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Abstract

The last decade has witnessed many accomplishments in the field of Natural Language

Processing, especially in understanding the language semantics. Well-established machine

learning models for generating word representation are available and has been proven use-

ful. However, the existing techniques proposed for learning sentence level representations

do not adequately capture the complexity of compositional semantics. Finding semantic

similarity between sentences is a fundamental language understanding problem.

In this project, we compare various machine learning models on their ability to capture

the semantics of a sentence using Semantic Textual Similarity (STS) Task. We focus on

models that exhibit state-of-the-art performance in Sem-Eval(2017) STS shared task. Also,

we analyse the impact of models’ internal architectures on STS task performance. Out

of all the models the we compared, Bi-LSTM RNN with max-pooling layer achieves the

best performance in extracting a generic semantic representation and aids in better transfer

learning when compared to hierarchical CNN.
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Chapter 1

Introduction

Natural Language Processing (NLP) is a field at the intersection of Linguistics and Artifi-

cial Intelligence (AI) (Jurafsky and Martin, 2014). The major goal of this field is to make

computers process and understand human languages. Language processing helps to per-

form many useful tasks for humans such as language translation, information extraction,

intelligent search engines, and question answering systems and so on (Jurafsky and Martin,

2014). These tasks involve processing text and understanding the meaning of words and

phrases in it.

This project studies various algorithms proposed for learning semantic representation

of text and evaluates their ability to capture semantics. The text meaning extracted using

these algorithms, are estimated using Semantic Textual Similarity task. This study helps

to advance our understanding of existing models. Specifically, we study how machine

learning algorithm is used to represent the meaning of the given text. Therefore, it is
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essential to understand what constitutes a meaning. Section 1.1 and 1.2 briefly introduce

how semantics are interpreted in the field of linguistics and computer science.

1.1 Natural Language Semantics

In the field of Linguistics, Semantics is a study of the meaning or sense of words and their

relationship with other words. Contextual information is always used to express the sense

of the word. Meaning can be classified as Lexical and Grammatical. Lexical meaning

denotes the meaning of the words based on its parts of speech tags such as noun, verbs,

adverbs, adjectives and so on. For example, lexical meaning is the meaning of word walk

in the words walks/walking/walked. The latter signifies the meanings that are conveyed in

a sentence by using its word order and other grammatical signals.

Many properties of human languages make language processing a very complex task

for computers. For words, a single word can have various different meanings also known

as sense. For example, the word bank can mean a river bank or financial institution. But

when humans read a sentence consisting of bank and wood, they understand the meaning

through context with their knowledge of the world. In some cases, the meaning of a word

is part of another word such as animal and cat expressing a is-a relationship. Therefore, we

can deduce that the words have a similar meaning when they share context.

Harris (1954) and Firth (1957) formulated a hypothesis that “Words which occur in

similar contexts tend to have similar meanings”. There have been many approaches based

on this hypothesis that try to capture and represent the meaning of a word using words that

2



occur around it. For example, consider a text “One bottle of Tesgino makes you drunk. We

make tesgino out of corn” (Jurafsky and Martin, 2014). The word tesgino appears to be an

alcoholic drink based on the words such as drunk and bottle. The same words (drunk and

bottle) often occur around the word beer, which has a similar meaning. There are a lot of

techniques to find similar words, but fewer approaches to find similar sentences.

The compositional and ambiguous feature of the sentences makes it complex to process

and understand its meaning. For example, the compositional meaning of big apple may

not mean large apple, but maybe New York city. An ambiguous sentence can have two

different meanings. For example, “We saw her duck” can mean either We looked at a

duck that belonged to her, or We saw her duck under something. Languages are also highly

variable in structure as I ate pizza with friends can also be expressed as Friends and I shared

some pizza (Jurafsky and Martin, 2014).

1.2 Computational Semantics

In computer science, semantics are expressed as representation that can be understood

by machine. Most commonly accepted methods to determine the word representations

and its similarity, are knowledge-based and corpus-based methods. The knowledge-based

approach uses structure resources such as WordNet (Pedersen et al., 2004) consisting of

highly relevant information like synonyms, words relation tree and so on. The corpus-

based method measures word similarity using sizable raw text corpora as a source data to

infer information such as co-occurrence, and the frequency of the words. Techniques such
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as term frequency and inverse document frequency, built based on document’s word dis-

tribution, proved to be very useful and was successfully used in an information retrieval

system (Salton, 1971; Deerwester et al., 1989). Later, these vectors were used as features

in various machine learning algorithms. The context-based meaning extraction hypothe-

sis was successfully used in language modelling (Bengio et al., 2003; Collobert and We-

ston, 2008; Collobert et al., 2011; Mikolov et al., 2011) and word representation models

(Mikolov et al., 2013; Pennington et al., 2014).

Neural models have become more effective than traditional machine learning models

in many complex NLP problems such as neural machine translation systems (Luong et al.,

2015), sentiment analysis (Socher et al., 2011), and text generation (Wen et al., 2015) .

Even though the representations created by the neural models are continuous values and not

interpretable, they were a huge success in capturing the word meaning. These models were

capable of using their numeric representations for many other downstream tasks. Models

were also proposed to capture sentence-level semantics using these word representations.

(Kiros et al., 2015; Conneau et al., 2017; Shao, 2017).

1.3 Project Overview

Despite the existence of well-established models for generating word representation and

the consensus about its usefulness, the existing techniques proposed for learning the sen-

tence representations have not fully captured the complexity of compositional semantics

(Conneau et al., 2017). In this project, we compared various machine learning techniques
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used to determine the semantic representation of a text. Semantic Text Similarity (STS)

is used as a primary task to evaluate these models (Agirre et al., 2012). STS task was

proposed to stimulate research and to encourage the development of new approaches for

modelling sentence-level semantics. This task can be used to investigate the capability of

the machine learning techniques proposed for learning text semantics; as it is important to

capture the meaning of a sentence to perform well in this task.

In this project, we compare models that achieved the state of the art performance in

Sem-Eval STS shared tasks (Cer et al., 2017). In addition to the comparative study, we will

also analyse the internal component of various architectures and their impact on STS task

performance.

This chapter gives an overview of meaning and the complex nature of language. Chap-

ter 2 presents a background of the techniques used to capture the semantics of a textual

data from words to sentences. Chapter 3 discusses the existing sentence representation

models and their limitations. Chapter 4 outlays the comparison study and its motivation. It

also presents the architecture and the algorithmic details of the encoders. Finally, Chapter

5 presents the experiments and its evaluation results that establish the sentence encoder’s

ability to capture accurate representations.

5



Chapter 2

Background

This chapter introduces the technical concepts related to this project. Section 2.1 introduces

Semantic Textual Similarity (STS) task in detail and discusses its application. Section 2.2

and 2.3 discusses the principles of feature-based machine learning and neural networks ap-

proach. Section 2.4 discusses the word representation models. In section 2.5, we discuss

about the existing sentence representation encoder models and theirs usefulness. Subsec-

tion 2.5.1 presents the classical machine learning models proposed for STS task and the

features proposed in their systems to represent semantics. In Subsection 2.5.2, we dis-

cuss about the neural models which gave the best performance in last five years and the

comparison studies on these models.
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2.1 Semantic Textual Similarity (STS)

STS is the task of finding how closely related two sentences are concerning their mean-

ing (Agirre et al., 2012). It constitutes as a primary component in many natural language

processing (NLP) applications such as Text Categorization, Sentiment Analysis and so on.

Until 2012, there was no unified framework available to study problems related to the se-

mantic analysis of text data. Because of this, it was difficult to measure the performance and

visualize the impact of different sentence representation approaches on NLP applications.

In 2012, the Special Interest Group in Computation Semantics (SIGSEM)1 introduced a

shared task for STS as part of their SemEval workshop2. The major focus of this confer-

ence was to define the STS research problem and standardize the dataset for it. This shared

task encouraged extensive evaluation of the submissions consisting different approaches

for learning sentence representation. The STS task has two sub-tasks: 1) Sentence Relat-

edness, and 2) Recognizing Textual Entailment (RTE). Sentence Relatedness aims to find

the semantic similarity score ranging from 0 to 5 between two sentences.

