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Abstract— Computational and communication complexity
call for robustness of controlled systems as well as for dis-
tributed control. The proposed technical solutions in this
paper are bottom up solutions where simple controllers are
designed to care about individual nodes either completely
independently or within various structures like cascade control.
Cheap computational resources allow now the improvement of
the overall behaviour of the network of such controlled loops
by allowing the individual ”nodes” to share information with
their neighbours without aiming at hopeless global solution. The
current paper inspects this proposed method on a linearised
version of coupled map lattice with spatiotemporal chaos
yielding close to linear quadratic design which gives insight
into possible behaviours of such networks.

I. INTRODUCTION

Many systems in nature, technology and society can be
regarded as complex networks which consist of a large
number of elements interacting with each other. The scale
and nature of such systems make them pervasive, inherently
nonlinear, coupled and operating under high levels of un-
certainty. These attributes make the analysis, estimation and
especially control of such systems a significant challenge
which has yet to be adequately addressed. Several estimation
and control methods have been proposed in the literature,
including pinning control [1], multi-agent control [2], partial
probabilistic control, decentralised [3] and distributed con-
trol [4]. The majority of the developed research in distributed
control systems assume access to the global information of
the system, follow deterministic architecture, and do not
allow intelligent and adaptive decisions to be taken, as
emphasised by a recent guest editorial paper [4].

This paper takes a different approach: the computational
and communication complexities in large scale systems are
to be addressed via distributed stochastic control where
noise and uncertainties are contained using probabilistic
approaches. In many such systems, although there may be a
large number of components, these components are coupled,
thus reducing the degrees of freedom, and introducing con-
straints. A complex performance function or set of functions
may decompose so that the control of large networks can be
developed in a bottom–up way in which simple controllers
focus on individual nodes either completely independently or
within various architectures such as cascade control. Access
to cheap computational resources now allows improvement
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of the overall behaviour of the network of such controlled
architectures by allowing the individual nodes to share infor-
mation with their neighbours without aiming for unattainable
global solutions.

Message–passing is one of the new classes of decen-
tralised methods for managing systems with large ensembles
of interconnected nodes [5], [6] where information is re-
trieved and disseminated in a consistent probabilistic fashion.
The approach has emerged independently in a number of
field, including: communications theory [7], artificial intelli-
gence [8], and statistical physics [9]. However, the techniques
and their potential generalisations are modestly known within
the control community. An objective of this paper is to
generalise these methods in the context of decentralised
probabilistic control, thus extending the methods from a
passive to an active domain. This approach of a collection
of decentralised probabilistic controllers passing information
through probabilistic ‘messages’, can decompose the control
of the large–scale networks into a collection of smaller
control problems, one for each connected subnetwork in
the system. These sub-control problems are treated inde-
pendently and can therefore be analysed and implemented
individually.

To obtain robust, reliable and efficient control inputs, the
performance objective function is required to be a prob-
abilistic function. Although some research has considered
probabilistically controlling complex dynamical systems, the
implementation of probabilistic performance functions has
not been researched extensively despite its clear significant
engineering importance. We have developed and extended
fully probabilistic design methods (FPD) [10], [11], in which
the optimal controller is the minimiser of the Kulback-
Leibler divergence, for single dynamical systems. This fully
probabilistic design method will underpin this paper for
distributed control systems with multiple subsystems.

This paper therefore proposes a novel way of reducing
the amount of computation required in the optimisation,
control, and estimation of complex networked systems. Our
hypothesis is that in successful distributed estimation and
control systems, the global behavioural performance of com-
plex systems should be an emergent property. According to
this hypothesis, the emergence of a complex property (global
behavioural performance) can be realised by understanding
simpler subsystems behaviour (the localised behaviour of
controlled subsystems). Thus, to realise our hypothesis we
aim to design and develop sparse or distributed control
methods for the individual subsystems so that the desired
emergent global behavioural performance of the system is
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achieved. Nodes exchange information or messages with
their neighbours according to the topology of the graph.
The messages are then updated iteratively in a probabilistic
framework, and are used to estimate the dynamics of decision
variables in the network.

