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Abstract

This thesis is about the development of cooperation and measures of success among

self-interested agents in a defined ability-based two-player asymmetric game that is

structured as a round-robin tournament. Our research is motivated by the notion that

in many systems cooperative behaviour depends on some parameters that are usually

not considered in existing research. These include: the balance between individual

activity and interaction with others; the impact of agents’ ability levels; and the need

to maintain balance between individual and group performance. In this thesis, we

examine all these issues by using a defined game-theoretic modelling and simulation

framework. Our simulation experiments on six agent group compositions establish

some patterns of how an agent’s ability and strategy impact its individual and overall

group performance. The results demonstrate that the design framework supports

methodical comparative studies of strategy profiles with respect to specific individual

and group performance measures.
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Chapter 1

Introduction

An important aspect of contemporary technological developments is the rise of artifi-

cial intelligent systems that are built to autonomously perform increasingly complex

and responsible tasks delegated to them. They are often built as multiagent sys-

tems (MAS) [Wooldridge, 2009], that is, they consist of interacting intelligent and

autonomous units, called agents, which perform individual subtasks but also work

together towards common objectives of the system as a whole. Specialized individual

agents may be independently designed, and the system may be placed in an operating

environment whose characteristics are not entirely known in advance. In anticipa-

tion of such circumstances, robust design should enable individual agents to develop

cooperation in real time, choosing appropriate strategies depending on the task re-

quirements, perceived environment, and observed behaviour of other agents.

These considerations lead in part to a more general question of how and when co-

operation develops in a society of self-interested intelligent individuals. This problem,

with some variations, is of common interest to many fields, such as evolutionary biol-
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ogy and its generalizations to human society, psychology, political science, economics,

and philosophy. The primary mathematical tool employed is game theory, and much

of existing research is centred around variations of a single two-player game, known

as Prisoner’s Dilemma (PD). The paradox of PD is that both players receive higher

rewards (‘payoffs’) when they choose to cooperate with each other than when they

both refuse to cooperate (‘mutual defection’), and yet the game-theoretic optimal-

ity criteria (dominant strategy, Nash Equilibrium) lead to mutual defection. This is

caused by the fact that the highest payoff is provided to the player who defects against

a cooperator, and the lowest for unreciprocated cooperation [Axelrod, 2006]. As aptly

observed in [Grinberg et al., 2010], “because of this the PD game represents a conflict

between individual and collective rationality.” However, subsequent research revealed

that the pessimistic social implications of the initial PD analysis can be overcome by

many different techniques, including iterated play among multiple agents with differ-

ent strategies, controlled acquisition of knowledge about strategies of other players,

etc. [Kretz, 2011, Takahashi, 2010, Axelrod, 2006].

The present study is motivated by the observation that cooperation in many nat-

ural and artificial systems depends on additional parameters that are largely absent

from existing PD-centred research literature. One such aspect is the balance between

individual activity and interaction with others. In many areas, such as academic study

or research, one can make progress by working individually and by working with oth-

ers, with the balance often guided by rational factors other than abstract ‘selfishness’

or ‘altruism’.

Furthermore, the agents may differ in their levels and types of ability. The deci-

sions on whether, when, and with whom to cooperate may well be informed by one’s

own ability and that of the prospective partner. However, the idea that payoffs may
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depend on characteristics of the players and not only on the game itself does not fit

with the fixed-payoff matrix of PD and is largely absent from PD-based research.

A practical multiagent system design usually needs to maintain a balance between

the individual success of self-interested agents in addressing the individual objectives

associated with their subtasks, and the success of the group as a whole in completing

the overall task. This type of balance is insufficiently explored as most studies either

exclusively focus on maximizing individual payoffs ([Takahashi, 2010, Kretz, 2011])

or emphasize group interest ([Grinberg et al., 2010]).

This thesis investigates all three of the above issues within a unified game-theoretic

modelling and simulation framework. The framework implements and uses the ABC

and EABC games defined in [Polajnar and Polajnar, 2018] specifically for use in this

research. ABC is a two-player game in which players can cooperate or defect. It is

derived from a base PD game. In every encounter, the players’ payoffs depend on the

individual abilities of the two participating players. EABC combines an agent’s ABC

payoffs with gains from the agent’s individual activity to form the total individual

score.

The framework simulator allows the experimenter to define a group composed of

players with different abilities, that employ a number of different strategies. They play

a round-robin tournament that may be iterated if required. We adopt the iterated

round-robin tournament (IRRT) structure as opposed to the more commonly used

Axelrod tournament structure. The calculated tournament scores reflect individual

success and group success.

One purpose of the framework is to investigate the properties of different strategies

by which agents decide to cooperate or defect. The ‘naive’ strategies include naive
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cooperators, who always cooperate, and naive defectors, who always defect. The

‘advanced’ strategies have a certain knowledge about the partner. For instance, they

may involve knowledge of the partner’s strategy type, or of the partner’s ability level.

In this work, we are not concerned with how such knowledge is acquired (there are

different techniques explored in the literature) but rather what strategies one can

formulate using a specific type of knowledge and how such strategies impact the

performance of individuals and groups.

The framework allows methodical experimental comparative studies across differ-

ently composed groups of agents with varying ability levels and individual strategies.

Individual performance can be measured by individual average scores from a com-

pleted tournament, in case of groups of same size and similar structure, or by an ap-

proximate measure called ‘adjusted average’ that is readily comparable across groups

of different sizes. Group performance may be measured by a ‘social welfare’ function

such as the group average or the group adjusted average, or by a ‘failure rate’ based on

an adopted threshold representing the minimum acceptable individual performance.

This allows the experimenter to examine the profile of each individual strategy with

respect to its impact upon the individual and group performance. As an illustration,

we provide experimental studies of six different group compositions and observation

of how individual strategies perform in different contexts.

The rest of this thesis is structured as follows. We review the background and other

related work together with their limitations in Chapter 2. In Chapter 3, we outline

and motivate the problem that we intend to address in this research. We present the

models and the simulation framework including its requirements definitions, structure,

and behaviour in Chapter 4. The experimental results, analysis and evaluation are

presented in Chapter 5. Chapter 6 presents the conclusions and future work.
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Chapter 2

Background and Related Work

This chapter presents the necessary background information and an overview of re-

lated previous work in multiagent systems, the evolution of cooperation, game theory,

normal-form games, Prisoner’s Dilemma (PD), PD tournament structures, and PD

evolutionary models.

2.1 Multiagent Systems

Shoham and Leyton-Brown [2009] define multiagent systems as “systems that include

multiple autonomous entities with either diverging information or diverging interests

or both.” In another study by Wooldridge [2009] that focused mostly on artificial

systems, multiagent systems are defined as “systems in which many rational and in-

telligent agents interact with each other in an environment.”
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By definition, an agent according to [Ferber and Weiss, 1999] “can be a physical

or virtual entity that can act, perceive its environment (in a partial way) and commu-

nicate with others, is autonomous and has skills to achieve its goals and tendencies.”

Russell and Norvig [2010] in another study consider agents to be rational entities and

therefore define a rational agent as “one that acts so as to achieve the best outcome

or, when there is uncertainty, the best expected outcome.”

In general, agents are autonomous entities that act upon their environment to sat-

isfy their design objectives. Apart from their autonomous behaviour, there are other

characteristics that define agents. Wooldridge and Jennings [1999] identify common

characteristics of agents such as responding to changes in their environment (reactiv-

ity), ability to initiate goals, plans and perform goal-oriented actions (proactiveness)

and the capability to communicate with other agents or human entities within or

outside their environments (social ability).

According to Russell and Norvig [2010], the environments that agents might be sit-

uated in can have some general properties that are used in their classification. For

instance, an environment may be deterministic or non-deterministic. A deterministic

environment is one in which the next state of the environment is completely deter-

mined by the current state and the action executed by the agent. A non-deterministic

environment is one in which the actions of agents on the environment in a given state

may result in different possible outcomes, but no probabilities are attached to them.

An environment is static if it can change only as a result of agent’s action, or dynamic

if it can change due to other processes that influence the environment beyond the

agent’s control [Russell and Norvig, 2010]. An environment is considered accessible if

the agent can obtain complete information about the environment, and inaccessible
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otherwise. An environment is classified as discrete when the sets of possible actions

and percepts are finite and fixed, or continuous otherwise [Parsons and Wooldridge,

2002].

2.2 Evolution of Cooperation

Political scientist Robert Axelrod and evolutionary biologist Hamilton used game-

theoretic modelling to demonstrate how cooperation arises among members of the

same species and even among different species [Axelrod and Hamilton, 1981]. Evo-

lution of cooperation studies how within a population of self-interested individuals

cooperation can emerge and persist [Axelrod, 2006]. Over the years, studies on the

evolution of cooperation have seen applications in fields such as economics [Friedman,

1998], political science [Axelrod, 2006], evolutionary biology [Axelrod and Hamilton,

1981], and multiagent systems. A formal framework to study the evolution of coop-

eration is game theory, and in particular its developing sub-discipline of evolutionary

game theory [Weibull, 1997].

2.3 Game Theory

Game theory, formally introduced by von Neumann and Morgenstern [1944], studies

interactions between self-interested agents and further provides the necessary analysis

to determine how a player should act in a given situation [Aumann, 1989]. Applica-

tions of game theory are being recognized in fields such as economics [Owen, 2013],

evolutionary biology [Ernst, 2009], and more recently in multiagent encounters where
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the overall outcome depends critically on the choices made by all agents in the sce-

nario [Shoham and Leyton-Brown, 2009]. Also, principles from game theory could be

applied in developing cooperative and competitive multiagent systems [Pendharkar,

2012].

Games discussed in this study belong to the class of non-cooperative games, which

means they model interactions of individual self-interested players which receive indi-

vidual payoffs as a result of the game. In Non-Cooperative Game Theory, we consider

the decision theory for more than one agent and all agents act autonomously with-

out any binding agreements. The key assumption is that every player’s goal is to

maximize its individual payoff. Depending on the game structure this may lead to

adversarial relations (as in zero-sum games), cooperation (as in coordination games),

or in most cases to interactions with elements of both conflict and cooperation.1

Definition 2.3.1: (Normal-Form Game) According to Shoham and Leyton-Brown

[2009] A (finite, n - person) normal-form game is a tuple (N, A, u), where :

• N is a finite set of n players, indexed by i;

• A = A1 × · · · × An, where Ai is a finite set of actions available to player i.

Each vector a = (ai, . . . , an) ∈ A is called an action profile.

• u = (u1, . . . , un) where ui : A ↦→ IR is a real-valued utility (or payoff) function

for player i

A two-player normal-form game with two strategy options, called Cooperate and De-

fect, can be represented by a 2 × 2 payoff matrix, as shown in Table 2.1. The row

1In this study, games are not necessary viewed as adversarial, and so we prefer to use the term
“partner” instead of “opponent.”
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Player i

Player j
Cooperate Defect

Cooperate (bi, bj) (di, aj)
Defect (ai, dj) (ci, cj)

Table 2.1: Payoff-matrix representation of a 2 x 2 game in normal-form

player i and column player j receive the payoff bi and bj respectively when they both

cooperate. Similarly, when they both defect player i receives ci and player j receives

cj. In the case where player i defects while player j is trying to cooperate, player

i gets the payoff ai and player j gets the payoff dj. On the other hand, if player j

defects while player i is cooperating then player i gets di as the payoff and player j

gets aj as his payoff [Beckenkamp et al., 2007].

The two-player matrix game in normal-form shown in Table 2.1 becomes the Pris-

oner’s Dilemma game if and only if the following conditions are met for both player

i’s and j’s payoffs:

a > b > c > d (2.1)

and

2b > a+ d (2.2)

A normal-form game can exist as either symmetric or asymmetric. According to

Shoham and Leyton-Brown [2009] a two-player two-action normal-form game is called

a symmetric game if it has the form:

A B
A x,x u,v
B v,u y,y
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The requirements of symmetric games are that players do not have distinct roles in

the game and that the payoffs of individual players do not depend on their identities.

Based on this definition, one can say that the general 2 × 2 game in normal-form

presented in Table 2.1 is symmetric when the indexed payoffs are equivalent to each

other (example, ai = aj,∨i ̸= j) [Beckenkamp et al., 2007].

However, in the asymmetric case, the payoff for a player does depend on their iden-

tities and players do have distinct roles. Considering the general 2 × 2 game in

normal-form presented in Table 2.1, one possible way it can exist in asymmetric form

is when at least one of the payoffs ai to di differs from the corresponding payoff in aj

to dj [Beckenkamp et al., 2007].