Table 2.1 discusses the reasoning for the similarity score. Recognizing Textual Entail-

ment measures the existence of the meaning overlap between two sentences, and classifies

the relationship into three categories: 1) Entailment (E); 2) Contradiction (C); 3) Neutral

(N). RTE was a shared task much earlier (Dagan et al., 2006)3 Table 2.2 explains the reason-

ing behind these target labels and the examples in that table are taken from ACL’s Textual

1http://www.sigsem.org

2http://alt.qcri.org/semeval2017/task1/

3http://u.cs.biu.ac.il/ nlp/RTE1/Proceedings/
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Table 2.1: Degree for semantic relatedness (similarity score) (Agirre et al., 2016)

Score Score reasoning and Sentence Pairs

0

The two sentences are completely dissimilar.

The black dog is running through the snow. A race car driver is driving his car through the mud.

1

The two sentences are not equivalent, but are on the same topic.

The woman is playing the violin. The young lady enjoys listening to the guitar.

2

The two sentences are not equivalent, but share some details.

They flew out of the nest in groups. They flew into the nest together.

3

The two sentences are roughly equivalent, but some important information differs/missing.

John said he is considered a witness but not a suspect. He is not a suspect anymore. John said.

4

The two sentences are mostly equivalent, but some unimportant details differ.

Two boys on a couch are playing video games. Two boys are playing a video game.

5

The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink. Birdie is washing itself in the water basin.

Entailment Portal4.

In this project, the experiments are built around Semantic Textual Similarity (STS) with

an objective to study the usefulness of the semantics captured by the encoder algorithms.

The encoder models should output sentence representation that consist of proper semantics

to achieve best performance in STS as this task compares semantic relatedness between

two sentences. So, the STS task serves to be ideal for training and evaluating the encoder

models explored in this comparison study.

4https://aclweb.org/aclwiki/Textual Entailment Portal
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Table 2.2: Recognizing Textual Entailment (Classification Label)

Class Label Class reasoning and Sentence Pairs

Entailment

Meaning overlap exists.

If you help the needy, God will reward you. Giving money to a poor man has good consequences.

Contradiction

The meaning of two sentences contradict with each other.

If you help the needy, God will reward you. Giving money to a poor man has no consequences.

Neutral

There is no meaning overlap

If you help the needy, God will reward you. Giving money to a poor man will make you a better person.

2.1.1 STS Applications

Semantic similarity between two sentences is a fundamental Natural Language Understand-

ing (NLU) problem that is applicable in many NLP tasks such as information retrieval,

evaluation of machine translation system, automatic text summarization, and so on (Agirre

et al., 2016). STS models act as a primary software component in many applications such

as image-captioning, automatic short question answer grading, search engines, plagiarism,

newswire headlines and so on. (Agirre et al., 2016). For example, STS tasks are being used

as a plagiarism checker by classifying the input text into following categories: 1) copying

and pasting individual sentences from Wikipedia; 2) light revision of material copied from

Wikipedia; 3) massive change of content from Wikipedia; 4) non-plagiarised answers pro-

duced without even looking at Wikipedia (Agirre et al., 2015). Similarly, STS can also be

used to automatically evaluate the quality of machine translation systems, by comparing the

machine-generated translations and its corresponding gold standard translations generated

by humans (Agirre et al., 2015).
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2.1.2 Data for STS

The performance of machine learning models highly depends on the quality of its training

data. In this project, the models are trained using dataset from Stanford Natural Language

Inference (SNLI) corpus (Bowman et al., 2015), and Sentences Involving Compositional

Knowledge (SICK) corpus (released as SemEval 2014 Task 1, (Marelli et al., 2014)).

SICK (Marelli et al., 2014) was constructed using the human-annotated corpus for Sen-

tence Relatedness and RTE tasks. It has 4500 sentence pairs from various domains. The

training data domains include

1. News headlines from the RSS feed of the European Media Monitor.

2. Image captions from Flickr.

3. Pairs of answers collected from Stack Exchange.

4. Student answers paired with correct reference answers from the BEETLE corpus

Dzikovska et al. (2010).

5. Forum discussions about beliefs from the DEFT Committed Belief Annotation dataset

(LDC2014E55).

The SNLI corpus consists of data from Amazon Mechanical Turk, an online market-

place, and Flickr30K corpus consisting 160k captions (Bowman et al., 2015). It was a hand

annotated dataset comprising 550k sentence pairs.
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2.2 Brief History of Meaning Representation

Any NLU problem starts with the challenge of describing words and sentences in the form

of a machine-understandable representation, i.e, a representation that encodes its meaning.

Historically, many knowledge-based and vector-based approaches have been proposed to

estimate representations of words. Many algorithms used WordNet, a lexical knowledge-

base to measure similarity, word hierarchy and so on. In a corpus-based approach, the

representations were built based on the co-occurrence matrix of words in the documents

consisting of the raw text corpus. It is also known as the distributional representation as

it represents the meaning of the word from the distribution of words that occur around it.

All the unique words in the documents were used to form a vocabulary V of the model.

All the words in the V were used to build the Vector representation. Initially, the term-

document matrix was introduced to represent a set of documents as vector, based on its

content. In Figure 2.1, the term-document matrix consists of four novels as its column and

all the unique words from V as its rows. With the word occurrence count in As You Like it

column in Figure 2.1, it is clear that novel belongs to comedy genre. This matrix was used

to find similar documents as part of an information retrieval system (Salton, 1971), based

on the idea that the related documents have almost the same distribution of words resulting

in similar vectors. Each row in this matrix represents the word, but its not very accurate in

carrying contextual information.

Term-context matrix was introduced to handle this limitation and measure the similarity

between words. It used vocabulary words as its columns as well as its rows. Given the

11



Figure 2.1: Term-Document Matrix. Figure taken from Jurafsky and Martin (2014)

Figure 2.2: Term-Context Matrix. Figure taken from Jurafsky and Martin (2014)

size of the vocabulary |V |, the term-context matrix carried the word co-occurrence count,

within a specific window size, with a dimension |V | × |V | as shown in Figure 2.2. These

representations were also called Sparse Vector Representations as most of the matrix cell

values are zero. They mostly capture syntactic information rather than the semantics of

the word as the window size gets smaller. The difference in orientation of two vectors

denotes the measure of similarity between words. Usage of a sparse vector model for

any semantic analysis task was computationally complex. To overcome this issue, many

models were proposed to generate short and dense representations as: 1) dimensionality

reduction using singular value decomposition; 2) neural network approaches like skip-

gram and Continuous Bag of Word (CBOW). In this project, we will focus on the models

that use neural networks for creating words and sentence representations.

12



2.3 Machine Learning Models

The learning theory and pattern recognition in AI gave rise to the field of machine learning

(Jurafsky and Martin, 2014). The main objective of the machine learning algorithms is to

learn from the previous data and predicts future data based on its previous knowledge. It

learns a hypothesis consisting of weight parameters, which map the input features to output

or target values. For any training set with input and output {(xi, yi)}ni=1, these algorithms

learn a model h(x) = y from a collection of statistical feature set, extracted from the input

in the training dataset. Then, it makes predictions on the unseen data. While training,

the parameters are optimized based on an error rate of training time output ȳi against true

output yi, for k features 〈x1
i , x

2
i , .., x

k
i 〉 extracted from the input xi. The data with discrete

outputs such as RTE tasks are segregated as the classification problem, and the data with the

continuous value output such as sentence relatedness, are classified as Regression problem.

2.3.1 Traditional ML Models

In this project, the ensemble of machine learning algorithms such as Support Vector Ma-

chine, Random Forest, and Gradient Boosting, is used for learning an RTE classifier and a

sentence relatedness task-based regressor.

Random Forest is an ensemble classifier that consists of a collection decision trees. A

Decision Tree is a tree with leaf and decision nodes that represent the function that takes

a vector of feature values, and outputs a single target value. The output value can be

discrete or continuous. It predicts based on a specific sequence of rules. Each internal node

13



Figure 2.3: A Simple Decision Tree. Figure taken from Miller and Charles (1991)

.

corresponds to a condition applied to the training set, using any one of the input features,

that splits the data as shown in Figure 2.3. Although decision tree performs well, it is prone

to overfit as the decision node rules are built from the distribution of the training data.

