%3 0.000000000 0,11608900%
2 0,UNE00N00D 0.378R47ENT 0,000000000
3 0,70000%502% n.cédnatunp (,631082h048
A 0,000000000 1.2%4%61557 0,0M00000U0
2 2,3737099b4 =0.000000000 1,609111038
6 0,000000000 2 4462459157 0,600U000VY
(3 5,91R015301% CL,u9000900119 3.500052485¢7
8 ° 0.00000c001 6,2¢98%4360(0 0,000000001
9 17.85064Yn/5¢ =0, 6C0NNN0NY 6,93420000¢
10 0,Uo0L0N00Y 21.,764n4124n 0,0u0o0
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D N0V EENO WM LN -

=l

G-I O L
N-‘Q\(}mﬂombmm-{

'
]

A - B

N=O0OCON VI N -

Dl el ol

NV NN -

9
10

“21 . 864011247
0.000000000
1
0,U00000001
=122.,0650449268
0.006002000
“59.584499766
0.000000006
“40,85%1603176
0.v0nL0NULDd
-51.180072089
0.000000034
~25,226827854
0,000000013

 =21,186034061

IA
59, 5R4690763
0.000000007
1186,455079096
0.000000n025%
=2370,41442025Y
0,000000061

T =1102.167491706

0,000000037
=797.213894433
0,0000G0063
-660,066572115
0,000000093

7

o 0,bnov00006

106,62874A328
0,v00000036
1102,167491708
0,u00000030
6633,600/09756
=0.,00G000186
=P949,635Y25149
=0,000009071

" =4288,776575049

0,V00000067

 =3001,573054802

10

5, ,726827b4LE
0,000000028
326,L20251¢LEE
0,t00uUQ00p43
1352,%42574996
Q,LenU0Y104
4288 IT6574467
0.60000N294

19542, 677542582
=0,00AC0N355

11 «206056,538852y¥5%

12

0.06000n283

=0,.00GA00000
=23 R7325%852
2

122, 6065014925
0.000600G0000
476 FT3745928
=0,000300005
=234 419954405
0.n00n00025
“10h FCa7463528
0,0000000G11
-1350,.5%1448452
0.060000p00399
=107 &%6Q0RR9QQ
0.6U0000019

5
. 0,000000603
234 619954490
0.00000C00272
2370,414424222
=0,6U0000p0N0%3
w4146 ¢E1483917
-0 000000017
=1873,.964679598
=0.00Q000175%
=1322,04257317b
=0,0U09200127
-1091,2385R1132

B

T 34.180072059
0.000n000006
419,645683279%7
0.000000045
1873, 55427947
=0,c00np0o002
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6.5.4 TIMOSHENKO COLUMN ELEMENT

Two.subroutines SPTMM and TMFQB were designhed to calculate the dynamic
stiffness matrix for a Timoshenko column member, These two subroutines
are of the same organization as DYMAT and FQFN1 of the programme '
for Euler beam as in section (6.2). If these two subroutines are

to be incooperated with MAINP, cares must give to the declarations

lof arrays, since for a Timoshenko column element, as discussed in
section (3.6.5), the shear factor and the constant axial load will
contribute to the property matrix PG and make the first dimension

of PG as 9 instead of 7 for Euler beams,

SUBROUTINE SPTMM

This subroutine calculates the dynamic‘stiffnesﬁ matrix of a Timoshenko
column member as described in section (3.6.5).

Input parameters:

w frequency of vibration

H  total length of the member

o

EA axial rigidity

GJ torsional rigidity

EZ flexural rigidity about Z axis

EY flexural rigidity about Y axis

MS total mass of the member

TI total polar moment of inertia

FI  the shear parameter as decribed in equation(3.6.41) as GA;

PP  the axial force _ ' -, ¢
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Output parameters:

XE the dynamic stiffness matrix

JE the number of partial frequencies which have been exceeded,

This subroutine calls the following subroutine for frequency functiens,

'
\

SUBROUTINE TMFQB

This subroutine calculates the frequency functions of a Timoshenko

column member for the use in subroutine SPTMM,

Input parameters:
-
v frequency of vibration
MS total mass of the member
H total length of the member
RZ  flexural rigidity about Z axis
TI total polar moment of inertia
EA axial rigidity
GJ torsional rigidity

FI_ the factor GA_ in equation (3.6.41)

PP thre conspan% axial force suffered by the element

-

e 26
1z

Output parameters:
G1,G62,G3,64,G5,G6,G7,G8,G9,G10,G11,G12,G13  are the frequency functions

JB  the number of partial frequencies exceeded

L
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CHAPTER SEVEN

DYNAMIC RESPONSE AND MODAL ANALYSIS

7.1 INTRODUCTION

The dynanic response of a structure subjected to loadings or excitations is
governed by a set of differential equations in time and space variables.
These equations are called the Lagrange's equations of motion if the general-
ized Uisplacements are faken as unknowns, see section (2.5). The modal
analvsis is characterized by the fact that these equations are decoupled when
the principal coordinates are taken as generalized coordinates for linear
systems, see section (2.6). Therefore, in a system having n generalized
coordinates, we may deal with n uncoupled differential equations rather than
.a system of n simultaneous differential equations, Thus, the computational
effort requifed for the solution is considerably reduced, This is called
the technique of modal analysis,

The technique'agglies only to linear systems, When the linearity is
violated by the large amplitude of vibrations or the elasticity of the
materials of the system, the application of the mcdal analysis will result
in'a set of nearly uncoupled differentizal equations, The advantages of
applying the modal analysis in this nonlinear case will include the ease of
obtaining first approximation and fast convergent properties of the numerical
results to the solution (ref 73).

The modal analysis simplifies the computing effort for the response of

the structure even wien the excitations are just nearly periodic, In the

T
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dynamic stability study of a structure, one of the most important cas«s
is wken the mean frequency of excitations is very cleose to a natural
frequency of the structure, Then the reponse can te calculated with
good accuracy ty using the corresponding mode only (ref 95). This
technique has advantages over the step-by-step integration (ref 94) by -
the fact that the modal analysis gives asymptotic apprqximation to the
reponse and the results from step-ty-step integration method are subjected
. to accumulative errors, The modal analysis for dynamic reponse should
always te used when the natural modes are available,

The chapter will start with a general study of the modal analysis,
A plane frame and a space frame are used as examples to several classical
applications of the techniqué’&n sections (7.3) to (7.7). These include
the response calculations for harmonic and nonharmonic, periodic and
transient excitatiosms. Damping effects are considered in section (7.8).

' The reponse to random loadings will be discussed in sections (7.9) to

(7.11).

7.2 MODAL AWALYSIS

A brief mathemafical account of modal analysis of various types of loadings ,

to a structure is given in this section, Linear theory is assumed,

If the motion of a linear structure is described sufficiently by a set of
¥ generalized coordinates, 40 i=1,2,..,M, and the associated generalised
forces are'oi. i=1,2,..,1, tken the governing eguations of motion in

-

Lagrangian form are inen by, see section (2.5),

L
%

W,

Q
n‘;‘

L :@r r=1'2'|l|}\‘ (7.2.1)

r
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where L=T-U is the Lagrangian of thre systen,

T= & Jo T [PIE0] dval | (7:2.2)
is the kinetic energy, _ - _ o
U= é. f"\i (Cc iu.l g{wL ; : ) (7.2.3)

is the strain energy stored in the system, and the displacement function
vector {4} and tke strain distribution vector {£} are related to the
generalized coordinate vector {‘“ by

{uj=Laliqy and  $E}=0b1{gg | (7.2.4)
fI'Ahe generalized forces are obtained from equation (2,.5.15), i.e.

