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Abstract 

Due to an exponential increase in number of electronic documents and easy access to 

information on the Internet, the need for text summarization has become obvious. An ideal 

summary contains important parts of the original document, eliminates redundant information 

and can be generated from single or multiple documents. There are several online text 

summarizers but they have limited accessibility and generate somewhat incoherent summaries.  

We have proposed a Graph-based Automatic Summarizer (GAUTOSUMM), which 

consists of a pre-processing module, control features and a post-processing module. For 

evaluation, two datasets, Opinosis and DUC 2007 are used and generated summaries are 

evaluated using ROUGE metrics. The results show that GAUTOSUMM outperforms the 

online text summarizers in eight out of ten topics both in terms of the summary quality and 

time performance. A user interface has also been built to collect the original text and the desired 

number of sentences in the summary. 
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Chapter 1 

 1. Introduction 

In today’s busy world, access to compressed and meaningful information extracted 

from large volumes of data is very important and necessary. We often find ourselves 

surrounded by a huge quantity of data and come across information that needs to be 

summarized eloquently, regardless of whether we search for topics related to business, sports, 

politics, medicine, religion, or science.  Big companies generate internal reports related to their 

business on an annual, monthly, weekly and daily basis. Business owners or senior executives 

want these reports in a compressed form which is meaningful to them and saves time and space. 

Similarly, search engines provide access to massive volumes of information based on 

keywords, but this information still needs to be sifted through by the user. However, sometimes 

we are presented with summaries that we often take for granted. For instance, we cannot have 

a newspaper without headlines, or books and movies without reviews and trailers, scholarly 

articles without abstracts, or search results without summarized extracts from each page. In 

general, summaries are of great potential value to CEOs, journalists, lawyers, students, 

researchers and casual browsers of the Internet. 

Summaries are generated by text summarizers to reduce the length of the original 

document in a way that highlights important contents of the document. This process should be 



2 
 

automatic, i.e. it must be generated by a machine to extract the most significant information in 

a shorter form. A good summary should preserve the principal semantic content and help the 

user to quickly understand large volumes of information. Radev [1] has formally defined a 

summary as “a text that is produced from one or more texts, that conveys important information 

in the original text(s), and that is no longer than half of the original text(s) and usually 

significantly less than that”. Using work from other researchers, we can simplify this definition 

as: 

 Generation of summaries from single or multiple documents. 

 Preservation of important parts which are present in the original text. 

 Reduction of the original text, or elimination of redundant parts from the 

original text. 

In 1958 Luhn [2], a computer scientist at IBM was likely the first person who formally 

acknowledged the need for automatically generated summaries and abstracts. Though at that 

time there were no modern computers or computing devices, he suggested a system that could 

take full advantage of the capabilities of modern electronic data processing. He generated 

abstracts of technical literature and magazine articles to facilitate quick and precise topic 

identification of the document. This work motivated Edmundson to publish a book in 1969 [3], 

in which he proposed new methods for automatic extraction of information. The concept of 

automatic text summarization evolved at that time, which demonstrated that summaries can be 

generated by computers without any human supervision.  

Over the past 50 years, researchers have been trying to develop a generic mechanism, 

which can compress large documents into meaningful summaries. Recently, text 

summarization has gained more importance due to an exponential increase of information on 
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the Internet. Because of easy access to the Internet, it is very difficult for users to narrow down 

their query to a specific topic because of a large amount of inter-related information available 

online. This problem has led to the development of methods and algorithms for automatic text 

summarization, which can be implemented with or without human supervision. Several 

methods and techniques have been proposed for text summarization, but there is still a need 

for an efficient generic text summarizer which can generate summaries on any topic and in any 

language. To date, text summarization remains a big challenge for researchers. 

Depending on the methods or techniques, text summarization is divided into two broad 

categories – extractive and abstractive. Extractive summaries [4] [5] are generated by taking 

out the exact sentences or keywords from the original document that are important. These 

sentences are then combined into a shorter form to produce a meaningful and coherent 

summary. Extractive summaries are usually based on statistical analysis of individual or mixed 

surface level features such as word or phrase frequency, location, and cue words to locate the 

sentences to be extracted [6] [7]. Most of the research today focuses on extractive 

summarization. 

Abstractive Summaries [7] [4] are generated by first understanding the main concept of 

a document and then stating them in a clear, simple language. It aims to produce the main 

concept of the document and important material in a new way. Abstraction is essentially a 

replacement of the original text while keeping the same theme as of original document. It uses 

linguistic methods to examine and interpret a text document. Abstractive summaries are 

difficult to produce because current computing devices cannot generate semantic 

representation, inference, or natural language to a level that is equivalent to humans. 

Summaries produced by humans are not extractive; instead, we make or write summaries 
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depending on our background knowledge, attitude or disposition. Humans have their own 

interpretation of ideas [2] and the quality of a summary may vary widely among them. In fact, 

a person may generate two different summaries of the same article at different times in their 

lives depending on a variety of external factors.  

There are several problems associated with both extractive and abstractive summaries. 

The main problem with the former is that longer sentences are often selected which results in 

potential inclusion of less important parts in the generated summary. Longer sentences have a 

higher probability to be included in the generated summary because they may have more 

important words than shorter sentences. Important information within a document is usually 

distributed in different parts of the original document and extractive summaries cannot capture 

this information in scenarios where multiple themes are introduced. Summaries with longer 

sentences can eliminate this problem to some extent, but then the summaries may include 

redundant information. Representation of conflicting arguments in the generated summary is 

also a big challenge for both abstractive and extractive summaries [7]. For example, an article 

on advantages and disadvantages of a product or a comparative study on a topic may include 

arguments in favor of the topic and against the topic. For extractive summaries, it is very 

difficult to present conflicting arguments correctly because decision making by summarizer 

and subsequent identification of the related argument is necessary. Extraction of sentences 

from the document can lead to lack of coherence in the generated summary. Additionally, 

sentences may contain pronouns, which lose their reference when extracted out of the context. 

This problem is more intense in multi-document summarization but can be avoided by 

replacing the pronouns with their antecedents [7]. On the other hand, abstractive summaries 

have a representation problem because they involve reformulation of contents, a process which 
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makes it domain dependent and requires human supervision [8]. The biggest challenge for 

abstractive summarization is that the capabilities of current computing devices are limited 

because they cannot generate rich representations of a language. To first understand the natural 

language and then produce the summary by connecting words and sentences in a similar way 

a human would, is beyond the ability of today’s technology. Abstractive text summarizers 

provide an overview of the topic rather than going into the details contained within the original 

document. Thus, abstractive summaries do not have high quality in terms of evaluation, and 

they can deviate from the topic of the document very easily. Simplicity, speed, domain 

independence, and non-requirement of background knowledge [8] are the reasons that we 

opted to focus on extractive text summarization.  

 

1.1 Extractive Summarization 

Extractive text summarization consists of two sub-methods – Fusion and Compression [1]. 

As the name indicates, fusion [1] coherently combines extracted parts of the original text, 

whereas compression excludes the unimportant sections of the text. The process of extractive 

text summarization is divided into two steps [7]: pre-processing and processing. Pre-processing 

[7] step is the removal of determiners (a, an, the, this, that, these, those), auxiliary verbs (have, 

many, can, shall, be), prepositions (at, in, on, under, over, of) and/or conjunctions (and, but, 

or). This step includes the identification of sentence boundaries and it may include stemming 

- retaining the stem or radix of each word. Pre-processing is a very important step in 

summarization because it eliminates insignificant words that occur most frequently and thus, 

can affect the calculation of statistical features such as sentence length and cue words or 
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phrases. The processing step may include one or more of the summarization approaches such 

as graph-based approach, lexical chains, or a frequent term approach to obtain an absolute 

summary [9] (these approaches are discussed further in Chapter 2). This step mainly includes 

document analysis of the original text, statistical selection of significant sentences, sentence 

weighting, and sentence extraction as the last step. 