Therefore, it does not generalize well on the unseen data while testing. But, Random forest

does not overfit as it is an ensemble of decision trees, constructed from the sub-samples of

the training data as shown in Figure 2.4.

Support Vector Machine (SVM) algorithms apply to both linear and non-linear data.

It is one of the most popular robust algorithms which performs well even with the small

quantity of data .i.e, with less prior knowledge about the problem domain. The critical

trick that contributes to its robustness is maximum margin separator, a decision boundary

with the most significant possible distance between the hypothesis and the training data

points. This decision boundary helps the model to generalize well on unseen data. SVM

14



Figure 2.4: Random Forest. Figure taken from Machado et al. (2015)

.

handles linearly non-separable input data points, by expanding the hypothesis space, by

transforming the input data into higher dimensional space. The data points are projected

to a higher dimension using a kernel function. In higher dimension, a linear separating

hyper-plane is created using kernel function to classify the input data with its class label.

This separating hyper-plane is a non-linear line in the original space.

Boosting algorithm is an ensemble of a set of learning algorithms that combines many

base models that have limited prediction ability. Initially the boosting algorithm focused

on binary classification c(x) = sigmoid(f(x)) with response ȳ ∈ {−1, 1} where

f(x) =

N∑

i=1

θici(x) (2.1)

and ci are the base learning models,

The boosting algorithm learns the model by assigning weights θ to the data and train-

15



ing the weak classifiers against the weighted data-set. At each iteration, the weights are

optimized in a way that the mis-classified data points get higher weights.

Performance of all these algorithms crucially depends on the features selected to rep-

resent the sequence. For example, choosing feature/attributes such as pos-tags proportion,

syntactical structure equivalence, word taxonomy and so on. to train a model for STS task

would obviously give a better performance than a model trained on only the word count

feature. The extraction of each attribute takes a long time and finding the interactions be-

tween this feature, specifically for a task further slows down the training process. Most

of the time, the model is provided with n incomplete or over specified feature set. If an

algorithm can learn the attributes by itself, the training process can be automated more ef-

ficiently, and it helps in solving many NLP tasks. Neural networks are one such algorithm

which can learn the feature on it own.

Since 1980, various neural models have been proposed. Initially, neural models did not

perform well in any task as they learn the feature by itself and require an enormous amount

of data to generalize for unseen data. Recent insights in optimization, advances in parallel

computing, and the availability of large datasets improved these architectures performance.

2.3.2 Neural Network

Neural network models are machine learning models that consist of directed graph with

neurons as its node. Neurons are computational units connected by directed links. Each

link has a weight that determines its importance or strength. Similarly, all the computational

16



Figure 2.5: A simple neuron

units consist of activation functions that are applied to the input. The activation function can

be any linear or non-linear function such as sigmoid (σ), hyperbolic tangent (tanh), rectified

linear units (ReLU) and so on. So, an output of any computational units is a function over

the sum of the weighted inputs. Consider a computational units with activation function

f that takes inputs x1, x2, ..., xn with weights w1, w2, ..., wn and bias b as shown in Figure

2.5. It is formally expressed as:

z =
n∑

i=1

wxi + bi (2.2)

y = f(z) (2.3)

Figure 2.6 shows a simple neural network used for word classification. This network

predicts if the word belongs to positive, neutral or negative class. This network consist of

two hidden tanh layers with parameters M and bias b. While training, the appropriate word
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Figure 2.6: A simple network for word classification. Figure taken from Bowman (2016)

representation from the vocabulary is feed as the input. This input is then passed through

the hidden layers first and then passes through the softmax layer which produce probability

distribution over the given output classes. By comparing predicted output against the target

output, the loss of the model is calculated. With the calculated loss, the model’s parameters

are updated by using back-propagation algorithm. The training is carried out until the

model reaches its global optimum using the given training set.

There are various forms of neural network architecture considered for sentence en-

coding. In this project, we specifically focus on Recurrent Neural Networks (RNN) and

Convolution Neural Networks (CNN).

Recurrent Neural Networks

RNNs are a class of neural network architecture that are well suited for working sequential

data such as sentences, documents and so on. They allow for representing inputs of arbi-

trary length in fixed-size vectors by incorporating the structural information of the input. In
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these networks, the output at a given time step is conditioned on the entire history of inputs.

This characteristic of the network aid in handling long-range dependencies, particularly in

the gated variants such as GRU (Cho et al., 2014) and LSTM (Hochreiter and Schmidhu-

ber, 1997). As discussed in Goldberg (2016), a simple RNN can be mathematically defined

as follows:

RNN(s0, x1:n) = s1:n, y1:n (2.4)

si = R(si−1, xi) (2.5)

yi = O(si) (2.6)

xi ∈ R
din , yi ∈ R

dout , hi ∈ R
f(dout)

where x1:n is the input vector, y1:n is the output vector and si is the state vector at

time-step i. R and O are non linear function such as sigmoid or tanh.

Convolutional Neural Networks(CNN)

CNN architectures are designed to identify and combine important local predictors in a

large structure inputs, regardless of their position, to generate fixed length vector represen-

tations.(Goldberg, 2016). In the beginning, Convolution neural networks were predomi-

nantly used in computer vision for image recognition. Recently it has been proven to be

effective on the task that handles sequential inputs such as document classification (Johnson

and Zhang, 2015), short-text categorization (Wang et al., 2015), paraphrase identification

(Yin and Schütze, 2015) and so on.
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For sequence inputs, a simple CNN splits the input into multiple windows consisting of

k words. Then it applies convolution function using filter parameters, followed by a non-

linear function to transform a group of words in a window to a vector representation. The

output from convolution layer is passed through either max or average pooling layer that

combines the representation from the various windows into a single representation. Finally,

the resulting d-dimensional vector is feed into a fully connected neural network for further

prediction based on the task.

2.4 Word Representation

Firth’s hypothesis of representing each word meaning by using its nearby words, was suc-

cessfully used in many statistical NLP techniques. For instance, Brown Clustering (Brown

and Huntley, 1992) , Latent Dirichlet Allocation (Blei et al., 2003) and so on were used

word co-occurrence count as its primary component. In the field of deep learning, Ben-

gio et al. (2003) proposed a language model based on a neural network that predicts the

next word for the given previous words in a sequence. They also noticed that this predic-

tion model helped in learning a vector representation for words called word embeddings or

word representations. Later in 2008, Collobert and Weston (2008) showed the usefulness of

word representations in various downstream NLP tasks. Inspired by these models, Mikolov

et al. (2013) proposed two novel methods: 1) Skip-Gram with Negative Sampling (SGNS);

2) Continous Bag of Words(CBOW) models for learning word representations. The SGNS

model is discussed in detail below, as it is widely adopted and used as an input for many
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Figure 2.7: Training samples for skip-gram - Words pairs from raw corpus. Figure taken

from Jurafsky and Martin (2014)

models trained for NLP tasks such as Sentence Relatedness, Paraphrase detection, and so

on. (Kiros et al., 2015).

The SGNS model was trained on a monolingual text corpus, where every centre word

is used to predict the surrounding words within a window size as shown in Figure 2.7. The

model takes word input in the form of the One-Hot vector of dimension 1 × |V |. While

building the vocabulary from the training corpus, One-Hot vector 1× |V | gets assigned to

each word consisting of value 1 in the position that is the same as the position of the word in

the vocabulary, and value 0 in all other positions. This input vector X is multiplied with the

word matrix W , to get the hidden layer v (target word representation) of dimension 1×|D|,

where D is the dimension of a word representation. The dot product of the hidden layer and

the context matrix is to find the context word score as shown in Figure 2.8. For each word,

21



Figure 2.8: Context and Word matrices. Figure taken from Jurafsky and Martin (2014)

.

the context word score is normalized using soft-max function, to get the probability of each

word in the vocabulary occurring near the given the word. For a word wj , the probability

of any kth word in V is calculated as shown in equation 2.7

p(wk|wj) = yk =
exp(ck · vj)∑|v|
i=1 exp(ci · vj)

(2.7)

The output of the network is the vector 1×|V | consisting of the probability distribution

of each word in the whole vocabulary. Each probability value in the vector position denotes

the likelihood of a word corresponding to the same position in the vocabulary. Cost function

L is used to tune the weight parameters in this network by using equation 2.8

L = − log(p(wO1 , wO2 , ..., wOC
|wI)) (2.8)

where j in wOj
denotes the index of j-th output context word.