Qe = L{g;" i-u Avel 4 \Li&if" 2 4

v r=1 TR (7.2.5)
where § X} and { $} are the vectors of body forces and surface forces respecti-
vely, o
If, instead of the generalized coordinate system q3s 1=1,2,...,N, we

use principal coordinates Pys i=1,2,...,n, n may not be equal to N, such

that, the d:.stnbutlons of displacement and strain are represented by

fu}= Z {qf’c.] fote)

(7.2:6)

and le!- T Lfeed P - | (7.2.7)

where {¢d and {i;}are the ith modal displacement and strain distributions

respectively, equations (7.2.2) and (7.2.3) become
n

& 5 Refy [, 4T TR AL
U= L 3 Fc}’J‘jWLIﬁZ}T[C]{i,‘Ide

Cp}:l

When the ceonditions of orthogonality, section (2.7), are introduced, we have

T= i’g P M (7.2.8)
and U= $ 5 prodMC (7.2.9)
vhere Mo [ fbedT(P T4 dwl (7.2.10)

is the generalized mass corresponding to the ith mode,
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The generalized forces in principal coordinates Pi are given by equation (2.
7.10); i.e.. ' o
Pe = [ X1 T idcldwl+ [{BIT{dc14S

C 7 [ (7.2.11)

¥

By means of equations (7.2.8) to (7.2.11), the Lagrange's equations become

1‘5;‘ + r,_._,a: = EC i21,2,.4440 (7.2.12)
with initial conditions

peto) = o [ fc?T L] fuel dval |
and foo) = T JwL feciTLpT{ueidut (7.2.13)
for the unknowns pi(t). Where {U.} and{U.[are the values of{U{and{Cl{ at
t=0, , o
_ Therefore, when the normal modes of a structure are known, the dynamic

response of some given excitations can be obtained by(i) expressing the
displacement functions in terms of normal modes according to equation (7.2.6);

(ii) calculating the generalized forces from equation (7.2.11); and (iii)

solving the differential equations (7.2.12) for principal displacements

Pio i .
The body force vector i X] represents the total body force per unit
volume, This includes Electromagnetic forces, hydrodynamic forces, inertia

clavzaol .

forces induced by displacement excitation, etc,, The surface force per
unit area is represented by {§f which consists of distributed aﬂd concentrated
loads, travelling loads, external spring forces, viscously damping forces,

and wind forces, etc.. We shall give some particular examples:of the modal

analysis technique in the next few sections,
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PLANE

7.3 NORMAL MODES OF A FRAMED STRUCTURE
7%

A framed structure as-:shown in f£ig (7.3.1) will be used to illustrate the

various numerical methods, The structure consists of six identical vertical
beams marked by (1) and three horizontal ones marked by (2). The geometry
and the elastic properties of each kind of beams are tabulated in fig {7:3:2)
The first three symmetrical modes of natural vitration are depicted in fig
(7.3.3) and the numerical values are given in fig (7:3:4) The first
three anti-symmetrical modes are also depicted in fig (7.9:5); In the
calculation of trese natural modes, the longitudinal vibration of each beanm
vas r:eglected.

i Suppose the end displacements of the ith mode for a typical element are

denoted as t{‘i‘. q't) nf‘:’. q‘ibhown in fig (7.3.1). Then the ith normal mode

2!

of vibration of the structural element is obtained from equation (3.3.9) as

() F}l F; rC ’s “ {
1 R ol .t S AT T ()
2 %‘ ;_A3 2N JAI %\
Fo A Fel Fe F L )
e - +—£'3‘ —f =Y 2
x) =[cos?l sin®* coshA! sinht AN 222X ax AN
ﬁi( ) [ SL s:.nL Cc -I &[:] %*__F&__ _FJL e _F.'l &
i N Nk 5 O %3
A 2N 2A
- Joo. _Rd . Fil ©
Y - L A3 AN 2N N I 7 ‘ ?4
@2)
(7:3:1)
Q) ) i
« (]
( Iy
‘:A (0
()] u) 41 Bs o q
) S _____I
) (1)
77 wr

Fig (7.3.1) A plane frame
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Beam (1) Bean (2)

Mags per unit length fA
(kg n s) 20.4 51.0

-2 9 9
Young's Modulus E(kgfm ) 21 x 10 21 x 10
2nd moment of area I(m™ 1.0 x 1074 2.0 x 1074
length (m) 6.0 5.0
frequency parameter A 0.334968 x 1% 0.295155 xLo%

Fig (7.3.2) Geometry and Elasticity of each beam member

'l‘has.u'us
|

mode| res. | g o g
no. | £reds A A q; ay q"3 vy M,
1 103,703 | 3.41061 3.00524 | 0,58375 -0,96152 1 [1,52519 [1.573 x\OSK‘ij‘*"
2 |126.246 | 3.76310 3.31583 [=1.01255 0,11273 1 |1.70024 [1.388 x(o’Kgem<?
3 155.437 | 4.17555 3.67926 | 0,77571 1.17364 1 |2,06710 |2.011 xlo’Kg,cmS‘
Fig (7.3.3) Symmetrical modes of free vibration
Gu=l Vi=[.52519 fam ' ‘VA:I.'{002+ ?3.') }Vd-z.o(,"llo
f.
=t03.703 L=(§5.437

Fig (7.3.4) Syrmetrical modes of free vibration
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.051132
—

+ Fig (7.3.5) Antisymmetrical modds of free vibration

7.4 HARMONIC EXCITATION

- -
Suppose the midpoint of the topmost span of the frame is subjected to a
L]

harmonic force of magnitude 1'-’=10:3 kgf= 9810 N and with frequency (v =

10 x 27s™", as shown in f£ig (7.4.1). Ve are going to f£ind the displacement
response of the point of excitation, In this case, §n1y symmetric vibration
ﬁill be excited,

Three methods are presented here, They are the modal analysis, the
‘method of dynamic stiffness and the combined ﬂ;tuhod of dynamic stiffness and
partial vibration, Ve -shalll discuss the advantages and disadvantages of

each method afterwards,

MODAL AMALYSIS

In the modal analysis, the coordinate functions used are the normal
modes of free vibration of the overall system ﬁi(x). We first express

the deflection amplitude as u: Z P: ,Ef (x). The generalized masses are
=y

given by Mui= HlT[mWﬁ)];t] .

The generalized forces are given by fi=

j Py éindx

ML Ap Nmkfi
For the first three modes, we have
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3 2
H,{ = 1,573 x 10 kg£ ms :.
3 2
1{2 = 1,388 x 10 kgf ms®)
3 - .
. MS = 2,011 x 10 ]cgrf ms-,

1 1 1.525 -2
P1=T12 ‘}; p(x) ﬁf1(x) dx :=T1'P 'Vd = W = 0,9695 s 4

1 1.700 _ -2
P2 WH:! P vq = 7.388 = 1.2248 s 7,

1 2,067 -2
P3 = MS. P Vd = 2'011 = 100278 S .

The Lagrange's equations of motion in terms of principal coordinates are

™ ks -
P; + WPy =F; |

If steady state vibration is considered, p; =P, / (W= ') , and ve have

py = 0.9695 / (103.703% - 62.832% ) = 1,4244 x 1074,
p, .= 1.2248 / (126.246° - 62,8322 ) = 1,0215 x 1074,
p, = 1.0278 / (155.437° - 62.832° ) = 0,50849 x 107%,

The resultant amplitudes of rotations at the generalized coordinates are
given by _

q, = ¥ dip; = (1.4244 x 0,58375 = 1,0215 x 1.01255 + 0,50849 x 0,77571)

=1

x 1074 = 0,19161 x 10‘41 rad,
: > %, =-0.65765 x 1077 raa
9 = & 9P =Y. ’
4

. { -
g5 = ;Zq qui 2.95439 x 10 ., rad,

and the amplitude of deflection at the midpoint of the topmost span is

3 : ‘
Vys= 2 v;bi = (1.52519 x- 1.4244 4+ 1.70024 x 1.0215 4+ 2,06710 x
(-7}

4

0.50849 ) x 10”4 = 4.96038 x 10™% n.
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" DYNAMIC STIFFNESS METHOD .