To summarize, this paper aims at developing and under-
standing the properties of the proposed probabilistic dis-
tributed controllers and the information sharing between
these controllers. For that purpose the proposed method is
demonstrated and inspected in this paper on a simple linear
quadratic example. The relationship between the proposed
distributed probabilistic control methodology in this paper
and the standard pinning control techniques will also be
developed and the comparison between the two approaches
will be established. Simulation results proof the efficacy of
the proposed distributed controllers in achieving the optimal
performance of the controlled system with less computational
and design efforts when compared to pinning control method.

II. PROBLEM FORMULATION

The controlled multivariate plant has the measurable state
xt+1 ∈ Rn and it is controlled by the (system) input ut ∈
Rm. The plant exhibits random behaviour, therefore, only the
conditional probability density functions (pdfs) of the future
state values can be specified at each instant of time as follows

s(xt+1 | ut, xt). (1)

Within the fully probabilistic design approach, this plant
is controlled by randomised controllers described by con-
ditional pdfs

c(ut | xt) (2)

that minimizes the Kulback–Leibler divergence (KLD) be-
tween the actual joint pdf of the closed loop behavior of
the plant, f(xt+1, ut | xt) and a predefined desired pdf,
If(xt+1, ut | xt),

D
(
f|| If

)
≡

H∑
t=1

∫
f(xt+1, ut | xt) ln

(
f(xt+1, ut | xt)
If(xt+1, ut | xt)

)
dxt+1dut. (3)

This design method was originally presented in [10] where
the probabilistic controller is obtained such that it minimizes
the Kullback–Leibler divergence distance defined in (3).
The minimum cost function resulting from minimization
of (3) with respect to admissible control sequence ut, t ∈
{1, . . . , H}, generated by the sequence of the randomised
controllers 2 with H being the control horizon, is then shown
to be given by the following recurrence equation [11],

− ln(γ(xt)) = min
c(ut|xt)

∫
s(xt+1|ut, xt)c(ut|xt)

×
[

ln
(
s(xt+1|ut, xt)c(ut|xt)
Is(xt+1|ut, xt) Ic(ut|xt)

)
︸ ︷︷ ︸
≡partial cost =⇒ U(xt+1, ut)

− ln(γ(xt+1))︸ ︷︷ ︸
optimal cost-to-go

]

d(xt+1, ut), (4)

where − ln(γ(xt)) is the expected minimum cost–to–go
function and

f(xt+1, ut | xt) = s(xt+1|ut, xt)c(ut|xt), (5)

is the factorisation of the actual joint pdf by the chain
rule [12], which represents the most complete probabilis-
tic description of the closed loop system. Here the pdf
s(xt+1|ut, xt) describes the dynamics of the observed state
vector xt+1. Similarly

If(xt+1, ut | xt) =
Is(xt+1|ut, xt)

Ic(ut|xt), (6)

is the factorisation of the ideal joint pdf of the closed
loop system and Is(xt+1|ut, xt) and Ic(ut|xt) represent
the pdfs of the desired dynamics of the observed state
vector and ideal controller respectively. The pdf of optimal
controller, c∗(ut|xt), minimizing the cost–to–go function (4)
is shown [11], [13] to be determined by the following
recursion

c∗(ut|xt) =
Ic(ut|xt) exp[−β(ut, xt)]

γ(xt)
,

γ(xt) =

∫
Ic(ut|xt) exp[−β(ut, xt)]dut,

β(ut, xt) =

∫
s(xt+1|ut, xt)

[
ln
s(xt+1|ut, xt)
Is(xt+1|ut, xt)

− ln(γ(xt+1))
]

dxt+1. (7)

However in large scale systems the above methodology for
designing probabilistic controllers can become computation-
ally very intensive. Therefore, the above FPD control method
has been extended in [14] to control complex stochastic
dynamical networks via pinning control. The optimized
probabilistic pinning control laws have the same form as
specified by equation 7, but control inputs are added only to
a fraction of nodes in the network. Therefor FPD control and
FPD pinning control will be used interchangeably throughout
this paper to mean the same thing.