The derivative of L with respect to input units of the output layer and hidden layer,

constitute the prediction error. The learning algorithm is started with the randomized word
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Figure 2.9: Skip-gram Model. Figure taken from Jurafsky and Martin (2014)

.

and context matrices (weight parameters of this network). Optimizer algorithms such as

Stochastic Gradient Descent are used to tune the weight parameters using error back-

propagation to broadcast the gradient through the network. Later, the Skip-Gram model

was improved by replacing the soft-max function (Eq 2.10) in the output layer with Nega-

tive Sampling. This model provided state-of-the-art performance while testing for semantic

and syntactic word similarities. (Mikolov et al., 2013).

2.5 Sentence Representation Model

Despite developing a number of learning algorithms for representing words and sentences,

generating high quality and efficient sentence representations remains an unsolved problem

(Conneau et al., 2017). An efficient sentence representation that consists of the whole

meaning with context is important as it can be used across various tasks with minimal
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adaptation. This property results in a smooth transfer of the learning to train any NLP task.

We focus on the STS task, as Conneau et al. (2017) demonstrated that natural language

inference tasks appear to capture more generalizable sentence representation using Transfer

learning.

2.5.1 Traditional Machine Learning Models

For decades, traditional machine learning algorithms such as support vector machine or lo-

gistic regression were to used to solve any NLP tasks. In 2012, supervised models based on

the lexical and syntactic features of the sentence pair, showed promising results on measur-

ing semantic relatedness. These systems gave 52%–59% correlation on various data-sets

by using regression models consisting of various similarity measures as its input features.

The unsupervised models did well for next two years in row using the WordNet knowledge

and the LSA similarity measures which assume that the words with closer meaning highly

co-occur in the text corpora.

Han et al. (2013) proposed three approaches that involved 1) LSA similarity model, 2)

semantic similarity model based on the alignments quality of the sentences, and 3) sup-

port vector regression model that had features from different combinations of similarity

measures, and the measures from two other core models. It was observed that using the

n-gram overlap feature increased LSA similarity model. Out of three models (Han et al.,

2013), the alignment based system gave 59% - 74.6% Pearson Correlation on four different

data-sets. Using this model’s alignment quality as one of the features in the Support Vector
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Regression model improved the correlation score to 78%. Various supervised models using

uni-gram (one word) or bi-gram (two words) overlap, vector distance, and cosine similarity

of sentence embedding, were proposed (Agirre et al., 2015).

Tian et al. (2017) proposed a system that adapted ensemble learning techniques to solve

the Textual Entailment and STS tasks, using the same set of features. The combination of

classical NLP models like Support Vector Machine, Random Forest, Gradient Boost and

a deep learning model are used in this system. For classical NLP models, single sentence

and sentence pairs feature sets, are hand engineered based on properties like N-gram over-

lap, syntax, alignments, word sequence, word dependency, word representations and so on.

In SEM-EVAL 2017, this mixed ensemble model gave 81 % Pearson Correlation, outper-

forming all the neural models presented in that shared-task event.

Although using hand-crafted features in the above mentioned models works, it has some

drawbacks such as tuning the features extracted on addressing the corpus from new do-

mains, high computational complexity in hand engineering the features, effective feature

selection and so on. Recent approaches in deep learning continue to prove that the prob-

lem of semantic text matching can be handled in an efficient way (Cer et al., 2017). The

problem of semantic word matching can be extended to solve the problem of the semantic

sentence match by using deep learning approaches. This helps when it comes to effec-

tively learning the word meanings in the sentence individually and deriving a meaningful

sentence representation from the word vectors.
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2.5.2 Neural Models

This section discusses the top ranking neural models presented in Sem-Eval 2017 that have

been proposed to build sentence representations and predict sentence relatedness.

Kiros et al. (2015) proposed the Skip-Thought model based on skip-gram objective

from Mikolov et al. (2013). For any three consecutive sentences in the document Si−1, Si, Si+1,

the Skip-Thought model predicts the previous sentence Si−1, and next sentence Si+1 given

any sentence Si. This work focuses on training an encoder-decoder model. A variant of

recurrent networks consisting of gated recurrent units (GRU) (Cho et al., 2014) is used

as an encoder to map input sentences into a generic sentence representation. RNN with

conditioned GRU is used as a language model to decode the sentence representation and

predict surrounding sentences Si−1 and Si+1. In evaluating a semantic relatedness task,

Skip-Thought outperformed all systems proposed in a shared task SemEval 2014 (Marelli

et al., 2014).

Tai et al. (2015) proposed a recurrent neural networks(RNN) with tree based LSTM

units with two variants Child-Sum Tree-LSTM and N-ary Tree LSTM. Given a sentence

syntactic structure in a form dependency tree of the words, Tree-LSTM networks are ca-

pable of integrating the child node’s information. The Tree-LSTM units in each node t

consists of input gate it, output gate ot, a cell unit ct and a hidden output ht. Unlike Stan-

dard LSTM, the parent node has one forget gate ftk for each child node k in the Tree-LSTM.

This property allows selective usage of child information. Previously proposed RNN mod-

els with sequential LSTM units, have limited ability to capture the meaning difference in
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the two sentences raised due to word order and syntactical structures. Tree-LSTM ad-

dresses this issue by computing its hidden layer output as a function of the outputs from its

children hidden units and input vector.

In modelling semantic relatedness, the input xt denotes the word vectors of the sentence

parse tree. The proposed model retains the information of more distant words from the cur-

rent words compared to other existing models. These properties make the model effective

in highlighting the semantic heads in the sentence. It also captures the relatedness of two

phrases which have no word overlap. With these properties, Tree LSTM performs better

than existing sequential RNN-LSTM models, and models with hand engineered features

on predicting the semantic relatedness of two sentences. But one major downside is that

the dependency tree-LSTM relies on parser for dependency tree input, which is computa-

tionally expensive to collect and does not exist for all languages making it inefficient in

cross-lingual sentence representations.

Shao (2017) presented a simple Convolutional neural network model for STS tasks.

This model constsis of CNN model and fully connected neural network (FCNN). CNN

takes pre-trained word vectors from Glove (Pennington et al., 2014) enhanced with hand-

crafted features as its input. It enhances word vector to task specific forms in the convolu-

tional layer, and max-pooling generates the task-dependent sentence representation. FCNN

generates the similarity score ranging from 0-5. This model ranked third in SemEval-2017

with a 78 % correlation on STS tasks.

Pagliardini et al. (2017) proposed a simple unsupervised objective Sent2Vec, to train a
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generic distributed representation for sentences. The main contribution of Sent2Vec is its

low computational cost for both training and inference, relative to other existing state-of-

the-art models. This model is an extension of CBOW training objective from Word2Vec

(Mikolov et al., 2013), to sentence context.

Conneau et al. (2017) investigated the performance of various supervised encoders in

learning universal sentence representations. They hypothesized that textual entailment task

is a good choice for learning universal representations and demonstrated the hypothesis

with various encoder models. To prove that the sentence representations learned are uni-

versal, the representations learned from unsupervised and proposed hypothesis was used in

12 different transfer tasks, such as Caption-Image retrieval, Paraphrase detection, Entail-

ment/semantic relatedness, sentiment analysis and so on. As the result of their experiments,

Bi-LSTM with max-pooling trained on Natural Language Inference Task (Textual Entail-

ment), generated the best sentence representations, and outperformed SkipThought (Kiros

et al., 2015) and FastSent (Hill et al., 2016).

2.6 Summary

This chapter present the technical background of Natural language understanding through

word representations to sentence representations.This chapter also discussed about the suc-

cessful word representation model in details. This model was used as a base component

to develop other word and sentence representation models. This chapter has reviewed the

pro and cons of the best performing models proposed in last five years. The research in
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semantics extraction is progressing using both classical machine learning and neural net-

works model. The models that took advantage of both classical machine learning and neu-

ral models using ensemble techniques showed good performance. The neural models that

used enhanced word representation by concatenating the actual word representation and

the alignment features of two sentence has also showed promising results. Next chapter

discusses about the sentence encoder model’s architecture compared in this project.
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Chapter 3

State-of-the-art Methods in Semantic

Similarity

In recent times, a wide variety of encoders for learning sentence representation have been

proposed by NLP researchers. In feature based machine learning models, hand crafting

and selecting optimal features is hard. Although neural models learn the features by itself,

they suffer from an inherent bias toward the task and data-set that they are trained on.