If the dynamic stiffness matrix is available for a system, the amplitudes of
harmonic response can be solved directly ffom the dynamic stiffness equations.
No modal information is needed., The generalized coordinates are arranged
as shown in fig (7.4.1) and the dynamic stiffness equation is tabulated in
£ig (7.4.2).  The frequency parameters are found to be |
A, = 0.334968 ¥ =2,65519
Xy = 0.295155 W =2,33963;
and the frequency functions are célcu;ated as
F1(A0
Fp( )
F1()u) = 2,22904

2,39819

3.48206

Fa()u) = 3.69912

Fy(X/2) = 6.05824

FG(M/z), = 11,30282,
' 1%4 . ¢f§$ﬁuﬂt
B 7
i) 2
Q‘r'\ k"'\i‘
Fup Ll R 1
i 7 7T 77

Fig (7.4.1) Generalized coordinates for the dynamic stiffness method

e
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Fig (7.4.2) The dynamic stiffness equations

The solution of these eguations is found to be:

4

4= =q5= 0.16397 x 10" ' rad,, q,= ~qg= =0.71738 x 10~4 rad,

= -g,= 2.97458 x 10~%

qs—' 7 _rad.’ vd= 5'62803 X 10-4 oM,

METHOD OF PARTIAL VISRATION

By the principle of superposition of linear structures, the loadings may be
resolved into two systems of forces, as shown in fig (7.4.3), and the actual
deflections may be obtained by summing the deflections resulting from these
two individual systems, The first system consists of the original vertical
force P and two fictious moments of magnitude M at the generalized coordinates
93 and qg SO that the deflections at these coordipates are zeros and the top

span of the frame will bte excited only. The other consists of the loadings

which are needed to balance the fictious loadings of the first system, i,e.
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two fixing moments at generalized coordinates d3 and dge

B

M M

Vi
£
777 .- >
(a) Original force (b) Original force (c) Fixing moments
system system plus at the generalized
fixing moments coordinates

Fig (7.4.3) Resolution of force system according to principle

of superposition

The analysis of the frame work shown in {c) can be acheived by the

“dynamic stiffness metkod,  The equations of dynamic stiffness for the

symmetrical vibration are #

5.'1% Fa(Ar) + %[F’: (X)) -F.Q\x)_']}?,q.gfl‘ Fng-=o0,
EEF-(AJ?- -Pfl%‘;' p;&,)+%[F;W}-FW)]) 1.+ Ef: FIA3s~0,

LI E :
I;f: ‘:Iw)?l & {’-I.El R+ E-ir—._[F'l.W)—' Fl{(\l)]} ?—S =0. (7.4‘1)

For the partial vibration of a single “eanm, one of tre well known rethods
is the method of interior receptance (ref 56), We describe the method:
briefly as follows. If a harmonic force Fsinwt is applied to the bean,
shown in fig (7.4.4), at thre section x=h, the deflection v safisfies the
governing equation of motion of the beam, After solving the governing
equation of motion, the deflection v may be expressed in terms of F by a

receptance O 4 Such that

V(i.)ﬁ Axp Fsinwt 0 A
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| 4 |Fsinet
N N . Fig (7.4.2) A clamped-clamped beam subjected

to concentrated load,
Simila;ly, wve can obttainthe following relations for a clamped-clamped
beam, : V’Qd: F sinat oly’h
v)= x4’ B sinot
V0= oly’#’ H sinot
where Hsinwt is an applied couple or bending moment at x=h, The receptances

are symmetrical, i.e, ofxh= Ol etc.. The receptance for a clamped-clamped

btean are given by , (O cx<h<l), (ref 32),

3
Olxh= ?[Ez'lz‘"”»sg (%R R4 0]~ FTLD K- )] - T T TG A+ TR oD TlL - A1}

Ox'h= )[4 (R4 T TRH HAEU-R01- 30 30Tl (- 0T T 7D Fel§ UL -R0T)

&

olx K=z T2 Feld (- O] T T L) TR U-T. 5,88 7 R (- % FAD TR 0]]

oAxr= SEA EEA L) "3’..[‘%{l—h)]"}'r-?l(%_{)gui%u-LJ]-?..‘J..Q.E);T[%U.-M}_gf;{/}f)%& ¢-]] '

where the frequency functions are given by fig (3.6.5) and F:= F(A).

Ye turn back to the top span of fig (7.4.3 b) now, The vertical displacement

.of the midspan is calculated by interior receptance for x=h=0,5 :

Vad

_=5.85995 x 0 53550°45.93294%1. 37618x0 53550x2 - 4,42280x1,37618°
4x4200x 2, 33963/ 57 x 4,64251
=4 m

= 1,64209 x 10~
The bending moments at supports are given by
3
M= v1/o{xh. = 0,669992 x 10° kgm,
The stiffness equations of equation (7.4.1) vecome
3675 a,+ 840q2 = 0

840 qq+ 3675 a5 + 840q3 = 0

840 q, + 2455 S0 0.66999,

The solution for joint rotations is

4= 0.1640 X 10" qp= -0.7174 x 107%,  q.= 2,9746 x 1074

= F
—

RERS T =
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Applying the reciprocal theorem to the states as shown in £ig(7.4.3b)

and fig (7.4.3c), we have

P x-v2
= 2 x 0.66999 x 2.9746 x 10~% = 3,9859 x 10~

-2xMxqy =0, ; ' ’

2 P

From the principle of superposition, the total deflection at the midspan

. ' ~4
is Vq = Vq* Yy =5.6280 x 10 "m,
COMPARISON

-

The numerical results of deflections by the above three methods are tab lated

in £ig (7.4.5).

¢ fodal Dynamic Partial % error for 3
Deflections lysis stiffness vibration modes approx, of
modal analysis
q,( x107%) 0.19161 0.16397 0.1640 +16.86
T q,( x107*) -0.65765 | -0.71738 -0.7174 + 8,33
45 x10~%) 2,95439 2.97458 2.9746 - 0.68
vy( x107%) 4.96038 5.62803 5.6280 -11.86

rig (7.4.5) Cormparison of the resultant deflections

Anong trese three methods for the particular example, the dynémic stiffness

method is the simplest in application,

But in general; if the excitation

is not at a fixed point or is transient, the metkod is inapplicable,

Moreover, if thke number of points of excitation on the structure is large

or the loadings are continuous, the method will involve a large matrix which

may not be easy to handle,

For ncnharmonic tut periodic response analysis
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the excitation may be resolved into its harmonic components, the principle
of superposition of linear structures enabies the method to carry dut a
simple, direct and accurate analysis of the response, Examples will be
given in next section,

The modal analysis is the most general and widely used method in
forced vibrations. Since the Lagrange's eqations of motion can be set up
in terms of principal coordinates to almost all types of forcing functions,
the modal analysis is capable to handle many types of response problens,

‘In this particular example, the series does not converge very rapidly,

The reason is that the excitating §requency is not near to any natural frequ-
ency of the structure. When the excitating frequency is near enough to one
of the natural frequencies then even one term of the modal analysis will give
- very good approximation to the responses, Since the method involves the
solution of free vibration modes, the integration process for generalized
forces and the solution of a set of differential equations, it may not be
recommended when-ever other methods are available,

Finally, thke method of partial vibration is basically a mixture of the
dynamic stiffness mcthgd and_the method of receptance, The global vibration
responses are solved by the d}namic stiffness equations and the local
vibration response are calculated by the interior receptance, The loadings
may be concentrated or distributed, may te forces or couples, The method is

suitable for harmonic loads with complicated distribution.

™



7.5 PERIODIC NON-HARMONIC VIBRATIONS

Ve study the periodic vibration of the same structurc sufjected to the
loadings as shown in fig (Z2s541)s The time history of the excitation
has the waveform of saw tooth type with angular frequency () .. All the

three metheds mentioned in last section will be used and their results
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and performance are corpared,
8 | ? A 2t)
) loslf@f . - '
. 0 o .
\§ -4 \5__ =
at  \G=% -
'..- ) ﬂ"eper_r_o'ﬁ’_v \ E
5 = —lO’k‘}; ' . o
(2) The applied force (b) The time history of the applied
; force
; Fig(7.5.1) Forced vibration .
The forcing function P(t) is defined over the period ( -dn (=) )
 §
by the equations - '

_ -
M- LIt t fl

s e S L 2 <& ¢ @-t) R ;

where 0<a<1 , The forcing function is firstly expressed as Fourier series !

