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Abstract— In this paper, a novel algorithm based on fully
probabilistic design (FPD) is proposed for a class of linear
stochastic dynamic processes with multiplicative noise. Com-
pared with the traditional FPD, the new procedure is presented
to deal with multiplicative noise and the system parameters are
estimated online by the linear optimisation. The performance
index is characterised by the Kullback-Leibler divergence
(KLD). The generalised probabilistic control law is obtained
by solving the Riccatti equation while taking the multiplicative
noise into consideration. To demonstrate the effectiveness of the
proposed method, a numerical example is given in comparison
with the traditional FPD.

I. INTRODUCTION

In recent decades, stochastic control has been one of
the major interesting research subjects due to the inevitable
noises, including external disturbance and structure random-
ness uncertainties have widely existed in the industrial and
chemical system [1]. So far, amounts of research literature
related to the stochastic systems control have been published,
such as linear quadratic Gaussian (LQG) algorithm [2],
minimum variance control [3], [4], minimum entropy control
[5]–[7], and H2/H∞ control [8], [9]. Most of the existing
literature focus on minimising the system randomness or
make the Probability density function (pdf) of the concerned
value follow the desired pdf. The quadratic distance has been
used in many papers to characterise the distance between the
actual pdf and the desire pdf [10]–[12]. As many distributions
can be expressed by an exponential function, Kullback-
Leibler divergence (KLD) can be considered as a convenient
scale to characterise the distance between two distributions
[13]–[15]. Therefore, Fully Probabilistic Design (FPD) (
[13]–[16]), inspired by Bayesian approach to adaptive control
design [17], which is proposed based on KLD, is applied in
this paper.

The main contribution of the FPD is that it offers a specific
form of the randomised optimal controller. However, the
computational loads are quite heavy since the evaluation
of the randomised optimal controller involves multivariate
integration steps which need to be calculated by backward
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recursion. To solve that, [14], [18] provides a probabilistic
Dual Heuristic Programming (DHP) adaptive critic method,
which applies a critic network to circumvent the requirement
for explicitly evaluating the optimal value function and
enormously reduced computational requirements.

Several numbers of studies based on FPD has been
published and gain significant accomplishments. A novel
generalised fully probabilistic controller design was proposed
in [15] for stochastic linear Gaussian systems where the
dynamics of the system is unknown and where the uncer-
tainty introduced by the model discrepancy is estimated as a
function of the system inputs. In [19], the FPD is combine
with distributed control for large, complex, noisy and highly
connected systems. In [20], a probabilistic control method for
adaptive synchronisation is proposed. So far, very little pub-
lished FPD related literature has focused on the system with
multiplicative noise, which is commonly existed in many
physical systems such as biological movement systems [20],
[21] and signal processing systems [22], [23]. Compared
with additive noise, multiplicative noise is considered to be
more practical as it enables the statistical description of the
noise part to be uncertain but at the same time depends on
the control and state solution [24]. Moreover, multiplicative
noise in a linear control problem has a crucial effect on the
robustness of the control system [24], [25]. Therefore, it is
significant to develop an FPD method to deal with stochastic
systems with multiplicative noise.

This paper proposes an FPD based controller for a class
of stochastic linear discrete system with multiplicative noise
to make sure the states pdf approaching the given pdf.
Compared with the traditional FPD, multiplicative noise is
considered in this paper and the state parameters are esti-
mated by a single layer neural network. In addition, the state
feedback controller form is applied. As a traditional control
methodology, state feedback control has always played an
important role in both theoretical and practical fields. The
way of choosing the optimal feedback gain is various with
the performance index, such as LQR [26]–[28] and pole
region assignment [29]. Also, state feedback control draws
loads of attention in stochastic system control. The problem
of designing H∞ state feedback controller for the generalized
time-delay systems with delayed states and control inputs
in continuous and discrete time cases is considered in [30].
Two novel methods for stochastic systems using the state
feedback form were proposed in [3] and [6], where [3] is with
minimum entropy based control and [6] minimum variance
based control. However, the optimal feedback gain in most
existing stochastic related literature has no explicit form,
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which makes it hard to achieve a global optimal solution.
Motivated by that, in this paper, the explicit form of feedback
gain is provided and the detailed procedure is given.

