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Abstract: Pyrolysis bio-oils contain significant amounts of carboxylic acids which limit their utility
as biofuels. Ketonisation of carboxylic acids within biomass pyrolysis vapours is a potential route
to upgrade the energy content and stability of the resulting bio-oil condensate, but requires active,
selective and coke-resistant solid acid catalysts. Here we explore the vapour phase ketonisation
of acetic acid over Ga-doped HZSM-5. Weak Lewis acid sites were identified as the active species
responsible for acetic acid ketonisation to acetone at 350 ◦C and 400 ◦C. Turnover frequencies were
proportional to Ga loading, reaching ~6 min−1 at 400 ◦C for 10Ga/HZSM-5. Selectivity to the desired
acetone product correlated with the weak:strong acid site ratio, being favoured over weak Lewis acid
sites and reaching 30% for 10Ga/HZSM-5. Strong Brønsted acidity promoted competing unselective
reactions and carbon laydown. 10Ga/HZSM-5 exhibited good stability for over 5 h on-stream acetic
acid ketonisation.

Keywords: pyrolysis; ketonisation; bio-oil; turnover frequencies (TOFs)

1. Introduction

Hydrocarbons sourced from non-edible or waste lignocellulosic or algal biomass are an attractive
source of sustainable liquid transportation fuels to mitigate current dependence on fossil fuels and
associated anthropogenic climate change [1,2]. However, biomass-derived fuels are incompatible with
existing distribution infrastructure and vehicle engines without (catalytic) upgrading to improve their
physicochemical properties [2,3]. A range of thermochemical technologies exist for bio-oil production,
including hydrothermal liquefaction [4,5] and pyrolysis [6,7], or gasification [8,9] and subsequent
Fischer–Tropsch synthesis [10,11]. Pyrolysis routes have gained particular attention over the past
30 years, offering a high liquid (bio-oil) yield which can be used directly as a drop-in fuel, blended
with conventional diesel, or as an efficient energy vector [12,13]. Pyrolysis bio-oils are mixtures of
oxygenated compounds which typically comprise phenolics, furanics, carboxylic acids and other small
oxygenates whose composition varies with biomass source and processing [6,14,15]. The high oxygen
content of crude bio-oils results in a heating value half that of petroleum-derived fuels, while the
presence of carboxylic acids renders the oils corrosive (pH 2–3) [15] and chemically unstable due to
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presence of small reactive oxygenates (e.g., unsaturated aldehydes) which may undergo acid-catalysed
polymerisation [2]. Crude bio-oils must therefore be upgraded to remove corrosive components and
improve stability prior to subsequent hydrodeoxygenation to improve their calorific value.

A range of catalytic routes exist for upgrading pyrolysis bio-oils, including esterification [16],
hydrodeoxygenation (HDO) [17], aldol condensation [18] and ketonisation [19]. Each route has
advantages and disadvantages. For example, esterification operates at low temperature in the liquid
phase but requires an external source of short-chain alcohols, and produces water by-product which
must be separated [20]. HDO is effective for the production of cyclic and aliphatic alkanes as liquid
fuels, but requires a renewable H2 input and precious metal catalysts that are stable in (often acidic)
bio-oils and coke-resistant [21]. Aldol condensation stabilises bio-oils by converting some reactive
oxygenates over solid base catalysts, but does not address the intrinsic acidity of bio-oils that can
deactivate HDO catalysts [22]. Ketonisation affords an intermediate deoxygenation step that can be
close-coupled to a pyrolysis reactor to upgrade vapours before then condense into a bio-oil, thereby
improving bio-oil acidity, and achieving partial deoxygenation [19], although it is also accompanied
by a small loss of carbon as CO2. Ketonisation [22–24], takes place through the condensation of
two carboxylic (e.g., acetic) acid molecules to form a ketone (e.g., acetone), CO2 and H2O (Figure 1).
An important advantage of ketonisation over esterification for acid neutralisation is that the former
can be performed in the vapour phase without additional reactants, thus enabling close-coupling to a
pyrolysis reactor to upgrade bio-oil vapours prior to their condensation as a bio-oil [24,25]. Ketonisation
also facilitates bio-oil deoxygenation and concomitant hydrocarbon chain growth [26], and hence
improves the calorific value of the resulting condensate (in addition to its pH and stability).
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Ketonisation is widely studied in organic synthesis [25,27], being catalysed by diverse
heterogeneous catalysts including alkaline earth metal oxides such as BaO, MgO [28,29], transition
metal oxides including MnO2 [24,30,31], TiO2 [32,33], Fe3O4 [22,24,34], CeO2 [35,36] and ZrO2 [37,38]
and actinide oxides such as ThO2 [39]. The mechanism of ketonisation and corresponding sensitivity
to catalyst properties remains the subject of ongoing debate [25,40]. Ketonisation over basic and
reducible oxide catalysts proceeds via two distinct pathways depending on the lattice energy of the
metal oxide, with lower energy lattice (stronger bases) forming stable carboxylates that thermally
decompose at elevated temperature (>420 ◦C) [41] to yield ketones, whereas higher energy lattices
favour a lower temperature surface catalysed route [25]. However, there are fewer reports of carboxylic
acid ketonisation over zeolites, being limited to HZSM-5, HZSM-11, HZSM-34, HZSM-35, mordenite,
erionite and zeolite Beta. Of these, HZSM-5(100) is the most favourable for acetic acid ketonisation
to acetone [42], being very selective to xylenols and acetone at moderate reaction temperatures
(320 ◦C) and forming acetone as the major product >350 ◦C [42]. Zeolite modification by transition
metals and lanthanides such as Ce, Co, Ni and Ga increases aromatic product yields during catalytic
pyrolysis [43–45], however to our knowledge Ga-promoted zeolites have never been investigated for
carboxylic acid ketonisation. Gallium can be introduced into zeolites by incipient wetness impregnation
and ion exchange [46], although the choice of preparation method had little impact on aromatic products
from Ga/HZSM-5-catalysed fast pyrolysis [46].

HZSM-5 is an attractive catalyst for acetic acid ketonisation, owing to its corrosion resistance,
high surface area, commercial availability and ability to stabilise undercoordinated cations and hence
tune surface composition and resulting catalytic performance [25]. The presence of strongly acidic
protons in zeolites reportedly promotes the formation of surface acyl species, rather than carboxylates,
following acid adsorption. Subsequent coupling of a carboxylic acid and surface acyl yields an acid
anhydride, which in turn dissociates to liberate CO2 and a ketone as illustrated in Figure 2 [25,47],
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although Chang et al propose that ketonisation proceeds by nucleophilic attack of an acylium ion by
adsorbed carboxylate [48]. The latter is similar to a ketene intermediate pathway, in with the acylium
ion is directly formed by acid protonation and water loss [48]. The relationship between Lewis/Brønsted
acid character and ketonisation activity/selectivity over zeolites remains poorly established.