This paper takes a different approach: the computational
and communication complexities in large scale systems are
to be addressed via distributed stochastic control where
noise and uncertainties are contained using fully probabilistic
approaches. Within this formulation, we decompose the
complex system into |I| subsystems each controlled by a
randomised controller described by pdfs c(ut;i|wt;i), where
i ∈ I ≡ {1, . . . , |I|}. The ith controller controls the outputs
of the ith subsystem, xt+1;i, which are also driven by part
of the observed multivariate state values of their neighbours,
yt;i received through message passing. Hence, the pdfs of
the ith is subsystem is defined as follows,

s(xt+1;i, yt+1;i|ut;i, wt;i) = s(xt+1;i|ut;i, wt;i)

× s(yt+1;i|yt;i)
wt;i = [xt;i, yt;i], w0;i given (8)

The performance function 4 is then used to design the
individual controllers described above. For this purpose, the
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FPD expresses the control aim via ideal closed loop model
given by a pdf

Is(xt+1;i, yt+1;i|ut;i, wt;i) =
Is(xt+1;i|ut;i, wt;i)

× s(yt+1;i|yt;i), (9)

which takes the pdf modelling the external variables to be
equal to the ideal (desirable) pdf of external variables, thus
not influencing their behaviours.

The specialization of the ith controller with the assumed
model of subsystem states 8, the ideal distribution of the ith
subsystem 9, and the ideal distribution of the ith controller
Ic(ut;i | wt;i) yields optimal solution specified in the
following proposition.
Proposition 1: The pdf of the ith optimal controller mini-
mizing the cost–to–go function 4 is given by

c∗(ut;i|wt;i) =
Ic(ut;i|wt;i) exp[−β(ut;i, wt;i)]

γ(wt;i)
,

γ(wt;i) =

∫
Ic(ut,i|wt;i) exp[−β(ut,i, wt;i)]dut,i,

β(ut,i, wt;i) =

∫
s(xt+1,i|ut,i, wt;i)[

ln
s(xt+1,i|ut,i, wt;i)
Is(xt+1,i|ut,i, wt;i)

− ln(γ̃(xt+1,i, yt;i))
]

dxt+1,i.

− ln(γ̃(xt+1,i, yt;i)) =
∫
s(yt+1,i|yt;i)

lnγ(wt+1)dyt+1,i (10)

Proof : The result is implied by the following sequence of
equalities in which one cost–to–go function 4 is dedicated
to obtain the optimal control solution for each of the ith
controller. We also use Fubini theorem on multiple integra-
tion [15], marginalisation, normalisation and the chain rule of
pdfs [12] together with conditional independence expressed
by the assumption stated above.

Hence the ith cost to go function for the assumed models
of the ith subsystem can be obtained from 4 to yield

− ln(γ(wt;i)) = min
c(ut;i|wt;i)

∫
s(wt+1;i|ut;i, wt;i)c(ut;i|wt;i)

×
[

ln
(
s(wt+1;i|ut;i, wt;i)c(ut;i|wt;i)
Is(wt+1;i|ut;i, wt;i) Ic(ut;i|wt;i)

)
︸ ︷︷ ︸

≡partial cost =⇒ U(wt+1;i, ut;i)

− ln(γ(wt+1;i))︸ ︷︷ ︸
optimal cost-to-go

]
d(wt+1;i, ut;i), (11)

Using the ith state model 8, the ideal distribution of the ith
subsystem 9, and the ideal distribution of the ith controller
Ic(ut;i | wt;i) in 11 and the chain rule yields,

− ln(γ(wt;i)) =
∫
s(xt+1;i|ut;i, wt;i)s(yt+1;i|yt;i)

× c(ut;i|wt;i)
[

ln
s(xt+1;i|ut;i, wt;i)
Is(xt+1;i|ut;i, wt;i)

+ ln
c(ut;i|wt;i)
Ic(ut;i|wt;i)

− ln(γ(wt+1;i))
]

d(xt+1;i, yt+1;i, ut;i), (12)

Now using Fubini theorem, we introduce the following
definitions

ln(γ̃(xt+1;i, yt;i)) =
∫
s(yt+1;i|yt;i) ln(γ(wt+1;i))dyt+1;i (13)

β(ut;i, wt;i) =

∫
s(xt+1;i|ut;i, wt;i)

[
ln
s(xt+1;i|ut;i, wt;i)
Is(xt+1;i|ut;i, wt;i)

− ln(γ̃(xt+1;i, yt;i))
]

dxt+1;i

=

∫
s(xt+1;i|ut;i, wt;i) ln

s(xt+1;i|ut;i, wt;i)
Is(xt+1;i|ut;i, yt;i)γ̃(xt+1;i, yt;i)

dxt+1;i (14)