This is a problem because it learns the task very well and fails to capture generic useful

information during the training time, leading to poor generalization. On the contrary, neural

models trained independent of any task such as the language model based objectives yields

representations that give more importance to general information. But, it fails to specialize

the model for any specific task. Many factors affect how the basic semantics of a sentence

are being captured during training.
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In this project, we considered models that performed well in SEMEVAL(2017) shared

task-1 to narrow down the focus of this study. Skip Thought (Kiros et al., 2015) is an unsu-

pervised model, trained for language modelling objective and is not trained for any particu-

lar task. Despite being a unsupervised model, it performed reasonably well in STS task but

is outperformed by the models that are trained on the semantics related task. We perform

a systematic comparison of different encoder techniques and assess their ability to capture

semantics of the sentence, based on their performance in STS tasks. To investigate the per-

formance, various models such as support vector machine (SVM), Random Forest (RF),

Convolutional Neural Network Encoder (Shao, 2017) were implemented. We extended Bi-

LSTM RNN with max-pooling from Conneau et al. (2017)’s implementation 1 to integrate

sentence relatedness decoder, as their original implementation was designed to work with

RTE task. These encoder models achieved good accuracy in STS task, and it outperformed

the state-of-the-art encoders in SemEval 2017 conference (Cer et al., 2017). Conneau et al.

(2017) demonstrated that Recognizing Textual Entailment (RTE) task trained using Stand-

ford Natural Language Inference (SNLI) corpus (Bowman et al., 2015), captures semantics

very well. Based on this inference, the neural models were trained using SNLI data-set,

and Sentences Involving Compositional Knowledge (SICK) corpus (Marelli et al., 2014),

for semantic relatedness and RTE tasks.

Similarly, the encoders’ architecture for both task dependent and independent neural

models also impacts learning in different ways. This comparison study on the encoder’s

1https://github.com/facebookresearch/InferSent
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architecture and performance in STS task primarily focus on understanding for following:

• Encoder’s ability to capture semantics.

• Encoder’s potential to capture accurate meaning representations that is generic.

Above two objectives of this comparison study answer the following question that helps

in improving the models that already constitute the state of the art in sentence encoding.

• Which encoder techniques perform well in learning accurate sentence representa-

tions?

• Among classical machine learning models, what are the features contribute more to

prediction?

• What are the optimal hyper-parameters of the encoder model that helps in better

performance?

• The dimension of the representations has a direct effect on the memory requirements

and processing time. So, what is the trade-off between accuracy and training time

w.r.t dimensions?

• What is the preferable neural network architecture for learning generic sentence rep-

resentations that can aid in transfer learning?

In next section, the architecture of a various learning methods are discussed. These

models are investigated for its ability in extracting sentence representation.
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3.1 Ensemble Model

This section presents the architecture details of an ensemble model proposed by Tian et al.

(2017). This model adapts a combination method to intergrate the prediction of traditional

ML algorithms such as support vector machine (SVM), Random Forest (RF), Gradiant

Boosting (GB) and a neural network algorithm such as deep averaging network. This

project explores the combined performance of SVM , RF and GB as mentioned in Tian

et al. (2017). Given n training data with input and output {(xi, yi)}ni=1, these models focus

on estimating a function (hypothesis) h(x)=y that maps input to output. In STS task, with

sentence pair as the input, a standard approach is to represent the sentence pair in the form

of similarity features. Therefore, effective feature representations that capture semantic and

synactic matching degree are hand engineered.

With these feature representations as input, the predictions are done based on the hy-

pothesis h(x) = W ·X where X is the similarity feature vector and W is the corresponding

weight vector. The model learns an appropriate weight for each feature while training. In

Ensemble approach, various models trained on sentence relatedness task with continous

outputs, are optimizied based on the average of the score returned by them. In the case of

classification tasks such as RTE, the models are optimised based on the majority voting of

their classifications. The architecture diagram of this model is shown in Figure 3.1.
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Figure 3.1: Ensemble Model. Figure taken from Tian et al. (2017)

.

3.1.1 Features

For this ensemble model, the features of a sentence pair is extracted based on the length of

two sentences, n-gram overlap, syntactic structure, alignment and machine translation met-

rics. N-Gram represents the group of n consecutive character/words/sequence in a corpus.

For the STS task, the sequence of words or phrase overlaps are useful in expressing the

common expression between two sentences. In this project, the normalised n-gram overlap

is extracted in both word and character level. Similarly the longest common sub-sequence,

prefix and suffix are computed to extract the sequence similarity. To estimate accurate

similarity, the words are lemmatized where the words are replaced with its root word.

Although the sequence of words overlap information can give a good indication of
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similarity, it fails to capture the word dependencies in a sentence which primarily influence

the sentence meaning. The syntactical structure of a sentence is captured in the form of tree

and the number of common subtree, constitutes the feature set. Further, the monolingual

word alignment proportion is extracted as a feature. This feature maps the words between

two sentences based on their meaning, POS tag, and the synactic structure. The alignment

features include normal alignment proportion, POS tag based weighted proportion. Other

features include various WordNet based and word vector representation based similarities

measures, such as

• Levenshtein distance : It signifies the number of minimum edits required to convert

one sequence to the other. This is also known as Path distance. This feature implies

the sequence is more similar when the distance is shorter.

• Leacock-Chodorow distance : This feature extends the path distance by scaling it

using depth of hierarchy structure based on is-a relationship

• Resnik distance : This feature measures the similarity based on taxonomy informa-

tion of two words/sequence. The similarity is computed based on the distance of first

common predecesor of the two words/sequence in WordNet’s taxonomy tree which

conveys how much two words are related.

• Jiang-Conrath distance : This feature is the measure of increase difference in rela-

tion of two words/sequence.

• Cosine distance : Given the vector representation of words, normalised dot product
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of two vectors indicates the similarity between them.

Finally, a sentence pair is represented using 47 features. These features are standardised

to [0,1] using max-min normalization to reduce the standard deviation and handle the out-

liers in the features. Then, the traditional machine learning models such as Support vector

machine (SVM), Random Forest(RF), and Gradient Boosting (GB) are trained using these

features.

3.1.2 Objective Function

For semantic relatedness task, a list of sentence pairs X = {(Sa1, Sb1),.., (SaN , SbN )} is

given as input. The sentence pairs come with similarity scores Y = {Yab1, Yab1, ...., YabN}

that consist of value ranging from 0 indicating no similarity to 5 indicating the high simi-

larity between the sentences. The goal is to build a model that is able to produce the correct

similarity score Yab for each sentence pair (Sai, Sbi).

Formally, the task to learn is represented as,

h(w, f(Sa, Sb)) → Yab (3.1)

where function f maps sentence pairs to a vector representation, in which each dimen-

sion expresses a certain type of similarity between the input sentence pair such as lexical,

syntactic, semantic and so on. The weight vector, w is a parameter of the model that is

learned during the training and h denotes the STS prediction model.
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The RTE task is a classification problem that consists of three target clasess C ={entailment,

contradiction, neutral}. A classifier function γ is learned to map the sentence pair to its

corresponding RTE class labels C.

In ensemble of SVM, RF and GB, their predictions are combined into one final predic-

tion using the Stacking algorithm. In stacking, the training set is split to several subsets

and each model is trained and tested on one of those subsets. Finally the predictions are

fed into an outer model with their actual target value for its training. This outer classifier

combines the prediction of SVM, RF and GB.