1. Adsorption of carboxylic acid with elimination of water,
2. Surface acyl formation,
3. Surface adsorption of second carboxylic acid,
4. Coupling of adsorbed carboxylic acid with a surface acyl group to form an acid anhydride,
5. Adsorbed anhydride decomposition to form CO2 and acetone.
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Herein, we report the impact of Ga doping on the surface acidity of HZSM-5 and associated
reactivity for the continuous vapour phase ketonisation of acetic acid to acetone. Activity and selectivity
to acetone were proportional to Ga loading, reflecting the formation of weak Lewis acid sites and
suppressed coking.

2. Results and Discussion

2.1. Catalyst Characterisation

Crystalline phases were characterised by powder X-ray diffraction (XRD). Figure S1 shows
diffraction patterns for HZSM-5 as a function of Ga loadings to HZSM-5, and pure bulk Ga2O3.
No reflections associated with gallium oxide phases were observed for any loadings, indicating either
the presence of highly dispersed Ga2O3 nanoparticles throughout the HZSM-5 pore network, or the
exchange of Ga3+ with Al3+ ions in the framework (or protons at the surface of the zeolite). It is well
documented that protons play an important role in regulating the interaction of metal oxides with
zeolite surfaces [49,50]. Fang and co-workers report that impregnation favours the formation of Ga2O3

and small amounts of GaO+ at surface of ZSM-5, thereby introducing weak Lewis acid sites [51].
In contrast ion-exchanged Ga/HZSM-5 prepared by refluxing the zeolite in aqueous Ga(NO3)3 at
70–100 ◦C [46,52] appears to favour framework dealumination through Ga ion-exchange. Although
the latter syntheses resemble our impregnating conditions we cannot conclude whether Ga resides as
surface GaO+ clusters or within the zeolite framework. The reference gallium oxide was phase-pure
monoclinic (m-Ga2O3) with reflections at 2θ = 19.0◦, 30.4◦, 30.5◦, 31.8◦, 33.5◦, 35.2◦, 37.4◦, 38.5◦, 42.8◦,
45.9◦, 48.7◦ and 57.5◦ [53,54]. Crystallite sizes of the parent HZSM-5 (Table 1) were independent
of Ga loading, and significantly smaller than the zeolite. Nitrogen porosimetry revealed type IV
isotherms for xGa/HZSM-5 (Figure S2), with the observed mesoporosity attributed to interparticle
voids [55]. Corresponding Brunauer-Emmett-Teller (BET) surface areas, total pore volumes and
micropore volumes continuously decreased with increased Ga loading (Table 1), attributed to partial
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pore blockage, possibly as a result of extra-framework gallium deposition within the micropores [56].
Bulk Ga2O3 exhibited a very low surface area <10 m2.g−1.

Table 1. Elemental analysis and physicochemical properties of catalysts.

Catalysts
Ga

Loading a

/wt%

SBET
/m2
·g−1

VTotal
b

/mL·g−1
Vmicro

c

/mL·g−1

Crystallite
Size d

/nm

Acid
Loading e

/mmol.g−1

Weak:Strong
Acid Site

Ratio f

HZSM-5 0 427 0.294 0.141 65.7 1.13 0.29
0.5 Ga/HZSM-5 0.3 420 0.290 0.140 55.2 1.09 0.38
3 Ga/HZSM-5 3.0 338 0.249 0.106 50.3 1.03 0.53
10 Ga/HZSM-5 9.0 313 0.210 0.099 62.6 0.80 0.83

Ga2O3 75 7.6 0.08 − 26.4 0.14 0.40
a ICP-OES, b total pore volume at P/Po = 0.98, c t-plot method, d XRD, e propylamine desorption, f XPS.

Elemental analysis revealed the surface Ga content was consistently lower than the bulk determined
by XPS and ICP-AES analysis respectively (Table S1), consistent with the selective incorporation of
gallium inside the HZSM-5 pore network. The formation of large Ga2O3 particles on the external
surface of zeolite crystallites can be discounted due to the absence of associated XRD patterns. Note that
the lower Ga surface versus bulk content for the m-Ga2O3 reference reflects oxygen termination of
gallium surfaces [57]. O 1s XP spectra of HZSM-5 revealed a single broad peak with a 533 eV binding
energy associated with Si–O–Si and Si–O–Al environments [58,59] (Figure 3a), which was unaffected
by low levels of Ga doping, but shifted to lower binding energy for 10Ga/HZSM-5, approaching that
of Ga2O3 at 530.7 eV [60,61]. A similar trend was observed for the Ga 2p3/2 XP spectra (Figure 3b),
which exhibited a single broad peak at 1119.0 eV for low Ga loadings, whose binding energy decreased
towards that of m-Ga2O3 at 1117.9 eV for 10Ga/HZSM-5 [62]. These data demonstrate that the local
environment of gallium in HZSM-5 is chemically distinct from that in bulk Ga2O3, consistent with either
highly dispersed Ga2O3 nanoparticles, or ion-exchange of Ga3+ into the zeolite framework [62,63].
Corresponding Al and Si 2p XP spectra of xGa/HZSM-5 (Figure S3a,b) each evidenced a single chemical
environment with respective binding energies of approximately 75.1 eV and 103.8 eV, consistent with
the literature for HZSM-5 [58,59]. Al and Si 2p peaks shifted to lower binding energy for 10Ga/HZSM-5
indicative of significant ion-exchange and concomitant formation of extra-framework alumina.

Catalysts 2019, 9, x FOR PEER REVIEW 4 of 13 

 

pore blockage, possibly as a result of extra-framework gallium deposition within the micropores [56]. 
Bulk Ga2O3 exhibited a very low surface area <10 m2.g−1. 

Table 1. Elemental analysis and physicochemical properties of catalysts. 

Catalysts 
Ga 

Loading a 
/wt% 

SBET 
/m2.g−1 

VTotal b 
/mL·g−1 

Vmicro c 
/mL·g−1 

Crystallite 
Size d 
/nm 

Acid 
Loading e 
/mmol.g−1 

Weak:Strong 
Acid Site Ratio f 

HZSM-5 0 427 0.294 0.141 65.7 1.13 0.29 
0.5Ga/HZSM-5 0.3 420 0.290 0.140 55.2 1.09 0.38 
3Ga/HZSM-5 3.0 338 0.249 0.106 50.3 1.03 0.53 
10Ga/HZSM-5 9.0 313 0.210 0.099 62.6 0.80 0.83 

Ga2O3 75 7.6 0.08 − 26.4 0.14 0.40 
a ICP-OES, b total pore volume at P/Po = 0.98, c t-plot method, d XRD, e propylamine desorption, f XPS. 