Substitute 14 and 13 in 12, we get

− ln(γ(wt;i)) =
∫
c(ut;i|wt;i)

[
β(ut;i, wt;i)

+ ln
c(ut;i|wt;i)
Ic(ut;i|wt;i)

]
dut;i

=

∫
c(ut;i|wt;i) ln

c(ut;i|wt;i)
Ic(ut;i|wt;i) exp(−β(ut;i, wt;i))

dut;i

=

∫
c(ut;i|wt;i)

[
ln

c(ut;i|wt;i)
Ic(ut;i|wt;i) exp(−β(ut;i,wt;i))

γ(wt;i)

− lnγ(wt;i)
]

dut;i (15)

By adding and subtracting ln(γ(wt;i)), the first term in 15
has become a conditional version of the KL divergence. The
independence of lnγ(wt;i) on the optimised c(ut,i|wt;i)
implies that the expression is minimised by the claimed
pdf 10.

III. LINEAR GAUSSIAN QUADRATIC DESIGN

To demonstrate the distributed control development dis-
cussed in the previous section, we consider the regulation
problem of a stochastic linear Gaussian state space model
described by,

xt+1 = Axt + But + ηt+1

s(xt+1|xt, ut)  Nxt+1
(Axt + But, Σ), (16)

where A and B are the state and control matrices respectively,
ηt+1 is zero mean white normal innovations, and where Σ
is the covariance of the innovations. The matrices A, B, and
Σ > 0 are assumed to be known.

For the considered regulation problem, the system is
initially in state xt and the aim is to return the system state to
the origin. Before we discuss the distributed control solution
for this regulation problem we briefly review the standard
solution to the problem using the global FPD control method.

A. Global FPD Control Method

The first step to obtaining the solution to the standard
regulation problem is to identify the ideal distribution of
the system states given in equation 16. This ideal state
distribution is assumed to be given by,

Is(xt+1|ut, xt) = Nxt+1
(0, Σ) (17)

The above definition of the ideal distribution reflects the
regulation problem with the realistic aim of reaching the zero
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state, with a spread being determined by the covariance of
the innovations, Σ.

The randomized controller to be designed is described by,

c(ut|xt)  Nut
(Cxt, Γ)

ut = Cxt + εt, (18)

where C is the matrix of the controller parameters, εt is
zero mean white normal innovations, and Γ is the covariance
of the innovations of control. The distribution of the ideal
controller is also assumed to be

Ic(ut|xt) = Nut
(0, Γ), (19)

By using the randomized controller 18, the stochastic equa-
tion of the system state 16 can be recast as follows:

xt+1 = (A+ BC)xt + Bεt + ηt+1. (20)

Now, if the pair (A,B) is stabilisable, i.e. if there is such
a controller Co that makes all eigenvalues of the matrix
A+BCo lie inside the unit circle then the optimal randomised
controller minimising the cost-to-go function for horizon
H→ ∞ is stabilising and has the form [14], [16]

ut = Cxt + εt (21)

with

C = −(BTMB+ BTΣ−1B+ Γ−1)−1(BTMA+ BTΣ−1A),
(22)

M = ATΣ−1A+ATMA− (ATMB+ATΣ−1B)

(BTMB+ BTΣ−1B+ Γ−1)−1(BTMA+ BTΣ−1A), (23)

where M is the matrix of the attained quadratic cost function

− ln(γ(xt)) = 0.5xTtMxt +Q0, (24)

and where Q0 ≥ 0 is some positive constant. The derived so-
lution 23 coincides with stationary algebraic Riccati equation
for linear quadratic design [17].