 

1.2 Types of Summaries 

Text summaries can also be classified as: indicative, informative, generic, query based and 

user-focused. Indicative summaries [10] provide reduced information on the main topic of a 

document. These summaries usually preserve the most important passages and help users to 

decide whether the original document is worth reading or not. The purpose of these summaries 

is to focus on a problem, event or topic. Informative summaries [10] are intended to cover most 

of the topics in the original document. These summaries are more likely to provide information 

about the article and they are longer in length as compared to the indicative summaries. Generic 

summaries [10] [8] are intended to convey the author’s perspective, which also represents the 

theme of the document. These summaries inform the broad community of readers and include 

a general idea of the original document. Query-based summaries [10] are generated when the 

result is based on a question, e.g. “what is text summarization?” They are also known as user-

focused summaries because they depend on the input from the user. These summaries are 

produced depending on the interest of a particular user and focus on the topics specified by the 

user. 
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Summaries can be generated from a single document as well as from multiple documents, 

known as single document summarization and multi-document summarization, respectively. 

Text summarization can be implemented for monolingual documents, as well as for 

multilingual documents [11]. For monolingual summarization, the input and the output 

summary is in the same language, but for multilingual summarization, input or original text is 

in a different language than the target language of the final output summary.  

Another important aspect of text summarization is the evaluation of generated summary 

[7]. Generally, summaries are evaluated using two measures: Intrinsic and Extrinsic [7]. 

Intrinsic measures are used to evaluate the quality of a summary in terms of linguistics, non-

redundancy and reference clarity. Intrinsic measures also check for precision, recall and F-

score used by evaluation software (discussed in Chapter 4). Precision determines how precise 

is the generated summary, recall measures the flow and structure, and F-score represents 

harmonic mean of precision and recall. Extrinsic measures are used to determine the quality of 

a summary by following a specified task based performance metric such as document 

categorization, question answering and information retrieval [12]. 

For text summarization, there are many approaches which can be used to generate a 

summary for the given document, for example, machine learning approach, clustering based 

approach, lexical chaining approach, frequent term approach, information retrieval approach 

and Graph-based approach (discussed in Chapter 2). In our research, we are using extractive 

summarization and Graph-based approach to find the most important sentences within the 

document. Graph-based approach is used in many fields such as computer science, biology, 

social sciences and information systems. In a Graph-based approach, a relation between nodes 

and related edges is defined by a similarity measure. The generated graph can be directed or 
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undirected and the edges can be specified by a weight. This approach is further discussed in 

the next section. 

 

1.3 Graph-based approach 

In this approach, each sentence of a document is represented as a node. A node can be 

connected to another node through an edge when there is a similarity between them [4]. The 

number of edges between the nodes (or weight of the edges) depends on the similarity measure. 

Several statistical features such as cosine similarity, cohesion and discounting (further 

explained in Chapter 3) are used to calculate similarity measure. The number of edges between 

sentences are determined to find the nodes with most edges drawn from, and to, other nodes. 

The sentences (nodes) with the highest number of edges are considered as the most significant 

sentences. To present this concept in terms of an algorithm, a matrix is generated which 

contains the number of edges between the nodes. The row-wise (or column-wise) addition of 

this matrix generates a sum vector that recognizes rank of each sentence. Sum vectors are 

sorted in a descending order to obtain the most significant sentences.  

One of the main reasons for using a Graph-based approach is that the graph of the original 

document provides a clear visualization of the nodes which helps in locating the important 

sentences. The selection of salient sentences in a graph depends on the edges drawn from and 

to other nodes, which creates a democratic system within the graph [13]. A democratic system 

is like casting a vote for a representative node, where a node recommends a number of other 

nodes which may be selected for the generated summaries. Another reason for choosing a 

Graph-based approach is that it does not need to go through a training process such as machine 
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learning approaches or neural networks. The training process requires a significant amount of 

time to feed in all the available information to the algorithm about given topics. This procedure 

needs extensive datasets to be processed and learned by the algorithm, but still the algorithm 

may not be able to cover all the topics to generate the required summary. On the other hand, a 

Graph-based approach can produce summaries in real time, without the help of any trained 

templates. It does not include complex equations and calculations, but still provide a clear 

representation of sentences in a document. Graph-based approach has been used by companies 

like Facebook and Google [14] to provide a better representation of data to users. The key 

feature of a Graph-based method is to provide a clear representation of nodes, edges and to 

locate the important nodes by their relations through connecting edges. Such an approach 

provides advantages to businesses through a “better customer experience, targeted content and 

increased revenue opportunities” [14]. There are some other areas where a Graph-based 

approach is valuable such as “customer support portals, content portals, product catalogs and 

social networks” [14]. 

 

1.4 Methodology 

We have adopted the Graph-based approach which was originally proposed by Radev and 

Erkan in 2004 [4]. Since then, many improvements have been proposed by other authors to 

enhance this approach. As Graph-based approach mainly depends on nodes and edges, Radev 

and Erkan used a cosine similarity equation [4] as a similarity measure to define a relationship 

between the nodes and edges. This equation involves calculation of variables such as centroids 

and sentence centrality. A centroid is a file which contains tf-idf scores of words above a 
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predefined threshold [4], where tf is the term frequency within the document(s) and idf is 

inverse document frequency. idf is a logarithmic function which ignores the words that occur 

frequently, in addition to eliminating prepositions or articles. The sentences that contain more 

words from the centroid are considered as central and determine the sentence centrality. The 

degree of sentences is also calculated by using a threshold method so that sentences with more 

significant similarities are selected [4]. A sum vector is calculated by the addition of rows or 

columns of the adjacency matrix to determine the most significant sentences.  

In the proposed summarizer (GAUTOSUMM – Graph-based Automatic Summarizer), the 

Graph-based approach is implemented in a different way. We first identify important words 

within the sentences and then calculate their frequency to determine a score for each sentence. 

In this way, redundant frequency calculations are avoided and only important words are 

considered for calculations of the score. The other methods like LexRank [4], use tf-idf for the 

calculation of cosine similarity and calculate term frequencies (tf) for the whole document. In 

our method, tf’s are calculated for important words only. With this module, we get a part of idf 

by eliminating the frequently occurring words like articles and prepositions. By using a pre-

processing module, our proposed summarizer does not exclude frequently occurring terms 

other than articles, prepositions, conjunctions, determiners and auxiliary verbs, which can play 

an important role in the selection of good quality summary. Another important consideration 

in GAUTOSUMM is that the comparisons are made across the sentences (i.e. from one 

sentence to the other), but not within the sentence itself. The comparisons within a sentence 

introduce calculation of false edges and may include redundant information in the generated 

summary.  
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To measure the quality of generated summaries for GAUTOSUMM and online text 

summarizers, an evaluation software, ROUGE, is used. The values of precision, recall and 

harmonic mean show that summaries generated by GAUTOSUMM are superior than online 

text summarizers in terms of quality, readability and accuracy in eight out of ten topics. These 

results are discussed in Chapter 4.  

 

1.5 Contributions 

The contributions of this research consist of the following: 

 Our method includes calculation of edges in two ways: 

o By comparisons of edges between the sentences. 

o By Jaccard distance [15], which helps in the calculation of similarities and 

dissimilarities between the sentences by using sentence lengths. Jaccard 

distance is modified in a way to calculate the true number of edges between 

the sentences so that longer sentences do not affect the generated summary. 