Prisoner’s Dilemma: The narrative of the Prisoner’s Dilemma describes two ar-

rested criminal suspects that are placed in separate rooms with no way to communi-

cate with each other. Without knowing the other’s intention, each player has to make

a decision whether to betray (Defect) or remain silent (Cooperate) [Wooldridge and

Jennings, 1999]. The rewards and conditions for the Prisoner’s Dilemma game are

shown in Figure 2.1. The highest reward is defection when partner cooperates and

C(2) D(2)
C(1) R R S T
D(1) T S P P

where
T >R >P >S
2R >(T + S)

Figure 2.1: The Payoff Matrix of the Prisoner’s Dilemma (PD) game

the lowest rewarded is cooperation when the partner defects. The rewards for mutual

cooperation (R, R) are higher than the rewards for mutual defection (P, P). When one

player cooperates and the other defects, the defector gets the highest payoff, T, and

the cooperator gets the lowest, S. Defection is the dominant strategy, which means

that regardless of the other player’s choice, the defecting player will do as well or bet-
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ter by defecting than by cooperating. Mutual defection is the only Nash Equilibrium,

meaning that defection is always the best response to defection by the other player.

The only Pareto Optimal strategy profile will be to mutually cooperate; this means

that we cannot move from mutual cooperation to any other strategy profile without

making any player worse off.

An iterated version of the PD game is called Iterated Prisoner’s Dilemma (IPD). In

the classical IPD game, players face each other in repeated encounters and therefore

have to choose their mutual strategic actions (Cooperation or Defection) repeatedly

with the sole motive of increasing their payoffs. The main assumption of the IPD

game is that each competing player is totally unaware of the partner’s thoughts ex-

cept for the moves made by the partner during their previous encounters, which the

player may or may not keep in its internal memory depending on its strategy.

2.4 PD Tournament Structures

2.4.1 Axelrod’s Tournament

The IPD was first formalized as a public tournament in 1980 by Axelrod to study

how cooperation will evolve among self-interested agents. The Axelrod’s tournament

has since been perceived as the standard model for the evolution of cooperation [Ax-

elrod, 2006]. In the tournament, each of the n players meet each other player exactly

once and in that meeting plays a long series of PD games [Axelrod, 2006]. In the
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Axelrod’s tournament, varied participating strategies competed against one another

and, “Tit-For-Tat”, a simple strategy where a player cooperates first, and then for

subsequent games duplicates the partner’s last known action emerged as the winner.

Analyses have shown that the success of “Tit-For-Tat” could be mostly attributed to

the presence of other strategies in the tournament that were more inclined to cooper-

ate [Axelrod, 2006].

Axelrod’s tournament scheduling, when compared to real life situations where PD

game theory might apply has two unrealistic assumptions. These are the absence of

information about the behaviour of players other than the current partner, and the

scheduling of games where each participant plays a long series of PD games against a

single partner and never meets the same partner again [Axelrod, 2006].

2.4.2 Random Scheduling Tournaments

Variations of IPD redefine the settings under which players compete with one another.

Random scheduling abstraction proposes an arrangement where players are randomly

matched against one another to compete in an IPD tournament. Random scheduling

was implemented by Takahashi [2010] to study the sustainability of cooperation in a

large community when players are uniformly randomly matched in repeated encoun-

ters. Players in each round decide whether to cooperate or defect independent of

their own past actions but refer to the given immediate past action of their sched-

uled partners. The results of the study by Takahashi was that in uniformly randomly

matched encounters cooperation can be sustained by an equilibrium [Takahashi, 2010].

In another study, Heller and Mohlin [2016] showed that cooperation can still be sus-
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tained in randomly matched repeated PD environments when in every encounter

players are given a fixed number of random partner’s past actions without an as-

sumed time zero at which interaction starts. Observations from the study by Heller

and Mohlin was that in random encounters cooperation could evolve and persist even

among players that are committed to specific strategies.

An actual experiment was conducted at Jiatong University’s Smith Economic Lab,

Shanghai, by Chong et al. [2007] to investigate how information and reputation help

induce cooperation in a random-matched IPD game. In their research, 144 under-

graduate students were divided into groups of 12 and randomly matched to play 60

rounds of IPD with a payoff structure similar to the classic Axelrod’s tournament

but with a higher incentive for defection and an ability to request up to 10 levels of

partner’s preceding actions. The experimental results indicate that players are more

cooperative towards partners that have a high reputation to cooperate.

2.4.3 Round-Robin Tournament Scheduling

A complete round-robin tournament of n agents is a tournament in which every agent

plays the remaining n - 1 agents. Compared to other scheduling abstractions such

as Single Elimination tournaments where pairs of players are matched according to

an initial seeding, and the winners of these pairs advance to the next round, while

the losers are eliminated after a single loss [Kim et al., 2017], or the Double Elimi-

nation tournament where no player is eliminated until he has lost two games [Glenn,

1960], round-robin tournament scheduling provides equal advantage or opportunity

for every player to meet all other partners in the game without any form of elimination.
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Also, the round-robin tournament scheduling is considered to be the fairest way to

schedule competitions since there are no elements of luck nor arbitrariness. The final

results of round-robin tournaments are accurate because the scheduling abstraction

presents results of long period interactions against equal competitions. [Rasmussen

and Trick, 2008].

2.4.4 Iterated Round-Robin Tournament Scheduling

The Iterated Round-Robin tournament (IRRT) scheduling abstraction describes a re-

peated version of the round-robin tournament where each participant meets all other

players in turns for a fixed number of times and for each round they play a single PD

game. Various studies into repeated round-robin tournaments have been performed

to analyze different forms of repeated Prisoner Dilemma games. One of such is the

study by Kretz [2011] which explored the development of cooperation among different

agent strategies with varying memory capacities and payoff structures.

Kretz [2011] implements the Iterated Round-Robin Tournament scheduling to inves-

tigate how cooperation and defection will emerge for different numbers of iterations,

payoff matrices, and memory sizes of strategies in a study on the emergence of co-

operative behaviour. Through computer simulations, the scheduling discipline is a

modified Iterated Round-Robin Tournament where strategies play with partners and

themselves but with knowledge of up to three levels of the most recent preceding

actions of future partners and up to two levels of their own. The conclusion is that

payoff matrices have much influence on strategies’ performances and also affect the

evolution of cooperation. The study restricts the look-up of a partner’s past moves to

only three levels, and strategies lack the opportunity to autonomously decide on the
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number of partner’s past moves required to make a decision.

2.5 PD Evolutionary Models

Different studies of the Prisoner’s Dilemma game consider the impact of information

gathering on the evolution of cooperation. The Axelrod’s tournament assumes that

each competing player is only concerned with the current partner and once the iter-

ated encounter with the same partner ends the player loses all information acquired

from the interactions and move on to compete against another competitor. However,

there are other models that study the impact of information gathering.

Kretz [2011] in his research considered a model that studies the evolution of co-

operation among artificial agent strategies in a repeated round-robin tournament of

the PD game. A strategy with a memory size n has n+1 sub-strategies to define the

action in the first, second, . . .nth, and any further iteration.

Players are given knowledge of up to three levels of the most recent preceding ac-

tions of their future partners and up to two levels of their own most recent actions.

At the end of every tournament, agents whose total payoffs are below the overall aver-

age payoff are eliminated while the remaining agents evolve into the next tournament

of the competition. The evolutionary tournament ends if only one strategy remains

or all remaining strategies have the same cumulative payoffs.

Kretz [2011] in his study observed the results of evolution of different strategies for

different levels of Own-to-Opponent memories.
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In all simulation experiments, there were 10,000 iterations of the round-robin tour-

nament and the results showed that different agent strategies emerged winners for

different levels of memory combinations and utility payoffs.

Grinberg et al. [2010] also propose a model to study the evolution of cooperation

among human participants. The main aim of that model is to represent and to pre-

dict existing game dynamics and also study the evolution of cooperation among 10

participants randomly paired to play 100 rounds of the PD Game.

These individuals are randomly assigned 5 agent strategies and competed at different

Cooperative Index (CI) levels from 0.1 to 0.9. The CI level of a game is defined to

be (R - P) / (T - S). Using agents’ total payoffs and the number of mutual coopera-

tions as measures of success, agents evolve after every 100 rounds of play and the top

5 agents procreate and proceed to the next tournament whilst the bottom 5 agents

are eliminated. Grinberg et al. [2010] argue that with the ability for agents to pre-

dict future subjective payoffs for both cooperation and defection moves there will be

a strong positive correlation between CI levels and evolution of cooperation among

independent self-interested agents.
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Chapter 3

Problem Statement

Advancements in distributed intelligent systems have enabled us to delegate increas-

ingly complex tasks to heterogeneous multiagent systems that may involve software

agents and robots of various types in interactions that usually include cooperative

behaviour. In particular, this motivates investigation into how a society of inde-

pendently designed artificial agents can be constructed to perform a specific task in a

dynamic environment whose behaviour is not fully predictable. Such agents should be

self-interested enough to ensure that their design objectives are achieved (individual

success) but must be enabled to proactively develop cooperation through interactions

with other members of the society in order to achieve the overall group goal (group

success).

The predominant part of modelling and simulation research on the development of co-

operation in multiagent systems has been based on game-theoretic concepts, primarily

on the Prisoner’s Dilemma (PD), and to a lesser extent on other two-player games (for
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example, public goods [Santos et al., 2008], snow drift [Souza et al., 2009]). To the

best of our knowledge most such studies have emphasized either individual success

([Axelrod, 2006], [Kretz, 2011]) or group success ([Santos et al., 2008]). There have

not been many studies that balance these two performance criteria. Yet in practical

task-oriented systems individual and group success are often closely related, com-

plement and influence each other. Our study aims at combining both measures of

success within a single model and exploring both types of system performance within

the same setup of a simulation experiment.

In many practical systems, the participating agents will have different levels of ability

and methods of decision making. This is not adequately reflected in existing systems

of game theoretic studies. Some models (for example, [Ridinger and McBride, 2016])

include abilities conducive to better strategy choices but do not model the skills rele-

vant to efficiency in mainstream activities. Yet we observe that in many agent groups

such mainstream abilities of individual agents impact the interaction patterns and the

resulting individual and group success.

An illustrative example that motivates our research is a class of students in a software

course, where each individual develops a piece of software to the same specification

(for example, a compiler for a specified language), done as a sequence of phases. The

students are allowed to cooperate by exchanging testing strategies and test cases, with

the intent to speed up the group progress. Thus, the progress in design and coding is

measured individually and reflects the individual’s ability, while the progress in test-

ing depends also on the patterns of cooperation among players of varying individual

abilities. The total progress of an individual in class is a balanced combination of the

two components.
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In each phase of the project, any two students have an opportunity to interact, anal-

ogous to a round-robin tournament; and since the project has a sequence of phases,

an Iterated Round-Robin Tournament (IRRT) arises as a natural encounter schedule.

This is one of many examples where for realistic modelling of repetitive interactions

IRRT emerges as preferable to the widely used Axelrod tournament [Axelrod, 2006]

pattern, in which each pair of players meet once and play a long series of games.

We further note that the example motivates efforts to develop strategies that en-

hance both individual and group success. While individual success may naturally be

measured by players’ individual scores, group success could be measured in a number

of ways. Immediate possibilities in the current example are the class average score

(that is, the ‘social welfare’ concept of game theory) and a low failure rate with re-

spect to an established failure threshold modelling the minimum acceptable level of

individual success.

In realistic agent societies where there are cooperation and defection interactions,

it is possible that agents may acquire a certain level of knowledge about their part-

ners and may use such information to achieve their objectives. We intend to introduce

and study the impact of information gathering among different combinations of agent

strategies. Most models in the reviewed literature implement information gather-

ing through direct observance of partner’s action during interactions (for example,

[Axelrod, 2006]) or access to a central historical repository (for example, [Takahashi,

2010], [Kretz, 2011], [Grinberg et al., 2010]). Our study includes strategies based on

knowledge of other agents’ properties but does not address the underlying knowledge

acquisition mechanisms. We are interested in the strategic effect of information gath-
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ering and not concerned with the mechanisms and techniques of acquiring information.

When pursuing the above research ideas in a game-theoretic setting, we note spe-

cific limitations of the Prisoner’s Dilemma as the basic underlying game structure.

The first observation is that all scoring in PD-based models typically comes from

interaction, while progress in real systems may also be achieved through individual

activity without interaction. Second, central to the dilemma in question is the fact

that mutual cooperation is more rewarding than mutual defection while an even higher

reward is collected by defecting against the cooperator, with the latter facing the low-

est payoff. This ranking of interaction payoffs may not be realistic in all contexts.

In particular, when agents perform their mainstream tasks individually, with varying

abilities, they may or may not benefit from a specific instance of mutual cooperation

(as might occur in the illustrative example above).