B. Distributed FPD Control Method

The application of FPD distributed controllers to regulate
the system 16 is carried out by designing |I| randomised
controllers described by,

c(ut;i|wt;i)  Nut;i
(Ciwt;i, Γi)

ut;i = Ciwt;i + εt;i, (25)

where i ∈ I ≡ {1, . . . , |I|} and where Ci is the matrix
of the ith controller parameters, εt;i is zero mean white
normal innovations of the ith control input, and Γi is the
covariance of the innovation of ith control. Each of these
randomized controllers is responsible for controlling the state
values of the corresponding ith subsystem, xt+1;i while not
influencing the rest of the states yt+1;i. As such, |I| models
of the |I| subsystems are required to be identified, one for the
derivation of the parameters of each randomized controller.
The ith model of the ith subsystem describes the small
controlled subpart xt+1;i of the state, while models part of

the states of its neighbours yt+1;i as an external observable
disturbance,

wt+1;i = Aiwt;i + Biut;i + ηt+1;i

s(wt+1;i|ut;i, wt;i) = s(xt+1;i|ut;i, wt;i)s(yt+1;i|yt;i)

 Nxt+1;i
(Ai;xwt;i + Biut;i, Σi;x)

Nyt+1;i
(Ai;yyt;i, Σi;y) (26)

Following the discussion in Section II, the ideal distribution
of the closed loop model of the ith subsystem takes the pdf
modelling the external variables to be equal to the ideal
(desirable) pdf of external variables, thus not influencing
their values,

Is(xt+1;i|ut;i, wt;i)s(yt+1;i|yt;i)

 Nxt+1;i
(0, Σi;x)Nyt+1;i

(Ai;yyt;i, Σi;y) (27)

The distribution of the ith ideal controller is also assumed
to be

Ic(ut;i|wt;i) = Nut;i
(0, Γi), (28)

The considered distributed control let each input entry ut;i
be generated by ith controller working with the ith model,
hence yielding the following closed loop response of the
controlled ith subpart of the system state,

wt+1;i = (Ai + BiCi)wt;i + Biεt;i + ηt+1;i (29)

Similarly here, if the pair (Ai, Bi) is stabilisable, i.e. if there
is such a controller Ci;o that makes all eigenvalues of the
matrix Ai+BiCi;o lie inside the unit circle then the optimal
randomised distributed feedback control law minimising the
cost-to-go function 10 for horizon H → ∞ subject to the
pdf of the system state values 26 and ideal distributions of
system state 27 and controller 28 is stabilising and has the
form

ut;i = Ciwt;i + εt;i (30)

with

Ci = −(BTiMiBi + B
T
i Σ

−1
i Bi + Γ

−1
i )−1

(BTiMiAi + B
T
i Σ

−1
i Ai), (31)

Mi = A
T
i Σ

−1
i Ai +A

T
iMiAi − (ATiMiBi

+ATi Σ
−1
i Bi)(B

T
iMiBi + B

T
i Σ

−1
i Bi + Γ

−1
i )−1

(BTiMiAi + B
T
i Σ

−1
i Ai), (32)

where Mi is the matrix of the obtained quadratic cost
function from the ith model, Ai = [Ai;x;Ai;y], and Σi is
given by [

Σi;x 0
0 0

]
which considers the spread around the ith subpart of the state
and takes the rest of the state as external variables.

− ln(γ(wt;i)) = 0.5wTt;iMiwt;i +Q0;i, (33)

and where Q0;i ≥ 0 is some positive constant.
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These distributed optimized controllers will then exchange
information or messages about the parameters of the dy-
namics of the subparts of the system and will update these
parameters iteratively in a probabilistic framework until they
converge to the true values. Specifically, the ith optimized
randomized controller offers its neighbour the part of the
resulting optimal closed loop related to the variables it
perceives as external variables, so that it can be used to
improve the description of these external variable. To elab-
orate the following algorithm can be readily applied to the
neighbour distributed controllers and models and can be used
for updating the parameters of the dynamics of the various
subparts in the system,

• Given the initial state values wt;i
• For model i estimate the parameters of the ith subpart

of the system states, Ai;x, and Bi,x.
• For model i initialize the parameters of the external state

variables of the system states, Ai;y.
• At each time instant t
• Loop

– Use Equation 31 to calculate the feedback gain of
the ith controller.

– Optimally tuned closed loop from the view point of
the ith controller has the form given in equation 29,
repeated here,

wt+1;i = (Ai+BiCi)wt;i+Biεt;i+ηt+1;i (34)

– From 34 we can update the parameters for the jth
subpart of the system as follows,

wt+1;j←i ⇒ Aj;ywt;j = (Ai;x + Bi,xCi)wt;i
(35)

where wt+1;(j)←(i) is used to denote models of the
jth node as obtained from the ith node.