Elemental analysis revealed the surface Ga content was consistently lower than the bulk 
determined by XPS and ICP-AES analysis respectively (Table S1), consistent with the selective 
incorporation of gallium inside the HZSM-5 pore network. The formation of large Ga2O3 particles on 
the external surface of zeolite crystallites can be discounted due to the absence of associated XRD 
patterns. Note that the lower Ga surface versus bulk content for the m-Ga2O3 reference reflects oxygen 
termination of gallium surfaces [57]. O 1s XP spectra of HZSM-5 revealed a single broad peak with a 
533 eV binding energy associated with Si–O–Si and Si–O–Al environments [58,59] (Figure 3a), which 
was unaffected by low levels of Ga doping, but shifted to lower binding energy for 10Ga/HZSM-5, 
approaching that of Ga2O3 at 530.7 eV [60,61]. A similar trend was observed for the Ga 2p3/2 XP spectra 
(Figure 3b), which exhibited a single broad peak at 1119.0 eV for low Ga loadings, whose binding 
energy decreased towards that of m-Ga2O3 at 1117.9 eV for 10Ga/HZSM-5 [62]. These data 
demonstrate that the local environment of gallium in HZSM-5 is chemically distinct from that in bulk 
Ga2O3, consistent with either highly dispersed Ga2O3 nanoparticles, or ion-exchange of Ga3+ into the 
zeolite framework [62,63]. Corresponding Al and Si 2p XP spectra of xGa/HZSM-5 (Figure S3a and 
S3b) each evidenced a single chemical environment with respective binding energies of 
approximately 75.1 eV and 103.8 eV, consistent with the literature for HZSM-5 [58,59]. Al and Si 2p 
peaks shifted to lower binding energy for 10Ga/HZSM-5 indicative of significant ion-exchange and 
concomitant formation of extra-framework alumina. 

  

Figure 3. (a) O 1s and (b) Ga 2p XP spectra of xGa/HZSM-5 and Ga2O3. 

527529531533535537

O
 1

s 
XP

 in
te

ns
ity

Binding energy / eV

Ga2O3

(0 wt. %)

(0.5 wt. %)

(10 wt. %)

(3 wt. %)

(a)

11141116111811201122

G
a 

2p
 X

P 
in

te
ns

ity

Binding energy / eV

(0.5 wt. %)

(3 wt. %)

(10 wt. %)

Ga₂O₃

(b)
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The acid properties of xGa/HZSM-5 and m-Ga2O3 were first investigated by diffuse reflectance
Fourier transform infrared spectroscopy (DRIFTS) following pyridine adsorption (Figure S4a).
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Strong bands at 1444 cm−1 and 1545 cm−1 were assigned to pyridine bound to Lewis and Brønsted
acid sites respectively, the intense band at 1490 cm−1 to pyridine bound to both acid sites and the
weak 1600 cm−1 band to pyridine bound to Lewis acid sites [56]. The relative Lewis/Brønsted acid
character was quantified from the ratio of 1444 cm−1 and 1545 cm−1 band intensities (Figure S4b).
The Lewis:Brønsted ratio exhibited a small increase for 10Ga/HZSM-5, in accordance with literature
reports [56,64,65]. Corresponding DRIFTS for pyridine on m-Ga2O3 revealed two weak bands at
1452 cm−1 and 1614 cm−1 indicative of pure Lewis acid character as previously reported [66,67].
Acid strength was subsequently probed by temperature-programmed reaction spectroscopy (TPRS)
of propylamine. Reactively-formed propene (arising from propylamine decomposition over acid
sites) was evolved in two desorptions at ~480 ◦C and ~540–555 ◦C associated with strong and weak
acid sites respectively (Figure 4); the former possibly arising from high-index facets or defects [68,69].
The desorption temperature of both peaks was independent of Ga loading, however the ratio of
weak:strong acid sites decreased monotonically reaching ~0.83 for 10Ga/HZSM-5. The decreased acid
strength was consistent with ion-exchange of less electronegative Ga3+ for Al3+ into the zeolite surface,
which is expected to decrease hydroxyl polarisation and hence Brønsted acid strength [70]. Acid site
loadings and weak:strong acid site ratio respectively decreased and increased with Ga loading (Table 1
and Figure S5), however the total acid site density was approximately constant at ~2.6 µmol·m−2.
The acid site density of m-Ga2O3 was significantly higher at 18.4 µmol·m−2, with a weak:strong acid
site ratio of 0.40 akin to 0.5Ga/HZSM-5, however the absolute Ga loading was far lower than any of the
xGa/HZSM-5 materials.
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Figure 4. Reactively-formed propene from propylamine temperature-programmed reaction
spectroscopy (TPRS) over xGa/HZSM-5.

2.2. Catalytic Activity in Ketonisation

Vapour phase acetic acid ketonisation was subsequently studied over xGa/HZSM-5 in a fixed-bed
continuous flow reactor. Turnover frequencies (TOFs) were derived by normalising the steady state
rate of acetic acid conversion to the acid site loadings from Table 1. At 350 ◦C, TOFs were almost
independent of Ga loading, exhibiting only a small increase for 10Ga/HZSM-5. Increasing the reaction
temperature to 400 ◦C increased TOFs for all catalysts as previously reported [19,71], with a monotonic
rise with Ga loading now apparent (Figure 5). Catalytic reactivity mirrored the weak:strong acid
site ratio for both reaction temperatures, indicating that ketonisation preferentially occurs over weak
acid sites within xGa/HZSM-5. Limited deactivation (<15%) was observed for 5 h on-stream for
all xGa/HZSM-5 catalysts (Figure S6), attributed to pore/site-blocking by coke or strongly bound
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bidentate carboxylate species [72], or structural changes, whereas the Ga2O3 reference exhibited
minimal deactivation. Powder XRD revealed negligible change zeolite structure following the reaction
(Figure S7), however elemental analysis confirmed the presence of surface carbon post-reaction for all
xGa/HZSM-5 catalysts (falling from 12 wt% for the parent HZSM-5 and xGa/HZSM-5 samples to only
1 wt% for Ga2O3, Table S2).
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Figure 5. Turnover frequencies (TOFs) for acetic acid ketonisation over xGa/HZSM-5 and corresponding
weak:strong acid site ratio. Reaction conditions: 200 mg catalyst, 0.2 mL·min−1 acetic acid, 50 mL·min−1

N2, 1 bar.