The main objective of this research is to establish a game-theoretic modelling and

simulation framework that supports methodical experimental exploration of how dif-

ferent strategies of cooperation vs. defection impact both individual and group success

in multiagent systems with different agent abilities. The agents perform individual

activities and also interact with other agents, with both components contributing to

their individual scores. The two-player game chosen to model the basic encounter

must incorporate the influence of individual abilities upon player payoffs. The design

of agents’ behaviour should allow advanced strategies that take advantage of knowl-

edge about partners’ properties (notably, their strategies or individual abilities). The

framework should let the experimenter evaluate the performance of different strategies

with respect to their impact upon individual or group success, and also compare how

a specific strategy performs in groups with different strategy compositions.
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Chapter 4

The Modelling and Simulation

Framework

This chapter presents an asymmetric two-player cooperation game, its model design,

and the architecture of the software simulator used to implement the game. Section 4.1

describes the Ability-based Cooperation (ABC) game and the Extended ABC (EABC)

game as defined in [Polajnar and Polajnar, 2018]. The architecture of the simulator

in terms of its requirements (purpose, definition, functional and non-functional, and

component requirements) is explained in Section 4.2. Following that, we consider the

structure of the simulator in Section 4.3 and present the behaviour of the different

components of the simulator architecture in Section 4.4. Section 4.5 details some notes

on simulator implementation while Section 4.6 elaborates our different approaches to

experimentation.
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4.1 The Ability-Based Two-Player Games

4.1.1 Introduction

The Ability-based Cooperation (ABC) game is an asymmetric two-payer game derived

from the Prisoner’s Dilemma (PD), in which the payoffs depend on the abilities of

participating players. In general, an ABC game is derived from a “base” PD game and

an assignment of abilities to players. As in PD, the players of ABC choose between

cooperation and defection, but the payoffs depend on players’ abilities, and thus the

ability distribution impacts the player motivation and outcomes. An ABC’s payoff

matrix may itself behave like PD in parts of the game’s parameter space. We further

introduce and study the notion of Extended ABC (EABC) game in which players

pursue ability-based individual activities and also interact through the ABC game.

4.1.2 Motivation

The general idea is that in a system of n agents with different abilities, each agent

performs an individual activity whose reward is proportional to the agent’s ability.

In addition, the agents interact with each other playing an asymmetric two-player

game in which they can cooperate (C) or defect (D). The payoffs for cooperation or

defection are influenced by the abilities of the individual partners. The total agent’s

score is a weighted sum of its earnings through individual activity and its payoffs from

the interactions with other players.

For an illustrative example consider a class of students in a software course, where
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each individual develops a piece of software to same specification (for example, a

compiler for a specified language), done as a sequence of phases. The progress in

design and coding is individual and reflects the individual ability. The students are

allowed to cooperate by exchanging testing strategies and test cases, with the intent

to speed up the group progress and add a cooperative dimension to the software devel-

opment activity. The progress in testing thus partly depends on cooperation patterns.

In game-theoretic terms, the class activity can be represented as an iterated tourna-

ment of scheduled mutual EABC encounters, with each project phase corresponding to

an iteration. In each encounter, a student can receive test information from the other

player (C) or receive nothing (D); likewise, the student can provide test information

to the other player (C) or provide nothing (D). The model establishes a framework

for comparative studies of how different ability-based strategies impact cooperation

and how they affect the individual and group success in a multiagent system.

4.1.3 The Ability-based Cooperation (ABC) game

Definition

An ABC game is constructed from a given Prisoners Dilemma (PD) game G, with

ability values assigned to its players. The construction is as follows:

We adopt as the base PD game any Prisoner’s Dilemma game for players i and j:

Player j
C D

Player i C R, R S, T
D T, S P, P
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that satisfies the following two conditions:

T > R > P > S = 0 (4.1)

2R > S + T (4.2)

Next, we assign positive real values ai and aj, called abilities, to the players i and

j respectively.

Then the ABC game Gij is the two-player game with the following payoff matrix:

Player j
C D

Player i C ajR, aiR S, aiR + ajP
D ajR + aiP, S aiP, ajP

Interpretation

The ABC game represents a situation in which each player pursues an individual

activity and also interacts with the other player. The ABC game formally describes

the interaction and resulting payoff. The Extended ABC (EABC) game, to be defined

next, also includes the scores from the individual activity, and defines a balanced

sum of individual activity score and the ABC game payoff as the total score. The

intuitive motivation and interpretation for the ABC game definition are situated in

that context.
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4.1.4 The Extended Ability-based Cooperation (EABC) game

Definition

An EABC game Eij is a quadruple

Eij = (G, ai, aj, α)

where G is a base PD game, ai and aj are positive real numbers representing player

abilities, and α ∈ [0, 1] is the balancingfactor.

The triple (G, ai, aj) is used to construct the ABC game Gij. The score of player i is

then defined as

s
(j)
i = αai + (1− α)p

(j)
i (4.3)

where p
(j)
i is the i′s payoff from its Gij game with j, and the value of α is used to

balance the relative impact of the two components.

4.1.5 The Design of ABC Payoff Matrix

Let G be a PD game with payoff parameters T > R > P > S = 0. For each pair of

players (i, j) , the asymmetric game Gij is defined with payoffs for i as follows:
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Rij = ajR
The idea is that the higher the ability of the cooperation
partner j, the higher is the i′s reward for mutual
cooperation with that partner

Pij = aiP

By not engaging in cooperation, the player i saves some
resources (for example, time) that can be used for individual
progress, commensurate with i′s ability (as expressed
by the coefficient ai).

Tij = ajR + aiP
When i defects while j cooperates, i gets both the advantage
of j′s cooperation (as in Rij above) and the
advantage of own non-engagement (as in Pij above).

Sij = 0
i does not benefit from this situation; all other payoffs
are positive.

The definitions of Rji, Pji, Tji, and Sji (the payoffs for j) are symmetric to the

above.

4.1.6 Game analysis

The ABC game has been derived from Prisoner’s Dilemma and bears some similar-

ity to it. Unlike the usual version of PD, ABC is asymmetric; however, asymmetric

versions of PD have also been studied [Ahn et al., 2007, Sheposh and Gallo Jr., 1973,

Murnighan, 1991].

The first question is when ABC is actually an asymmetric PD. According to the

definition of asymmetric PD [Beckenkamp et al., 2007], ABC will be PD when all of

the following conditions hold:

Tij > Rij > Pij > Sij Tji > Rji > Pji > Sji (4.4)
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2Rij > Tij + Sij 2Rji > Tji + Sji (4.5)

After the substitution of values from the ABC payoff matrix definition, it immedi-

ately follows that all four conditions in (4.4, 4.5) hold if and only if the following two

conditions hold:

ajR > aiP aiR > ajP (4.6)

One can thus formulate the following result:

Proposition 1. Let Gij be an ABC game whose base payoff values for mutual co-

operation and mutual defection are R and P respectively, and whose player abilities

are ai and aj. Then Gij is an instance of Asymmetric Prisoner’s Dilemma if and only if

P

R
<

ai
aj

<
R

P
(4.7)

Let us now consider a round-robin tournament with n players (n > 1), where each

player i plays one EABC game with every other player j according to a predefined

tournament schedule. All players’ ability values belong to an interval [ a, a], where

a > 0. The next proposition is immediate from (4.7).

Proposition 2. Consider a set of n agents (n > 1), playing in a round-robin

tournament based on EABC games. Let each player i have the ability ai ∈ [a, a],

where a > a > 0. If

ā

a
<

R

P
(4.8)

then every ABC game played in the tournament is an Asymmetric Prisoner’s Dilemma

game.
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4.2 Simulator Architecture

4.2.1 The Purpose of the Simulator

The purpose of our discrete-event simulator is to provide the framework necessary

for the experimentation of a specific agent-based model involving the interaction of

multiple agents engaged in a two-player asymmetric game structured in a round-robin

tournament. This is a research simulator composed of different modules some of which

have been developed and implemented in other previous studies.

4.2.2 Simulator Requirements

The list of requirements for the simulator is divided into two main categories: func-

tional requirements, and non-functional requirements. In the rest of this section,

different components of each category are described.

Requirements Definition

The requirements of the simulator outlined in this study provide an abstract descrip-

tion of the services provided by the simulator and the constraints under which the

simulator operates. The requirements definition has been categorized into two differ-

ent kinds: functional requirements and non-functional requirements. The remainder

of this section elaborates each of these requirements definition in the context of the

simulator described.
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Functional Requirements of the Simulator

The functional requirements of the simulator consider the requirements that are re-

lated to the conceptual functions of the simulator without considering how the features

are interoperated. The Use Case diagram shown in Figure 4.1 describes the functional

requirements of the simulator.

Experimenter

Set Up and Run
Simulation

Display Simulation
Results

Display Graph of
Simulation Results

Display Simulation
Log

Display Simulation
Measure of Success

Results

Run Simulation
Include 

 

Start Simulation

Stop Simulation

Step Simulation

Save Simulation

Setup Simulation

Agent Parameters

Tournament Structure
Parameters

Game Parameters

Include 

 

Include 

 

Include 
 

Information Gathering
Parameters

Evolution Model

Include 
 

Include 
 

Include 

 

Include  

Include 
 

Include 

 

Include 

 

Include 
 

Include  

Figure 4.1: A Use Case representation of Simulator

1. Set up and Run Simulation: The experimenter should be able to set up and

run a number of different simulation experiment to study the results of different

measures of success. To set up and run simulation may include the following:
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(a) Set up Simulation: This includes;

i. Agent Parameters: The experimenter should be able to select the de-

sired number of agents required to run in the simulation experiment

and assign to each agent its level of ability.

ii. Tournament Structures Parameters: The experimenter of the simula-

tor must be able to choose the number of tournament iterations for

each experiment, base payoff matrix, and balancing factor.

iii. Game Parameters: The simulation environment shall comply with

other game parameters such as information gathering approach and

the approach to evolution specified per each experiment.

(b) Run Simulation: The experimenter will be able to run a simulation exper-

iment. This functional requirement includes the ability of the simulator to

start and stop the simulation experiment any time at the request of the

experimenter in order to observe simulation results. Also, the simulator

shall comply with the experimenter’s decision to step through the simula-

tion experiment. To step through the simulation run means the simulator

simulates one round and then stores a snapshot for that round until the

experimenter decides to perform another step, run, or stop simulation.

(c) Save Simulation: The experimenter shall be able to save the results of

simulation experiments in terms of agents’ performance as a statistics, pro-

gressive charts, or simulation logs.

2. Display Simulation Results: The experimenter should be able to display the

results of each simulation experiment. The Use Case depiction of this functional

requirement includes the following:

(a) Display Graph of Simulation Results: The simulator shall be able to comply
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with the experimenter’s request to display a graphical representation of the

simulation results indicating for each tournament agents’ score, average

score, maximum and minimum scores.

(b) Display Simulation Logs: The simulator shall upon request from the ex-

perimenter provide access to a log of agents’ actions, strategies, and scores.

(c) Display Measures of Success Results: The experimenter of the simulator

should be able to view the results for different measures of success such as

individual and group success.

Non-Functional Requirements of the Simulator

The non-functional requirements of the simulator define the qualitative specifications

including its properties and constraints on the simulator as a whole. These require-

ments ensure the simulator’s quality and maintainability [Sommerville, 2011]. The

simulator described in this thesis meets the non-functional requirements of Efficiency

and the potential ability to execute Parallel Runs. The efficiency of the simulator

measures its productivity while parallel runs ensure faster simulation executions.

4.2.3 Structure of the Simulator

The high-level design of the simulator is described in this sub-section. We explore

the organization of interrelated elements of the simulator to provide the basis for its

detailed design and implementation.
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Figure 4.2: High-Level Structure of the Simulator

The structure of the simulator can be divided into eight main components. These

are the User Interface (UI), Experiment Manager(EM), SetUp Repository (SR), Simu-

lation Engine (SE), Results Repository (RR), Historical Information Manager (HIM),

Historical Information Repository (HIR), and Agent as shown in Figure 4.2.

User Interface (UI)

As a very important component of the simulator’s design, the User Interface executes

actively to ensure an easy, and interactive use of the simulator by the experimenter.

Before a simulation experiment, the User Interface provides an Input Interface for the

experimenter to set up the number of agents, assign agents’ strategies, and initialize
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or update other simulation setup parameters in the SetUp Repository. At the end

of simulation, the experimenter can use the Results Interface sub-component of User

Interface to query and display specific results of the simulation. Figure 4.3 shows the

interrelated components of the User Interface.

User Interface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Interface

Results Interface

EM

Setup Repository Results Repository

Instruction

Data

Experimenter

Figure 4.3: Structure of the User Interface

Experiment Manager (EM)

The Experiment Manager upon activation from the User Interface performs the func-

tion of validating assigned strategies, setting up ability levels and other simulation

input parameters stored in the Setup Repository. At the end of each experiment, the

Experiment Manager retrieves the results from the Simulation Engine and stores in

the Result repository to be displayed to the Experimenter.