IV. COUPLED MAP LATTICE NETWORK AND
NUMERICAL RESULTS

We validate and illustrate the distributed probabilistic con-
trol method presented in Section III-B using the stochastic
version [14] of a coupled map lattice (CML) with periodic
boundary condition as an example of complex dynamical
networks which was originally introduced in [18]. The ob-
tained results of the distributed probabilistic controllers will
also be compared to the global pinning control solution to
the considered CML problem as discussed in section III-A.
We first give an overview of the coupled map lattice control
problem.

A. Overview of Coupled Map Lattice

Consider a CML consisting of L nodes with periodic
boundary conditions,

zjt+1 = F(z
j−1
t , zjt, z

j+1
t )

= f[(1− 2ε)zjt + ε(z
j−1
t + zj+1t )] + κjt+1, (36)

where j = 1, 2, . . . , L are the lattice sites, L is the system
size, κjt+1 is an additive noise signal assumed to have zero
mean Gaussian distribution of covariance ρ, and the periodic

boundary conditions are given by zj+Lt = zjt. The local map
f(z) is defined to be a nonlinear function of the following
form

f(z) = az(1− z). (37)

This coupled map lattice exhibits chaotic characteristics in
the regime 3.57 < a ≤ 4.0 and has a homogeneous steady
state z? = 1− 1/a.

The objective here is to stabilize the homogeneous state of
the lattice by designing a number of controllers that achieve
this objective. Because of the complexity and the large
number of nodes of the CML, this goal is conventionally
achieved via pinning control methodology by applying K
periodically control actions placed at sites {j1, . . . , jK} in the
following way

zjt+1 = F(z
j−1
t , zjt, z

j+1
t ) +

K∑
k=1

δ(j− jk)u
k
t + κ

j
t+1, (38)

where uk is the control action applied at site k.
Traditionally in pinning control the theory of linear

quadratic control is used to calculate the feedback control
actions. for that purpose Equation 36 is linearized about the
homogeneous steady state zt = (z?1, . . . , z

?
L) to become as

follows
xt+1 = Axt + But + ηt+1, (39)

in which x = z − z? represents the state vector, the L × L
Jacobian matrix A, is given by

A = α


1− 2ε ε 0 . . . ε
ε 1− 2ε ε . . . 0
0 ε 1− 2ε . . . 0
...

...
...

. . .
...

ε 0 0 . . . 1− 2ε

 ,

where α = ∂f(z)
∂z

|z=z? , and B is an L ×M control matrix
with Bjm =

∑
k δ(m− k)δ(j− jk).

Following the discussion in Section III-A the pinning
controlled network as a result of the designed randomised
controller 21 will have the form given by equation 20,
repeated here

xt+1 = (A+ BC)xt + Bεt + ηt+1, (40)

where C is calculated as specified by equation 22. In [19], the
control matrix, B is chosen such that the network of systems
is made controllable as opposed to stabilizable. Since the
coupled map lattice considered has parity symmetry [19], the
eigenvalues of its Jacobian are doubly degenerate. Therefore,
the minimal number of controllers that yields a controllable
system in this case is two which will be assumed in the
current paper.

In contrast to the pinning control method, the proposed
distributed control method considers designing and opti-
mizing |I| number of controllers, each is responsible for
controlling and regulating a predefined collective number of
neighbouring nodes in the lattice. For the linearized version
of CML 39, the distributed controllers can be designed
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as discussed in Section III-B. The ith subsystem of the
controlled network as a result of the ith controller will then
have the form given by equation 34, repeated here

wt+1;i = (Ai + BiCi)wt;i + Biεt;i + ηt+1;i (41)

where Ci is calculated as specified by equation 31.

B. Numerical Results of Global FPD

The example considered here is for the logistic coupled
map lattice, f(z) = az(1− z) in its non–chaotic regime with
a = 3.0, ε = 0.33 and L = 5 and with an external Gaussian
random input, ηt+1 affecting the dynamics. Following the
pinning control method [14], two controllers are used and
they are placed next to each other at the sides of the lattice.
Hence the equation of the coupled map lattice becomes:

xt+1 = Axt + But + ηt+1, (42)

where

A =


−0.34 −0.33 0 0 −0.33
−0.33 −0.34 −0.33 0 0
0 −0.33 −0.34 −0.33 0
0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34

 ,

B =


1 0
0 0
0 0
0 0
0 1

 Σ = E[ηt+1η
T
t+1] = 0.001I5×5.