Acetone selectivity at iso-conversion increased with Ga loading at both 350 ◦C and 400 ◦C (Figure 6),
concomitant with the rise in weak:strong acid site ratio and Lewis acidity [73]. Vervecken also reported
an increase in acetone selectivity >350 ◦C for acetic acid ketonisation over HZSM-5(100) [42], attributed
to a higher activation energy for ketonisation that competing aromatisation (which forms xylenols,
phenolics and other aromatics). The maximum acetone selectivity for 10Ga/HZSM-5 was 30%; the
principal by-products were CO2, xylenol, phenol and hydrocarbons [42]. The observation that weak
Lewis acid sites and/or related acid-base pairs are the active species for vapour phase acetic acid
ketonisation (Figure S8) is consistent with previous experimental [74–77] and computational studies [72].
As discussed in the Introduction, acidic protons in zeolites promote the formation of surface acyl
species, which may couple with carboxylate species formed over weaker acid sites to yield an acid
anhydride intermediate which in turn decomposes to liberate CO2 and acetone [25]. However, Chang et
al report that ketonisation over HZSM-5 occurs via nucleophilic attack of an acylium ion by carboxylate
species [48]; the acylium ion being formed by acid protonation and dehydration [48]. In the case of
xGa/HZSM-5, Ga loadings >10 wt% may further increase acetone productivity (and to a lesser extent
selectivity) at lower reaction temperature. Although all xGa/HZSM-5 catalysts were stable for 5 h
on-stream at 400 ◦C, future extended ageing and recycling tests are required to optimise formulation
and performance.
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Figure 6. Correlation between acetone selectivity from acetic acid ketonisation at iso-conversion (23%
and 29% at 350 ◦C and 400 ◦C, respectively) and weak:strong acid site ratio for xGa/HZSM-5. Reaction
conditions: 200 mg catalyst, 0.2 mL·min−1 acetic acid, 50 mL·min−1 N2, 1 bar.

3. Materials and Methods

3.1. Catalyst Synthesis

A commercial HZSM-5 (SiO2:Al2O3 = 30, Zeolyst International, CBV 3024E) was first calcined in
air at 550 ◦C for 4 h to remove any surface residues. Then 3 g of calcined HZSM-5 was subsequently
wet-impregnated with appropriate concentrations of a 20 mL aqueous solution of Ga(NO3)3·xH2O
(crystalline, 99.9% trace metals basis, Sigma-Aldrich, UK) to prepare Ga gallium zeolites with nominal
loadings of 0.5 wt% (0.005 M), 3 wt% (0.03 M) and 10 wt% (0.1 M). In each case the resulting slurry was
stirred for 6 h at ambient temperature, dried overnight at 90 ◦C, and finally calcined at 500 ◦C under
static for 4 h. The resulting catalysts were designated xGa/HZSM-5 where x is the nominal Ga loading.
Bulk Ga2O3 (≥99.99% trace metals basis, Sigma-Aldrich, UK) was also calcined at 500 ◦C for 4 h as a
reference material.

3.2. Catalyst Characterisation

The bulk Ga loading was determined by elemental analysis using a Thermofisher iCAP 7000
ICP-OES (Thermofisher, UK). Identification of crystalline phases was performed using a Bruker
D8 Advance powder X-ray diffractometer (Bruker, UK) with Cu Kα radiation for angles between
2θ = 10–80◦ with a step size of 0.04◦. Volume averaged particle sizes were estimated from the Scherrer
equation using the peak width of characteristic HZSM-5 and Ga2O3 reflections at 2θ = 14.8◦ and 35.2◦

respectively. Surface areas, pore size distributions and mesopore volumes were determined by N2

porosimetry using a Quantasorb Nova 4000 e porosimeter and Novawin 11.03 software (Quantachrome,
UK). Samples were outgassed in vacuo at 300 ◦C for 18 h according to Quantachrome recommendations
for microporous zeolites prior to analysis, with specific surface areas calculated by applying the
Brunauer–Emmet–Teller (BET) model over the range P/P0 = 0.02–0.07 of the adsorption isotherm.
Micropore volumes were determined using the t-plot method developed by Lippens and de Boer
over the range P/P0 = 0.2–0.5. X-ray photoelectron spectroscopy (XPS) measurements were performed
using a Kratos Axis HSi photoelectron spectrometer (Kratos Analytical, UK) equipped with a charge
neutraliser and a monochromated Al Kα X-ray source (hν = 1486.7 eV). Spectra were recorded using
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an analyser pass energy of 20 eV and X-ray power of 225 W at a normal emission. Spectral fitting was
performed using CasaXPS version 2.3.14 (Casa Software Ltd, UK), with binding energies corrected to
the C 1s peak at 284.6 eV; high resolution C and O 1s, Ga, Al and Si 2p XP spectra fitted using a common
Gaussian/Lorentzian line shape. Spectra were Shirley background-subtracted and surface compositions
quantified by application of element- and instrument-specific response factors. Errors in surface
composition were estimated by varying the background subtraction procedure across reasonable limits
and re-calculating fits. The carbon content of spent catalysts was measured using a Thermo Scientific
Flash 2000 organic elemental analyser (Thermofisher, UK) calibrated to sulfanilamide, fitted with a
Cu/CuO CHNS quartz tube and a thermal conductivity detector. Samples were prepared by adding
~10 mg catalyst and ~2 mg V2O5 to tin crucibles.

Acid site loadings and strength were determined by n-propylamine (Sigma Aldrich, UK, ≥99%)
temperature-programmed reaction spectroscopy (TPRS) using a Mettler Toledo TGA/DSC 2 STARe
system (Mettler Toledo, UK) connected to a Pfeiffer Vacuum ThermoStar GSD 301 T3 (Pfeiffer,
UK) benchtop mass spectrometer (MS). Propylamine adsorption was performed by adding liquid
n-propylamine to pre-weighed samples (1 mL per 20 mg) and placing in an alumina crucible.
Excess physisorbed propylamine was removed by drying in vacuo at 30 ◦C for 1 h prior to analysis.
Samples were heated in the thermogravimetric analyser (TGA) from 40 ◦C to 800 ◦C at a ramp rate of
10 ◦C.min−1 under flowing N2 (40 mL·min−1), with evolved gases analysed by MS to monitor reactively
formed propene. Lewis/Brønsted character was determined by diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS) of samples following pyridine adsorption over diluted samples
(10 wt% in KBr). Excess physisorbed pyridine was removed in vacuo at 30 ◦C overnight prior to
room temperature measurement using a Nicolet Avatar 370 MCT (Thermofisher, UK) with Smart
Collector accessory and liquid nitrogen cooled mercury cadmium telluride (MCT-A) detector. DRIFTS
spectra were background-subtracted, and the ratio of the transmitted intensities of the 1450 cm−1 and
1540 cm−1 peaks used to quantify the ratio between Lewis and Brønsted acid sites.