5 (4]
: P(t)=-i——“§ _‘_..S; i > ‘ot 3,

al-d)7c & J* AT Siny x 10" Kgg,
Uhend =5 , then

p(t) = %,( sinot - ésinBut + %-‘_ainSlJt v ses) % 10 Kgf

3

=( 0.81055 sinst - 0,090063 sindat + 0,032423 sinset) x 10° kg,

(7.5.1)
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The idea is that we calculate the response for cach harmonic component of

frequency W, 34 Swrespectively, and the resulting response is obtained

by -combining these components according to equation (7.5.1). - In the
following calculation, we assumew=100 rad/sec, The transient vibration
is neglected. "

HODAL ANALYSIS

The first method used is the modal analysis, Similar to the last section,

the generalized forces associated with each mode are ' . | J
|
|

2N B J, p(x) #x)ax = 0.9695 572

Membas 2

P, = 1.2248 s~%, P, = 1,0278 s~2,

2 3
The generalized forces caa be resolved into harmonic components according to -
equation (7.5.1):for the periodic vibration:
P1(t)=(0.810566 x 0,9695 sinst -0,090053 x 0,9695 sin3.t
+0.032423 x 0.9695 sinsut) s™2
={0.7858434sint -0,0873159sin3st +0,0314337sin5.t) s™2,

Thne harmonic components of the'generalized forces are tabelated in £ig(7.5.2).

Cm . ; !
natural frequency " harmonic components
i W W= 100 300 500
1 103,703 0.7858434 -0,0873159 0.0314337
2 126,246 0.992730? * =0,1103090 0,0397112
-3 155.437 0.8330954 -0,09258566 0,0333240

Fig (7.5.2) The harmenic conponenfs of the generalized forces

The harmonic components of the generalized displabements for each mode ‘are

iy
—_— , and are listed in fig (7.5.3).

calculated according to pe= 5o
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natural frequency harmonic components of the principal displacerents
i W, W= 100 300 500

1 103,703 10.41801 0.0110184  -0,001314

2 126,246 1.67190 0.0148942  =0,001697 x 1074

3 155.437 0,58832 0,0140595 =0,001476

. Fig (7.5.3) The harmonic components of the generalized displacements

The resultant displacements are given by
qé‘fil:-)= ;tq;‘) p§“) Sj-n net
which are calculated as:
q,(t) =[(0.58375 x 10,41801 ~1,01255 x1,67190 + 1 x 0,58832)sin100t
+(0,58375 x 0,0110184 =1,01255 x 0,0148942 + 1 x 0,0140595 )sin300t
+(-0,58375 x 0,001314 +1.01255 x 0,001697 = 1 x 0,001476) sin500t]

-4

x 10 " rad

=4,84500 sin100t + 0,00226 sin300t - 0,00019 sin 500t x10~* rad

) q,(t) =-9.13817 sin100t + 0.00759 sin300t - 0.00066 sin500t X (0™* rad

q5(t) =12.,67823 sin100c + 0,03997 sin300t — 0,00449 sin500t  x 104 racl
vd(t) =19.85825 simobt + 0,07119 sin300t - 0,00794 sin500t, X (0™¢m,
These are the responses requi;ed. We can see from the results that the
higher harmonics are decaying very rapidly and the the first mode is
predominant over the others, This is becausé that the fundamental
frequency of the excitation is very near the first natural frequency of

the structure,



DYMAMIC STIFMMTSS MSTHOD

Ve study the same problem by the dynamic stiffness method, ‘The generalized
coordinates are arranged are listed in fig (7.4.1). The frequency paramcters
are found for the first three harmonic components as:
x,(100)= 3.3497, A,(300)= 5.80185,  A,(500)= 7.49016,
Ap(100)= 2.9516, x,(300)= 5.11232, A,(500)= 6.59998.
The frequency functions corresponding to. these parameters are tabulated in

£ig (7.5.4).

frequency | frequency P (A) - F, (A) Fq (N FG(/\)
W= parameter

100 A1 =3,3497 3.23326 2,45782 _

M=2,9516 | 2.64908 3,16692 6.14849 10,22947
300 Ay =5,80185 |-6,60917 8.89283

A=5.11232 |-13.70682  17,76333 7.46507 -4,58235
500 Ar=7.49016 |-21,04805 =12,17994

Ai=6.59998 |-6.94556  -13.53302 11,0002 ~38,69359

Fig (7.5.4) Frequency functions
S

Three sets of dynamic stiffness equations can be set up in a form similar
to those in Fig (7.4.2). The generalized forces associated with q,

are given according to equation (7.5.1) as:

P(100) = 0,810566 x 10° kg

P(300) =-0.090063 x 100 kg,

P(500) = 0,032423 x 10° kgp.

From these three sets of equations, the generaliz_ed displacements for each



316

harmonic component can be calculated, The results are listed in the

£ig (7.5.5) below.

sin100t sin300t sin500t © units
;:-qs.—. 4.87845  0,00031  0,00975 x 1074 rad,
4,=-1g= 9.20209  0,00444 =0,01860 x 107 rad,
45=-ay = 12.82039  0,06242  0.02574 x 1074 raa,
a,° 20,73848 -0,06189  =0,03391 x 1074 m,

Fig (7.5.5) Respondes calculated by the method of dynamic stiffness

"
In this method, three sets of equations of order seven must be solved,
Although this method is direct, the deflections ..of other points than the

generalized coordinates are difficult to calculate,

METIIOD OF PARTIAL VIBRATION

The first step of the method of partial vibration is to resolve the original
system in two parts agcording fo the principle of superposition as éhown in
£ig(7.4.3). The displacement amplitudes of the midspan of the top beam in
£ig (7.4.3b) fof frequence 100,300, aﬁd 500 are obtained from interior

receptance. Yhen we take x:h:%l;, the receptances are calculated as:

n{xh(1oo)= 1,818396 x 10"7,

¢ xh(300): 4,059270 x 10'7,

-7
otxh(soo);:_o.‘gsoaaz % 107",

Therefore the displacement at this point is given by

v,=(0.810566x1,8183985in100t -0.090063x4,059270sin300¢ -0,032423x0,4803325in500¢t )

x 10'4 m.

=(1.47393sin100t -0,365595in300t ~0.01559sin500t) x 10~4
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The harmonic components of the fixing moment are obtained from Hs v, /6§H,

wvhere x=tk and h=0, Therefore °

M(t)= (0.6089955in100t +0.183417sin300t ~0,011531sin500t) x 10

3,
Lgf .

Three sets of dynamic stiffness equations are obtained for the system of

£ig (7.4.3c):

131,64 q,

© 32659.9q,

14059.4q,
7366,8 q,

. The solutions are tatulated in fig (7.5.6),

+2155.46q,

+32659.9q,

+7366.8q,
+14059.4q,
7366,8q,

+1131,64q;

- +1295.22q,

-2313,21q,

+7356.8q3
+9795.4q,

= 0
= 0

=0
r.O.'