 Pre-processing module is used instead of idf. Results of precision, recall and F-

score are calculated with pre-processing, without pre-processing and with extensive 

pre-processing. The results showed that GAUTOSUMM generated good quality 

summaries with pre-processing and extensive pre-processing. Further, these 

summaries are better than existing online text summarizer’s summaries. 

 Control features are added to avoid the problem of longer sentence selection in the 

generated summary. These control features are dependent on sentence lengths and 
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are combined with Jaccard distance to produce a good quality summary with better 

flow and structure. The following control features are added to the algorithm: 

o A function which selects an optimized range of sentences from the 

document. The range of selected sentences is dependent on the size of the 

document and sentence lengths, which may differ for each sample. 

o The length of selected sentences for the generated summary can be 

controlled. Too short and too long sentences are eliminated from the 

summary to make it more precise and to provide a better flow. This is 

implemented via a threshold which can be adjusted by the topic or user. 

 

1.6 Organization of Thesis 

This thesis consists of five chapters. In chapter 1, we introduced the background of text 

summarization and discussed the details of extractive text summarization, its comparison with 

abstractive text summarization, and pros and cons of both methods. Chapter 2 provides a 

literature review and history of text summarization. It describes different approaches and 

methods proposed by researchers. Chapter 3 presents a discussion on Graph-based approach 

and proposed method used by the summarizer together with its benefits and limitations. The 

evaluation and results for GAUTOSUMM are provided in chapter 4. It includes a comparison 

of ROUGE metric results and time performance with online text summarizers. Chapter 5 

concludes the work and provides direction for future research. 
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Chapter 2 

2. Literature Review 

With the exponential growth of online available information and accessibility to the 

Internet, text summarization has become a necessity. In this chapter, a background of text 

summarization together with an overview of the approaches adopted by researchers is 

presented. The early experimentation of automatic text summarization began in 1950’s by 

Luhn [16]. Since then, many techniques have been proposed. As our research is focused on 

extractive text summarization and due to the extensive amount of research done in this area, 

we will discuss extractive approaches. 

One of the most cited papers on text summarization is by Luhn [16], which describes 

research carried out at IBM. The main idea presented in this work was that the frequency with 

which a word occurs in an article provides a useful measure of its importance within that article. 

Other ideas presented in the paper include word stemming to their root form and deletion of 

stop words. He collected a list of “content words” which are sorted by decreasing frequency 

and marked these words with an index to provide a significance measure of the word. A 

“significance factor” is then calculated that reflects the number of occurrences of important 

words within a sentence. Finally, the score of all sentences is calculated and ranked in order of 

their significance factor. 
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Another related work published in 1958 by Baxendale [17] describes the importance of 

statistical features of sentences, such as “sentence position”, which can help to identify the 

salient sentences in the document. Towards this effort, the author examined 200 paragraphs 

and concluded that in more than 80% of the paragraphs, the topic sentence is the first sentence 

and in 7% paragraphs it is the last sentence [17]. Sentence position feature can be an accurate 

way to select a topic sentence from the first or last sentence of a paragraph. This positional 

feature is a basic way of finding important sentences, and is used in many complex text 

summarization algorithms including machine learning approaches (which will be addressed in 

next section). In 1969, extractive text summarization was introduced by Edmundson [18] 

which describes a system that produces document extracts. His main contribution was the 

development of a structure for an extractive summarization experiment [18]. As a first step, 

Edmundson created a protocol for generating manual extracts which he used as a reference 

comparison standard for a set of 400 technical documents. From previous work, word 

occurrence and positional importance were incorporated along with two new features: cue 

words (presence of important words such as “significant” or “conclusion”) and the overall 

skeleton (to identify sentences or words as title or heading). The weights were then attached to 

each of these features to calculate a score of the sentences.  

The approaches used for text summarizers can be grouped into six groups depending 

upon the characteristics of the algorithm implemented within the summarizer. These include 

Machine Learning Approach, Clustering Based Approach, Lexical Chaining Approach, 

Frequent Term Approach, Information Retrieval Approach and Graph-based approach. A 

comparison of readability, redundancy and similarity for all approaches is shown in Appendix 

1. These approaches and related summarizers are discussed in the next section. 
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2.1 Machine Learning Approach 

Several Machine Learning approaches [7] [19] [11] developed in 1990s have been used 

for text summarization. These include Naïve Bayes Methods, Rich Features and Decision 

Trees, Hidden Markov Models, Log-Linear Models and Neural Networks. A Naïve Bayes 

Method [20] calculates Naïve Bayes classifier that categorizes each sentence as worthy of 

extraction or not. Rich features and decision trees use a position method [21] which arises from 

the idea that texts generally follow a predictable discourse structure, and that the sentences of 

greater topic centrality tend to occur at certain specifiable locations (e.g. title, abstracts, etc.) 

[19]. Hidden Markov Model (HMM) is a sequential method to define local dependencies 

between the sentences [22]. It uses three features: position of the sentence in the document 

(built into the state structure of the HMM), number of terms in the sentence, and likeliness of 

the sentence terms given the document terms. Log-Linear Model includes an exponential 

method that has two labels: sentence to be extracted for a summary or not [23]. In neural 

networks, document sentences which contain keywords used in news search engine or entities 

found in Wikipedia articles present a greater chance of having those sentences in the highlight 

for the generated output summary [19].  

In 1998, SUMMARIST was proposed by Hovy and Lin [24]. This summarizer provides 

single document text summarization in the field of “news” and is also a multi-lingual system. 

SUMMARIST used Natural Language Processing (NLP) techniques combined with symbolic 

concept-level world knowledge. The process of text summarization in SUMMARIST is 

divided into three steps: topic identification, interpretation and generation of output summary. 

COLUMBIA MDS [25] was introduced in 2002 which is a multi-document summarizer in the 
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field of “news” and generates both extractive and abstractive summaries. It uses statistical 

techniques and is a composite system which uses different algorithms from other summarizers. 

For example, depending on the input, it uses a module known as MultiGen for single document 

input and DEMS (Dissimilarity Engine for multi-document Summarization) for multiple 

documents or biographical documents. The evaluation scores of the summarizer showed that 

some improvements are needed to enhance the output summary generated by DEMS. 

Coherence is one of the main improvements mentioned by the author because DEMS is multi-

document summarizer which may generate a summary that is not coherent and well connected. 

Another problem faced by DEMS was lack of training data to cover a diverse range of topics. 

The same authors evaluated DUC 2003 dataset [26] with the suggested improvements which 

showed better results but, still encountered by lack of training data for the summarizer. NTT 

[27] is a single document text summarizer which employs Support Vector Machine (SVM). 

SVM is a Machine Learning technique to classify a sentence as relevant or non-relevant. Some 

of the control features used by NTT are: position, length, weight, similarity with headline and 

presence of verbs and prepositions. The evaluation and results of NTT showed that it generated 

better quality summaries in most of the topics but for some topics, generated summaries lacked 

readability, grammar, cohesion and organization. To overcome these problems, Named 

Entities, Modalities and Rhetorical Relations are the suggested improvements by the authors. 

Karamuftuoglu [28] proposed another algorithm for single document extractive summaries. It 

uses a pattern matching method for lexical links and bonds with the implementation of SVM. 

It is mainly based on extract-reduce-organize paradigm [28]. The algorithm tends to pick 

sentences which appear earlier in a document and it may select consecutive sentences which 

introduce lack of coherence and flow in the generated summary. Lal & Rueger [29] introduced 

single-document text summarizer that uses Bayes classifier which is one of the machine 
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learning methods. It uses several modules to resolve the problem of anaphora for extractive 

summaries. The problem of anaphora arises when a word is used in the document which refers 

or replaces a word used earlier, to avoid repetition of the word or phrases.  