3.2 Convolutional Neural Network

This section explains the convolution neural networks (CNN) based learning model used

for semantic sentence similarity. The two main components of this model are (CNN) based

sentence representation model, and fully connected neural networks (FCNN) used for STS

task. The CNN architecture consists of two convolution networks that work parallel to

mapping the two sentences to a vector space. The vectors of the sentence pairs are used

by FCNN to classify their sentence similarity score. In the following, we first describe our

sentence model for mapping sentence pairs to their intermediate representations and then

explain how these representations are used to classify the relatedness score.
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3.2.1 Sentence Model using CNN

CNN architecture for mapping sentences to vector representations inspired from Shao

(2017) is shown in Figure 4.2. This architecture consists of two 1-dimensional convolu-

tion layers and a max pooling layer. The objective of this network is to convert the raw

sentence into vector representations from Pennington et al. (2014), using pre-trained 300

dimension word embeddings of all the words {w1, w2, ..., w|s|} present in the sentence.

The input sentence to the convolution layers is treated as a sequence of a real valued

number where the real valued integers are retrieved from the integer-word mapping present

in the vocabulary V. The vector representation of all the words w ∈ R
d are drawn from

embedding matrix W ∈ R
d×|V | in the embedding layer. To enhance the word representation

with respect to this task, a true flag for word overlap is added as an additional dimension

into the word vector representation for each word in the sentence. Then the CNN network

applies the convolution and max pooling operation to find the optimal feature vectors for

the sentence that capture its semantics.

The idea behind the convolution layer is to learn the features which identified the rela-

tionship between n-gram of the sentence using weight vectors m ∈ R
|m| . The 1× 1 weight

vector m also known as filters of the convolution is used. This convolution operation is fol-

lowed by applying the ReLU activation function to learn non-linear decision boundaries.

This filters out the insignificant features learned in previous operation. The output from

the convolution layer is passed to the max pooling layer with pool size (1, |S|) where the

semantic information learned is aggregated, and reduces representation dimension from
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1 × |S| × 300 (word vec dimension) to 1 × 300 (word vec dimension). The convolution

layers along with ReLU activation function and max pooling acts as a non linear feature de-

tector for the given sentence. The output sentence representation from CNN is used to find

the Semantic Difference Matrix by performing a series of operations on the two sentence

vector.

Semantic Difference Matrix

The semantic difference matrix is generated by concatenating the vector difference and vec-

tor product of a two sentence representation. This matrix is used to classify the similarity

measure using fully connected neural network (FCNN) with 2 dense layers.

SDV = (|SV1 − SV2|, (SV1 ⊗ SV2)) (3.2)

3.2.2 Similarity Measure using FCNN

This network consists of one hidden layer consisting of 300 dimensional vector, and an

output layer with 6 nodes. The hidden layer applies a tanh activation function and the

output layer applies softmax layer. The softmax layer calculates the probability over the

six score labels. The hyper parameters of this network are shown in Figure 3.3.

The maximal point is calculated from the probability distribution over six score labels.

Finally, the model is trained and optimised using the root mean squared loss of target and

predicted continous value.
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Figure 3.2: CNN Sentence Model. Figure taken from Severyn and Moschitti (2015)

.

Figure 3.3: Hyper-parameters for FCNN. Figure taken from Shao (2017)

.
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3.3 Recurrent Neural Network

This section desecribes the architecture of InferSent, a variant of recurrent neural network

(RNN) proposed for RTE task (Conneau et al., 2017). This model outperformed all the ex-

isting state-of-the-art models such as SkipThought, FastSent and so on, in extracting accu-

rate sentence embedding. InferSent consists of a bi-directional Long-Short Time Memory

(LSTM) based RNN sentence encoder and a fully connected neural network based decoder

as shown in Figure 3.5. The architecture of encoder is discussed in the following section.

3.3.1 Bi-LSTM with max pooling

Generally, RNN has the ability to accept input of arbitrary length and return a fixed dimen-

sional vector. Also, it is capable of propagating the previously processed input’s informa-

tion while processing a word in the given sequence at timestep t. This encoder architecture

consists of bi-directional RNN which reads the sentence in two opposite directions. It is

capable of remembering the past and future context information of a sequence at any time

step. The objective of this network is to extract generic sentence representation for a given

word representations of the words present in the sentence.

The RNN consisting of a sequence of LSTM computational cells in this architecture

accpets a raw sentence < x1, x2, ..., xt >∈ S input in the form word representations. It

reads the input S and process one word xt at a time t sequentially. Each LSTM cells

consist of a memory cell C to remember information about previous words and forget,

update,output gates to manage memory while processing the words in the sentence. This
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Figure 3.4: A Single LSTM cell. Figure taken from Ng (2018)

.
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Figure 3.5: A Bi-LSTM Network. Figure taken from Conneau et al. (2017)

.

helps LSTM to keep track of the synactical structure in the case where it stores a gender of

the subject and relates it to the pronoun in the later part of the sentence. Each cell accepts

current word input xt , memory cell
−−→
Ct−1 from the previous cell state and hidden state

−−→
at−1. It outputs a fixed dimension hidden state vector

−→
at and its prediction yt for current

time step t. For this bidirectional RNN, the hidden state output at at each time t is computed

by concatenating the hidden state output [
−→
at ,

←−
at ] of forward and backward LSTM cells .

Max pooling is applied over the varying length hidden state outputs < a1, a2, a3, ..., at >,

to obtain a fixed length sentence representation. In Max pooling, maximum value over each

dimension of the hidden states is selected to represent the input sentence.
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Semantic Difference Matrix

After extracting the sentence representation {u, v} for the sentence pair {S1, S2}, the se-

mantic difference matrix is computed by concatenation, element-wise product and absolute

element-wise difference of u and v as shown in equation 5.2 .

SDV = ([u, v], |u− v|, (u⊗ v)) (3.3)

Textual Entailment Classifier

This semantic difference matrix is fed into a fully connected neural network decoder to

classify the textual entailment in the sentence pair. This network consist of a single hidden

layer with 512 hidden units and a output layer with 3 output nodes.

The whole encoder decoder architecture is trained and optimised using the categorical

cross-entropy as its loss function. With the probabilties from the decoder’s softmax layer,

one hot vector is calculated by assigning 1 to the class with maximum probability and 0 to

others. It is compared to the target one hot vector as its a multi-class classification while

calculating loss.

3.4 Summary

In this chapter, the motivation and objective of the comparison study was discussed. We

also presented the architectural details of the models involved in the comparison study. In
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the next chapter, we outlay the experiments to answer the questions stated in this chapter.
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Chapter 4

Experimental Results

In this chapter, we discuss the results of our comparison study. All the models are trained

for Sentence Relatedness and Recognising Textual Entailment (RTE) tasks. In traditional

ML models, handcrafted features are extracted from given a sentence pair, to represent

semantics of sentence pairs, used to learn and predict their similarity. In the case of neural

models, an encoder learns the sentence representations that allows a decoder to learn and

predict their semantic similarity. To perform better in these tasks, the encoder model should

effectively capture the compositional meaning of the given sentence.

This chapter is orgainsed as follows. Section 4.1 and 4.2 discusses about evaluation

metric and experiment setup. In section 4.3, we evaluate the performance of various sen-

tence encoders in sentence relatedness and RTE tasks. Section 4.4 present the experiments

that are performed to tune the hyper-parameter of the encoder architecture and presents

the optimal parameter for best performance. Section 4.5 and 4.6 presents the experiments
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related to feature selection and Transfer Learning.

4.1 Evaluation Metric

The performance of the models is evaluated on STS tasks using accuracy of its prediction.

The accuracy is measured using Pearson Correlation between the predicted similarity

scores and gold scores created, using humans judgement. It is a measure of the linear

relationship between the predicted and target scores. The correlation value ranges from

-1 to 1 where, 1 indicates perfect positive correlation, 0 indicates no correlation and -1

indicates negative correlation.

Our second metric is training time. It is used to infer the trade-offs between the

model’s performance and the time taken for it to converge to the global optimum. Al-

though complex models give better accuracy, they take a long time to train. The objective

aim of any ML algorithm is to minimise the loss in the predicted value when compared

to target value. Analysing the time taken for loss of the encoder models to converge to

its global minima, can help in finding a trade-off between the training time and the model

performance.

The models are trained until the loss converges to its global minima. At that point the

model becomes optimal. Further optimisation leads to no improvement. Various hyper-

parameters impact the time taken by a model to converge. Sometimes, the learning algo-

rithm consistently learns unnecessary features, because of the randomness in the training

data points. In this case, the loss is always high and the model is said to have a high bias.
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The loss of this model doesn’t converge to the global minima resulting in underfitting. In

contrast, it starts to memorise the training data which is known as overfitting. At this point,

the model’s prediction on unseen data is comparatively poor.