=0, 183417

=0

. =0

sin100t sin300t sin500t
q,= 4,87845 0.0003147 0.009751 s
a4 9.29209 10.0044436 -0.018609 x 1077 rad,
qq= 1282039 0,0624235 0.025765

Fig (7.5.6) Harmonic components of generalized coordinates by method

of partial vibration

The deflection v2

Ll

is obtained by the reciprocal theorem when applying to the

states as shown in £ig(7.4.3b) and £ig(7.4.3c). for each harmonic component,

i.e,

Therefore,

E

M&-—-j’<P4’ 23
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vzw‘z"simoor +v‘;‘sin300t +vg’sin500t

=(19. 264455 in100t-0, 2542565 in300t-0,0183265sin500t ) x 10~ m,

The total deflection of the midspan of the top beam is
vdw1+v2=(zo.7384ssiﬁ1oo*c ~0,6198465in300t ~0,03391655in500t ) x 10~%m,
When comparing the results from these ;hree methods, the responses for the
£irst harmonic compcnents are coincident, For the higher harmonics, the
results from the modal analysis are a bit out of way from the other two

methods, It is because the natural frequencies of the representating

modes are not near any of the frequencies of the higher harmonics,

?
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7.6 TRANSIENT RESPONSE

In this section, examples are given to the vibration problems of determining
the response of a structure when the forcing functions ére'applied during

5 finite interval of time, and are removed hereafter, The response is
called transient,

b Now, the domain of interest is time variable, The methods such as
dynamic stiffness which are based on frequency variable are not as convenient
as the method of modal analysis, We shall discus;f;hc method of modal
analysis to the transient response,.

In the analysis, the displacement response {u(x,t)} is first expressed
in terms of principal coordinates -as:
fate,e)f = 2 py(e) {,()) (7.6.1)
where pi(t) is the pfincipal displacement of the ith mode.of the natural
vibration, fﬂ;(xllis the corresponding modal displacement, n is the number
_Of terms taken,
For the generalized forces P,(t) of the ith mode, we have, from
equation(7.2.11),
Boe | 13TiAc Al + [(BITEF s
Im1,2; wos 30 (7.6:2)
Then the principal coordinates are governed by_equations(7.2.12), i.c.
P + W& Pe = B¢ (7.6.3)
vith initial conditiocns _
p;(0§= 7, Ja £91TTPTE0] dot
B;(0)= 51 Jul t @3 TLPTT O duil (7.6.4)
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Return to our typical frame shown in fig {733:1), Suppose now a concentratecd

force of magnitude F(t)x103

kgf is acting at the midspan of the toprost beam
vertically, The vibration is symmetrical again, For thclfirst threc
symmetrical modes, we have

p, + 103703 p, = 0.9695 F(t)

P, + 126,246 P, = 1.2248 F(t)

Py + 155.437% py = 1.0278 F(t). (7.6.5)

If the initial conditions are such that the structure is at rest initially,

then the solution for the principal coordinates are found to be

pl(t) = 0.9695~£f§in (103.703(t-1)) F(T) dat
p,(t) = 1.2248 | sin (126.246(t-1)) F(x) dt
py(t) = 1.0278 l?sin (155.437(t-t)) F (t) at  (7.6.6)

The integrals in equations(7.6.6) are evaluated for some typical functions

F(t), (ref 8), and they are listed in fig (7.6.1) for refcrence purposes,

s
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7.7  IXTIMZION TO TH2RE DIMENSIONAL STRUCTIAR:

In the previous secéions, tﬁe-effects of flexural vibration were considered
only, " Tow the calculation is exte:nded to taree dimensional frames

where the effects of axial and torsional vibrations as well as flexural
are considered, We take thé frame work -shown in _Y-‘ig(?.?.'l) as

example, Tne detailed information about the frame uorklcan te found

in section (6.2.13) example 3, The first eleven modes of natural
vibration are given in Fig(6.3.11). When a torsional moment of magnitude
~ Q=100,000 sin10t I is acting a'f_._point 1, and the translational displacement
_resp'onse at point 5 in X direction is required, then the modal analysis

using the first five modes is carried out as follows,

o 5
_ - 3 4
2 W R=1005mI0t
KN
¥ &
X 707 77
77 7

Fig (7.7.7) T:e reponse analysis of a space franme
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The deflection of point 5 in X direction is expressed as
lats)= z: Pe @y (k&) , (Fado®)
The translational modal displécemgntsd{(atS) in X direction and the
rotational nwdai'displacements ¢c(at 1) in 7 direction are tatulétcd'
in the third and fourth columns of Fig 7..7:2). The amplitudes of
the generalized forces, P,= q4¢:(at 1), are listed in Fi§(7.7.2) column
five, The amplitudes of the generalized coordinatcs,?g:,Eq,/(bos-bf),
Iwhcre W =10 are calculated in column six, The amplitude of the
translational displacement reponse at point 5 in X direction is given
by equation (7.7.1) as: |
u= (17.36%4,369-2,364%10,11-4,453 ¥11,624+1,645*,3753
-5.345%,3707)¥107% m
==1,162%1072 m,
.

The negative sign denotes 180° out of phase,

For more complicated forcing functions, calculation by hand seema

very tedjous, Therefore a general computer programme for the modal
analysis of deterministic responses was designed, This programme
is taking account of modal damping as well, The programme was
presented in section (6.3).
= | : 4

mode nat, tran, disp, at rot, disp, at gen, gen,
number freq, pt,5 in X dirn, pt., 1 in 7 dirn, forces coord,

c/s *10"% %10°4 0"t
1 11.39 17.36 . 1299 1.299 4,369
2 11.50 =2,364 .3260 3.260 10,11
3 19.96 =4,453 ° 3,467 34,67 11,62
4 40,40 1.645 «5375 . 5.375 3753
5 47 .25 =5,345 .7905% 7 .905 3707

Fig (7.7.2) The harmonic analysis of 3 space frame
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7.8 DAMPED VIRRATICNS

Any real structure will subject to some degree of damping effects,
Internal damping will be considered in the sectionm, The internal
energies of an elastic system in terms of modal components have the forms,
=4
T 39.P1 s
J
2

5 .
2 .

‘ where M, is the generalized mass,

i

The energy loss because of the damping effects can be cxpressed in the

-~

form (ref \o ), D_-l':[ ijp p. (7.8.2)
hl)\‘-\
where bi;j are damping coefficients, In general, the damping cocff-

1cients are functions of frequency and are coupling all the modes,

In practice, the damping coefficients are difficult to deternmine,
For metal;ic material fhe damping effects are small, In this case,
the coupling effects are negligible, Therefore the consideration
of the modal damping only will give a good estimaticn of the effects

of damping. When modal damping is consider, the energy lost is given

n
. 2
by D= - g‘wbipi (7.8.3)
where h’bi is the damping frequency of mede i, The Lagrange's eqs
of motion are™
AW N B, :
RS TR e (e

Substituting equations (7.8.1) and (7.8,3) into (7.8.4), we have
Pt 20biWiper Wipi = P¢ Cotzea. (7.8.5)
When the loading is a harmonic one,
Piw= Qishut
the steady-state solution is
P = Qesin(eot+ @o ) /{(W(-)+ 4t 17 (7,8,6)

vhere thre angle of lead ¢ is defined as

lm‘-‘)‘&\ (7.8-7)
q"' = - +0\YL --'—r"—'L—‘

Wy -

T
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‘hen the forcing functions Pi(t) are not harmonic , then the
following set of ordinary differential equations nust te solved with

some specified initial conditions,

f’cvltw;wc?c+wc‘r~'- B¢ {s12,00m (7'8°GA
An ordinary differential equation of the form _
i',.;.-;gmii-va‘x:-f-&) ! (7.8.9)
can be solved by means of Laplace's method, Take the Laplace transform

of equation (7.8.9)

SA4LLWLS + 0= F(S)t Sxed YT +2L W e

where Xe= X ©, x5 =%'()
st Ii%led e  #
Therefore,

Xz [(Ff6)a(+Cw) 10+ (xs+ Coxe)] /(528054 ) ‘(7.8. 10)
Take the inverse transform of equation (7.8,10),

O ;!;__Lt e * g ag-t)de
4 Xoe® cosat + (o~ bYe) & € stnat. (7.8.11)

wvhere QG = W Jt-_" : |
and bosCuw o

For velocity X'(+)_, by the fornula , Lix'®)}=eX-%q,

14 1/} = [($4¢w) Tis)- CaP8)+(SHe) e (S X 417 )]/ (8% 20uose A
t = "

' X = jo e Usl‘r\ at-t)fe)de+ {-J:e“" Oginat - v )f)de

. bt
+ e wsat + (b1 -wee) & e shat. (7.8.12)
A computer programme was designed for computing the damped reponse of
a three dimensional structure by arbitrary excitations, This can Ye .

found in section (46.3), where numerical examples are also given,
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7.9 RANDOM VIRRATICH

The examples of the forced vibrations in the previous sections are

ternmed deterministic since the magnitudes of the loadings are pre-
determined functions of time and space coordinates., _ In the following
sections we shall discuss the topics under the heading of random vibrations,
The forcing functions are in-statistical forms and the problen is to
.determine the correlation between the forcing functions and the reponse,

For a comprehensive study of random vibrations, the text by Robson (ref
109) should be recommended, A brief account of the study by modal
analysis, i.e., the spectral method, is our concern here.
.We begin with some necéQSary definitions in statistics and then

the spectral method is introduced by an example of single-degree-of-frecdon
systen, Then the method is extended to complicated elastic structural
systems by means of the.modal analysis, A space frame is taken as
numerical example, |

Function,X(t), whose value is a random variable for fixed valucs

of the argument, t, is called a random function, as shown in Fig (7.9.1).