The Experiment Manager can be functionally divided into two sub-components as
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shown in Figure 4.4. These are Agents Setup Manager and Parameter Configuration

Manager.

The Agents Setup Manager validates the number of agents in the experiment and also

ensures that there is an accurate assignment of strategies and agents’ ability levels as

specified by the experimenter in the setup repository. The Parameter Configuration

Manager, on the other hand validates and assigns all other parameter inputs of the

simulation environment such as payoff matrix, number of tournaments iterations, and

the balancing factor stored in the setup repository.

These validated inputs and assigned parameters are then sent to the Simulation En-

gine and Agent components respectively to begin the experiment. In the case of an

invalid simulation input, the Experiment Manager alerts the experimenter through

the User Interface to make the necessary corrections to invalid input parameters be-

fore the simulation begins.
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Figure 4.4: Structure of the Experiment Manager

SetUp Repository (SR)

The SetUp Repository (SR) serves as a storage component for configuration values.

Inputs for the experiment are stored in the Setup Repository to be accessed by Exper-

iment Manager for validation and assignments before simulation experiments begin.

4.2.4 Simulation Engine (SE)

The design of the Simulation Engine (SE) shown in Figure 4.5 assumes an active

simulation component capable of supporting concurrent discrete-event simulation of

our model defined in Section 4.1. Its main responsibility is to begin and control the

execution of simulation experiments after receiving the input and a signal from the
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Experiment Manager.

For each simulation run, the Simulation Engine kickstarts by activating the Sched-

uler. The Scheduler plans events for execution and also provides the arrangement for

agents to compete at their assigned time-steps while ensuring that the round-robin

scheduling abstraction adopted for this model is maintained. The agent interaction

schedule created by the scheduler is then made available to all other sub-components

of the Simulation Engine.

For each tournament in the simulation experiment, the Tournament Handler com-

ponent determines the total number of rounds of games that must be played based

on the number of agents competing in the tournament. In addition, the Tournament

Handler ensures that each agent participates in equal encounters before proceeding

to the next tournament or end of the simulation. In every tournament, agents engage

in r rounds of encounters. The Round Handler is responsible for ensuring that for

each round in a specific tournament participants are paired with different partners.

Also, the Round Handler manages agents’ performance and pay-off profiles for each

round.

The Match Manager provides the capacity for encounters scheduled in each round

to be executed independent of one another. Also, it ensures that the right scores are

assigned to every agent in the simulation experiment based on their actions and the

payoff matrix. The Match Manager after every encounter stores information on agent

ids, abilities, strategies, actions, and scores in the Historical Information Repository

through the Historical Information Manager and in the Results repository through

the Experiment Manager.
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Figure 4.5: Structure of the Simulation Engine

Historical Information Manager (HIM)

At the end of every encounter, the Historical Information Manager (HIM) receives the

scores, and actions of the paired agents from Simulation Engine in order to update

the Historical Information Repository. Furthermore, this active component of the

simulator serves the function of responding to all queries by agents pertaining to

information on current or future partners.
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Historical Information Repository (HIR)

The Historical Information Repository (HIR) is basically a storage unit for all strate-

gies, abilities, scores, and past actions of agents in the simulation experiment. This

passive component is updated at the end of every round by the Historical Information

Manager. Information stored in the Historical Information Repository can only be

accessed by agents after submitting requests to the Historical Information Manager.

Agent

An agent in this model describes a goal-oriented, autonomous, and intelligent compo-

nent of the simulator that competes by submitting actions to the Simulation Engine

in every scheduled encounter. During every encounter against a partner, the agent

perceives, reasons, and performs an action upon request from the Simulation Engine.

In order to take an optimal action as to whether to cooperate or defect against a

scheduled partner, the agent may request information about the partner, or other

agents in the tournament by submitting a request to the Historical Information Man-

ager. After this, the agent refers to its strategy algorithm and acts appropriately in

order to achieve its desired goals. Figure 4.6 shows the interrelated components of

the agent component.
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Figure 4.6: Agent Reasoning Architecture

4.2.5 Behaviour of the Simulator

This section of the study discusses the behaviour of various essential components

of the simulator. The behaviour of elements such as Simulation Engine (SE), User

Interface (UI), and Agent will be analyzed in the context of their functions, control

operators, inputs and outputs.

Simulation Engine

The design of the simulator follows steps of discrete events decomposed into a num-

ber of encounters that are executed in each round of a tournament by the Simulation

Engine. The number of encounters scheduled per round and the number of rounds

played in each tournament typically depend on the number of agents in an experi-
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ment run. At the beginning of the experiment, agents selected by the experimenter

are assigned their initial strategies broadly categorized into Naive Cooperators, Naive

Defectors, Selective Cooperators, and Limited Cooperators (Fixed and Ratio). Apart

from the assignment of strategies, agents are also assigned individual ability levels.

These agents are then scheduled in a round-robin tournament that require them to

submit actions in every repeated round until the end of the experiment. In experi-

ments requiring multiple rounds, the simulator supports the ability of some agents to

request and retain summaries of partners’ information. A general control structure

for the Simulation Engine is as shown in Figure 4.7;
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Figure 4.7: Nested Simulation Control Structure
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In a specific simulation experiment, the Simulation Engine begins its function

by activating the Scheduler which initializes current experiment configuration values

received from the Experiment Manager (EM). After this, the Scheduler assigns to

every agent an AgentId by which it is identified throughout the experiment. At the

end of the experiment, the Scheduler calculates agents’ total scores, arranges their

performance in a leaderboard based on abilities, and signals the Experiment Manager

to store the results in the result repository while at the same requesting Experiment

Manager to submit configuration values for the next experiment. The Scheduler’s

control structure is as shown in Figure 4.8
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Figure 4.8: Control Structure of Simulation Experiment

After setting up configuration values and scheduling agents, the Scheduler invokes

the Tournament Handler to initiate, coordinate, and control the activities of agents

for every tournament specified in the current experiment. In an experiment with n

players, the Tournament Handler ensures that there will be ( n
2
(n − 1) ) number of

games for every tournament and each player participates in (n - 1 ) number of games

where n is always an even number value. At the end of a tournament, the Tournament
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Handler reports a summary statistics of the maximum score, average score, minimum

score, and players’ progress. In multiple tournaments, the Tournament Handler en-

sures that all agents participate in equal number of games before initiating the next

tournament as shown in Figure 4.9.

Figure 4.9: Control Structure of a Tournament

A single tournament may consist of multiple rounds of encounters depending on

the number of agents. Each round is managed by the Round Handler which moni-

tors the activities of agents in every round. The Round Handler ensures that every

agent participates in a single encounter against a different partner in every round and
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submits a single action against its scheduled partner. The action could be either to

cooperate or defect. The control structure of the Round Handler is as shown in Figure

4.10.

Figure 4.10: Control Structure of a Round

Encounters between agents and their partners are controlled by theMatch Handler.

The Match Handler initializes a new encounter, schedules, and requests agents to

submit their actions. Based on agents’ submitted actions, the Match Handler assigns
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scores to the respective agents. At the end of every scheduled encounter, the Match

Handler reports on the agents’ strategies, actions, and scores. In addition, the Match

Handler returns the calculated scores to both agents. Figure 4.11 describes the flow

structure of the Match Handler and agents’ actions during an encounter.

Figure 4.11: Control Structure of an encounter

The UI

The User Interface (UI) component of the simulator is responsible for providing in-

teractive access between the experimenter and the simulator. As an important com-

ponent of the simulator, the User Interface has the goal of ensuring an easy, efficient,

and user-friendly use of the system. The implementation design of this component
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has multiple tabs that perform different functions. These are About , Setup, Agent,

and Display. The functionalities of these components are briefly explained below;

About

The About tab provides a brief description of the simulator, a list of agent strategies,

experiment’s input parameters and other general information as shown in Figure 4.12

Figure 4.12: About component of the Simulator
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Setup

The Setup tab which is mainly controlled by the Experiment Manager provides ac-

cess for the experimenter to define, validate, and update the settings required for the

simulation experiment. Experiment settings specified in the Setup tab includes payoff

values (Temptation to Defect, Reward, Sucker Punch, and Punishment for Defection),

Number of Tournaments, Information Request Limit, and Uncertainty Level that may

be varied to study their effects on agents’ performances and the evolution of cooper-

ation. Alternatively, the experimenter may decide to upload the experiment’s setup

using the Command Line Interface (CLI). Figure 4.13 shows the Setup tab of the

simulator.
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Figure 4.13: SetUp pane of the Simulator

Agent pane

This pane provides the experimenter access to specify the total number of agents in

the experiment as well as select the different strategies (Naive Cooperators, Naive

Defectors, Limited Cooperators (Fixed and Ratio), and Selective Cooperators.) that

must be assigned to agents. As shown in Figure 4.14, the agent pane also specifies

the minimum and maximum ability intervals. An experimenter may decide to specify
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the different ability levels.

Figure 4.14: Agent pane of the Simulator
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4.2.6 Approaches to Experimentation

The game-theoretic agent-based model described in this research provides the possibil-

ity to study through simulation experiments agents’ strategic behaviour and measure

their success in terms of individual and group performance. We continue to exam-

ine these measures of success by considering the impact of certain agents’ abilities

on the development of cooperation, and individual and group measures of success as

described in our ABC model. We also consider the comparable effect of information

gathering among agents with abilities in the defined EABC model.
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Chapter 5

Experimental Results and

Evaluation

This chapter presents results and evaluations of different simulation experiments con-

ducted using the Enhanced-ABC model defined in Section 4.1. Our evaluation of

agents’ individual and group performance profiles highlights the potential impact of

agents’ abilities and information gathering on individual and collective group perfor-

mance.

Section 5.1 provides the definitions and parameter settings for different composition

of agent groups, game model details, and performance measures. In Section 5.2, we

continue to discuss our observations and analysis of different simulation experiments,

and then further our discussion with inter-group comparisons in Section 5.3. The

chapter concludes with an overall analysis of our observations in Section 5.4.
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5.1 Definitions and Parameter Settings

5.1.1 Composition of Agent Group

We explore 6 different compositions of agent groups representing the number of dif-

ferent simulation experiments conducted in this study. Each group structure consists

of n number of agents determined as a product of 6 different levels of abilities (12,

10, 8, 6, 4, 2) and a varying number of agent strategies. For example, a composition

of 6 ability levels and 2 agent strategies will result in a total of 12 agents. We define

the different kinds of agent strategies below and Table 5.1 displays the compositions

of agent groups;

• Naive Cooperator: also known as NaiveC; always cooperates with its partner.

• Naive Defector : also called NaiveD in our experiments; defects in all situa-

tions against its partner.

• Selective Cooperator: has the capacity to determine if the partner is a de-

fector; the Selective Cooperator also called SelectiveC always defects against

Defector, but always cooperates otherwise.

• LimitedC-Fixed: also referred to as LimitedC-F can determine the partner’s

ability; always cooperates if partner’s ability is equal to or above a fixed threshold

of 8, otherwise always defects.

• LimitedC-Ratio: shares some characteristics with the LimitedC-F strategy

and can determine the partner’s ability. It always cooperates if ajR/aiP ≥ 1;

otherwise, it defects. This strategy is referred to as LimitedC-R in our simulation

experiments.
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

NaiveC
NaiveD

NaiveC
NaiveD
SelectiveC

NaiveC
NaiveD
LimitedC-F

NaiveC
NaiveD
LimitedC-R

NaiveC
NaiveD
SelectiveC
LimitedC-F

NaiveC
NaiveD
SelectiveC
LimitedC-R

Table 5.1: Compositions of Agent Groups

5.1.2 Game Model

Following the definitions detailed in Section 4.1.3 we adopt the base Prisoner’s Dilemma

(PD) game in its symmetric form with payoff values T = 10, R = 8, P = 2, S = 0

to discuss the Ability-Based Cooperation (ABC). Unlike the classical PD game, the

ABC game has the payoff values for a participating player i against a partner j as

Tij = ajR + aiP , Rij = ajR, Pij = aiP , Sij = 0 . The EABC includes the following

parameters;

• Agent’s score: is the score agent i receives after an encounter with agent j. This

is defined as s
(j)
i = αai + (1− α)p

(j)
i where p

(j)
i is the payoff of agent i vs. j.

• Balancing factor : is a constant parameter α ∈ [0, 1] that regulates the relative

impact of the two components of the score, which are the ability component and

the payoff. In all simulation experiments, α was set to 0.9.

• Round-Robin tournament structure: provides a schedule of pairwise encounters

that give equal advantage to every agent to meet all other partners in the game.