2.1.1 Naïve Bayes Method 

This method was used by several researchers in 1990’s. Kupiec et al. [20] extended 

Edmundson’s work to design an algorithm that uses a Naïve Bayes method which learns from 

data and includes a Naïve Bayes classifier to determine whether a sentence should be included 

in summary or not. It includes control features such as sentence length and presence of 

uppercase words. A set of technical documents was used to perform evaluation by manual 

mapping of generated text with actual document sentences. Feature analysis of the output 

concluded that an algorithm using sentence position, cue words and sentence length feature 

performed the best. This summarizer does not include pre-processing step which affects the 

frequency analysis of word sequences. To identify articles, prepositions, common adverbs and 

auxiliary verbs, a stop list is suggested to break the words in different sentences into phrases. 

Aone et al. [30] also incorporated Naïve Bayes classifier with richer features. Their proposed 

system employed features like term frequency (tf) and inverse document frequency (idf) [30]. 

idf is calculated by taking a set of multiple documents, as it is a calculation of the ratio between 

total number of documents by the number of documents which contains a given term. A Naïve 

Bayes method is mainly suitable for small datasets. The method generates low quality 

summaries for larger documents even with the inclusion of control features.  
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2.1.2 Rich Features and Decision Trees 

Lin and Hovy [21], studied the importance of a single feature such as “sentence 

position” and assumed that features are independent of each other. A position method needs to 

be combined with other control features like cue words or phrases because only a position 

method does not support goal-oriented topic search. Later, Lin changed this assumption and 

implemented the problem of sentence extraction using decision trees instead of Naïve Bayes 

classifier [24]. Several statistical features such as sentence position, sentence length, and cue 

words were examined to study their effect on sentence extraction for summaries. A reference 

dataset was created for evaluation of summaries generated by the summarizer. Some common 

features used by Lin are: query signature (score given to sentences depending on query words 

that they contain), IR signature (the m most salient words in the dataset) and identification of 

numerical data, names, pronouns, weekdays and quotations.  

2.1.3 Hidden Markov Model 

Before this method, all the approaches were mostly feature based and non-sequential. 

Conroy and O’Leary [22], proposed the extraction of sentences from a document using Hidden 

Markov Model (HMM). The main focus of the method was to use a sequential model that can 

account for local dependencies between sentences. They used only three features: position of 

the sentence in the document (built into the state structure of HMM), the number of terms in 

the sentence or sentence length, and similarity of the sentence terms given in the document 

terms. Evaluations were carried out by comparing the results with human generated extracts. 

Another summarizer known as CLASSY [31], is a multi-document summarizer for the field of 

“news”. It is a query based system and uses Hidden Markov Model for sentence scoring and 

selection. It categorizes sentences as those which are to be included or excluded from the 
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summary [31]. One of the issues related to this summarizer is anaphora resolution. The 

performance of the summarizer can be increased in terms of linguistic quality questions by 

including anaphora resolution. 

2.1.4 Log-Linear Method 

Osborne [23] claimed that all existing approaches for summarization have always 

assumed feature independence. The author introduced a log-linear method to eliminate this 

assumption and showed empirically, that the system produced a better extract than a Naïve 

Bayes model. The evaluations were done by using a standard f-score where f-score=2pr/(p+r), 

precision (p) and recall (r), which were measured against human generated extracts. Some of 

the features incorporated in this method are: word pairs (a pair of words with all words 

truncated to ten characters), length of the sentences, position feature, and discourse features 

such as inside introduction and inside conclusion. Similarly, SimFinder [32] uses a log-linear 

model to organize text into tight clusters and then reduces each cluster to a single sentence. A 

comparison study revealed that SimFinder showed better results with log-linear model than tf-

idf and other models. The performance of SimFinder can be improved by combining it with 

control features such as sentence length and position. The summarizer is multi-lingual and 

resilience during translation from the source language to target language is a challenge for 

authors. 

2.1.5 Neural Networks 

Svore et al. [33] proposed an algorithm, NetSum, based on neural networks and the use 

of third-party database. Thee trained model could infer the proper ranking of sentences in a test 

document using a neural network which incorporates a gradient descent method for the 
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training. The authors concluded that a sentence which contains keyword used in search engine 

by the user possess a greater chance to be selected in the generated output summary. NetSum 

is a single document summarizer and uses neural networks to enhance sentence features, then 

extracts a maximum of three sentences which best match the document highlights. ROUGE 

evaluation and results for NetSum are very low mainly because it is very rare to match the 

content of single sentence with the keywords. To improve the performance of NetSum, 

sentence simplification, sentence splicing and merging are identified as suggested 

improvements. The other problem faced by NetSum is lack of control features. These features 

can be beneficial to the performance of the summarizer and would help to identify inputs 

provided by user. In 2005, Nenkova [34] proposed a summarizer to generate a 100-word 

summary of a single news article. The author proposed a system for the evaluation of generated 

output summaries using neural networks and designed a baseline system with statistical 

significance. During the evaluations, the best performing systems could not outperform the 

baseline system proposed by Nenkova which corresponds to the selection of first n sentences 

of a newswire article [34]. 

2.1.6 Summary of Machine Learning Approach 

To describe a model for text summarization, most of the models based on machine 

learning approaches are embedded with features such as position, cue words, signature words 

and term frequency. Machine learning methods use several statistical features on sentences 

from the document collection and then calculate the probability of each sentence for inclusion 

or exclusion from the generated output summary.  

A Machine learning approach requires large databases and training sets for learning 

process. In terms of text summarization, this learning process may take a significant amount 
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of time and processing of information. An algorithm which deploys a machine learning 

approach requires continuous training of data to incorporate new cases and improve accuracy. 

These algorithms may fail in situations where proper or sufficient training is not applied. Large 

dataset requirements by machine learning algorithms still may not guarantee best quality 

summary. Availability of relevant and large datasets is another challenge for machines learning 

algorithms in text summarization.   

 

2.2 Clustering Based Approach 

Clustering based approach [11] [35] is suitable for both single document and multi-document 

summarization. The algorithms which use this approach makes clusters of documents which 

are to be summarized and then find relationships among the selected documents [36]. Each 

cluster is then indexed depending on the theme of the cluster. After indexing, sentences are 

ranked within each cluster and their saliency scores are calculated. In the last step, high score 

sentences from each cluster are extracted to generate a summary. Control features such as 

cosine similarity, cohesion, discounting and relevancy can be added to the algorithm to 

enhance the performance and summary quality. The main steps of the approach remain same, 

which are: segmentation into clusters, theme cluster identification, sentence score calculation 

and summary extraction. 

Jade Goldstein [37] proposed a method based on clustering-based approach. The proposed 

method mainly focuses on “relevant novelty”, which is a metric for minimizing the redundancy 

and maximizing the relevance and diversity in generated summary. The method uses 

clustering, coverage (to cover most of the important parts of the summary), anti-redundancy 
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and summary cohesion criteria (to extract sentences in a way which produces a cohesive flow 

in the summary). The author proposed some improvements such as generating coherent 

temporally based event summaries and effectively using multi-document summarization 

through interactive interfaces to learn large documents and datasets. Chin & Lin introduced a 

multi-document text summarizer in the field of “news” to extract summaries [38]. The 

summarizer produces multilingual summaries in English and Chinese. It uses clustering 

techniques along with “meaning units’ detection” to find similarities between topic chains and 

linking elements. The main challenge faced by authors is translation ambiguity. This 

summarizer produces good quality summaries when the original document and the respective 

generated output summary is in same language i.e. either English or Chinese. Early in 2000’s, 

many researchers contributed towards text summarizers and proposed new algorithms. Most 

of the summarizers were multi-document, extract based and for the field of “news”. One of the 

clustering based approach summarizer is CENTRIFUSER [39], which produces query-driven 

summaries and is based on a document topic tree. A similarity function is used for query 

mapping with structural information from topic trees. This summarizer is domain specific for 

health-care articles. Control features and additional document features can be added to increase 

performance of the summarizer. A probabilistic method can be replaced by the existing 

template-based realizer to produce appropriate sentence patterns based on contextual analysis. 