-t

Fig(7.9.1) Random function
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" The pressure from a gusty wiﬁd might bé‘an exémple of such.a function.
Random functicns of tigé afe célled ;;o;ﬁaﬁtic processes, Velocity
and pressure variations iﬁ a turbul&ﬁt.fiow,’the noisec of a jet engine
and jolts experieﬁced by a traﬂspbétlmedhanism moving an a rough path
are all stochasfic'processes. | 3 _

The average of a ?aﬁddm Y?riable, (X(t)) , is defined as
(X)) = 1!__"::, -.lr—jj X (€) At (7.9.1)

' By forming the products of the ?andom variable at different time, and
averaging these products over the set of 2ll possibilities, we obtain
a seguence of functiong | x

xle)y , (X(e)X(t,)D 4 <X(e)x(e,)X(t5) Y, etes (7.9.2)

The first of these functions is the mathematical expectation, i.e. the
average, of the stochastic functién X(t) , depending on time as a
parameter, The second function becomes the mean square (f(t)) at

t1=t2 =t ., The functions

Ryy(t,,t,)= (X(£,)X(t,))
Rexx(tprtarta) = (X(e,)x(e,)x(25)) (7.9.3)

[N NN )

describe the statistical connection, or correlation, between the values

-

My
at different times and are called correlation functions, To obtain a

complete picture of a given stochastic process it is necessary to knew

the mathematical expection and a complete system of correlation functions,

Fow, let us examine the set of several stochastic functions x1(:).

Xz(t),...,XA(t) instead of a single function, Their correlation functien

are defined by mean of the cxpressions
Ry g (%) = G5 (E 5 (55))

Ry (Erotarty) = (K5 006,05 (1)) (7.9.4)

In all there are n2 second order fungtions, n® functions of order s, ctc.,

! §
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If.the stochastic functions Y1(t), Yé(t), ....Yﬁ(t) arc obtained by a

linear transformation of the stochastic functions X,(t),X (t),...,xn(t).

Yj(t) = gn‘ ajkxk(c)+cg Ja1,2,000ym  (7.9.5)

- we obtain a relationship for the second order correlation functions:

RY Y (t1!t ) “0{3‘:‘ %?Jdakdﬁxgu( (t 't ) l (7.9.6)

The second order correlation functions for thke first derivatives ij(t)
. and Xk(t) of the differentiable stochastic functions Xj(t) and Xk(t)

are determined from

Jxk(tpt ) = X6 )%, (£,)) = ¥R, x_k(t.l,t Yo t,at,

- (7.9.7)
Since the matrematical expection and the mean square of the stochastic
functions will give an approximate picture of the random process, we

shall consider the average and the second order corrclation functions only.

A stochastic process is called stationary if its statistical
properties are independent of time, A stationary stochastic process is a
system of irregular variations around some mean value, The power
distribution, i.g; the rate of change of energy, of the process in the
different frequencies plays an essential part,  The spectral
characteristics are the basis of the spectral method of describing
stationary stochastic processes, Correlafion functions for
stationary stochastic fgnctions depend only on the intervals ta—t1.t3-t1.

etCs, Thus the second reder correlation functions become

Rx_xk(t) =<Xj(t)}{k(t+'[» (7.9.8)
J

These correlation functions possess the precperty of symmetry, i,c.

() =R, , (-1) | (7.9.9)

xax X%,
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For j=k, they are even functions of T , and

o

ij:{j(o)= {sz(t’)) | : _ " (7'9'10)

is.tre mean square, - Since'RxxCL)his'an even function, it can be
represented by using a Fourier cogiﬂé transform
0o " :

Ryx(T) "Joéxx(")_ costoTd e (7.9.11a)

The inverse transform is
=% 7

& 4 () ;-—%Jo Ry (T) coswedt (7.9.11b)
The newly introduced function éxx(to), dependent on the frequency W ,
is called the spectral density of X(t),. If the spectral density is
¥nown, the mean square value of X(t) is given by

GE(e)) = f‘é.xx(@) aw | ' (7.9.12)
To establish the meaning of_‘__the _spectral density, let us note that
the quantity (xa(tl?_ is proportional to the mean povwer of the stochastic
process, Therefore the pfoduct Zﬁlxxﬁo) dw corresponding to that
fraction of power which is includéd w{th the frequency range from  to
w4+ dw,  Hence, the function éxx(w) is sometimes called the spectral
power, tre energy spectral density, etc..-

Extending to fhe case of several mutually correlated stochastic

processes Xl(F): Xz(t)l...,xn(t), we have

1t

R, . (0)
‘&3}&( 3

2 o=
B, ., == [Tr () cosvraw
.«{j}’.k L Yo Xj&.(

The practical determination of spectral densities by means

.S, éx.i&("") coswT dw (7.9.13)

(7.9.14)

of empirical data usually reduces to the numerical determination
of the correlation functicns and the execution of the Fourier
transformation. The operations may be mechanized, Some

spectral density curves are constructed as shown in Fig (7.9.2).
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7 .10 STOCHASTIC VIRRATIONS OF A SINGLE-DEGREE-CFP=FREZDOI SVSTEM

v

Before turning to an analysis of the behaviour of elastic systems under

the effect‘of stochastic forces, let us consider the intensively studied

case of a;linear vitrational system vith one degree of frecdon, Let

f be a generélizéd coordinate, wotke natural frequency, and z_; the dampind

characteristic equal to the ratio of the logaritkmic damping decrement tO
| penoting the géneralized random force by Q(t), we obtain the

equation of motion

T4 2700f ¢ wef =0t) (7.10.1)
Its solution may be written by using a pulse transient function h(t-t),
equal to the value of the Qeﬂgfalized coordinate f at time t due to a

-

unit impulse applied at time T,

L

<
#(t) = | nle-tha) ax (7.10.2)
The corrclation function of £ is
Rop(tysty)= {£(t,)E (£,)) (7.10.3)

Substituting eq.(7.10.2) into (7,10.3), we have

R_{_;f(t1,t2) =jt.ft= h(t1-t1)11(1;2-'c2)20:’(t1,t2 ) aT,dT,

-0 ~00

. (7.10.4)

where RQQ(F"IE) is the,gérrezgt?on function fortthe generalized force,
If tre external loading starts to act at time t=0 and the system is at
rest at t less than O, then t1=t2=0 should be taken as the lower
limits of integration in equation (7.10.4).
Let us consider a stationary stochastic process in detail,
Making the change.of variable in equation (7.10.4),
t)y-Ty =T, ta-Ta =T, .tr=t; =T

we have,

w v
R = 4 NWRas [C-ti+t!) dxrdr,
ff(‘t) J‘ J’ f( ) htt )naa_[ T+ 1)) dt 2 (7.10.5)
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Henceforth, we shall omit the primes in T and 1} ,
Let us form the Fourier transforms of the left and right sides of
equation (7.10.5), then
J_: Qg; e dw |