5.1.3 Performance Measures

In this study, we explore two measures of success; individual success and group success.

These are discussed separately below.

54



Measures Individual of Success

Let the multiagent system consist of n = k ∗ q agents, where k is the number of

strategies and q is the number of ability levels. Each agent i has the ability ai. Each

of the strategies is played by exactly one agent of each ability level.

For an agent i that has an ability ai we explore the following measures of individual

success:

• Total score: An agent i′s total score for the tournament is calculated as stoti =
n∑

j=1

j ̸=i

s
(j)
i

• Average score: We define the average score of an agent i as savgi =
stoti

n−1

• Adjusted total score: An agent i with ability ai has adjusted total score which is

calculated as the total score from all games with partners whose abilities differ

from ai. Formally, satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

• Adjusted average score: This is an approximate performance measure which

allows direct comparisons of the individual performance of an agent with given

ability and strategy across groups of different sizes. It is the adjusted total score

of an agent i divided by the number of games against partners whose abilities

differ from ai. Thus, s
aavg
i =

satoti

k(q−1)
.

Measures Group of Success

For each group composed of agent strategies, we also examine the following measures

group of success:
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• Failure threshold : refers to the experimenter-set limit representing the minimum

acceptable level of individual performance. It is uniformly applied in all group

compositions in our study. In each experiment, we use the failure threshold to

determine the failure percentage.

• Failure percentage: is the percentage of agents in a group that falls below the

failure threshold. As a measure of group success, we compare the failure per-

centage between groups. A lower group failure percentage indicates a higher

group success and vice versa.

• Group total score: calculates the sum of the total scores for all agents in a

specific group structure. This measure of success provides a better approach

to compare group performance between compositions with an equal number of

agents, encounters, and strategies. It provides a better result to compare the

influence of two or more different strategies in similar group structures.

• Group average score: is the sum of total scores for all agents in the group

structure divided by the number of agents. Used in similar conditions as the

group total score to compare the overall average performance among groups.

• Group adjusted total score: calculates the sum of the adjusted total scores for

all agents in a specific group structure. It only serves as an auxiliary measure

to derive group adjusted average score since it cannot be used as a performance

measure to compare group compositions of different size.

• Group adjusted average score: refers to the sum of the total adjusted scores for

all agents in the group structure divided by the number of agents. This measure

shows the overall average success of the group members in each composition.
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5.2 Observation and Analysis of Results

We present the simulation results and analyze our observations for different composi-

tions of group structures as follows.

5.2.1 Group Composition 1

Agents' Abilities
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Figure 5.1: Agents’ performance for different ability levels in group composition 1

57



Individual Success

• Increasing the abilities of agents also increases their individual performance.

Thus, agents with higher abilities, in general, perform better than those with

lower abilities across the same strategy.

• Individually, Naive Cooperators at every ability level perform worse than Naive

Defectors. This follows from the easily verified fact that defection is the domi-

nant strategy in the ABC game (regardless of whether the game happens to be

an asymmetric PD).

• The gap between Naive Defectors and Naive Cooperators increases as abilities

grow. This is because i′s defection reward aiP increases with i′s own ability,

while i′s cooperation reward ajR is independent of i′s own ability.

Group Success

• At a general failing threshold of 5, we observe that none of the 12 agents fall

below the failing threshold. This is because lower ability Naive Defectors gain

more from exploiting Naive Cooperators while lower ability Naive Cooperators

gain from interaction reward with higher ability cooperators.

• The group adjusted average score for this composition is 98 representing a very

low group performance.

• Naive Cooperators do not fare well in this group because interaction reward for

cooperators is almost independent of player’s own ability.
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5.2.2 Group Composition 2
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Figure 5.2: Agents’ performance for different ability levels in group composition 2

Individual Success

• Naive Defectors with lower abilities (≤ 6) perform worse than all other agents

at the same levels. This is because Naive Defectors in this group structure face

defections from Selective Cooperators at all ability levels.

• The presence of Selective Cooperators increases the individual performance of

Naive Cooperators by doubling the number of their cooperating partners and

decreases the individual performance of Naive Defectors by doubling the number

of their defecting partners.

• We observe an increasing gap between Selective Cooperators and Naive Coop-
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erators because each Selective Cooperator defects against 1/3 of the population

with interaction gain proportional to its own ability.

Group Success

• The impact of Selective Cooperators reduces the overall group failure percentage.

• The group adjusted average score which is similar to social welfare in game

theory and represents the overall success of group members for this composition

of agents is 150.5.

• The increased group success is because Selective Cooperators cooperates with

2/3 of population irrespective of their ability levels.

• The most supportive environment for individual Naive Cooperators is when

there are Selective Cooperators.
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5.2.3 Group Composition 3
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Figure 5.3: Agents’ performance for different ability levels in group composition 3

Individual Success

• Higher ability Naive Defectors perform better in this group than group 1 and 2

due to gains from interaction with both Naive Cooperators and LimitedC-Fixed

strategies at all levels.

• LimitedC-Fixed strategy reduces interaction gains of all lower ability agents and

causes them to record low individual performance.

• Naive Cooperators with abilities ≥ 8 gain from twice the number of cooperators

in this group than in group 1.
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• LimitedC-Fixed doesn’t seem to be the best strategy in this composition be-

cause of its approach to cooperate or defect based on a fixed ability threshold.

However, it is also not the worst strategy in this group structure.

Group Success

• Failure percentage is higher in this group than group 1 and 2 because LimitedC-

Fixed strategy defects against 1/2 of the population based on abilities.

• The group adjusted average score representing overall success of group members

in this composition is 146.1. This is slightly below the group performance of

composition 2 but higher than composition 1.

• The presence of LimitedC-Fixed strategy significantly reduces the contribution

of low ability agents toward group success.
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5.2.4 Group Composition 4
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Figure 5.4: Agents’ performance for different ability levels in group composition 4

Individual Success

• At a = 2, the Naive Defector performs slightly better due to the benefit of

individual progress from non-interaction and cooperative behaviour from other

non-defectors with abilities ≤ 8.

• We observe a slight increasing gap between LimitedC-Ratio agents and Naive

Cooperators because LimitedC-Ratio agents with ability (a ≥ 10) lack the in-

centive to cooperate with lower ability agents when they can benefit from both

partners’ cooperation and individual reward for non-engagement.
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• Unlike LimitedC-Fixed agents in group 3, LimitedC-Ratio agents improve group

performance but record low individual scores.

Group Success

• Compared to group 2 the individually rational approach of LimitedC-Ratio

strategy toward cooperation and defection significantly reduces the overall group

failure percentage.

• The group adjusted average score for this composition is 155.3. This is higher

than group 3 because the individually rational approach of LimitedC-Ratio

strategy increases overall group performance.

• Compared to group 3, this group records a higher contribution from low ability

agents toward group success due to the significant impact of LimitedC-Ratio

strategy.

64



5.2.5 Group Composition 5

Agents Abilities
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Figure 5.5: Agents’ performance for different ability levels in group composition 5

Individual Success

• Higher ability LimitedC-Fixed strategy is the best in this group because of gains

from cooperating with high ability cooperators and defecting gains against low

ability agents.

• The lowest ability Naive Defector records the overall lowest score in this study

due to defections from 3/4 of the group population.

• We observe an increasing gap between Selective Cooperators and Naive Coop-

erators because:

– Selective Cooperators’ interaction reward for defection increases with play-

ers’ own abilities.
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– Naive Cooperators’ benefit with Selective Cooperators and Naive Cooper-

ators is almost independent of own abilities.

• Naive Defectors may not benefit significantly from interaction with Selective

Cooperators and LimitedC-Fixed strategies, higher abilities defectors perform

well due to higher individual activity.

Group Success

• A low ability Naive Defector that faces mutual non-engagement against 75% of

the group population falls below the failure threshold.

• The group adjusted average score is 200.35. This is basically because Selective

Cooperators promote cooperation among Native Cooperators and LimitedC-

Fixed strategy supports all agents with higher abilities.

• Only agents with higher level abilities contribute significantly to group success

with very minimal support from lower ability agents.
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5.2.6 Group Composition 6
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Figure 5.6: Agents’ performance for different ability levels in group composition 6

Individual Success

• Individual performance of LimitedC-Ratio strategy with higher abilities are

lower than LimitedC-Fixed strategies in group 5 because:

– LimitedC-Ratio agents only defect when reward for mutual cooperation is

lower than mutual defection.

– LimitedC-Fixed agents defects against all agents with abilities ≤ 6.

• LimitedC-Ratio strategy does not dominate in individual performance but sig-

nificantly increases group performance.

• Naive Cooperators perform better in this group than all other groups.
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Group Success

• We observe an equal failure percentage as group 5. However, the performance

of the agent below the failure threshold in this group is better than group 5.

• Consistent with our expectation, the group adjusted average score for this com-

position is 209.55 representing the highest in our study so far. This is because

Selective Cooperators promote cooperation with all agents except Naive De-

fectors and LimitedC-Ratio agents use an ability-based individually rational

technique to promote group success.

• The individual rational approach of LimitedC-Ratio strategy may reduce their

own individual performance but significantly increase group performance.

5.3 Inter-group Comparisons

We now compare the performance of each of the six group compositions examined in

this study. The purpose of inter-group comparison is to determine and analyze the

overall nature of the different group compositions and also compare the performance

levels of two or more groups.

5.3.1 Failure Percentage

For all group compositions, we measure the percentage of agents that scored an ad-

justed average value below the failure threshold. We assume a failure threshold of 5

and analyze the failure percentage for all 6 group structures as shown in Figure 5.7.
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We observe the following:

• The more generalized approach by LimitedC-Fixed strategy to defect against

all agents with abilities (a < 8) reduces the performance of lower ability agents

and therefore increases the failure percentage to 16.67%.

• Selective Cooperators’ collective rationality to support cooperation reduces the

failure percentage in group 2. This is lower than the higher failure percentage

observed in group 3.

• Both groups 5 and 6 record only 1 agent (low ability Naive Defector) below the

failure threshold because of the presence of advanced strategies. However, with

regards to individual performance, group 6 is safer for the low ability Naive

Defector because it performs better than in group 5.
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Figure 5.7: Failure Percentage distribution for different group composition
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5.3.2 Group Total Score

We compare the group total score between agents in group composition 3 and 5 that

has LimitedC-Fixed strategy with group 4 and 6 that has LimitedC-Ratio strategy

due to shared similarities in the number of agents and other kinds of strategies. Our

observation as shown in Figure 5.8 indicates that the overall group total score in

group 4 (3173.4) is slightly higher than group 3 (2993.4). Similarly, a comparison

between group 5 and 6 as shown in Figure 5.9 indicates that group structure 6 reports

a group total score of (5785.2) whilst group 5 only had (5542.8). The higher group

total score in composition 4 and 6 comparable to 3 and 5 respectively is because the

LimitedC-Ratio strategy which is implemented in group 4 and 6 cooperates with some

lower-ability defectors against which LimitedC-Fixed strategy defects.

Figure 5.8: Group Total Score: 3 vs. 4 Figure 5.9: Group Total Score: 5 vs. 6
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5.3.3 Group Average Score

The group average score provide an exact method to compare group success between

group 3 vs. 4 and 5 vs. 6. We observe a group average score of 176.3 and 241.05 in

group 4 and 6 respectively. This is slightly higher than the comparable average group

score of 166.3 and 230.95 reported in group 3 and 5 respectively. Figures 5.10 and

5.11 display our results.

Figure 5.10: Group Avg Score: 3 vs. 4 Figure 5.11: Group Avg Score: 5 vs. 6
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5.3.4 Group Adjusted Average Scores
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Figure 5.12: Group adjusted average scores

Across all 6 group structures, we measure and compare the performance of each

group based on their group adjusted average scores. We observe that;

• The combination of Selective Cooperators and LimitedC-Ratio strategies in

group 6 promotes cooperation and results in the highest group adjusted av-

erage score of 209.55. This is higher than the adjusted average score observed

in group 5 (200.35).

• The individually rational approach of LimitedC-Ratio strategy gives group 4 a

higher adjusted average score than group 3.

• The adjusted average score of group 2 (150.5) is higher than group 3 (146.1) but

slightly lower than group 4 (155.3).

• The lowest group adjusted average score (98) was recorded in group 1 because it

consist of only naive agents that make decisions without any form of information

gathering mechanism.
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5.4 Overall Observation and Analysis

• In all group compositions, we observe that increasing ability levels positively

affect the individual scores of agents due to high impact of individual activity.

• In all instances, we have observed that the presence of Selective Cooperators

positively favour the performance of Naive Cooperators but reduce the individ-

ual performance of Naive Defectors.