3.3. Catalytic Ketonisation

Acetic acid ketonisation was performed in a bespoke continuous flow packed-bed reactor with
online gas chromatography (GC) analysis. The reactor comprised a 1 cm o.d., quartz tube, within
which the catalyst bed was placed centrally and retained by quartz wool plugs. A constant catalyst
bed volume of 4 cm3 was used in all experiments, comprised of 200 mg of catalyst diluted with
fused silica granules. The reactor tube was positioned in a temperature-programmable furnace with a
thermocouple placed in contact with the catalyst bed. Acetic acid (Sigma-Aldrich, UK, ACS reagent ≥
99.7%) was fed in a down-flow fashion into the reactor using an Agilent 1260 Infinity Isocratic Pump
(Agilent, UK) and N2 as the carrier gas (50 mL·min−1). All reactor lines were heated to 130 ◦C to
prevent condensation, and a 1 cm diameter metal tube packed with fused silica granules was used to
ensure acetic acid vaporisation before the reactor. Products were analysed online by a Varian 3800
GC (Varian, UK) with heated gas-sampling valve, equipped with a BR-Q PLOT column (30 m × 0.53
mm i.d.,). Acetone and acetic acid were detected using a flame ionisation detector (FID). The GC was
calibrated for acetic acid and acetone by triplicate injections of 50 µl standard solutions through a
split/splitless injector. Acetic acid conversion and selectivity were calculated according to Equations (1)
and (2).

Conversion =
nAcOH0 − nAcOH

nAcOH0

× 100 (1)

Selectivity =
2× nAcetone

nAcOH0 − nAcOH
× 100 (2)

where nAcOH0 is the initial moles of acetic acid,nAcOH is the final moles acetic acid and nAcetone

represents the moles of produced as acetone. Acetone was the primary product over all catalysts.
No acetic acid conversion was observed in the absence of a catalyst.
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4. Conclusions

A family of Ga-doped HZSM-5 materials were synthesis by wet impregnation as solid acid
catalysts for the vapour phase ketonisation of acetic acid, a potential route to upgrading pyrolysis
bio-oil vapours. XRD indicates that Ga is either incorporated into the parent zeolite framework or
highly dispersed across the zeolite surface as GaO+ clusters for loadings spanning 0.3–10 wt% Ga
doping has little impact on the zeolite textural properties but increased the Lewis acid character
concomitant with a decrease in acid strength relative to HZSM-5. Turnover frequencies for acetic acid
ketonisation, and acetone selectivity at iso-conversion, were both proportional to the weak:strong acid
site ratio, evidencing that ketonisation over xGa/HZSM-5 preferentially occurs over weak (Lewis) acid
sites. The most active catalyst was 10 wt% Ga/HZSM-5, which was stable for 5 h on-stream despite
significant carbon laydown, with an acetone selectivity of 30%. Acetic acid ketonisation is an attractive
route to upgrading biomass pyrolysis vapours through close-coupling with Ga/HZSM-5 catalysts
derived from earth abundant elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/10/841/s1,
Figure S1: XRD patterns of xGa/HZSM-5 and bulk Ga2O3,; Figure S2: N2 adsorption-desorption isotherms of
xGa/HZSM-5 and Ga2O3; Figure S3: (a) Al 2p and (b) Si 2p XP spectra of xGa/HZSM-5; Figure S4: (a) DRIFT
spectra of pyridine-saturated xGa/HZSM-5 and Ga2O3 and (b) corresponding Lewis:Brønsted acid site ratio
(1444 cm−1: 1545 cm−1 bands) for xGa/HZSM-5; Figure S5: Density of strong and weak acid sites for xGa/HZSM-5
from propylamine TPRS; Figure S6: Acetic acid conversion over xGa/HZSM-5, and Ga2O3 vs time on stream.
Reaction conditions: 200 mg catalyst, at 400 ◦C, 0.2 mL·min−1 acetic acid, 50 mL·min−1 N2, 1 bar; Figure S7:
XRD patterns of (a) fresh and (b) post-reaction xGa/HZSM-5 and Ga2O3; Figure S8: Correlation between acetone
selectivity from acetic acid ketonisation at iso-conversion (23% and 29% at 350 ◦C and 400 ◦C, respectively) and
acid strength from propylamine temperature-programmed reaction spectroscopy (higher temperatures indicate
weaker acidity) over xGa/HZSM-5, and Ga2O3; Table S1: Surface and bulk composition of xGa/HZSM-5 and
Ga2O3; Table S2: Carbon content of used xGa/HZSM-5 and Ga2O3 after 5 h reaction.

Author Contributions: Conceptualisation, A.H., A.F.L. and K.W.; Formal analysis, H.J., A.O., A.F.L. and K.W.;
Investigation, H.J.; Methodology, H.J.; Supervision, M.O., A.H., A.F.L., K.W.; Writing-original draft, H.J., A.O. and
M.O.; Writing-review & editing, A.F.L. and K.W.

Funding: We thank the EPSRC (EP/K036548/2, EP/K014676/1, EP/N009924/1) for financial support. K.W. thanks
the Royal Society for the award of an Industry Fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wilson, K.; Lee, A.F. Catalyst design for biorefining. Philos. Trans. R. Soc. A 2016, 374, 20150081. [CrossRef]
2. Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010,

12, 1493–1513. [CrossRef]
3. Leitner, W.; Klankermayer, J.; Pischinger, S.; Pitsch, H.; Kohse-Höinghaus, K. Advanced Biofuels and Beyond:

Chemistry Solutions for Propulsion and Production. Angew. Chem. Int. Ed. 2017, 56, 5412–5452. [CrossRef]
4. Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water

technologies. Energy 2011, 36, 2328–2342. [CrossRef]
5. Elliott, D.C.; Biller, P.; Ross, A.B.; Schmidt, A.J.; Jones, S.B. Hydrothermal liquefaction of biomass:

Developments from batch to continuous process. Bioresour. Technol. 2015, 178, 147–156. [CrossRef]
6. Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012,

38, 68–94. [CrossRef]
7. Santos, J.; Ouadi, M.; Jahangiri, H.; Hornung, A. Integrated intermediate catalytic pyrolysis of wheat husk.

Food Bioprod. Process. 2019, 114, 23–30. [CrossRef]
8. Yung, M.M.; Jablonski, W.S.; Magrini-Bair, K.A. Review of Catalytic Conditioning of Biomass-Derived Syngas.