The remainder of this paper is organised as follows.
Section I indicates the problem statement. Section II provides
the details of the controller design. In Section III, the
proposed algorithm is applied to a numerical example to
show its effectiveness. Finally, the conclusion is summarised
in Section IV.

II. PROBLEM STATEMENT

A. Model Description

Consider a linear discrete time system with multiplicative
Gaussian noise as follows

xk = Āxk−1 + B̄uk−1 + D̄xk−1vk−1 (1)

where xk ∈ ℜn is the system states, uk ∈ ℜm is the system
inputs, Ā, B̄, D̄ are system matrices with appropriate states
dimensions, and vk ∈ℜ is independent Gaussian noise with
zero mean and variance Q̄

vk ∼ N
(
0, Q̄

)
(2)

This means that the conditional distribution of the system
dynamics described in Eq.(1) is a Gaussian distribution with
mean µk and covariance Σk,

s
(
xk|uk−1, xk−1

)
∼ N

(
µ̄k, Σ̄k

)
(3)

where

µ̄k = Āxk−1 + B̄uk−1 (4)
Σ̄k = cov(xk|uk−1, xk−1)

= E{(xk−µk)(xk−µk)
T}

= E
{

D̄xk−1vk−1vT
k−1xT

k−1D̄T}
= D̄xk−1Q̄xT

k−1D̄T (5)

B. Parameter Estimation

A key step in the fully probabilistic design is the evaluation
of the probabilistic model of the discrete time linear invariant
stochastic dynamical system. The system considered in this
paper is described by the state space model shown in
Eq.(1). The previous state and control input do not entirely
determine the present state due to the multiplicative noise.
However, the state and control input of the previous state
allow the specification of the probability distribution of the
states, given by s(xk|uk−1,xk−1). To predict the unknown
probabilistic distribution, the parameters of the distribution
of system (1) are estimated by the implementation of linear
optimisation. The linear optimisation problem is conducted
in two parts:
• For the probabilistic model, the parameters, Ā and B̄,

in Eq.(1) are unknown and need to be estimated as A and
B. The estimations are obtained by rearranging Eq.(1) and
linearly optimizing as

xk− D̄xk−1vk−1 = Axk−1 +Buk−1. (6)

Note that Eq.(6) is written in matrix format and the right
hand side of Eq.(6) is written as: a11 . . . a1n b11

...
. . .

...
...

an1 . . . ann bn1

[ xk−1
uk−1

]
,

where the first matrix is the combined matrix of A and B of
the probabilistic model which can be split accordingly in two
separate matrices A and B. To solve this linear optimisation
problem and obtain our estimations for A and B, the pseudo

inverse of
[

xk−1
uk−1

]
will be taken, resulting in,

[xk− D̄xk−1vk−1]∗ pseudoinverse
[

xk−1
uk−1

]
.

• Similarly, matrix D is estimated by rearranging (1), and
thus, linearly optimizing xk − Āxk−1 − B̄uk−1 = Dxk−1vk−1.
The pseudo inverse in this case is taken of xk−1vk−1.