• The use of acquired information assist advanced agents to increase their indi-

vidual performance and also support the development of cooperation. This was

observed in group compositions 2, 3, 4, 5 and 6.

• A generalized approach to cooperation and defection based on ability levels

increases group failure percentage. Group success increases when agents that

cooperate or defect based on abilities decide individually.

• Naively cooperating or defecting does not promote group success even though

it may support the performance of some individuals.

• A comparison of the group adjusted average performance between group 2 and

group 4 leads us to conclude that group success is not only about naively helping

cooperators but more about using an advanced approach to cooperate by also

considering ability levels.

• Furthermore, we can infer from the adjusted average score of group composition

6 that an appropriate proportion of strategies that cooperate based on gathered

information on partner’s strategy and ability levels increases the overall group

success.
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Chapter 6

Conclusions and Future Work

In this thesis, we have introduced, implemented, and investigated a novel modelling

and simulation framework for the study of cooperation among self-interested players

in multiagent systems (MAS). As the basis for our game-theoretic modelling, we adopt

the Ability Based Cooperation (ABC) game and the Extended ABC (EABC) game

defined within our research group at UNBC. The framework allows for the modelling

of several common aspects of natural and artificial systems that, to the best of our

knowledge, have not been adequately addressed in the existing literature.

The specific contributions of the framework include:

• Balancing individual activity and interaction. A player in our study can make

progress through individual activity or by interaction with others.

• The abilities of players are included in the modelling. The scores from both

individual activities and interactions depend on the individual abilities of the
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players. This means that the payoff a player receives from an encounter is based

on the ability level of the player and/or its partner and the base payoff.

• We define several advanced agent strategies that use knowledge about partners’

abilities or strategies in deciding whether or not to cooperate. Our interest is

in the strategic effect of acquired information and not in the mechanism for

information acquisition.

• There is a balance between individual and group success. The players’ abilities,

strategies, and the group composition influence both individual scores and the

success of the group as a whole. Our framework provides the possibility to mea-

sure both kinds of success. Individual strategies can be designed with the intent

to achieve specific impact with respect to individual and group performance.

• We evaluate individual strategies as to how much they contribute to the indi-

vidual success of the players and the group success. This is done to observe the

influence of information gathering on individual achievement and overall group

performance.

We have demonstrated the properties of this framework with a comparative experi-

mental study of six group compositions, each with a different strategy combination

and a full range of individual abilities. For each strategy, the study allows us to ana-

lyze its performance in different group compositions, its impact upon other strategies,

and its impact upon group performance.

The results lead us to conclude that the framework is a suitable tool for such studies,

and expect that it could be successfully applied to more complex strategies and group

compositions.
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In future studies, we can:

• explore higher levels of modelling where different mechanisms of information

gathering can be examined and their impact on individual and group success

analyzed;

• introduce and observe increasingly complex groups of agent strategies such as

an advanced strategy that seeks to promote ability development among group

members;

• investigate the influence of other experimenter-controlled limitations such as

pay-off matrix on individual and group performance.
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Appendix A

A.1 Graphs and Tables of Results

A.1.1 Group Composition 1

Parameter Settings

• Agent strategies (k = 2 ): NaiveC = 6, NaiveD = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 12

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9
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• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti

– Group average score: savg = stot

n

– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n

Experimental Results
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Figure A.1: Agents’ performance for different ability levels in composition group 1

ID Strategy Ability
Total
Score

Average
Scores

Adjusted
Total
Scores

Adjusted
Average
Scores

1 NaiveC 12 142.80 12.98 132.00 13.20
2 NaiveD 12 178.80 16.25 156.00 15.60
3 NaiveC 10 124.60 11.33 115.60 11.56
4 NaiveD 10 154.60 14.05 135.60 13.56
5 NaiveC 8 106.40 9.67 99.20 9.92
6 NaiveD 8 130.40 11.85 115.20 11.52
7 NaiveC 6 88.20 8.02 82.80 8.28
8 NaiveD 6 106.20 9.65 94.80 9.48
9 NaiveC 4 70.00 6.36 66.40 6.64
10 NaiveD 4 82.00 7.45 74.40 7.44
11 NaiveC 2 51.80 4.71 50.00 5.00
12 NaiveD 2 57.80 5.25 54.00 5.40

Table A.1: Agents’ average and adjusted average scores for Group Composition 1
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1 2 3 4 5 6 7 8 9 10 11 12
NC ND NC ND NC ND NC ND NC ND NC ND

1 NC 10.80 18.80 10.80 17.20 10.80 15.60 10.80 14.00 10.80 12.40 10.80
2 ND 22.80 21.20 13.20 19.60 13.20 18.00 13.20 16.40 13.20 14.80 13.20
3 NC 18.60 9.00 9.00 15.40 9.00 13.80 9.00 12.20 9.00 10.60 9.00
4 ND 20.60 11.00 19.00 17.40 11.00 15.80 11.00 14.20 11.00 12.60 11.00
5 NC 16.80 7.20 15.20 7.20 7.20 12.00 7.20 10.40 7.20 8.80 7.20
6 ND 18.40 8.80 16.80 8.80 15.20 13.60 8.80 12.00 8.80 10.40 8.80
7 NC 15.00 5.40 13.40 5.40 11.80 5.40 5.40 8.60 5.40 7.00 5.40
8 ND 16.20 6.60 14.60 6.60 13.00 6.60 11.40 9.80 6.60 8.20 6.60
9 NC 13.20 3.60 11.60 3.60 10.00 3.60 8.40 3.60 3.60 5.20 3.60
10 ND 14.00 4.40 12.40 4.40 10.80 4.40 9.20 4.40 7.60 6.00 4.40
11 NC 11.40 1.80 9.80 1.80 8.20 1.80 6.60 1.80 5.00 1.80 1.80
12 ND 11.80 2.20 10.20 2.20 8.60 2.20 7.00 2.20 5.40 2.20 3.80

Table A.2: Agents’ scores Group Composition 1
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A.1.2 Group Composition 2

Parameter Settings

• Agent strategies (k = 3 ): NaiveC = 6, NaiveD = 6, SelectiveC = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 18

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9

• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti

– Group average score: savg = stot

n
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– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n
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Agents' Abilities
0 2 4 6 8 10 12 14

A
dj

us
te

d 
A

ve
ra

ge
 S

co
re

s

0

5

10

15

20

NAIVE C
NAIVE D
SELECTIVEC

Figure A.2: Agents’ performance for different ability levels in composition group 2

86



ID Strategy Ability
Total
Score

Average
Scores

Total
Adjusted

Scores

Average
Adjusted

Scores
1 NaiveC 12 241.20 14.19 210.00 14.00
2 NaiveD 12 258.00 15.18 222.00 14.80
3 SelectiveC 12 255.60 15.04 222.00 14.80
4 NaiveC 10 212.20 12.48 186.20 12.41
5 NaiveD 10 220.60 12.98 190.60 12.71
6 SelectiveC 10 224.20 13.19 196.20 13.08
7 NaiveC 8 183.20 10.78 162.40 10.83
8 NaiveD 8 183.20 10.78 159.20 10.61
9 SelectiveC 8 192.80 11.34 170.40 11.36
10 NaiveC 6 154.20 9.07 138.60 9.24
11 NaiveD 6 145.80 8.58 127.80 8.52
12 SelectiveC 6 161.40 9.49 144.60 9.64
13 NaiveC 4 125.20 7.36 114.80 7.65
14 NaiveD 4 108.40 6.38 96.40 6.43
15 SelectiveC 4 130.00 7.65 118.80 7.92
16 NaiveC 2 96.20 5.66 91.00 6.07
17 NaiveD 2 71.00 4.18 65.00 4.33
18 SelectiveC 2 98.60 5.80 93.00 6.20

Table A.3: Agents’ average and adjusted average scores for Group Composition 2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

NC ND SC NC ND SC NC ND SC NC ND SC NC ND SC NC ND SC

1 NC 10.80 20.40 18.80 10.80 18.80 17.20 10.80 17.20 15.60 10.80 15.60 14.00 10.80 14.00 12.40 10.80 12.40

2 ND 22.80 13.20 21.20 13.20 13.20 19.60 13.20 13.20 18.00 13.20 13.20 16.40 13.20 13.20 14.80 13.20 13.20

3 SC 20.40 13.20 18.80 13.20 18.80 17.20 13.20 17.20 15.60 13.20 15.60 14.00 13.20 14.00 12.40 13.20 12.40

4 NC 18.60 9.00 18.60 9.00 17.00 15.40 9.00 15.40 13.80 9.00 13.80 12.20 9.00 12.20 10.60 9.00 10.60

5 ND 20.60 11.00 11.00 19.00 11.00 17.40 11.00 11.00 15.80 11.00 11.00 14.20 11.00 11.00 12.60 11.00 11.00

6 SC 18.60 11.00 18.60 17.00 11.00 15.40 11.00 15.40 13.80 11.00 13.80 12.20 11.00 12.20 10.60 11.00 10.60

7 NC 16.80 7.20 16.80 15.20 7.20 15.20 7.20 13.60 12.00 7.20 12.00 10.40 7.20 10.40 8.80 7.20 8.80

8 ND 18.40 8.80 8.80 16.80 8.80 8.80 15.20 8.80 13.60 8.80 8.80 12.00 8.80 8.80 10.40 8.80 8.80

9 SC 16.80 8.80 16.80 15.20 8.80 15.20 13.60 8.80 12.00 8.80 12.00 10.40 8.80 10.40 8.80 8.80 8.80

10 NC 15.00 5.40 15.00 13.40 5.40 13.40 11.80 5.40 11.80 5.40 10.20 8.60 5.40 8.60 7.00 5.40 7.00

11 ND 16.20 6.60 6.60 14.60 6.60 6.60 13.00 6.60 6.60 11.40 6.60 9.80 6.60 6.60 8.20 6.60 6.60

12 SC 15.00 6.60 15.00 13.40 6.60 13.40 11.80 6.60 11.80 10.20 6.60 8.60 6.60 8.60 7.00 6.60 7.00

13 NC 13.20 3.60 13.20 11.60 3.60 11.60 10.00 3.60 10.00 8.40 3.60 8.40 3.60 6.80 5.20 3.60 5.20

14 ND 14.00 4.40 4.40 12.40 4.40 4.40 10.80 4.40 4.40 9.20 4.40 4.40 7.60 4.40 6.00 4.40 4.40

15 SC 13.20 4.40 13.20 11.60 4.40 11.60 10.00 4.40 10.00 8.40 4.40 8.40 6.80 4.40 5.20 4.40 5.20

16 NC 11.40 1.80 11.40 9.80 1.80 9.80 8.20 1.80 8.20 6.60 1.80 6.60 5.00 1.80 5.00 1.80 3.40

17 ND 11.80 2.20 2.20 10.20 2.20 2.20 8.60 2.20 2.20 7.00 2.20 2.20 5.40 2.20 2.20 3.80 2.20

18 SC 11.40 2.20 11.40 9.80 2.20 9.80 8.20 2.20 8.20 6.60 2.20 6.60 5.00 2.20 5.00 3.40 2.20

Table A.4: Agents’ scores Group Composition 2
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A.1.3 Group Composition 3

Parameter Settings

• Agent strategies (k = 3 ): NaiveC = 6, NaiveD = 6, LimitedC-Fixed = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 18

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9

• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti

– Group average score: savg = stot

n
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– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n
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Figure A.3: Agents’ performance for different ability levels in group composition 3
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ID Strategy Ability
Total
Score

Average
Scores

Total
Adjusted
Scores

Average
Adjusted
Scores

1 NaiveC 12 241.20 14.19 210.00 14.00
2 NaiveD 12 291.60 17.15 246.00 16.40
3 LC-F 12 262.80 15.46 231.60 15.44
4 NaiveC 10 212.20 12.48 186.20 12.41
5 NaiveD 10 254.20 14.95 216.20 14.41
6 LC-F 10 230.20 13.54 204.20 13.61
7 NaiveC 8 183.20 10.78 162.40 10.83
8 NaiveD 8 216.80 12.75 186.40 12.43
9 LC-F 8 197.60 11.62 176.80 11.79
10 NaiveC 6 120.60 7.09 109.80 7.32
11 NaiveD 6 145.80 8.58 127.80 8.52
12 LC-F 6 135.00 7.94 117.00 7.80
13 NaiveC 4 91.60 5.39 84.40 5.63
14 NaiveD 4 108.40 6.38 96.40 6.43
15 LC-F 4 101.20 5.95 89.20 5.95
16 NaiveC 2 62.60 3.68 59.00 3.93
17 NaiveD 2 71.00 4.18 65.00 4.33
18 LC-F 2 67.40 3.96 61.40 4.09