- J': AwJT J:a ft("—l) ) @aq(»ﬁ)ec""(t'n*td aAt,dT, (7.10.6)
Let us now introduce the transfer function of the system F(iw), such
that ‘ F(iw) = th(-n) & A iy (7.10.7)
. The transfer function is defined most simply as the ratio of the

steady state solution of a linear system under a harmonic action

exp(ict) to this action, It is sometimes called the mechanical
receptance,. Thus for equation (7.10.1),
Few = 1/ (W-w'+208ww,) (7.10.8)

This can also be obtained by substuting
o ,

( it t¢o
©= \ ~fwe ek
h lﬁe sin(wWelt-C2 1) b T>0 (7.10.9)
into equation (7.10.7). ‘
Taking into account of equation (7,10,7) into equation (7.10.6),
we have
%] o I 5 L)
J B (@e " dw - f_u FUAF i) Paade T dw  (7.10,10)
This relationship should be satisfied for all t , hence
B W= FLWTF W) Pgg (W@ (7.10,11)
The equation (7.10,11) establishes a very simple connection between
the spectral density of the generalized force Q(t) and the spectral
density of tre generalized coordinate £(t). The simplicity of this
relationship indicates the great advantages of tke spectral approach
as applied to stationary stochastic processes, Here, the structure

of the linear systenm itself is not specified, it is just necessary

that it be descrited by equations with constant ccefficients,
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7.11  VIBRATIONS OF AN ELASTIC SYSTEZM UNDER A STATIONARY STOCHASTIC
The investigation of the behavior'of an elastic system is more difficult
than the simplest case presented in the last section, This is mainly
because thé vibrations of elastic ;ystems are described by partial
differential equations in time and spatial variables, However, the
problem of solving the stochastic response of an elastic system may

be reduces to systems of ordinary differential equations by expanding

the desired solution as series‘gf normal modes of the system, I?

we expand the displacement response 1u(x,t)‘ in terms of principal

coordinates p,(t) and the corresponding normal modes {ﬂl(x,- , then
UL} =2 PO idew? (7.11.1)
For the generalized forces Pi(t)' we have
Bit)= js 1917 {b3dS A, s en (7.11.2)

vhere {q(x,y,z,t)} is the surface force vector. The principal
coordinates are governed by equations (7.8.8), which are,

Pt + 9 pe Wi P R pc= B¢ L, 2= (7.11.3)
vhere W¢ is the ifﬁ natural frequency of the system and Wi’ is the
ith modal damping ratio. | .

Because the system of equatiO£s of motion are uncoupled now, it
becomas possible to investigate the behavior of each generalized
coordinate independently. Hence, equations (7,101) to (7.10,11)
which were derived for a system with one degree of freedom remain

valid for each generalized coordinate, Nevertheless, for a complete



335

description of the bcha-vior of én el‘;stic sys;:cm it is generally necessary
to also take account of the correlation between the various generalized
coordinates, Let lus examine r;his by considering the mean-square of

the deflection sﬁ(x,t)g , Where x is a vector quantity of the three
spatial variables, Now, -

Lfulrk ;'1T{uu.tn>=§§; Rpspelt E) {20037 § g0} (7.11.4)
where RP;‘ Pk(t ,t ) are second order correlation functions of the
generalized coordinates p J-(t). Equations for the correlation functions
Rprpe (t,.t,_) are bbtained analogously to the manner in which the equations

| for systems with one degree of freedom have been derived, The solution
of equations (7.11.3) in terms of pulse transient functions hk(t-r) is

given as follows:

« 2
f‘k\f:)=‘] e &-t) Prorde

-po

Substituting this into equations (7.1'1.3). we obtain, -
€
RP)‘Pk(tr,h)=-} J‘ﬂj‘ﬂc--f""'*-t(k""" Rpipy Lo 1)ATidT (7 49,5)

P2 e

If the external loading is a stationary stochastic function of time, we
then have, by introducing the loading spectral densities éﬁ;i’gbﬂ) and

the spectral densities of the generalized coordinates Eﬁ-ptuﬂ) ’

< . o
where Popeld=F; (-iw) Fk(f?&_) Bp e, () (7.11.7)
il Fiew)= 1/ (v~ 0% 2 e ;1) (7.11.8)

According to the definition Rprp, (ki k)= BrE) Byta)>
wve find, | _
’23;‘2* (‘L‘Ht Tt y""ﬂ_ﬁ( g?(jui ) zTi?(za,"" )})f(\b,{z”?‘¢’kﬁl)sdsd§2(7 o 1 .9)
5

Taking the Fourier transforms, we have,

§B;Eé“°)=§ g-@w (@ 2 B Ty tepldSidSe (7.11490)
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By substituting'equations (7.11.7) to (7.11.10) into equation (7.1 .6),
we find the corrclation functxons of the generalized coordinates,
To illustratc some of the theoretical points discussed in this section
let us cons:.der a umform beam governcd by the equation, .
gL 2 3 * 4 cw+ P = ?tx *) . (7.11.11)
pa
where EI is the flexural rzgzdzty, ¢ the damping factor, m the mass density.

Further assume that both ends of the beam are simply supported, Then

* the natural modes are glven by

¢ = s:m_T - o o (7.11.12)
where A is the span length of the beam,  Note that{ﬂs is a scalar in

this example since we consider the flexural deflection only. The

‘generalz ed mass,gencralizcd mass, modal danpmng ratio, and the natural

frequency in the jth mode are, respcctively,

* el . ,r::c 2 '
mJtnl% ; C) = -,i- ; ‘JJ.-:: "M (J-L-) (7-11.13)
Then the tranfer function Fj is given by
3 , - '
Fj@"“):'g,: [eEr (@)% m+tem ] (7.11.14)

Now we assume that the random load q(x,t) is a white noise with respect

* to the Ti'me parameter t, and it has an exponential-decay type of

correlation function with respect to the spatial coordinate x, Then

" the cross spectral density of the random load is

2 Xi-12,0) = up{ alti=¥sl { (7.11.15)
where ¢ and a are constants, _
Substituting equations (7.11.15),(7.11.10),(7.11.7) and (7.11.6) into
equation (7.11.4), we have , The varn'ance of dd:lech'en,

o) = < w2lk)>

32¢6% & die] I .
Tr“ﬂl(;EI zzsn SInT i [a..‘.e-'f-}z ."‘{QI"},]SJ&*-

—al RTEYL ‘ .
n gn Lzate(:r)'t]t‘cl;.aré - i/[%g)v(ﬂ' L)+ 2(E)( ey )]
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1f the standard deviation of 1oadiﬁg,¢ »is unity, then the root mean
square values of deflection along the beam are plotted in Fig(7.11.1)
for different damping ratios c ;nd d;cay constants a, Ve see that
the standard deviation of response decreases in amplitude with increasing
damping ratio and'incrcasing damping ratio,

The magnitudes of E,I,m,1 are assumed to be unitieg. The

computer programme for the plots is listed in Fig(7.11.2).

f_"'_!
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CHAPTER  EIGHT

DISCUSSION

INTRODUCTION

Ve have presented a method to determine the natural frequencies and

the associated modes of a linearly elastic structural system by

means of frequency dependent fundamental matrices, The method

of solution could be summarized in Fig(8.1.1). Along this flow

diagram, the new studies developed during the period of research

are given below:

1.

2.

3.

4.

The formulation of the frequency dependent mass and stiffness ’
matrices for an elastic member of distributed mass and elasticity
by means of the solution of the gorvening equations of motion,
The formulation of tﬁc fundamental matrices by means of the
eigenfunction expansion of the elastic member with all
generalized displacements set equal to zero,

The ;héa?em 3.4.1 which enablesone to separate the dynamic
stiffness matrix into mass and stiffness matrices,

The proof of the Sturm sequence §r0perties of the dynamic stiffness
matrix with respect to the natural frequencies by means of the
theories of determinant and the concepts of substructures,

The theorem 3,4.1 is of particularly useful when the dynamic

stiffness is obtained by experiment and the equations of motion are

not known or are impossible to solve, The new computer programmes



n'

343

V| FoR THE FUIDAMZNTAL MATRICES OF
VIBRATION OF INDIVIDUAL MEMBZRS

CHAPTER 3 .