This yield the following estimated distribution of the
stochastic system described by Eq.(1),

s(xk|uk−1,xk−1)∼ N(µk,Σk) (7)

where,

µk =Axk−1 +Buk−1 (8)

Σk =Dxk−1Q̄xT
k−1DT (9)

C. Performance Index

The purpose of designed controller here is to design a
control strategy for the system in Eq.(1) to bring all the initial
states back to the origin, in the meantime making sure the
state conditional pdf follows a predefined pdf. Therefore,
the performance index needs to be formed to indicate the
distance between the state conditional pdf and the desired
pdf. There are various methods to describe the distance be-
tween two distributions, such as Kullback-Leibler divergence
(KLD) and Cauchy-Schwarz (CS). In this paper, the KLD
is applied due to its computational advantage. The definition
of the KullbackLeibler divergence (KLD) between the actual
joint pdf f (D) of the observed data D = (x(H),u(H)) and
the ideal joint pdf f I(D) on a set of possible Ds is given by

D( f
∥∥ f I ) =

∫
f (D) ln(

f (D)

f I(D)
)dD (10)

Based on the chain rule for pdfs [31], with H being the
control horizon, the probabilistic closed-loop description of
the system dynamics could be evaluated as follows:

f (D) =
H

∏
k=1

s(xk |uk−1,xk−1 )c(uk−1 |xk−1 ). (11)

Similarly, the ideal probabilistic closed-loop pdf can be ex-
pressed in the same form as Eq.(11) with ideal system model
pdf sI(xk |uk−1,xk−1 ) and ideal controller pdf cI(uk−1 |xk−1 ),

f I(D) =
H

∏
k=1

sI(xk |uk−1,xk−1 )cI(uk−1 |xk−1 ). (12)
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With the KL-distance (10), the closed loop joint pdf (11) and
the desire closed loop joint pdf (12), the performance index
can be formalised to be given by the following expression:

− ln(γ(xk−1)) = min
{c(uk−1|xk−1 )

H
τ≥k}

H

∑
τ=k

∫
f (dτ |xk−1 )

× ln(
s(xτ |uτ−1,xτ−1 )c(uτ−1 |xτ−1 )

sI(xτ |uτ−1,xτ−1 )cI(uτ−1 |xτ−1 )
)

×d(dτ), (13)

For arbitrary τ ∈ {1, ...,H}. Using the dynamic programming
(DP) concept [32], Eq.(13) can be rewritten in the following
recurrence functional form:

− ln(γ(xk−1)) = min
c(uk−1|xk−1 )

∫
s(xk |uk−1,xk−1 )c(uk−1 |xk−1 )

×
[

ln
(

s(xk |uk−1,xk−1 )c(uk−1 |xk−1 )

sI(xk |uk−1,xk−1 )cI(uk−1 |xk−1 )

)
− ln(γ(xk))

]
d(xk,uk−1), (14)

where the first item in parenthesis in Eq.(14) represents the
partial cost while the second item is the expected minimum
cost-to-go function.

The recursive formulation of performance index (14) is
similar to Dynamic programming. Full derivation of Eq.(14)
can be found in [14]

D. Optimal Controller Law

Based on the Fully Probabilistic Design (FPD) [13]–
[15], the control law c∗(uk−1 |xk−1 ) which minimises the
performance index (14) takes the following form,

c∗(uk−1 |xk−1 ) =

cI(uk−1 |xk−1 )exp[−β1(uk−1,xk−1)−β2(uk−1,xk−1)]

γ(xk−1)
(15)

where

γ(xk−1) =
∫

cI(uk−1 |xk−1 )exp[−β1(uk−1,xk−1)

−β2(uk−1,xk−1)]duk−1

β1(uk−1,xk−1) =
∫

s(xk |uk−1,xk−1 )[ln
s(xk |uk−1,xk−1 )

sI(xk |uk−1,xk−1 )
]dxk

β2(uk−1,xk−1) =−
∫

s(xk |uk−1,xk−1 ) ln(γ(xk))dxk (16)

Remark 1: The optimal controller law (15) for minimi-
sation of KLD (13) is not just for linear discrete system
(1) but for more general nonlinear systems governed by the
following nonlinear equation xk = g(xk−1,uk−1,wk) whose
state distribution can be described by s

(
xk|uk−1, xk−1

)
and

the conditional controller distribution can be described by
c(uk−1 |xk−1). Note that the optimal form that Eq.(16) offers
is basicly a distribution. The actual parameters of the con-
troller distribution can then be obtained based on (16) and
the details will be given in the next section.