In addition, the sentence representations encoders are evaluated for their performance

on generating a generic sentence representation that aids in transfer learning. This evalu-

ation is carried out by using representations learned from training RTE as input in sentence

relatedness tasks. Generic representations are expected to perform well in both tasks in

terms of accuracy. This helps to train a model for the task that does not have sufficient

resources.

4.2 Experiment Setup

In this chapter, we evaluate a variety of sentence encoding models, including an Ensemble

model (based on combination of SVM, RF, GB), a simple Convolutional Neural Network

model , and a Bi-Directional LSTM based Recurrent Neural Network model. To make

these evaluations more descriptive, the experimental setup of each models architecture,

including its default hyper-parameters, are outlined in this section. Any modification in

hyper-parameters are specified in each experiment.

Table 4.1 shows the parameter settings of the classical ML models. All these models are

trained until its loss converges to its global minimum. All the neural models were trained

using Stochastic Gradient Descent (SGD) optimiser with 0.1 learning rate. CNN encoder

was trained with a batch size of 336, and Bi-LSTM RNN was trained with a batch size of 64.
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For RTE classifier, we used a fully connected neural network with one hidden layer of 512

hidden units, and a final softmax layer of 3 outputs with a Categorical Cross Entropy loss

function. For Sentence Relatedness decoder, we used a fully connected neural network with

one hidden layer of 512 hidden unit and an output layer with a softmax function consisting

of 6 outputs. The probability distribution was transformed to a single score in final layer.

This network used a Mean Squared Error loss function for optimizing the model weights.

Table 4.1: Ensemble Model - Parameter Setup

Algorithms
Sentence Relatedness

(Regression Problem)

RTE

(Classification Problem)

Bounded output : 0 - 5 3 Class Labels : [0,1,2]

SVM
Support Vector Regressor

( Kernel: Polynomial)

Support Vector Classifier

(Kernel : Polynomial)

Random Forest RFRegressor ( estimators = 200) RFClassifier ( estimators = 200)

Gradient Boosting GBRegressor ( estimators = 200) GBClassifier ( estimators = 200)

Ensemble performed
Stacking Model classifier

( meta-model : Linear Regression)

Voting based classifier

We trained and evaluated the sentence encoder models using Stanford Natural Lan-

guage Inference (SNLI) corpus (Bowman et al., 2015) for RTE task and Sentences Involv-

ing Compositional Knowledge (SICK) (Marelli et al., 2014) data-set for sentence related-
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ness task.

The ensemble model is implemented using SciKit-Learn library. The data pre-processing

are performed utilizing NLTK-toolkit; a Python-based library (Bird and Loper, 2004). The

pre-processing steps includes stop-words removal, replacing words with its root words, and

extracting similarity measures, mentioned in section 3.1. The features based on alignment

and syntactical tree structure properties are created using Standford-coreNLP (Manning

et al., 2014).

The neural models are implemented using Keras1 and PyTorch2. Keras is a Python-

based high-level neural networks API that runs on top of TensorFlow3. PyTorch is a Python

package that faciliates to building dynamic neural networks architecture. For Bi-LSTM

network, the Conneau et al. (2017)’s implemention4 was used. I extended this implemen-

tation to integrate with sentence relatedness decoder as their original implementation was

designed to work with RTE task. The neural models were trained using a machine with

eight CPUs, 32GB RAM and one NVIDIA Tesla P100 GPU from Compute Canada 5 to

perform the comparison study. Tesla P100 GPU has a computing speed of approximately

4.7 teraflops 6 whereas the Core i7 CPU-7700 has a computing speed of approximately 100

gigaflops.

1https://keras.io/

2http://pytorch.org

3https://github.com/tensorflow/tensorflow

4https://github.com/facebookresearch/InferSent

5https://www.computecanada.ca/

6http://www.nvidia.ca/object/tesla-p100.html
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4.3 Encoder Architectures - Performance

In this section, the performance of the encoder models on Sentence Relatedness and RTE

tasks are explored. The encoder is trained on Sentence Relatedness task using 20k sen-

tence pair (Cer et al., 2017) and RTE task using 100k sentence pair (Bowman et al., 2015).

As mentioned in Chapter 2, the data-set used for this experiment is a collection of data

from various domains. The trained models are tested with sentence pairs that were not

encountered by them while training. For this experiment, each the models were run with

its optimal hyper-parameter, to explore its best performance in both the tasks.

4.3.1 Analysis

Table 4.3 and 4.2 shows the test performance of various models trained on RTE and Sen-

tence Relatedness tasks. We found that the Bi-LSTM RNN with the max pooling model,

has the best performance in both the tasks. This model is capable of parsing sentences in

both directions and maintains a dynamic knowledge base using LSTM units. This enables it

to capture the compositional semantics of a sentence. For RTE tasks, there is no significant

accuracy difference between the voting based ensemble and GB. For Sentence Relatedness

task, the GB does slightly better than the stacking ensemble model.

Among classical ML algorithms, Gradient Boosting (GB) performs better than random

forest. This could be because the Random Forest(RF) reduces the error by lowering its vari-

ance to handle over-fitting, and the bias in prediction caused due to under-fitting stays fixed.

In GB, weights are optimised in such a way that both bias and variance are minimised. This

51



Table 4.2: Peformance of Classical ML models

Algorithms
RTE

(Test - Accuracy %)

Sentence Relatedness

(Test - r× 100)

Single ML Model Support Vector Machine (SVM) 75.2 76.2

Random Forest (RF) 75.4 77.5

Gradient Boosting (GB) 76.7 77.5

Ensemble SVM + RF + GB 76.9 75.4

reduces the possibility of a model to under-fit or over-fit to the training data.

Table 4.3: Performance of Neural Model in RTE and Sentence Relatednes Task

Algorithms
RTE

(Test - Accuracy %)

Sentence Relatedness

(Test - r× 100)

Train Test Train Test

CNN 71.6 61.3 69.6 61.4

Hierarchical CNN 73 79.84 - -

Bi-LSTM RNN 83.98 84.35 79.9 78.5

The convolutional network did not perform well in either of the tasks. It was observed

that the testing accuracy of the CNN model was very low compared to the training ac-

curacy, meaning that the model is overfitting the data. The CNN model architecture was

updated such that three convolution layers followed by a max pooling layer was added, to
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investigate if there is any improvement in the performance. Inspired from self-hierarchical

sentence model (Zhao et al., 2015), the final sentence representation was derived from con-

catenating the output from all the max-pooling layers. The hierarchical CNN showed better

performance than single layer CNN model and all classical ML algorithms.

4.4 Hyper-parameter Tuning

This experiment aims to find the optimal hyper-parameters of the neural model’s architec-

ture that can contribute to better performance. The hyper-parameters are the external con-

figuration of a model that helps in estimating the weight and bias variables of the model.

For this experiment, we studied the following hyper-parameters: optimizers, dropout rates,

sentence representation dimensions, and learning rates. The updates to the weights and the

biases of the networks are heavily dependant on the hyper-parameters.

There are various optimizer functions that help in optimizing the network’s learnable

parameter. In this experiment, we compare a non-adaptive optimizer such as Stochastic

Gradient Descent (SGD) with an adaptive one such as Adam. Both these optimizers focus

on minimizing the loss of the model. The learning rate determines the step size that is taken

by the optimizer to reach the global minima. Learning rate controls how much the weights

have to be adjusted with respect to the loss gradient. Dropouts determines the percentage

of hidden units ignored while training. They are used to overcome the over-fitting issue by

ignoring the randomly chosen hidden units.
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4.4.1 Analysis

Table 4.4, and Table 4.5 report the results of our experiments on optimal hyper parameters.

These experiments were performed on our best performing model- BiLSTM RNN with the

max pooling layer. For this model, the network did not converge at all when the Adam

optimizer was used. The training was stopped in 4 epochs as the loss of the network did

not decrease. But, the same network converged to optimal solution when we used SGD as

reported by Conneau et al. (2017).