Judith [40] proposed a clustering based algorithm for multi-document summarization. The 

summarizer uses linguistic trimming and statistical methods to generate summaries. The 

structural design of the summarizer is made up of five steps: preparation of raw texts, trimming 

of sentences, scoring, redundancy elimination and sentence organization for final summary. A 

problem faced by the summarizer is the evaluation of each component on languages other than 
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English. For example, redundancy removal effectiveness is not established for non-English 

languages. 

 Xiaojun Wan [41] also proposed a clustering-based approach algorithm which uses 

two models for the process of sentence ranking. One model is used to incorporate the cluster-

level information and the second model is used to consider the clusters and sentences as hubs 

for the calculation of sentence scores. To improve the performance of algorithm, subtopic 

information can be included which is more fine-grained than the original document. Nitin 

Agarwal [42] contributed towards a clustering-based approach to generate a summary without 

human supervision. The summarizer consists of four principal modules: text tilling, clustering, 

ranking and summary presentation. The main concern of the summarizer is that it cannot 

generate good quality summaries for longer documents. This would require more filtering and 

ranking to avoid lack of focus in generated output summaries. NeATS [43], is a multi-

document extractive summarizer for the field of “news”. It uses control features like sentence 

position, term frequency, topic signature and term clustering. Stigma words and time stamps 

are used by the summarizer to improve cohesion and coherence of the output summaries. 

Newsblaster [44] is also a multi-document extractive summarizer for the field of “news”. The 

algorithm uses clustering-based approach to group news articles using Topic Detection and 

Tracking (TDT) mechanism. One of the main challenge for Newsblaster is to retrieve the 

caption from the images of newspaper. For this, categorization of images needs to be done first 

which is based on shallow parsing of captions and simple word similarity metrics. K.U. Leuven 

[45] introduced a single and multi-document extractive summarizer. It uses a clustering based 

approach and employs a topic segmentation techniques for multi-document tasks. To improve 

the performance of the summarizer, features such as sentence weight, sentence scoring and 
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position, proximity to the topic, topic segmentation and compression are used for single-

document summarization. 

2.2.1 Summary of Clustering Based Approach 

The advantages of clustering based approach are: it’s anti-redundant (to minimize 

redundancy and to maximize relevance and diversity) and includes summary cohesion criteria. 

Due to this reason, clustering based approaches are more suitable for multi-document text 

summarization. A disadvantage of clustering based approach is that it includes cohesion and 

coherence which are not very easy to implement. Advanced systems are required for 

computations of an algorithm which deploys cohesion and coherence because of the 

complexity and processing. Another disadvantage of clustering based approach is that it is not 

suitable for single document summarization because a set of documents is required for 

clustering so that related documents can be divided into respective clusters. 

 

2.3 Lexical Chaining Approach 

A Lexical chaining approach [46] include chains of words which are defined as 

semantically related words spread over the entire document. A word is included in the chain if 

it is cohesively and coherently related to existing words in the chain. Each chain of words 

represents a semantically related cluster of words. Words from different passages of a 

document are grouped together into meaningful clusters of chains to identify various themes 

within a document. These clusters are then arranged systematically to form a binary tree 

structure. Lexical chains start building up when the first word of the document appears. The 
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second word is then examined to estimate whether it is semantically related to first one or not. 

If the words are related then the second word is also added in first chain, otherwise a new chain 

starts. There are several methods for the calculation of semantics, cohesion and coherence 

between words, but it involves implementation of a complex algorithm. For lexical chaining, 

pre-processing is an essential and important step because relevancy of articles and prepositions 

makes no sense. Similar to previous approaches, a lexical chaining approach also uses various 

statistical features to enhance the quality of generated summaries. This approach can be applied 

to both single and multi-document summarizations.  

Barzilay and Elahadad [47] proposed an algorithm to compute lexical chains using text 

from a given document. They introduced a WordNet thesaurus, a part-of-speech tagger, 

shallow parser for the identification of nominal groups and a segmentation algorithm. Topic 

identification of the text was then accomplished by grouping words into lexical chains. 

Extraction of sentences was carried out by identification of strong chains of words. Cut-and-

Paste [48] is a single document, domain independent and abstractive summarizer. It 

implements control features such as lexical coherence, tf-idf score, cue phrases and sentence 

positioning to identify key sentences by a sentence extraction algorithm. Cut & Paste is an 

abstractive summarizer and generates summaries which are generic in terms of topic. More 

focused and structural summaries are the challenges for this summarizer. A summarizer 

proposed by Brunn, Chali and Barbara [49] performs topic segmentation and sentence 

extraction techniques along with the computation of lexical chains for each segment. It 

introduces heuristics to make summaries more coherent and readable. The summarizer faces 

the prospect of longer sentence selection for the generated output summary because typically 

longer sentences contribute towards longer chains. 
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ALEXIA, Acquisition of Lexical Chains for Text Summarization [46], uses lexical 

cohesive relationships instead of standard linguistic resource “WordNet”. An automatically 

constructed lexico-semantic knowledge base was implemented to identify cohesive 

relationships between the words. Unlike the approaches which use “WordNet” as a knowledge 

source, authors examined lexical cohesive relationships that cannot be defined in terms of 

thesaural relationships, but are considered "intuitively" related due to their regular co-

occurrence in the text. ALEXIA uses pre-built software to identify candidate words for the 

chaining process. For example, it tags the words to be considered in the chain and then 

extraction of compound nouns is carried out by SENTA software. Filtered nouns, compound 

nouns and proper nouns are considered as candidate words for further processing of lexical 

chains. To assign a given word in a lexical chain, a calculation of semantic similarity between 

all clusters is performed. Two words are semantically related when the semantic similarity 

between them is greater than a given threshold. Finally, to identify strong chains, a chain score 

is computed as the sum of similarities between all chain members. Another effort was made 

by Maheedhar [50] towards an algorithm for automatic text summarization using lexical 

chains. The algorithm computes lexical chains for the given document set and then uses them 

to extract important parts of the document. Three tasks are mainly considered for the design of 

the algorithm: headline generation, multi-document summarization and query-based 

summarization. The design of algorithm also consists of document processing and 

segmentation, text chunking, noun extraction and lexical chaining. It has two separate modules: 

one for single-document and the second for multi-document summarization. The summarizer 

faces a problem of document clustering to generate coherent summaries for multi-document 

summarization. It is very important to identify clusters of documents because these clusters 
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point towards different themes. A good similarity measure can overcome this problem and 

would improve the performance of the summarizer. 

2.3.1 Summary of Lexical Chaining Approach 

The main concern with lexical chains approach is that huge databases and memory is 

required to build the chains. Semantics play an important role for lexical chains, especially for 

synonyms and to understand the actual meaning of the words. Implementation of these two 

aspects is beyond the capability of today’s computing devices. Without the implementation of 

semantics, there are some limitations on lexical chains approach. First is the selection of longer 

sentences because they usually contribute towards longer chains and get included in the 

summary [47]. The other problem is that; the extracted text mostly contains anaphora links to 

the rest of the sentences in the document. It is very difficult to identify these links and then to 

replace anaphora with their referent is another challenge. Another problem is that, there is no 

way to control the length and the level of details of the summary using lexical chains. 