Energy Fuels 2009, 23, 1874–1887. [CrossRef]
9. Ouadi, M.; Fivga, A.; Jahangiri, H.; Saghir, M.; Hornung, A. A Review of the Valorization of Paper Industry

Wastes by Thermochemical Conversion. Ind. Eng. Chem. Res. 2019, 58, 15914–15929. [CrossRef]

http://www.mdpi.com/2073-4344/9/10/841/s1
http://dx.doi.org/10.1098/rsta.2015.0081
http://dx.doi.org/10.1039/c004654j
http://dx.doi.org/10.1002/anie.201607257
http://dx.doi.org/10.1016/j.energy.2011.03.013
http://dx.doi.org/10.1016/j.biortech.2014.09.132
http://dx.doi.org/10.1016/j.biombioe.2011.01.048
http://dx.doi.org/10.1016/j.fbp.2018.11.001
http://dx.doi.org/10.1021/ef800830n
http://dx.doi.org/10.1021/acs.iecr.9b00635


Catalysts 2019, 9, 841 10 of 13

10. Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gu, S. A review of advanced catalyst development
for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014,
4, 2210–2229. [CrossRef]

11. Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J. Catalysis engineering of bifunctional solids for the one-step
synthesis of liquid fuels from syngas: A review. Catal. Sci. Technol. 2014, 4, 893–907. [CrossRef]

12. Hassan, H.; Lim, J.K.; Hameed, B.H. Recent progress on biomass co-pyrolysis conversion into high-quality
bio-oil. Bioresour. Technol. 2016, 221, 645–655. [CrossRef] [PubMed]

13. Papari, S.; Hawboldt, K. A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models.
Renew. Sustain. Energy Rev. 2015, 52, 1580–1595. [CrossRef]

14. Sfetsas, T.; Michailof, C.; Lappas, A.; Li, Q.; Kneale, B. Qualitative and quantitative analysis of pyrolysis
oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas
chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 3317–3325. [CrossRef]

15. Ciddor, L.; Bennett, J.A.; Hunns, J.A.; Wilson, K.; Lee, A.F. Catalytic upgrading of bio-oils by esterification.
J. Chem. Technol. Biotechnol. 2015, 90, 780–795. [CrossRef]

16. Pirez, C.; Caderon, J.-M.; Dacquin, J.-P.; Lee, A.F.; Wilson, K. Tunable KIT-6 Mesoporous Sulfonic Acid
Catalysts for Fatty Acid Esterification. ACS Catal. 2012, 2, 1607–1614. [CrossRef]

17. Zacher, A.H.; Olarte, M.V.; Santosa, D.M.; Elliott, D.C.; Jones, S.B. A review and perspective of recent bio-oil
hydrotreating research. Green Chem. 2014, 16, 491–515. [CrossRef]

18. Snell, R.W.; Combs, E.; Shanks, B.H. Aldol Condensations Using Bio-oil Model Compounds: The Role of
Acid–Base Bi-functionality. Top. Catal. 2010, 53, 1248–1253. [CrossRef]

19. Jahangiri, H.; Osatiashtiani, A.; Bennett, J.A.; Isaacs, M.A.; Gu, S.; Lee, A.F.; Wilson, K. Zirconia catalysed
acetic acid ketonisation for pre-treatment of biomass fast pyrolysis vapours. Catal. Sci. Technol. 2018,
8, 1134–1141. [CrossRef]

20. Manayil, J.C.; Inocencio, C.V.; Lee, A.F.; Wilson, K. Mesoporous sulfonic acid silicas for pyrolysis bio-oil
upgrading via acetic acid esterification. Green Chem. 2016, 18, 1387–1394. [CrossRef]

21. Marker, T.L.; Felix, L.G.; Linck, M.B.; Roberts, M.J. Integrated hydropyrolysis and hydroconversion (IH 2) for
the direct production of gasoline and diesel fuels or blending components from biomass, part 1: Proof of
principle testing. Environ. Prog. Sustain. Energy 2012, 31, 191–199. [CrossRef]

22. Bennett, J.A.; Parlett, C.M.A.; Isaacs, M.A.; Durndell, L.J.; Olivi, L.; Lee, A.F.; Wilson, K. Acetic Acid
Ketonization over Fe3O4/SiO2 for Pyrolysis Bio-Oil Upgrading. ChemCatChem 2017, 9, 1648–1654. [CrossRef]

23. Pham, T.N.; Shi, D.; Resasco, D.E. Kinetics and Mechanism of Ketonization of Acetic Acid on Ru/TiO2
Catalyst. Top. Catal. 2014, 57, 706–714. [CrossRef]

24. Heracleous, E.; Gu, D.; Schüth, F.; Bennett, J.A.; Isaacs, M.A.; Lee, A.F.; Wilson, K.; Lappas, A.A. Bio-oil
upgrading via vapor-phase ketonization over nanostructured FeO x and MnO x: Catalytic performance and
mechanistic insight. Biomass Convers. Biorefinery 2017, 7, 319–329. [CrossRef]

25. Pham, T.N.; Sooknoi, T.; Crossley, S.P.; Resasco, D.E. Ketonization of Carboxylic Acids: Mechanisms,
Catalysts, and Implications for Biomass Conversion. ACS Catal. 2013, 3, 2456–2473. [CrossRef]

26. Gaertner, C.A.; Serrano-Ruiz, J.C.; Braden, D.J.; Dumesic, J.A. Ketonization Reactions of Carboxylic Acids
and Esters over Ceria−Zirconia as Biomass-Upgrading Processes. Ind. Eng. Chem. Res. 2010, 49, 6027–6033.
[CrossRef]

27. Wortz, C.G. Process for the Production of Ketones. U.S. Patent 2,108,156, 15 February 1938.
28. Nagashima, O.; Sato, S.; Takahashi, R.; Sodesawa, T. Ketonization of carboxylic acids over CeO2-based

composite oxides. J. Mol. Catal. A Chem. 2005, 227, 231–239. [CrossRef]
29. Pestman, R.; Koster, R.M.; van Duijne, A.; Pieterse, J.A.Z.; Ponec, V. Reactions of carboxylic acids on oxides.

2. Bimolecular reaction of aliphatic acids to ketones. J. Catal. 1997, 168, 265–272. [CrossRef]
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37. Gliński, M.; Kijeński, J. Decarboxylative coupling of heptanoic acid. Manganese, cerium and zirconium
oxides as catalysts. Appl. Catal. A Gen. 2000, 190, 87–91.

38. Okumura, K.; Iwasawa, Y. Zirconium Oxides Dispersed on Silica Derived from Cp2ZrCl2,
[(i-PrCp)2ZrH(µ-H)]2, and Zr(OEt)4Characterized by X-Ray Absorption Fine Structure and Catalytic
Ketonization of Acetic Acid. J. Catal. 1996, 164, 440–448. [CrossRef]

39. Kistler, S.S.; Swann, S.; Appel, E.G. Aërogel Catalysts—Thoria: Preparation of Catalyst and Conversions of
Organic Acids to Ketones. Ind. Eng. Chem. 1934, 26, 388–391. [CrossRef]

40. Pacchioni, G. Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT
Perspective. ACS Catal. 2014, 4, 2874–2888. [CrossRef]

41. Patil, K.C.; Chandrashekhar, G.V.; George, M.V.; Rao, C.N.R. Infrared spectra and thermal decompositions of
metal acetates and dicarboxylates. Can. J. Chem. 1968, 46, 257–265. [CrossRef]

42. Vervecken, M.; Servotte, Y.; Wydoodt, M.; Jacobs, L.; Martens, J.A.; Jacobs, P.A. Zeolite-Induced Selectivity
in the Conversion of the Lower Aliphatic Carboxylic Acids. In Chemical Reactions in Organic and Inorganic
Constrained Systems; Setton, R., Ed.; Springer: Dordrecht, The Netherlands, 1986; pp. 95–114.