\U
z FORM THE OVERALL DYNAMIC MATRICES

. | BY MEANS OF COORDIMNATE TRANSFORMS

CHAPTER 4

o4
3 ISOLATE NATURAL FRBQUENCIES BY

STURM SEQUENCZ AMD GAUSS

ELIMINATION METHODS

v

4-| LOCATE NATU.AL FREQUIMNCIZS BY

NEWTON 'S METHCD OX INTZ&PCLATICH

METHODS

-

I o . v5 .
'yes———<gRE THERE ANY CLOSE R00TS >—no

d;i

-7 £
OBTAIN EIGENVECTORS BY OBTAIN EIGENVSCTORS BY
BLOCK ITERATION S o INVERSE ITERATION
1? - 1'?

8 DETERMINE DISPLACEMENTS AND

STRXAIN DISTRIBUTION

-

"Fig (8.1.1) The overall solution of the free vibration problem
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developed include an overall programme to calculate the normal modes
of an arbitrary space frame, a programme making use of the normal
modes thus obtained to determine the structural response to arbitrary
excitations, and a package of numerical linear analysis of different
forms- of matrices, An experiment was conducted to verify the results
obtained from the main programme for a plane frame, In‘the following
sections we shall discuss the advantages and disadvantages of the
method of solution in natural vibration problems aﬁd the possibility

of developing these studies to some practical engineering problems,

-

8.2 COMPARISON OF THE METHODS OF SOLUTION -

The frequency dependent matrices approach to the solution of natural

¢

vibration problems is like other methods and will have its advantages
and disadvantages. If exact solution of the gorvening equations

of motion of each member of the structure is used to confruct the
fundamental mﬁgrices tﬁan exact results of the nermal modes are
expected, »There is no rcstriﬁtion to the size and shape of an
elemental member as long as the solution of the equations of motion
with general boundary conditions can bg obtained. Although we

have constructed the fundamental matrices for some members such as
uniform beams, tapered beams, Timoshenko columns, there is not

always the case that the equationsof motion may be solved, Therefore
we developed another method to form the fundamental matrices by
expanding the solution of equations of motion with general boundary

displacement conditions by the normal modes cf the member with all
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generalized coordinates set to zero, The eigenfunction expansion
ensures fhe convergence of the series séﬁution to the real solution,
Again, there is no theorectical restriction to the size and shapé'of
an elemental member as long as the normal modes can be obtained,
Because the normal modes are eggier to obtain than the écncral soluti-
on of the equations of motion, theréfore, we were able to construct
the fundamesntal matrices for some more structural members of one- ,
two-, and three-dimension, It is not difficult to obtain the
fundamental matrices of the frame works shown in section (6,2)
examples 1, 2 and 3 when regarding these structures as single members
* because we have calculated the normal modes already. Of course,

s owe canﬁﬁot extend the argument indefinitely, since the normal modes
of a complicated structure is difpicult to obtain. If it is the case,
the method of finite element with constant mass and stiffness matrices
may be suitable, because there does not arisé:Ehc problem of solving

< tﬁe goﬁyéning equations of motion,

On the other hand, if we calculate the normal modes of a
structure B? ginite element or finite difference or lumped paramdtcrs
wve will end ‘up with some large overall matrices if a large number
of elements are necessary to increase the accuracy or if the higher
modés of vibration are reqﬁired. It is very common in engineering
structure that the number of elements are large, and the accurate
higher modes are unavoidable during the analysis of the sensitivity
of the normal modes or the rate of change of the normal modes with
respect to some desigﬁ parameters such as wind pressure and temperature.

An ordinary computer of 32k can solve a set of 100 linear equations

’
(3
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in core, and a set of 5000 linear equations by means of sequential
backing storage. Solving eigenvalue problems required at least

three times more storage as solving linear problems and the sequential
method is not convenient for cigénvaluc problems, The other
difficulty is-that the total numerical error in these methods consists
of two branches: the theorectical error which decreases with increasing
number of elements and the rounding off error which is-proportional

to the cube of the order of the overall matrices, as shown in
Fig(8.2.1).  To solve the problem of computer storage, the method

of substrucﬁ}ing may be used, However, since the method of sub-
structuring is equivalence to linear elimination of redundent equations,
the rounding off error remains, and the computing time which is
proportional to the cube of the order of the overall matrices can

not be reduced,

The method of frequency dependent matrices will not éﬁffer these
two difficulties of storage and rounding off error, even when higher
modes are required, because the size oflthc overall matrices needs
not to increase in order to obtain high accuracy. Giant member
may be used.fg; complicated structures as indicated in section(3.5.3).
Finally, if the structure is too complicated, the overall dynamic
stiffness matrix may be constructed experimentally for each frequency,
and the theorem 3,4.1 may be used to separate it into two positive
definite matrices, - | |

Therefore we see that for some particular types of structures,

the method of frequency dependent matrices may be suitable and for

the other structures, other methods may be more advantageous, In
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the following section, we shall discuss some engineering structures

which may be analyzed by the present method,
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Fig(8.2.1) The numerical errors of finite element methods
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8.3 ENGINEERING STRUCTURES

The preseht method is very éuitable to analyze the following types

of engineering structures: strﬁcturcs consist of skeletal members,
such as space frames; structures with repeated identical members,

such as folded plate structures; and some three dimensional structures
with one of the overall dimension much larger than the other two,

such as long bridges and tall buildings, In case of space frames,

a complete computer programme was presented in chapter six, A
specific natural mode can be calculated accurately without subdividing
the individual members, hcnée, the data preparation is kept to a
minimum, For structures consisting of repeated members, the
establishment of the frequency dependent fundamental matrices is
needed for a few member types only, and therefore the effort spent

in developing these-matrices and the calculation of frequency functions
are reduced, As far as a'"long" structure is concerned, subdividing

the whole structure into a number of coﬁvenicnt substructures and

.coﬁputingﬂthe normal modes for each substructure will not be difficult.

As an examgic; a tall building maf be considered as an assemblage

of sbme core members ﬁhere the 1ifts are presented, some supporting
columns and shear walls, and some floor levels, All these elements
are comnected in the floor levels only and these floor levels may be _
considered as rigid in their own planes, and there are six generalized
coordinates only for each floor, Therefore, if we considar the
cores and shear walls as opcnihin wall beams or box beams which are
considered in finite element method as assemblages of plate elements,
tremendous savings in data preparation, in computer storage, in

computer time and in the analyzing process of results.,
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8.4 PROBABILITY FOR FURTHER DEVELOPMENT

Since the method of frequency dependent matrices in structural
vibration analysis is very useful for many common e;gineering
structures, to develop the method in a wider sense 1s seemed to
be worthwise, The first probability is to develop the funda-
mental matrices for various common structural members such as box
beams,torsion beams with open sections, etc,, and store them in
a library, . Since the method of eigenfunction expansion for
fundamental matrices may be applicd to more general structural
members, therefore there is a need to develop a computer programms
to construct these matrices from the normal modes of the member,
General plate and shell elements are not recommended to develop
by the present method because of the complicating boundary
conditions,

The solution method for thé the resulting overall nonlinear
eigenvalue problem for natural vibration analysis if very stable

both for natural frequencies and the corresponding modes.of any

b

multiﬁlicié?. The modal analysis method has been used to
analyze the deterministic structural response to arbitrary
excitations, For random response analsis, with the fact that

the response spectrum is the bilinear transformation of the loading
spectrum with respect to the dynamic receptance of the structure,
to develop a method by which the dynamic receptance could be
constructed by means of eigenfunction expansion can be profitable,

Finally, the dynamic receptance may be separated into two positive

-
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definite matrices associated with the strain and kinetic energies,
However, there is no need of doing so, since for natural vibration
analysis, the method of dynamic stiffness is more suitable because
its assembling process from elements to the overall structure is

much simplér,

<y

g

L
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