III. ALGORITHM DESIGN

In this section the generalised fully probabilistic control
solution of the regulation problem for the stochastic linear
system with multiplicative noise is derived. The purpose
of the designed controller here is to make the state pdf
s
(
xk|uk−1, xk−1

)
follows the given pdf sI(xk|uk−1, xk−1) and

return the system states to zero, which is called regulation
of dynamical systems. Since a regulation problem, the ideal
distribution of the system described by Eq.(1) is specified as

sI(xk|uk−1, xk−1)∼ N (0, Σ2) (17)

where Σk−Σ2 is assumed to be a positive definite matrix,
meaning that the variance of system is decreased and the
system has less randomness.

The conditional pdf of the controller can be also charac-
tered as c(uk−1 |xk−1 ), whose ideal distribution is taken to
be Gaussian with the following form

cI (uk−1|xk−1)∼ N (0, Γ) (18)

where Γ is the ideal covariance of input, which indicates the
allowed range of optimal control input.

As will be seen from further developments, the solution
of Eq.(15) and Eq.(16) subject to the previously described
system pdfs Eq.(7), Eq.(17), and Eq.(18) yields the optimal
performance index specified by the following theorem.

Theorem 1: Using the pdf description of the system dy-
namics specified by Eq.(3), the ideal distribution of the
system dynamics given by Eq.(17) and the ideal distribution
of the controller given by Eq.(18) in Eq.(15) and Eq.(16)
yield the following performance index,

− ln(γ (xk)) = 0.5xT
k Skxk +0.5wk, (19)

where,

Sk−1 =−AT (Σ−1
2 +Sk)B(BT (Σ−1

2 +Sk)B+Γ
−1)−1BT

× (Σ−1
2 +Sk)

T A+AT (Σ−1
2 +Sk)A+M2 (20)

wk−1 = ωk + ln(2Γ)

+ ln(0.5(BT (Σ−1
2 +Sk)B+Γ

−1)), (21)

and where,

M2 =DT SkQ̄D, (22)
Proof: The quadratic form of the optimal performance

function specified in Eq.(19) can be verified by evaluating γ

in Eq.(17), repeated here,

γ (xk−1) =
∫

cIexp(−β1−β2)duk−1 (23)

This evaluation requires the evaluation of β1 and β2. Starting
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with β1

β1 (uk−1,xk−1) =
∫

s
(
xk|uk−1, xk−1

)
ln

s
(
xk|uk−1, xk−1

)
sI
(
xk|uk−1, xk−1

)dxk

=
∫

N (µk, Σk) ln
N(µk, Σk)

N(0, Σ2)
dxk

=
∫

N(µk, Σk)(−0.5ln(|Σk| |Σ2|−1)

− (xk− [Axk−1 +Buk−1])
T (2Σk)

−1

× (xk− [Axk−1 +Buk−1])− xk
T (2Σ2)

−1xk)dxk.

(24)

To solve Eq.(24), the following rule from [30] is required
with positive defined matrix A1

ln(det(A1)) = tr(log(A1)) (25)

Therefore, the ln(|Σk| |Σ2|−1) term in Eq.(24) can be rewrit-
ten as

ln(|Σk| |Σ2|−1) = ln(
∣∣ΣkΣ2

−1∣∣)
=tr(log(ΣkΣ2

−1)) (26)

Assumption 1: For the considered regulation problem, it
is expected that at steady state the covariance of the system
dynamics will become close to the covariance of the specified
ideal distribution. This means that,∥∥ΣkΣ2