43. Iliopoulou, E.F.; Stefanidis, S.D.; Kalogiannis, K.G.; Delimitis, A.; Lappas, A.A.; Triantafyllidis, K.S. Catalytic
upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B-Environ.
2012, 127, 281–290. [CrossRef]

44. French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 2010,
91, 25–32. [CrossRef]

45. Neumann, G.T.; Hicks, J.C. Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5
Catalysts for Biomass Upgrading. Top. Catal. 2012, 55, 196–208. [CrossRef]

46. Cheng, Y.T.; Jae, J.; Shi, J.; Fan, W.; Huber, G.W. Production of Renewable Aromatic Compounds by Catalytic
Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew. Chem. Int. Ed. 2012,
51, 1387–1390. [CrossRef] [PubMed]

47. Gumidyala, A.; Sooknoi, T.; Crossley, S. Selective ketonization of acetic acid over HZSM-5: The importance
of acyl species and the influence of water. J. Catal. 2016, 340, 76–84. [CrossRef]

48. Chang, C.D.; Chen, N.Y.; Koenig, L.R.; Walsh, D.E. Synergism in Acetic-Acid Methanol Reactions over Zsm-5
Zeolites. Abstr. Pap. Am. Chem. Soc. 1983, 185, 49-Fuel.

49. Tessonnier, J.-P.; Louis, B.; Walspurger, S.; Sommer, J.; Ledoux, M.-J.; Pham-Huu, C. Quantitative Measurement
of the Brönsted Acid Sites in Solid Acids: Toward a Single-Site Design of Mo-Modified ZSM-5 Zeolite.
J. Phys. Chem. B 2006, 110, 10390–10395. [CrossRef]

50. Li, B.; Li, S.; Li, N.; Chen, H.; Zhang, W.; Bao, X.; Lin, B. Structure and acidity of Mo/ZSM-5 synthesized by
solid state reaction for methane dehydrogenation and aromatization. Microporous Mesoporous Mater. 2006, 88,
244–253. [CrossRef]

51. Fang, Y.; Su, X.; Bai, X.; Wu, W.; Wang, G.; Xiao, L.; Yu, A. Aromatization over nanosized Ga-containing ZSM-5
zeolites prepared by different methods: Effect of acidity of active Ga species on the catalytic performance.
J. Energy Chem. 2017, 26, 768–775. [CrossRef]

52. Amin, N.A.S.; Ali, A. Characterization of Modified HZSM–5 with Gallium and its Reactivity in Direct
Conversion of Methane to Liquid Hydrocarbons. J. Teknol. 2001, 35, 21–30.

53. Li, J.Y.; Chen, X.L.; Qiao, Z.Y.; He, M.; Li, H. Large-scale synthesis of single-crystalline beta-Ga2O3
nanoribbons, nanosheets and nanowires. J. Phys. Condens. Matter 2001, 13, L937–L941. [CrossRef]

54. Huang, C.-C.; Yeh, C.-S. GaOOH, and [small beta]- and [gamma]-Ga2O3 nanowires: Preparation and
photoluminescence. New J. Chem. 2010, 34, 103–107. [CrossRef]

http://dx.doi.org/10.1016/0021-9517(90)90309-8
http://dx.doi.org/10.1006/jcat.1997.1623
http://dx.doi.org/10.1016/S0926-860X(01)00912-7
http://dx.doi.org/10.1016/j.apcata.2007.01.021
http://dx.doi.org/10.1006/jcat.1996.0400
http://dx.doi.org/10.1021/ie50292a007
http://dx.doi.org/10.1021/cs500791w
http://dx.doi.org/10.1139/v68-040
http://dx.doi.org/10.1016/j.apcatb.2012.08.030
http://dx.doi.org/10.1016/j.fuproc.2009.08.011
http://dx.doi.org/10.1007/s11244-012-9788-0
http://dx.doi.org/10.1002/anie.201107390
http://www.ncbi.nlm.nih.gov/pubmed/22213226
http://dx.doi.org/10.1016/j.jcat.2016.04.017
http://dx.doi.org/10.1021/jp0602629
http://dx.doi.org/10.1016/j.micromeso.2005.09.016
http://dx.doi.org/10.1016/j.jechem.2017.03.014
http://dx.doi.org/10.1088/0953-8984/13/48/103
http://dx.doi.org/10.1039/B9NJ00392D


Catalysts 2019, 9, 841 12 of 13

55. Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer—Tropsch synthesis for gasoline over Ru,
Ni promoted Co/HZSM-5 catalysts. Fuel 2013, 108, 597–603. [CrossRef]

56. Rodrigues, V.D.; Eon, J.G.; Faro, A.C. Correlations between Dispersion, Acidity, Reducibility, and Propane
Aromatization Activity of Gallium Species Supported on HZSM5 Zeolites. J. Phys. Chem. C 2010,
114, 4557–4567. [CrossRef]

57. Tamba, D.; Kubo, O.; Oda, M.; Osaka, S.; Takahashi, K.; Tabata, H.; Kaneko, K.; Fujita, S.; Katayama, M.
Surface termination structure of α-Ga2O3 film grown by mist chemical vapor deposition. Appl. Phys. Lett.
2016, 108, 251602. [CrossRef]

58. Grunert, W.; Muhler, M.; Schroder, K.P.; Sauer, J.; Schlogl, R. Investigations of Zeolites by Photoelectron and
Ion-Scattering Spectroscopy.2. A New Interpretation of Xps Binding-Energy Shifts in Zeolites. J. Phys. Chem.
1994, 98, 10920–10929. [CrossRef]

59. Borade, R.B.; Clearfield, A. Characterization of Acid Sites in Beta and Zsm-20 Zeolites. J. Phys. Chem. 1992,
96, 6729–6737. [CrossRef]

60. Guo, D.; Wu, Z.; An, Y.; Li, P.; Wang, P.; Chu, X.; Guo, X.; Zhi, Y.; Lei, M.; Li, L. Unipolar resistive switching
behavior of amorphous gallium oxide thin films for nonvolatile memory applications. Appl. Phys. Lett. 2015,
106, 042105. [CrossRef]