 

2.4 Frequent Term Approach 

A Frequent term approach [51] [52] [53] is a relatively new technique and it requires pre-

processing as an essential step. This method checks for terms which are frequent and 

semantically similar. There are some methods like tf-idf (term frequency – inverse document 

frequency) used for the calculation of frequent terms in the document. tf-idf method involves 

frequency of both frequent and non-frequent terms. tf is the frequency of a term and idf is the 

inverse document frequency. idf is a logarithmic function which eliminates most frequent and 
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least frequent terms. For calculation of semantic similarity, it checks the length of the path 

linking the terms, position of the terms, measures the difference in information content of two 

terms and the similarity between two terms like definitions and synonyms. The summarizer 

then filters the sentences which have most frequent and semantically related terms to extract 

the related sentences for final summary.  

Mani and Marbury published a book [54] which presented key developments in the field 

and suggested future research areas. They defined different approaches of text summarization 

such as Classical Approaches, Corpus-Based Approaches, Exploiting Discourse Structure, 

Knowledge-Rich Approaches, Evaluation Methods, and New Summarization Problem Areas. 

An algorithm known as ADAM was also proposed. It takes single document input and 

generates indicative summaries for the field of chemistry. The main features used by the 

algorithm are: cue phrases, term frequencies and sentence selection or rejection. The 

summarizer does not include semantics and other natural language processing tasks like text 

classification, collocation extraction and word sense disambiguation. Authors believe that 

addition of these improvements would contribute towards even better results. Mitze and Rau 

[55] described a system ANES, which performs domain-independent automatic condensation 

of news from a large commercial news service. They focused on evaluation of the generated 

summaries which included 250 documents of three different lengths resulting in 1500 

evaluations. This was the largest evaluation of human versus machine in text summarization 

in late 1990’s. They used term frequency and sentence weighting which is also known as tf-

idf. In their proposed algorithm, first sentences of the documents or passages are given most 

importance and get selected in the generated output summary. This is also a disadvantage of 
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the algorithm because it may not generate good summary where the first few paragraphs do 

not contain important information. 

GOFAISUM [56] is a multi-document extractive summarizer in the field of “news”. It 

is mainly based on symbolic approach and implements basic techniques like tf-idf and syntactic 

pruning. The summarizer then extracts the sentences with highest score to build the summary. 

However, anaphora resolution remains a challenge for the summarizer. A better anaphora 

resolution module which can solve the problem of question-answering could significantly 

improve the quality of generated output summaries. Subsequently, Ledeneva [52] presented an 

algorithm which combines frequent term approach with Graph-based approach. A method with 

multiword descriptions was proposed which consists of four steps: term selection, term 

weighing, sentence weighing and selection. The same method was later used for Graph-based 

approach. The evaluation and results of the summarizer revealed that a pre-processing module 

included in the summarizer did not affect the results and quality of the summary. However, 

pre-processing improved the time performance of the algorithm. As a suggested improvement, 

more extensive pre-processing might increase the quality of summaries along with time 

performance. In 2011, a frequent term and semantic similarity based text summarization 

algorithm was proposed for single documents [51]. This algorithm is designed to work in three 

steps. In the first step, the given document is processed to eliminate stop words and then 

performs stemming. The second step involves the calculation of frequent terms from the 

document which are used to find semantically equivalent terms. Finally, the output summary 

is generated which contains the most frequent terms identified in the second step. The 

algorithm is designed for single document summarization but can be extended to a multi-

document using the similar concept and open source technologies. FociSum [57] merges 
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information extraction with sentence extraction techniques to get extractive summaries. The 

topic of the text (which is known as “foci” in the algorithm) is determined dynamically from 

name entities and multiword terms. The evaluation results shown by the summarizer are 

inconclusive mainly because a task-based evaluation scheme was not used. The authors faced 

many problems in evaluation because they conducted qualitative analysis only. The main 

concern raised by judges was time constraints for reading the original documents and their 

respective generated output summaries. Gupta [7] used simple statistical measures to find the 

most significant passage of the source document that consists of most frequent terms, known 

as kernel. The kernel is then used as a guideline to choose other sentences from the document 

for generated output summary. The biggest challenge for this summarizer is to generate a good 

quality summary (in terms of language, format and size) from a number of textual and semi-

structured sources (including databases and web pages) for a specific user. 

2.4.1 Summary of Frequent Term Approach 

The main advantage of frequent term approach is that it is easy to implement and covers a 

part of pre-processing. This approach is very famous for extractive single and multi-document 

text summarization. tf-idf principle is a weak method because it does not capture the position 

of the text in the document, semantics and co-occurrences. Therefore, the algorithm which 

implements tf-idf needs to be combined with some other control features like a position method 

and cue phrases or words. idf implements a part of pre-processing but it also excludes the most 

occurring terms along with least occurring terms. Another problem with this approach is that 

it tends to select longer sentences which sometimes include redundant information. tf-idf 

cannot capture semantics and it becomes complex when combined with semantics, cohesion 

and coherence. 
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2.5 Information Retrieval Approach 

Information retrieval approach [35] [58] is an enhancement on two Graph-based methods 

introduced by Radev and Erkan, which are LexRank (threshold) and LexRank (continuous). In 

this method, the main feature used is logical closeness i.e. how two sentences are logically 

related to each other rather than just the topical closeness. In addition to this, it considers that 

sentences must be coherent. In this approach, more related sentences are picked up in a chain 

to produce a logical summary. This technique is very similar to Graph-based approach and 

lexical chaining.  

Information retrieval approach focuses on logical closeness which is the key advantage of 

this approach. Topical closeness is based on synonymy which is not strong enough to measure 

the coherence of sentences [35]. Negi et al. [58] proposed a model for text summarization that 

uses pattern recognition techniques to improve retrieval performance of relevant information. 

The proposed model is designed for multi-document summarization and requires an input 

query from a user. For the calculation of relevance of a document, identifiers are first defined 

and constructed. These identifiers are based on grammatical aspects of English language 

pertaining to which information is retrieved from the given document. They used English 

Language features such as tense, voice and speech form to retrieve information from the set of 

documents. Alfonseca and Rodriguez [59] contributed towards a single document text 

summarizer which uses an information retrieval approach to generate very short length (up to 

10 words) summaries for articles. It uses a genetic algorithm to identify relevant sentences. 

Relevant words and phrases are then extracted by keeping coherence of the output. The 

evaluation and results from DUC 2003 showed that the summarizer ranked at 7th position out 
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of 13 systems that participated in the first task. The summarizer generates good quality 

summaries for short documents and is mainly designed for short summaries.   

2.5.1 Summary of Information Retrieval Approach 

There are some advantages and disadvantages associated with this approach. The biggest 

disadvantage is that the implementation of topical closeness is very difficult and involves 

complex algorithms and computations. Techniques like logical or even topical closeness with 

information retrieval using pattern recognition involve new modeling and estimation methods 

that are beyond the scope of traditional approaches and are very complex to be implemented. 

An advantage of this approach is that it can be adopted for both single and multi-document text 

summarizations. Moreover, it can be used for both abstractive and extractive summarization. 

 

2.6 Graph-based approach 

Graph-based approach [4] [13] [8] [7] [60] [35] [1] is used for both single document 

and multi-document summarization. For text summarization, it first introduced by Mani [54], 

for an algorithm that applies a spreading activation technique to identify nodes (sentences) 

related to the main theme of the document. In this approach, each sentence is treated as a node. 

Two nodes (or two sentences) are connected to each other by an edge if they have similarity 

between them. Calculation of similarity depends on many aspects, for example, two nodes can 

be connected if the sentences have some commonality or have cosine similarity between them. 