−1− I
∥∥< 1 (27)

then based on lemma 2.6 in [33], Eq.(26) can be approxi-
mated as follows,

tr(log(ΣkΣ2
−1))≈ tr(ΣkΣ2

−1− I)≈ tr(ΣkΣ2
−1)−n (28)

where n is the dimension of x.
Using Eq.(28) in Eq.(24) and expanding the terms of

Eq.(24) we get,

β1(uk−1,xk−1) =
∫

N(µk, Σk)

(
−0.5tr(ΣkΣ2

−1)+0.5n

+0.5xk
T (Σ−1

2 −Σ
−1
k )xk−0.5[Axk−1 +Buk−1]

T
Σ
−1
k

× [Axk−1 +Buk−1]+ xk
T

Σ
−1
k [Axk−1 +Buk−1]

)
dxk

= 0.5[Axk−1 +Buk−1]
T

Σ
−1
k [Axk−1 +Buk−1]

−0.5tr(ΣkΣ2
−1)+0.5n+0.5

∫
N(µk,Σk)xT

k

× (Σ−1
2 −Σ

−1
k )xkdxk (29)

The last part in Eq.(29), 0.5
∫

N(µk,Σk)xT
k (Σ

−1
2 −Σ

−1
k )xkdxk

can be evaluated as follows

0.5
∫

N(µk,Σk)xT
k (Σ

−1
2 −Σ

−1
k )xkdxk

= 0.5
∫

N(µk,Σk)[(xk−µk)
T (Σ−1

2 −Σ
−1
k )(xk−µk)

+2µk
T (Σ−1

2 −Σ
−1
k )xk−µ

T
k (Σ

−1
2 −Σ

−1
k )µk]dxk

= 0.5tr((Σ−1
2 −Σ

−1
k )Σk)+0.5[Axk−1 +Buk−1]

T

× (Σ−1
2 −Σ

−1
k )[Axk−1 +Buk−1]

= 0.5(tr[Σ−1
2 Σk]−n)+0.5[Axk−1 +Buk−1]

T

× (Σ−1
2 −Σ

−1
k )[Axk−1 +Buk−1] (30)

Substitute Eq.(30) back into Eq.(29), we have

β1 (uk−1,xk−1) =0.5[Axk−1 +Buk−1]
T

Σ
−1
2 [Axk−1 +Buk−1]

(31)

Similarly, β2 (uk−1,xk−1) can be evaluated as follows

β2 (uk−1,xk−1) =−
∫

s
(
xk|uk−1, xk−1

)
ln(γ (xk))dxk

=
∫

N (µk, Σk)
[
0.5
(
xT

k Skxk +ωk
)]

dxk

= 0.5[Axk−1 +Buk−1]
T Sk [Axk−1 +Buk−1]

+0.5ω̄k (32)

where

ω̄ = tr (SkΣk)+ωk

= xT
k−1M2xk−1 +ωk (33)

with M2 = DT SkQ̄D.
Therefore, using Eq.(31) and Eq.(32) in Eq.(23) and

collecting the terms that multiply the control input, uk−1
together yields,

γ (xk−1) =
∫

cI (uk−1 |xk−1)exp[−β1 (uk−1,xk−1)

−β2 (uk−1,xk−1)]duk−1

= (2πΓ)−
1
2 exp{−0.5xT

k−1[A
T (Σ−1

2 +Sk)A

+M2]xk−1−0.5ωk}

×
∫

exp{−0.5uT
k−1(B

T (
Σ
−1
2 +Sk

)
B+Γ

−1)uk−1

− xT
k−1AT (

Σ
−1
2 +Sk

)
Buk−1}duk−1 (34)

Evaluating the integral in Eq.(34) we get

∫
exp{−0.5uT

k−1(B
T (

Σ
−1
2 +Sk

)
B+Γ

−1)uk−1− xT
k−1

×AT (
Σ
−1
2 +Sk

)
Buk−1}duk−1

= exp{0.5xT
k−1AT (Σ−1

2 +Sk)B[BT (Σ−1
2 +Sk)B+Γ

−1]−1

×BT (Σ−1
2 +Sk)