The lattice is initially at time t = 0 in state x = 0.25 and
the aim is to return the lattice to the origin (the fixed point
position) or a state close to the origin. The matrices A and B
and the covariance matrix Σ > 0 are assumed to be known.
The covariance matrix of the controller is taken to be Γ =
0.1I2×2. The resulted states of the lattice network and the
obtained control efforts are illustrated in Figures 1(a) and
(b), respectively, which show that the controlled network is
globally synchronized by the designed global probabilistic
pinning controller. These obtained results will be compared
to the distributed control results which will be discussed in
the following section.

C. Numerical Results of Distributed FPD Control

For comparison purposes, the same logistic coupled map
lattice, f(z) = az(1 − z) in its non–chaotic regime with
a = 3.0, ε = 0.33 and L = 5 and with an external Gaussian
random input, ηt+1 affecting the dynamics will be consid-
ered here for the design of distributed probabilistic controller.
We design two distributed probabilistic controllers ut;1 and
ut;2. The first probabilistic controller ut;1 is concerned with
the regulation of the first three nodes in the lattice while
modelling the rest of the states as an external observable
disturbance,

wt+1;1 = A1wt,1 + B1ut;1 + ηt+1;1, (43)

where

A1 =


−0.34 −0.33 0 0 −0.33
−0.33 −0.34 −0.33 0 0
0 −0.33 −0.34 −0.33 0
0 0 0 a1;44 0
0 0 0 0 a1;55

 ,
B1 =

[
1, 1, 1, 0, 0

]T
and Σ1 = E[ηt+1;1η

T
t+1;1] =

[
0.001I3×3 03×2
02×3 02×2

]
,

The second probabilistic controller ut;2 is concerned with
the regulation of the last three nodes in the lattice while
modelling the rest of the states as an external observable
disturbance,

wt+1;2 = A2wt;2 + B2ut;2 + ηt+1;2, (44)

where

A2 =


a2;11 0 0 0 0
0 a2;22 0 0 0
0 −0.33 −0.34 −0.33 0
0 0 −0.33 −0.34 −0.33

−0.33 0 0 −0.33 −0.34

 ,
B2 =

[
0, 0, 1, 1, 1

]T
Σ2 = E[ηt+1;2η

T
t+1;2] =

[
02×2 02×3
03×2 0.001I3×3

]
.

The four unknown parameters a1;44, a1;55, a2;11, and a2;22
are related to the external observable states from the point
of view of the first and second controllers and are to be
initialized randomly. The two controllers then exchange in-
formation about the closed loop response of the system which
is used to update these unknown parameters as discussed in
Section III-B.

Similarly here for comparison purpose, the lattice is as-
sumed to be initially at time t = 0 in state x = 0.25
and the aim is to return the lattice to the origin (the fixed
point position) or a state close to the origin. The covariance
matrices of the first and second controllers are taken to be
Γ1 = 0.1, Γ2 = 0.1 respectively. The resulted states of the
lattice network and the obtained control efforts are illustrated
in Figures 1(c) and (d), respectively. The results from these
figures show that the proposed distributed probabilistic con-
troller, is very effective in globally regulating the controlled
CML network.

V. CONCLUSION

The problem of controlling complex dynamical systems
with large number of nodes has been considered in this paper.
the proposed solution is developed via distributed stochastic
control where noise and uncertainties are contained using
probabilistic approaches. This solution considers a bottom
up strategy where simple controllers are designed to care
about individual subparts of the system either completely in-
dependently or within various structures like cascade control.
By utilising the FPD approach, we developed the general
methodology for distributed control proposed in this paper.
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Fig. 1. States and control efforts of a non chaotic coupled map lattice
with, L = 5, a = 3, and ε = 0.33: (a) states as a result of the global FPD
controller. (b) control efforts from the global controller. (c) states as a result
of the distributed FPD controller. (d) control efforts from the distributed
controller.

The developed distributed controllers exchange information
about the various nodes in the network and use this in-
formation to update their governing dynamical relations.
The theoretical findings were then validated on a coupled
map lattice network as an example of complex dynamical
networks. Numerical results confirm the effectiveness of
the proposed distributed probabilistic control approach in
globally regulating the states of the network.
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