Table A.5: Agents’ average and adjusted average scores for Group Composition 3
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NC ND LC-F NC ND LC-F NC ND LC-F NC ND LC-F NC ND LC-F NC ND LC-F

1 NC 10.80 20.40 18.80 10.80 18.80 17.20 10.80 17.20 15.60 10.80 15.60 14.00 10.80 14.00 12.40 10.8 12.40
2 ND 22.8 22.8 21.2 13.2 21.2 19.6 13.2 19.6 18 13.2 18 16.4 13.2 16.4 14.8 13.2 14.8
3 LC-F 20.40 10.80 18.80 10.80 18.80 17.20 10.80 17.20 18.00 13.20 18.00 16.40 13.20 16.40 14.80 13.20 14.80
4 NC 18.60 9.00 18.60 9.00 17.00 15.40 9.00 15.40 13.80 9.00 13.80 12.20 9.00 12.20 10.60 9.00 10.60
5 ND 20.60 11.00 20.60 19.00 19.00 17.40 11.00 17.40 15.80 11.00 15.80 14.20 11.00 14.20 12.60 11.00 12.60
6 LC-F 18.60 9.00 18.60 17.00 9.00 15.40 9.00 15.40 15.80 11.00 15.80 14.20 11.00 14.20 12.60 11.00 12.60
7 NC 16.80 7.20 16.80 15.20 7.20 15.20 7.20 13.60 12.00 7.20 12.00 10.40 7.20 10.40 8.80 7.20 8.80
8 ND 18.40 8.80 18.40 16.80 8.80 16.80 15.20 15.20 13.60 8.80 13.60 12.00 8.80 12.00 10.40 8.80 10.40
9 LC-F 16.80 7.20 16.80 15.20 7.20 15.20 13.60 7.20 13.60 8.80 13.60 12.00 8.80 12.00 10.40 8.80 10.40
10 NC 15.00 5.40 5.40 13.40 5.40 5.40 11.80 5.40 5.40 5.40 5.40 8.60 5.40 5.40 7.00 5.40 5.4 0
11 ND 16.20 6.60 6.60 14.60 6.60 6.60 13.00 6.60 6.60 11.40 6.60 9.80 6.60 6.60 8.20 6.60 6.60
12 LC-F 15.00 5.40 5.40 13.40 5.40 5.40 11.80 5.40 5.40 11.40 6.60 9.80 6.60 6.60 8.20 6.60 6.60
13 NC 13.20 3.60 3.60 11.60 3.60 3.60 10.00 3.60 3.60 8.40 3.60 3.60 3.60 3.60 5.20 3.60 3.60
14 ND 14.00 4.40 4.40 12.40 4.40 4.40 10.80 4.40 4.40 9.20 4.40 4.40 7.60 4.40 6.00 4.40 4.40
15 LC-F 13.20 3.60 3.60 11.60 3.60 3.60 10.00 3.60 3.60 9.20 4.40 4.40 7.60 4.40 6.00 4.40 4.40
16 NC 11.40 1.80 1.80 9.80 1.80 1.80 8.20 1.80 1.80 6.60 1.80 1.80 5.00 1.80 1.80 1.80 1.80
17 ND 11.80 2.20 2.20 10.20 2.20 2.20 8.60 2.20 2.20 7.00 2.20 2.20 5.40 2.20 2.20 3.80 2.20
18 LC-F 11.40 1.80 1.80 9.80 1.80 1.80 8.20 1.80 1.80 7.00 2.20 2.20 5.40 2.20 2.20 3.80 2.20

Table A.6: Agents’ match scores for Group Composition 3
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A.1.4 Group Composition 4

Parameter Settings

• Agent strategies (k = 3 ): NaiveC = 6, NaiveD = 6, LimitedC-Ratio = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 18

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9

• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti

– Group average score: savg = stot

n
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– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n
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Figure A.4: Agents’ performance for different ability levels in group composition 4
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ID Strategy Ability
Total
Score

Average
Scores

Total
Adjusted

Scores

Average
Adjusted

Scores
1 NaiveC 12 241.20 14.19 210.00 14.00
2 NaiveD 12 291.60 17.15 246.00 16.40
3 LC-R 12 248.40 14.61 217.20 14.48
4 NaiveC 10 212.20 12.48 186.20 12.41
5 NaiveD 10 254.20 14.95 216.20 14.41
6 LC-R 10 218.20 12.84 192.20 12.81
7 NaiveC 8 183.20 10.78 162.40 10.83
8 NaiveD 8 216.80 12.75 186.40 12.43
9 LC-R 8 183.20 10.78 162.40 10.83
10 NaiveC 6 154.20 9.07 138.60 9.24
11 NaiveD 6 179.40 10.55 156.60 10.44
12 LC-R 6 154.20 9.07 138.60 9.24
13 NaiveC 4 125.20 7.36 114.80 7.65
14 NaiveD 4 142.00 8.35 126.80 8.45
15 LC-R 4 125.20 7.36 114.80 7.65
16 NaiveC 2 78.60 4.62 73.40 4.89
17 NaiveD 2 87.00 5.12 79.40 5.29
18 LC-R 2 78.60 4.62 73.40 4.89

Table A.7: Agents’ average and adjusted average scores for Group Composition 4
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
NC ND LC-R NC ND LC-R NC ND LC-R NC ND LC-R NC ND LC-R NC ND LC-R

1 NC 10.80 20.40 18.80 10.80 18.80 17.20 10.80 17.20 15.60 10.80 15.60 14.00 10.80 14.00 12.40 10.80 12.40
2 ND 22.80 22.80 21.20 13.20 21.20 19.60 13.20 19.60 18.00 13.20 18.00 16.40 13.20 16.40 14.80 13.20 14.80
3 LC-R 20.40 10.80 18.80 10.80 18.80 17.20 10.80 17.20 15.60 10.80 15.60 14.00 10.80 14.00 14.80 13.20 14.80
4 NC 18.60 9.00 18.60 9.00 17.00 15.40 9.00 15.40 13.80 9.00 13.80 12.20 9.00 12.20 10.60 9.00 10.60
5 ND 20.60 11.00 20.60 19.00 19.00 17.40 11.00 17.40 15.80 11.00 15.80 14.20 11.00 14.20 12.60 11.00 12.60
6 LC-R 18.60 9.00 18.60 17.00 9.00 15.40 9.00 15.40 13.80 9.00 13.80 12.20 9.00 12.20 12.60 11.00 12.60
7 NC 16.80 7.20 16.80 15.20 7.20 15.20 7.20 13.60 12.00 7.20 12.00 10.40 7.20 10.40 8.80 7.20 8.80
8 ND 18.40 8.80 18.40 16.80 8.80 16.80 15.20 15.20 13.60 8.80 13.60 12.00 8.80 12.00 10.40 8.80 10.40
9 LC-R 16.80 7.20 16.80 15.20 7.20 15.20 13.60 7.20 12.00 7.20 12.00 10.40 7.20 10.40 8.80 7.20 8.80

10 NC 15.00 5.40 15.00 13.40 5.40 13.40 11.80 5.40 11.80 5.40 10.20 8.60 5.40 8.60 7.00 5.40 7.00
11 ND 16.20 6.60 16.20 14.60 6.60 14.60 13.00 6.60 13.00 11.40 11.40 9.80 6.60 9.80 8.20 6.60 8.20
12 LC-R 15.00 5.40 15.00 13.40 5.40 13.40 11.80 5.40 11.80 10.20 5.40 8.60 5.40 8.60 7.00 5.40 7.00
13 NC 13.20 3.60 13.20 11.60 3.60 11.60 10.00 3.60 10.00 8.40 3.60 8.40 3.60 6.80 5.20 3.60 5.20
14 ND 14.00 4.40 14.00 12.40 4.40 12.40 10.80 4.40 10.80 9.20 4.40 9.20 7.60 7.60 6.00 4.40 6.00
15 LC-R 13.20 3.60 13.20 11.60 3.60 11.60 10.00 3.60 10.00 8.40 3.60 8.40 6.80 3.60 5.20 3.60 5.20
16 NC 11.40 1.80 1.80 9.80 1.80 1.80 8.20 1.80 8.20 6.60 1.80 6.60 5.00 1.80 5.00 1.80 3.40
17 ND 11.80 2.20 2.20 10.20 2.20 2.20 8.60 2.20 8.60 7.00 2.20 7.00 5.40 2.20 5.40 3.80 3.80
18 LC-R 11.40 1.80 1.80 9.80 1.80 1.80 8.20 1.80 8.20 6.60 1.80 6.60 5.00 1.80 5.00 3.40 1.80

Table A.8: Agents’ match scores for Group Composition 4
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A.1.5 Group Composition 5

Parameter Settings

• Agent strategies (k = 4 ): NaiveC = 6, NaiveD = 6, SelectiveC = 6, LimitedC-

Fixed = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 24

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9

• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti
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– Group average score: savg = stot

n

– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n
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Figure A.5: Agents’ performance for different ability levels in group composition 5
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ID Strategy Abilities
Total
Score

Average
Scores

Adjusted
Total
Score

Adjusted
Average
Score

1 NaiveC 12 339.60 14.77 288.00 14.40
2 NaiveD 12 370.80 16.12 312.00 15.60
3 SelectiveC 12 354.00 15.39 300.00 15.00
4 LC-F 12 368.40 16.02 316.80 15.84
5 NaiveC 10 299.80 13.03 256.80 12.84
6 NaiveD 10 320.20 13.92 271.20 13.56
7 SelectiveC 10 311.80 13.56 266.80 13.34
8 LC-F 10 323.80 14.08 280.80 14.04
9 NaiveC 8 260.00 11.30 225.60 11.28
10 NaiveD 8 269.60 11.72 230.40 11.52
11 SelectiveC 8 269.60 11.72 233.60 11.68
12 LC-F 8 279.20 12.14 244.80 12.24
13 NaiveC 6 186.60 8.11 165.60 8.28
14 NaiveD 6 185.40 8.06 160.80 8.04
15 SelectiveC 6 193.80 8.43 171.60 8.58
16 LC-F 6 204.60 8.90 175.20 8.76
17 NaiveC 4 146.80 6.38 132.80 6.64
18 NaiveD 4 134.80 5.86 118.40 5.92
19 SelectiveC 4 151.60 6.59 136.80 6.84
20 LC-F 4 158.80 6.90 139.20 6.96
21 NaiveC 2 107.00 4.65 100.00 5.00
22 NaiveD 2 84.20 3.66 76.00 3.80
23 SelectiveC 2 109.40 4.76 102.00 5.10
24 LC-F 2 113.00 4.91 103.20 5.16

Table A.9: Agents’ average and adjusted average scores for Group Composition 5
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NC ND SC LC-F NC ND SC LC-F NC ND SC LC-F NC ND SC LC-F NC ND SC LC-F NC ND SC LC-F

1 NC 10.80 20.40 20.40 18.80 10.80 18.80 18.80 17.20 10.80 17.20 17.20 15.60 10.80 15.60 15.60 14.00 10.80 14.00 14.00 12.40 10.80 12.40 12.40
2 ND 22.80 13.20 22.80 21.20 13.20 13.20 21.20 19.60 13.20 13.20 19.60 18.00 13.20 13.20 18.00 16.40 13.20 13.20 16.40 14.80 13.20 13.20 14.80
3 SC 20.40 13.20 20.40 18.80 13.20 18.80 18.80 17.20 13.20 17.20 17.20 15.60 13.20 15.60 15.60 14.00 13.20 14.00 14.00 12.40 13.20 12.40 12.40
4 LC-F 20.40 10.80 20.40 18.80 10.80 18.80 18.80 17.20 10.80 17.20 17.20 18.00 13.20 18.00 18.00 16.40 13.20 16.40 16.40 14.80 13.20 14.80 14.80
5 NC 18.60 9.00 18.60 18.60 9.00 17.00 17.00 15.40 9.00 15.40 15.40 13.80 9.00 13.80 13.80 12.20 9.00 12.20 12.20 10.60 9.00 10.60 10.60
6 ND 20.60 11.00 11.00 20.60 19.00 11.00 19.00 17.40 11.00 11.00 17.40 15.80 11.00 11.00 15.80 14.20 11.00 11.00 14.20 12.60 11.00 11.00 12.60
7 SC 18.60 11.00 18.60 18.60 17.00 11.00 17.00 15.40 11.00 15.40 15.40 13.80 11.00 13.80 13.80 12.20 11.00 12.20 12.20 10.60 11.00 10.60 10.60
8 LC-F 18.60 9.00 18.60 18.60 17.00 9.00 17.00 15.40 9.00 15.40 15.40 15.80 11.00 15.80 15.80 14.20 11.00 14.20 14.20 12.60 11.00 12.60 12.60
9 NC 16.80 7.20 16.80 16.80 15.20 7.20 15.20 15.20 7.20 13.60 13.60 12.00 7.20 12.00 12.00 10.40 7.20 10.40 10.40 8.80 7.20 8.80 8.80