T Axk−1}
∫

exp{−0.5
(

uk−1− xT
k−1AT

× (Σ−1
2 +Sk)B[BT (Σ−1

2 +Sk)B+Γ
−1]−1

)T

× [BT (Σ−1
2 +Sk)B+Γ

−1]

(
uk−1− xT

k−1AT (Σ−1
2 +Sk)

×B[BT (Σ−1
2 +Sk)B+Γ

−1]
−1
)
}duk−1

= exp{0.5xT
k−1AT (

Σ
−1
2 +Sk

)
B[BT (

Σ
−1
2 +Sk

)
B

+Γ
−1]−1BT (Σ−1

2 +Sk)
T Axk−1}

× ln(π
1
2 (0.5[BT (Σ−1

2 +Sk)B+Γ
−1]−

1
2 )) (35)
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Hence, we have

γ(xk−1) = {2Γ}−
1
2 (0.5[BT (Σ−1

2 +Sk)B+Γ
−1]
− 1

2 )

× exp{0.5xT
k−1(A

T (Σ−1
2 +Sk)B(BT

× (Σ−1
2 +Sk)B+Γ

−1)−1BT (Σ−1
k +b+Sk)

T A

−AT (Σ−1
k +b+Sk)A−M2)xk−1−0.5ωk)}

= exp{0.5xT
k−1[A

T (Σ−1
2 +Sk)B

× [BT (Σ−1
2 +Sk)B+Γ

−1]
−1

BT (Σ−1
2 +Sk)

T

×A−AT (Σ−1
2 +Sk)A−M2]xk−1

−0.5ωk−0.5ln(0.5(BT (Σ−1
2 +Sk)B

+Γ
−1))−0.5ln(2Γ)} (36)

Therefore the final result is given by

γ(xk−1) = exp{0.5xT
k−1{AT (Σ−1

2 +Sk)B(BT (Σ−1
2 +Sk)B

+Γ
−1)−1BT (Σ−1

2 +Sk)
T A−AT (Σ−1

2 +Sk)A

−2M1−M2}xk−1 +n−0.5ωk

−0.5ln(0.5(BT (Σ−1
2 +Sk)B+Γ

−1))−0.5ln(2Γ)}
(37)

Finding quadratic terms in xk−1 gives the claimed form
for Sk−1 that is specified in Eq.(20). The constant terms
correspond to ωk−1 specified in Eq.(21). End of proof.

Following the above verification of the performance index,
the next step is to evaluate the parameters of the optimal
controller distribution such that the pdf of the states can
follow the given pdf. Based on Eq.(15) and Eq.(19), we have
the following theorem.

Theorem 2: The optimal controller minimising the perfor-
mance index (14) is given by

uk =−Kkxk, (38)

where

Kk = (Γ−1 +BT MkB)−1BT MT
k A,

Mk = Σ
−1
2 +Sk (39)

Proof: Substituting Eq.(18), Eq.(31), Eq.(32) and
Eq.(37) into Eq.(15) yields

c∗ (uk−1|xk−1) = exp(−0.5{uT
k−1(Γ

−1 +BT (Σ−1
2 +Sk)B)

×uk−1 +2xT
k−1AT (Σ−1

2 +Sk)Buk−1 + xT
k−1(A

T

× (Σ−1
2 +Sk)B[Γ−1 +BT (Σ−1

2 +Sk)B]−1BT

× (Σ−1
2 +Sk)A)xk−1− ln(0.5[Γ−1

+BT (Σ−1
2 +Sk)B)]− ln(2Γ)}) (40)

Define Mk = Σ
−1
2 +Sk, the equation can be expressed as

c∗ (uk−1|xk−1) = exp(−0.5{(uk−1 +(Γ−1 +BT MkB)−1

×BT MT
k Axk−1)