For SGD, the network was trained with three different learning rates [0.1,0.01,0.001],

two dropout rates [0.2,0.5] for 21 epochs each. When using 0.1 learning rate, the network

achieved its maximum accuracy within 8 epochs. Lower learning rates took longer time

to converge and did not achieve global optima as shown in Figure 4.4. For dropouts, no

difference was found in output performance under both the settings as the model was not

over-fitting.

Table 4.5 presents the effects of using different dimensions for sentence representations.

For all the models in this table, SGD optimizer with 0.1 learning rate was used. We find

interesting trade-offs between accuracy and training time. When a large dimension is used,

the training time rapidly increases as the number of parameters of the network increase and

the model complexity increases. Hence, the model is able to capture the linguistics features

of the sentences better and produces 84.35% accuracy on test data. As the dimension of

the sentence representation decreases, the accuracy and time taken to train the model also

decreases.
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Table 4.4: Learning rate - optimizers

Optimizer Learning Rate Epochs
RTE Task

(Accuracy %)

dev test

Adam 0.1 4 57.2 57.15

SGD

0.1 8 83.98 \textbf{84.35}

0.01 13 83.49 83.28

0.001 21 78.17 77.86

4.5 Input features for Traditional ML

In this section, the importance of handcrafted features and their impact on the performance

of ML techniques are studied. Table 4.6 reports the performance of the Ensemble model

with different input features. We chose the ensemble model as it was the best performing

traditional ML algorithm. Unlike neural network based models, the performance of these

algorithms heavily depends on hand-crafted features.

As discussed in Section 4.1.1, the input features used in this model are categorised

as : n-gram overlap, sequence features, word representation features and word alignment

features. We observe highest accuracy when the model is given all categories of features,

indicating that all features contribute to the prediction.

Among the different categories of features, we find that similarity scores based on the

word representations of input sentences performs the best with 70.6% test accuracy. This
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Table 4.5: Sentence Representation Dimension

Algorithms RTE

Dimension
Converge

Epoch

Total

training time
Test

Bi-LSTM RNN

500 20 ∼ 400 mins 83.12

1000 8 ∼ 360 mins 83.97

1500 6 ∼ 360 mins 84.17

2048 6 ∼ 540 mins 84.35

is because we use neural-network based pre-trained word representations, that extracts se-

mantics at word level. Sequence features, such as longest common sub-sequence, prefix

and suffix do not contribute much to the overall performance. This can be due to fact that

semantically similar sentences may have no sequence overlap.

4.6 Transfer Learning

This section reports on the ability of Bi-LSTM RNN and CNN models to aid in transfer

learning. Conneau et al. (2017) showed that models trained on SNLI dataset captures

universal representations of sentences that can be transferred to other tasks. The SNLI

dataset have five hunderd thousand hand annotated sentence pair. These reasons provided

a strong foundation to use this dataset to train the encoders(source model) that will be used

for transfer learning. Convolutional neural networks have achieved outstanding success
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Table 4.6: Performance of the Ensemble Model with different Input features on RTE task

Input Features
RTE

Test accuracy

Ngram Overlap 63.8

Sequence Features 47.4

Similarity scores 70.6

Alignment Features 66.7

All Features 76.0

in tranfer learning on ImageNet classification. We train Hierarchical CNN model and Bi-

LSTM RNN with max pooling on SNLI dataset for RTE task and evaluate the encoder

performance on sentence relatedness task. Here RTE is the source task and the sentence

relatedness is the target task. In this experiment, the dataset of source task does not overlap

with the dataset of the target task to measure the generalizability of the trained model. We

use STS benchmark dataset (Cer et al., 2017) for target task. This target dataset consists of

8628 sentence pairs, from different domains such as image captions, news headlines, and

user forums and their similarity scores.

Despite this success of CNN model in transfer learning, Bi-LSTM RNN with the max

pooling layer outperforms the hierarchical CNN model by a considerable margin as shown

in Table 4.7. This result shows that the representations captured by Bi-LSTM RNN with

max pooling has higher quality features for similarity and classification task.
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Table 4.7: Transfer Learning

Algorithms
RTE

(Accuracy %)

Sentence Relatedness

(r x 100)

Train Train Test

Neural Model

Hierarchical CNN 79.8 71.2 68.4

Bi-LSTM RNN 84.3 78 74

4.7 Comparison with the Original Models

The models implemented and the experiments performed has some modifications when

compared to the original models reported in SEMEVAL 2017 in terms of data set and the

model architecture. They report the test performance of the models on Sentence Related-

ness Task. The detailed differences are reported below.

• Ensemble Models - Originally, Tian et al. (2017)’s model was designed as a ensem-

ble of RF, GB, SVM, Deep Averaging Network and a LSTM network. This model

achieved 0.81 r for sentence relatedness task. In this project, I considered the en-

semble of RF, GB, SVM to measure the performance of traditional machine learning

models. This ensemble model gave 0.75 r for sentence relatedness task.

• Bi-LSTM - In Conneau et al.’s work, they implemented Bi-LSTM model to train

only on RTE task with 4096 dimensional LSTM layer. Their model achieved 84.5%

accuracy in RTE task. This implementation was modified to train on both RTE and
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Sentence Relatedness task with 2048 dimensional LSTM layer. The modified model

achieved 84.35 % accuracy in RTE task which is very close to the original model’s

accuracy. Their model that was reported in shared task 2017 for Sentence Related-

ness, was trained on RTE task. In this work, the learning gained by training on RTE

is transferred to Sentence relatedness task. Conneau et al.’s model achieved 0.1 r

more than the model used in this project.

• CNN - Shao (2017)’s model was designed to accepted 302 dimensional word repre-

sentation which includes 300 dimensions of glove word embedding, 1 dimension of

overlap count and 1 dimension of word alignment score between two sentence. This

model achieved 0.78 r for sentence relatedness task. We couldn’t reproduce the same

results in our implementation for this project.

4.8 Summary

In this chapter, we performed various experiments on three models on RTE and sentence re-

latedness task. Out of all the models, Bi-LSTM RNN with the max-pooling layer, achieved

best performance in extracting the semantic representation. The optimal hyper-parameters

and the impact of various dimensions of sentence representation on the performance were

studied for the best performing model. In classical ML models, alignment and similarity

features contributed more to the prediction. Next chapter presents the conclusion of this

comparative study.
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Chapter 5

Conclusion

Recently, applications based on language understanding domain have been commercially a

huge success, particularly dialogue assistants. Language understanding serves as a primary

component in many NLP applications such as dialogue assistant, search engine, plagiarism

checker, information extraction and so on. There is a growing need for more accurate

language understanding models to fulfil the requirements of these applications.

In this project, we performed a comparison study of different existing models on their

ability to learn the semantics of a text. The experiments and the results of our comparison

study is presented in Chapter 4. Here, we summarise our findings:

• Which encoder techniques perform well in learning accurate sentence represen-

tations? For both STS task and RTE task, BiLSTM RNN with max pooling proposed

in Conneau et al. (2017) outperforms other models. Gradient boosting and ensem-

ble model (SVM + RF + GB) gave the best performance among the traditional ML
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algorithms.

• Among classical machine learning models, what are the features contribute more

to prediction? For traditional ML models, the selection of features plays vital role

in the performance of the model. It is important to exclude the feature that makes a

negative contribution to the prediction. From the experiment results, all the features

contributed to the learning and there was no need for feature selection. Similarity

features based on pre-trained word representation had more impact on performance

followed alignment based features.

• Since the dimension has direct effect on the memory requirements and process-

ing time, where dimension has a good trade-off between accuracy and training

time? For neural model, we note that using 2048-dimensional embedding yields the

best performance but only by a small margin. Network with larger dimensions take

longer time to converge as the network complexity increases.

• What is the preferable neural network architecture for learning generic sen-

tence representations that can aid in transfer learning? Transfer learning allows

us to exploit the knowledge gained while solving a task (source) and to apply it in

different, but related task (target). This learning is very useful in cases where train-

ing data is scarce. In the experiment 4.6, Hierarchical CNN and Bi-LSTM RNN was

compared for their performance in transfer learning by training it in RTE task and

applying the gained knowledge to sentence relatedness task. Although CNNs are
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good choice for transfer learning in image domain, they are out performed by RNN

networks in language domain.
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