There are numerous other methods to calculate similarity between the sentences like 

discounting, cumulative sum method [13] and position weight [8]. In a Graph-based approach, 
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sub-graphs are generated which may or may not be connected to each other. These sub-graphs 

show the number of topics covered in the documents as shown in Figure 1. From this 

representation, we can identify the most important sentences of the documents. The nodes or 

sentences which have more edges connected to other nodes are considered as the most 

important sentences. Graph-based approach depends on sentence centrality and centroid [4], 

which are the measures used by researchers to calculate similarity between the nodes.  

 

 
Figure 1: Graph-based approach showing different topics covered in a document [7] 

 

In 2004, Rada and Paul introduced TextRank [61], which is a Graph-based ranking 

algorithm for text summarization. The algorithm visualizes text as a graph and translates the 

graph in a way that interconnects words and test entities with meaningful relations. The 

algorithm starts by adding a vertex (node) for each sentence which can be linked together. The 

links between vertices are defined by sentence similarity relation that leads to the selection of 

top scored sentences to generate the summary. LexRank was also proposed by Radev and 

Erkan [4] during the same period, that uses a model based on matrices. The matrix depends on 

intra-sentence cosine similarity which is also known as adjacency matrix. The algorithm uses 
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centroid based methods to find sentence centrality which helps in the calculation of degree of 

the sentences. This leads to the selection of top scored sentences. MEAD [62] is a multi-

document extractive summarizer for the field of “news”. It is based on sentence extraction 

through features such as, position, overlap with the first sentence and centroid score. It 

automatically discards sentences which are very similar to each other. The evaluation and 

results of the summarizer showed satisfying results with DUC 2001. The evaluation of MEAD 

included ten summarization systems (also a trainable version of MEAD) for both single and 

multi-document summaries. Similarly, Zhang [35] proposed a Graph-based method that 

combines the content of the text with cues and tries to investigate sub-topics from the document 

to generate the expected output summary. A drawback of this summarizer is that it tends to 

include longer sentences in generated output summary which introduces redundancy in the 

generated output summary. A MSR-NLP summarizer [63] is a multi-document extractive 

summarizer for the field of “news”. It uses a graph scoring algorithm to identify highly 

weighted node relations. Its main objective is to identify important events in the given dataset. 

The summarizer’s goal is to generate summaries which are more human-like and coherent. The 

summarizer showed the expected results but needs exploration in diverse topics as it uses a 

completely event-centric method.  

Xiaojun Wan [60] presented a model based on a Graph-based approach which is a two-

link graph that claims to select the most important and highly correlated sentences for the 

summary. The model includes document-level information and sentence to document 

relationship into the Graph-based ranking process. DUC 2001 and 2002 was used to 

demonstrate the effectiveness of the proposed algorithm. The model uses coarse grained 

document-level information which can be used to find a sub-topic within a document. Sub-
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topic may contain more refined information and can be implemented using Text Tilling 

Algorithm [60]. In 2009, Hariharan and Srinivasan [13] proposed some enhancements on 

LexRank. They defined discounted cumulative sum method and discounted degree centrality 

method. Two metrics were used to evaluate the summaries generated by their proposed 

methods. Further enhancements on LexRank were presented in 2013 [8] introducing 

techniques such as discounting and position weight in LexRank and Continuous LexRank. 

These enhancements on LexRank improved the evaluation and results and the quality of 

summaries. FemSum [64] is also a single and multi-document text summarizer, designed to 

answer complex questions using a syntactic and semantic representation of the sentences. It 

uses Graph-based representation to establish links between the candidate sentences. FemSum 

is organized in three language independent components: Relevant Information Detector (RID), 

Content Extractor (CE) and Summary Composer (SC). In addition, it also consists of a 

language dependent Linguistic Processor (LP) and a Query Processor (QP). 

2.6.1 Summary of Graph-based approach 
The main advantage of Graph-based approach is that it provides a vertex (node) 

representation of sentences and the similarity between them. It considers each sentence as a 

node and the similarity is represented by edges, which gives representation similar to a 

network. It is very easy to visualize neighbor nodes which have high scores and their edges 

drawn to other nodes. One of the disadvantages of a Graph-based method is that it does not 

include semantics and mainly works on statistical features. If the sentences selected in the 

summary are from each sub-graph, then there is a chance that summary is not correlated or 

some redundant information is selected. In some cases, Graph-based algorithms tend to select 
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longer sentences when the method is not combined with a controlling or cut off function for 

sentence lengths. 

Researchers have been working on automatic text summarization for many years. They 

combined their efforts to generate summaries that can be of as good quality as human generated 

summaries. The struggle is still going on because the capabilities of today’s technology are 

limited. Text summarization has many applications including the summarization of scientific 

papers and journals for researchers, description of a book for readers, summaries of lectures 

for students, a short description of TV or radio programs, navigation of online information, 

reviews of the products or services and much more. As revealed earlier, we are opting towards 

graph based text summarization along with added control features because of the advantages 

offered by Graph-based approach discussed in section 2.6. The power of Graph-based search 

[14] benefited many businesses like Facebook and Google. Many large enterprises which have 

online software to maintain their databases are choosing Graph-based search engines, such as 

Walmart, eBay, Cisco, HP and Telenor [14]. In the next chapter, we discuss Graph-based 

approach in further detail together with our proposed method. 
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Chapter 3 

3. Design and Implementation 

In this chapter, we discuss the design and implementation of the proposed method and 

its benefits. In this method, we use a Graph-based approach to extract summaries and 

incorporate pre- and post-processing modules together with control features. Jaccard distance 

is also used to calculate similarities between sentences. The chapter contains four sections. 

First, we explain the underlying LexRank [4] algorithm which is followed by a description of 

the proposed method. The next section illustrates interface of the proposed summarizer 

(GAUTOSUMM – Graph-based Automatic Summarizer) which is designed and implemented 

using MATLAB GUI. We conclude with discussion and the benefits/limitations of the 

proposed method.  

 

3.1 LexRank  

The application of the Graph-based approach to text summarization was originally 

proposed by Mani [35] and then by Radev and Erkan [4]. Improvements to this method were 

subsequently proposed for single and multi-document text summarization which included 
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better evaluation process and techniques. The method proposed by Radev and Erkan is known 

as LexRank which works on the concept of sentence salience to identify the most important 

sentences in a document (Figure 2). Sentence salience is defined in terms of the presence of 

important words or in terms of similarity to a centroid pseudo-sentence [4]. To understand 

LexRank, some of the terms used in the method are defined below:  

Centroid: It is a pseudo-document which contains words that have tf-idf scores above a 

predefined threshold. In centroid-based summarization, a sentence that contains more words 

from centroid is considered as central and defines the sentence centrality; this kind of sentence 

is called Centroid pseudo-sentence. 

Sentence centrality: The necessary and sufficient amount of information provided by a 

sentence related to the main theme of a document is sentence centrality. A common way of 

determining centrality of words is “to look at the centroid” [4]. 

Sentence salience: It is defined in terms of the presence of important words in a sentence or 

in terms of similarity to a centroid pseudo-sentence. Sentence salience consists of two factors, 

cosine similarity between two sentences, and the sentence centrality as compared to other 

sentences in a document.  

Cosine similarity equation: Each sentence is considered as a vector and the corresponding 

value of tf in this representation defines the number of occurrences of the word times the idf of 

the word. The cosine similarity between two sentences is calculated by taking “cosine between 

their two corresponding vectors” [4].  
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Degree: It is defined as the number of edges from one sentence to other sentences. An edge 

(or a vertex) exists between two sentences when there is a similarity between them. Such 

similarity is calculated using a cosine similarity equation [4]. 

Cosine threshold: In a document, many sentences are expected to be similar to each other 

since they are all on the same topic. To select sentences with significant similarities, edges with 

low values of cosine similarity are eliminated by defining a threshold. For example, for a 

threshold of 0.3 in Figure 2, the edge between S3 and S4 would be eliminated. Cosine threshold 

decreases redundancy and repetition in the generated summary by avoiding sentences which 

are very similar to each other. 