T (
Γ
−1 +BT MkB

)
(uk−1

+(Γ−1 +BT MkB)−1BT MT
k Axk−1)

− xT
k−1AT MkB(Γ−1 +BT MkB)−1BT MT

k A

× xk−1 + xT
k−1(A

T MkB[(Γ−1 +BT MkB)T

× (Γ−1 +BT MkB)]−1BT MkA)xk−1

− ln(0.5(Γ−1 +BT MkB))}) (41)

It can be seen that the mean of the distribution given in
Eq.(41) is the optimal control equation as Eq.(39). End of
proof.

IV. SIMULATION

To demonstrate the effectiveness of the derived novel
algorithm which is based on the fully probabilistic design,
the proposed algorithm is applied to the cart and inverted
pendulum model used in [34]. The cart and pendulum model
is shown to be described by the following discrete time
dynamical equation. In order to highlight the positive features
of our approach, we consider a different variant of the model
in [34] where we add multiplicative noise part Dxkvk to their
original model.

xk+1 = Adxk +Bduk +Dxkvk (42)

where

Ad =


1 0.1 −0.0166 −0.0005
0 1 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996

 ,Bd =


0.0045
0.0896
−0.0068
−0.1377



D =


0.05 0.06 0.01 0.15
0.01 0.115 0.16 0.07
−0.1 0.2 −0.005 0.115
0.02 −0.115 −0.007 0.06


where Ad , Bd represent the state and control matrices re-
spectively which were assumed to have the same values
as in [34]. The introduced matrix D that multiplies the
noise term is created randomly. vk represents the Gaussian
noise with zero mean and variance Q = 0.09. The initial
state x0 of the inverted pendulum is assumed to start from[

0.02 0.1 −0.1 0
]T . The ideal variance of controller

Γ is set to 0.5 since bigger variance of controller means faster
converging speed. To achieve less randomness of states, the
ideal covariance of state Σ2 should be chosen small and the
value we chose is shown as follows

Σ2 =


0.04 0 0 0

0 0.001 0 0
0 0 0.0004 0
0 0 0 0.03

 (43)

To validate the performance of the randomised controller
derived in this paper, the results are compared to the results
obtained from the traditional FPD. As described in section
II, the parameters of the system are estimated online using a
neural network, and the control input was calculated based
on the estimated parameters. The results of the simulation
are shown in Fig 1 - Fig 6. Fig 1 - Fig 4 show the states of
the system of the traditional FPD and our proposed method,
from which it can be seen that all states converge to zero.
Compared with the traditional FPD, the converging speed of
the proposed method is clearly faster with less oscillation.
The reason is that the proposed method is designed to deal
with the multiplicative noise. Moreover, Fig 5 and Fig 6
display the control gain of the proposed algorithm and of the
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the traditional FPD, respectively. From Fig 5 and Fig 6, we
can see that the gain values settle down after the parameter
estimation converge. Therefore, the conclusion can be drawn
that the proposed algorithm can achieve a better performance
aiming at the system with multiplicative noise compared with
the traditional FPD.
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Fig. 1. State x1
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Fig. 2. State x2
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0 50 100 150 200 250 300

k

-1000

-800

-600

-400

-200

0

200

400

600

800

1000
Optimal Gain of Traditional FPD

K1

K2

K3

K4

Fig. 6. Optimal gain K of Traditional FPD

V. CONCLUSIONS

An FPD based method has been proposed in this paper
for a class of linear stochastic dynamic systems with mul-
tiplicative noise. The linear optimisation has been applied
to estimate the unknown parameters of the system and the
performance index has been characterised by the KLD. Also,
compared with the traditional FPD, the Raccatti equation
has been modified to deal with the multiplicative noise part.
Finally, the associated simulation results have been produced
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to verify the proposed control algorithm and compared with
the results obtained from the traditional FPD.
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