61. Wei, W.; Qin, Z.; Fan, S.; Li, Z.; Shi, K.; Zhu, Q.; Zhang, G. Valence band offset of β-Ga2O3/wurtzite GaN
heterostructure measured by X-ray photoelectron spectroscopy. Nanoscale Res. Lett. 2012, 7, 1–5. [CrossRef]

62. Xiao, H.; Zhang, J.F.; Wang, X.X.; Zhang, Q.D.; Xie, H.J.; Han, Y.Z.; Tan, Y.S. A highly efficient Ga/ZSM-5 catalyst
prepared by formic acid impregnation and in situ treatment for propane aromatization. Catal. Sci. Technol.
2015, 5, 4081–4090. [CrossRef]

63. Carli, R.; Bianchi, C.L. Xps Analysis of Gallium Oxides. Appl. Surf. Sci. 1994, 74, 99–102. [CrossRef]
64. Altwasser, S.; Raichle, A.; Traa, Y.; Weitkamp, J. Preparation of gallium-containing catalysts by solid-state

reaction of acidic Zeolites with elemental gallium. Chem. Eng. Technol. 2004, 27, 1262–1265. [CrossRef]
65. Anunziata, O.A.; Pierella, L.B. Nature of the Active-Sites in H-Zsm-11 Zeolite Modified with Zn(2+) and

Ga(3+). Catal. Lett. 1993, 19, 143–151. [CrossRef]
66. Lavalley, J.C.; Daturi, M.; Montouillout, V.; Clet, G.; Arean, C.O.; Delgado, M.R.; Sahibed-dine, A. Unexpected

similarities between the surface chemistry of cubic and hexagonal gallia polymorphs. Phys. Chem. Chem. Phys.
2003, 5, 1301–1305. [CrossRef]

67. Vimont, A.; Lavalley, J.C.; Sahibed-Dine, A.; Arean, C.O.; Delgado, M.R.; Daturi, M. Infrared spectroscopic
study on the surface properties of gamma-gallium oxide as compared to those of gamma-alumina. J. Phys.
Chem. B 2005, 109, 9656–9664. [CrossRef] [PubMed]

68. Phumman, P.; Niamlang, S.; Sirivat, A. Fabrication of Poly(p-Phenylene)/Zeolite Composites and Their
Responses Towards Ammonia. Sensors 2009, 9, 8031–8046. [CrossRef]

69. Morterra, C.; Cerrato, G.; Ferroni, L.; Negro, A.; Montanaro, L. Surface characterization of tetragonal ZrO2.
Appl. Surf. Sci. 1993, 65, 257–264. [CrossRef]

70. Dompas, D.H.; Mortier, W.J.; Kenter, O.C.H.; Janssen, M.J.G.; Verduijn, J.P. The influence of framework-gallium
in zeolites: Electronegativity and infrared spectroscopic study. J. Catal. 1991, 129, 19–24. [CrossRef]

71. Pulido, A.; Oliver-Tomas, B.; Renz, M.; Boronat, M.; Corma, A. Ketonic Decarboxylation Reaction Mechanism:
A Combined Experimental and DFT Study. ChemSusChem 2013, 6, 141–151. [CrossRef]

72. Wang, S.; Iglesia, E. Experimental and Theoretical Evidence for the Reactivity of Bound Intermediates in
Ketonization of Carboxylic Acids and Consequences of Acid–Base Properties of Oxide Catalysts. J. Phys.
Chem. C 2017, 121, 18030–18046. [CrossRef]

73. Schreiber, M.W.; Plaisance, C.P.; Baumgartl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J.A.
Lewis-Bronsted Acid Pairs in Ga/H-ZSM-5 To Catalyze Dehydrogenation of Light Alkanes. J. Am. Chem. Soc.
2018, 140, 4849–4859. [CrossRef] [PubMed]

74. Mattsson, A.; Österlund, L. Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on
Anatase, Brookite, and Rutile TiO2 Nanoparticles. J. Phys. Chem. C 2010, 114, 14121–14132. [CrossRef]

75. Ma, Q.; Liu, Y.; Liu, C.; He, H. Heterogeneous reaction of acetic acid on MgO, [small alpha]-Al2O3, and
CaCO3 and the effect on the hygroscopic behaviour of these particles. Phys. Chem. Chem. Phys. 2012,
14, 8403–8409. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.fuel.2013.02.021
http://dx.doi.org/10.1021/jp910642p
http://dx.doi.org/10.1063/1.4954673
http://dx.doi.org/10.1021/j100093a039
http://dx.doi.org/10.1021/j100195a037
http://dx.doi.org/10.1063/1.4907174
http://dx.doi.org/10.1186/1556-276X-7-562
http://dx.doi.org/10.1039/C5CY00665A
http://dx.doi.org/10.1016/0169-4332(94)90104-X
http://dx.doi.org/10.1002/ceat.200407044
http://dx.doi.org/10.1007/BF00771749
http://dx.doi.org/10.1039/b211767n
http://dx.doi.org/10.1021/jp050103+
http://www.ncbi.nlm.nih.gov/pubmed/16852163
http://dx.doi.org/10.3390/s91008031
http://dx.doi.org/10.1016/0169-4332(93)90668-2
http://dx.doi.org/10.1016/0021-9517(91)90004-N
http://dx.doi.org/10.1002/cssc.201200419
http://dx.doi.org/10.1021/acs.jpcc.7b05987
http://dx.doi.org/10.1021/jacs.7b12901
http://www.ncbi.nlm.nih.gov/pubmed/29488757
http://dx.doi.org/10.1021/jp103263n
http://dx.doi.org/10.1039/c2cp40510e
http://www.ncbi.nlm.nih.gov/pubmed/22532122


Catalysts 2019, 9, 841 13 of 13

76. Finocchio, E.; Willey, R.J.; Busca, G.; Lorenzelli, V. FTIR studies on the selective oxidation and combustion of
light hydrocarbons at metal oxide surfaces Part 3.-Comparison of the oxidation of C3 organic compounds
over Co3O4, MgCr2O4 and CuO, Journal of the Chemical Society. Faraday Trans. 1997, 93, 175–180. [CrossRef]

77. Geiculescu, A.C.; Spencer, H.G. Thermal Decomposition and Crystallization of Aqueous Sol-Gel Derived
Zirconium Acetate Gels: Effects of the Additive Anions. J. Sol-Gel Sci. Technol. 2000, 17, 25–35. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/a605341f
http://dx.doi.org/10.1023/A:1008700803565
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Catalyst Characterisation 
	Catalytic Activity in Ketonisation 

	Materials and Methods 
	Catalyst Synthesis 
	Catalyst Characterisation 
	Catalytic Ketonisation 

	Conclusions 
	References