10 ND 18.40 8.80 8.80 18.40 16.80 8.80 8.80 16.80 15.20 8.80 15.20 13.60 8.80 8.80 13.60 12.00 8.80 8.80 12.00 10.40 8.80 8.80 10.40
11 SC 16.80 8.80 16.80 16.80 15.20 8.80 15.20 15.20 13.60 8.80 13.60 12.00 8.80 12.00 12.00 10.40 8.80 10.40 10.40 8.80 8.80 8.80 8.80
12 LC-F 16.80 7.20 16.80 16.80 15.20 7.20 15.20 15.20 13.60 7.20 13.60 13.60 8.80 13.60 13.60 12.00 8.80 12.00 12.00 10.40 8.80 10.40 10.40
13 NC 15.00 5.40 15.00 5.40 13.40 5.40 13.40 5.40 11.80 5.40 11.80 5.40 5.40 10.20 5.40 8.60 5.40 8.60 5.40 7.00 5.40 7.00 5.40
14 ND 16.20 6.60 6.60 6.60 14.60 6.60 6.60 6.60 13.00 6.60 6.60 6.60 11.40 6.60 6.60 9.80 6.60 6.60 6.60 8.20 6.60 6.60 6.60
15 SC 15.00 6.60 15.00 5.40 13.40 6.60 13.40 5.40 11.80 6.60 11.80 5.40 10.20 6.60 5.40 8.60 6.60 8.60 5.40 7.00 6.60 7.00 5.40
16 LC-F 15.00 5.40 15.00 5.40 13.40 5.40 13.40 5.40 11.80 5.40 11.80 5.40 11.40 6.60 11.40 9.80 6.60 9.80 6.60 8.20 6.60 8.20 6.60
17 NC 13.20 3.60 13.20 3.60 11.60 3.60 11.60 3.60 10.00 3.60 10.00 3.60 8.40 3.60 8.40 3.60 3.60 6.80 3.60 5.20 3.60 5.20 3.60
18 ND 14.00 4.40 4.40 4.40 12.40 4.40 4.40 4.40 10.80 4.40 4.40 4.40 9.20 4.40 4.40 4.40 7.60 4.40 4.40 6.00 4.40 4.40 4.40
19 SC 13.20 4.40 13.20 3.60 11.60 4.40 11.60 3.60 10.00 4.40 10.00 3.60 8.40 4.40 8.40 3.60 6.80 4.40 3.60 5.20 4.40 5.20 3.60
20 LC-F 13.20 3.60 13.20 3.60 11.60 3.60 11.60 3.60 10.00 3.60 10.00 3.60 9.20 4.40 9.20 4.40 7.60 4.40 7.60 6.00 4.40 6.00 4.40
21 NC 11.40 1.80 11.40 1.80 9.80 1.80 9.80 1.80 8.20 1.80 8.20 1.80 6.60 1.80 6.60 1.80 5.00 1.80 5.00 1.80 1.80 3.40 1.80
22 ND 11.80 2.20 2.20 2.20 10.20 2.20 2.20 2.20 8.60 2.20 2.20 2.20 7.00 2.20 2.20 2.20 5.40 2.20 2.20 2.20 3.80 2.20 2.20
23 SC 11.40 2.20 11.40 1.80 9.80 2.20 9.80 1.80 8.20 2.20 8.20 1.80 6.60 2.20 6.60 1.80 5.00 2.20 5.00 1.80 3.40 2.20 1.80
24 LC-F 11.40 1.80 11.40 1.80 9.80 1.80 9.80 1.80 8.20 1.80 8.20 1.80 7.00 2.20 7.00 2.20 5.40 2.20 5.40 2.20 3.80 2.20 3.80

Table A.10: Agents’ match scores for Group Composition 5
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A.1.6 Group Composition 6

Parameter Settings

• Agent strategies (k = 4 ): NaiveC = 6, NaiveD = 6, SelectiveC = 6, LimitedC-

Ratio = 6

• Ability levels (q = 6 ): 12, 10, 8, 6, 4, 2

• Number of agents (n = k*q): 24

• Base payoffs : T = 10, R = 8, P = 2, S = 0

• Balancing factor (α): = 0.9

• Number of tournament iterations : 1

Formulas

• Individual Scores of agent i:

– Score vs. agent j : s
(j)
i = αai+(1−α)p

(j)
i where p

(j)
i is the payoff of i vs. j.

– Total score: stoti =
n∑

j=1

j ̸=i

s
(j)
i

– Average score: savgi =
stoti

n−1

– Adjusted total score: satoti =
n∑

j=1

aj ̸=ai

s
(j)
i

– Adjusted average score: saavgi =
satoti

k(q−1)
.

• Group Scores:

– Group total score: stot =
n∑
1

stoti
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– Group average score: savg = stot

n

– Group adjusted total score: satot =
n∑
1

satoti

– Group adjusted average score: saavg = satot

n
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Figure A.6: Agents’ performance for different ability levels in group composition 6
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ID Strategy Abilities
Total
Score

Average
Scores

Adjusted
Total
Score

Adjusted
Average

Score
1 NaiveC 12 339.60 14.77 288.00 14.40
2 NaiveD 12 370.80 16.12 312.00 15.60
3 SelectiveC 12 354.00 15.39 300.00 15.00
4 LC-R 12 349.20 15.18 297.60 14.88
5 NaiveC 10 299.80 13.03 256.80 12.84
6 NaiveD 10 320.20 13.92 271.20 13.56
7 SelectiveC 10 311.80 13.56 266.80 13.34
8 LC-R 10 307.80 13.38 264.80 13.24
9 NaiveC 8 260.00 11.30 225.60 11.28
10 NaiveD 8 269.60 11.72 230.40 11.52
11 SelectiveC 8 269.60 11.72 233.60 11.68
12 LC-R 8 260.00 11.30 225.60 11.28
13 NaiveC 6 220.20 9.57 194.40 9.72
14 NaiveD 6 219.00 9.52 189.60 9.48
15 SelectiveC 6 227.40 9.89 200.40 10.02
16 LC-R 6 220.20 9.57 194.40 9.72
17 NaiveC 4 180.40 7.84 163.20 8.16
18 NaiveD 4 168.40 7.32 148.80 7.44
19 SelectiveC 4 185.20 8.05 167.20 8.36
20 LC-R 4 180.40 7.84 163.20 8.16
21 NaiveC 2 123.00 5.35 114.40 5.72
22 NaiveD 2 100.20 4.36 90.40 4.52
23 SelectiveC 2 125.40 5.45 116.40 5.82
24 LC-R 2 123.00 5.35 114.40 5.72

Table A.11: Agents’ average and adjusted average scores for Group Composition 6
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
NC ND SC LC-R NC ND SC LC-R NC ND SC LC-R NC ND SC LC-R NC ND SC LC-R NC ND SC LC-R

1 NC 10.80 20.40 20.40 18.80 10.80 18.80 18.80 17.20 10.80 17.20 17.20 15.60 10.80 15.60 15.60 14.00 10.80 14.00 14.00 12.40 10.80 12.40 12.40
2 ND 22.80 13.20 22.80 21.20 13.20 13.20 21.20 19.60 13.20 13.20 19.60 18.00 13.20 13.20 18.00 16.40 13.20 13.20 16.40 14.80 13.20 13.20 14.80
3 SC 20.40 13.20 20.40 18.80 13.20 18.80 18.80 17.20 13.20 17.20 17.20 15.60 13.20 15.60 15.60 14.00 13.20 14.00 14.00 12.40 13.20 12.40 12.40
4 LC-R 20.40 10.80 20.40 18.80 10.80 18.80 18.80 17.20 10.80 17.20 17.20 15.60 10.80 15.60 15.60 14.00 10.80 14.00 14.00 14.80 13.20 14.80 14.80
5 NC 18.60 9.00 18.60 18.60 9.00 17.00 17.00 15.40 9.00 15.40 15.40 13.80 9.00 13.80 13.80 12.20 9.00 12.20 12.20 10.60 9.00 10.60 10.60
6 ND 20.60 11.00 11.00 20.60 19.00 11.00 19.00 17.40 11.00 11.00 17.40 15.80 11.00 11.00 15.80 14.20 11.00 11.00 14.20 12.60 11.00 11.00 12.60
7 SC 18.60 11.00 18.60 18.60 17.00 11.00 17.00 15.40 11.00 15.40 15.40 13.80 11.00 13.80 13.80 12.20 11.00 12.20 12.20 10.60 11.00 10.60 10.60
8 LC-R 18.60 9.00 18.60 18.60 17.00 9.00 17.00 15.40 9.00 15.40 15.40 13.80 9.00 13.80 13.80 12.20 9.00 12.20 12.20 12.60 11.00 12.60 12.60
9 NC 16.80 7.20 16.80 16.80 15.20 7.20 15.20 15.20 7.20 13.60 13.60 12.00 7.20 12.00 12.00 10.40 7.20 10.40 10.40 8.80 7.20 8.80 8.80

10 ND 18.40 8.80 8.80 18.40 16.80 8.80 8.80 16.80 15.20 8.80 15.20 13.60 8.80 8.80 13.60 12.00 8.80 8.80 12.00 10.40 8.80 8.80 10.40
11 SC 16.80 8.80 16.80 16.80 15.20 8.80 15.20 15.20 13.60 8.80 13.60 12.00 8.80 12.00 12.00 10.40 8.80 10.40 10.40 8.80 8.80 8.80 8.80
12 LC-R 16.80 7.20 16.80 16.80 15.20 7.20 15.20 15.20 13.60 7.20 13.60 12.00 7.20 12.00 12.00 10.40 7.20 10.40 10.40 8.80 7.20 8.80 8.80
13 NC 15.00 5.40 15.00 15.00 13.40 5.40 13.40 13.40 11.80 5.40 11.80 11.80 5.40 10.20 10.20 8.60 5.40 8.60 8.60 7.00 5.40 7.00 7.00
14 ND 16.20 6.60 6.60 16.20 14.60 6.60 6.60 14.60 13.00 6.60 6.60 13.00 11.40 6.60 11.40 9.80 6.60 6.60 9.80 8.20 6.60 6.60 8.20
15 SC 15.00 6.60 15.00 15.00 13.40 6.60 13.40 13.40 11.80 6.60 11.80 11.80 10.20 6.60 10.20 8.60 6.60 8.60 8.60 7.00 6.60 7.00 7.00
16 LC-R 15.00 5.40 15.00 15.00 13.40 5.40 13.40 13.40 11.80 5.40 11.80 11.80 10.20 5.40 10.20 8.60 5.40 8.60 8.60 7.00 5.40 7.00 7.00
17 NC 13.20 3.60 13.20 13.20 11.60 3.60 11.60 11.60 10.00 3.60 10.00 10.00 8.40 3.60 8.40 8.40 3.60 6.80 6.80 5.20 3.60 5.20 5.20
18 ND 14.00 4.40 4.40 14.00 12.40 4.40 4.40 12.40 10.80 4.40 4.40 10.80 9.20 4.40 4.40 9.20 7.60 4.40 7.60 6.00 4.40 4.40 6.00
19 SC 13.20 4.40 13.20 13.20 11.60 4.40 11.60 11.60 10.00 4.40 10.00 10.00 8.40 4.40 8.40 8.40 6.80 4.40 6.80 5.20 4.40 5.20 5.20
20 LC-R 13.20 3.60 13.20 13.20 11.60 3.60 11.60 11.60 10.00 3.60 10.00 10.00 8.40 3.60 8.40 8.40 6.80 3.60 6.80 5.20 3.60 5.20 5.20
21 NC 11.40 1.80 11.40 1.80 9.80 1.80 9.80 1.80 8.20 1.80 8.20 8.20 6.60 1.80 6.60 6.60 5.00 1.80 5.00 5.00 1.80 3.40 3.40
22 ND 11.80 2.20 2.20 2.20 10.20 2.20 2.20 2.20 8.60 2.20 2.20 8.60 7.00 2.20 2.20 7.00 5.40 2.20 2.20 5.40 3.80 2.20 3.80
23 SC 11.40 2.20 11.40 1.80 9.80 2.20 9.80 1.80 8.20 2.20 8.20 8.20 6.60 2.20 6.60 6.60 5.00 2.20 5.00 5.00 3.40 2.20 3.40
24 LC-R 11.40 1.80 11.40 1.80 9.80 1.80 9.80 1.80 8.20 1.80 8.20 8.20 6.60 1.80 6.60 6.60 5.00 1.80 5.00 5.00 3.40 1.80 3.40

Table A.12: Agents’ match scores for Group Composition 6
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