 

 

 

 

 

 

 

 

 
Figure 3: Selected sentences [65] for graphical representation of LexRank in Figure 2 

Figure 2: Graphical representation of LexRank [4] 
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The graph shown in Figure 2 is an undirected graph and the values of edges between 

sentences S1, S2, S3 and S4 (in Figure 3) show the measure of similarity. For example, cosine 

similarity between S1 and S2 is 0.65 which is calculated by taking the cosine of the vectors of 

both sentences, where the vectors contain tf-idf of each word [4]. The cosine similarity between 

two identical sentences is 1 which means self-directed edges are considered (Table 1). The 

inclusion of self-directed edges is to avoid a divide by zero situation, when the two sentences 

are completely dissimilar.  

From the values of similarity between four sentences in Figure 2, an adjacency matrix 

or cosine similarity matrix is generated (Table 1). It is a symmetric matrix which includes two 

vectors: Sum and Degree. The sum vector is obtained by adding the matrix either row-wise or 

column-wise (because the matrix is symmetric). The degree of each sentence is calculated by 

considering the cosine threshold. For example, the degree of S1 is 4 because it generates four 

edges: from S1 to S2, S1 to S3, S1 to S4 and S1 to S1. All these edges are included in the 

degree of S1 because the similarity between them is greater than the threshold (0.3). The degree 

of S3 is 3 (edge from S3 to S1, S3 to S2 and S3 to S3) because the value of edge between S3 

and S4 is 0.19, which is less than the threshold of 0.3. Once the values of Sum and Degree 

vectors are determined, the sentences with highest value are selected for the summary. In this 

example, the descending order of sentences in terms of Sum and Degree is S2, S1, S3, and S4. 

 S1 S2 S3 S4 Sum Degree (0.3) 

S1 1 0.65 0.32 0.35 2.32 4 

S2 0.65 1 0.74 0.4 2.79 4 

S3 0.32 0.74 1 0.19 2.25 3 

S4 0.35 0.4 0.19 1 1.94 3 

Table 1: Adjacency matrix used by Radev and Erkan in LexRank [66] 
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In next section, the proposed method is discussed which is used to identify edges between 

sentences using Graph-based approach. The proposed method does not include calculation of 

cosine similarity and tf-idf. However, term frequencies (tf’s) are calculated for the words which 

are shared among sentences. 

 

3.2 Proposed Method 

The proposed method consists of a pre-processing module, control features (like 

sentence length) and a post-processing module. Pre-processing is an essential step because it 

helps to improve the readability of generated summary and time performance of the 

summarizer. Jaccard distance is incorporated in the method to calculate similarities between 

sentences in terms of sentence lengths. The post-processing module aligns the output sentences 

for better representation. The Graph-based approach is adopted mainly because of the 

following reasons: 

1. It provides a clear visualization of nodes that represent sentences. Selection of 

sentences that are to be included in the generated summary depends on the edges 

drawn from other sentences. This creates a “democratic system” to locate the 

important sentences by their relations through connecting edges [66].  

2. The method does not need to go through a training process unlike machine learning 

approaches and can produce summaries without the help of trained templates.  

3. Control features such as sentence length and position can be easily incorporated to 

generate a summary with better quality and sentence structure.  
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In the proposed method, generated graphs are undirected and weighted, i.e. nodes and 

edges do not include any specified direction and the relative weights are attached to each edge. 

Sentences are represented by nodes which are connected through edges when there is a word 

shared among them. Additionally, our proposed method is unsupervised, meaning that 

summaries are automatically generated without any human supervision. Currently, the 

proposed method is designed for a single document and monolingual text summarization.  

Similar to LexRank, a visual representation of the nodes and number of connected 

edges between them is derived (Figure 4). The sentences (represented by nodes) may not have 

any edge or connection to or from other sentences if there are no common words shared among 

them. In Figure 4, there are eight edges between S1 and S2 because there are eight words shared 

between these two sentences.  Once all the edges are identified, a symmetric matrix is formed 

as shown in Table 2. This matrix consists of number of edges between the four sentences: S1, 

S2, S3, and S4. An edge between a sentence itself (self-directed edge) is taken as 0. 
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Figure 4: Proposed Method 
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 S1 S2 S3 S4 
S1 0 8 10 6 
S2 8 0 8 4 
S3 10 8 0 6 
S4 6 4 6 0 

Table 2: Sentence Similarity Matrix 

 

After generating the matrix, a sum vector is obtained by adding the matrix row-wise or 

column-wise. For example, S1 has 24 edges in total which is the sum of all the edges shown in 

Figure 4 (0+8+10+6 = 24). The sum vector is sorted to obtain the highest ranked sentences 

(Figure 5) which are selected for the output summary.       

        

 
Figure 5: Sum vector and Sorted Sum 

 

To understand the working of our proposed method, Figure 6 shows an example of 

edges drawn between two sentences. The number of edges are drawn in both directions which 

generate a symmetric matrix. For example, both sentences contain word “special”, therefore, 

an edge between sentences 1 and 2 is drawn. When a word is repeated n times in a sentence, it 

draws n edges to the other sentence and vice versa. For example, word “Summarization” 

appeared once in sentence 1 and repeated twice in sentence 2, due to which two edges are 

drawn between sentences 1 and 2. 
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3.2.1 Pre-processing Module 

A pre-processing module is included to clean the text provided by the user, improve time 

performance, detect sentence boundaries and identify correct number of edges. Cleaning of the 

text includes removal of stop, bad words, special characters (only for finding the edges), 

brackets, prepositions, articles, and conjunctions. In English language, word order depends on 

Sentence 1 

This 

Survey 

Intends 

To 

Investigate 

Some 

Of 

The 

Most 

Relevant 

Approaches 

Both 

In 

The 

Areas 

Of 

Single- 

Document 

And 

Multi- 

Document 

Summarization 

Giving 

Special 

Emphasis 

To  

Empirical 

Methods 

And 

Extractive 

Techniques. 

 

1 

 

 

2 

 

 

3 

 

 

 

 

 

4 

 

5 

6 

 

 

 

 

 

7-8 

 

9 

 

10 

 

 

 

 

 

 

9 

 

 

2 

 

 

4 

 

 

 

 

 

8 

 

10 

5 

 

 

 

 

 

7-6 

 

1 

 

3 

 

 

 

 

 

 

9 

 

 

 

10-2 

 

 

6-3 

7 

 

 

 

 

 

8 

 

 

 

 

 

4 

1 

5 

 

Special 

Attention 

Is 

Devoted 

To 

Automatic 

Evaluation 

Of 

Summarization 

Systems 

As 

Future 

Research 

On 

Summarization 

Is 

Strongly 

Dependant 

On  

Progress 

In 

This 

Area 

 

Sentence 2 

1 

 

 

 

2-3 

 

 

4-5 

6 

 

 

 

 

 

7 

 

 

 

 

 

8 

9 

10 

 

Total number of edges: 
S1 to S2  10 edges 
S2 to S1  10 edges 

Figure 6: Illustration of proposed method (Without pre-processing) 
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lexical categories which are parts of speech. These lexical categories include determiners, 

auxiliary verbs, prepositions, and conjunctions, which are grouped in the following manner: 

o Determiners: “a”, “an”, “the”, “this”, “that”, “these”, “those”, pronouns and quantities. 

o Auxiliary verbs: forms of be, “have”, “may”, “can” “shall”. 

o Prepositions: “at”, “in”, “on”, “under”, “over”, “of”. 

o Conjunctions: “and”, “but”, “or”. 

Removal of all the lexical categories does not guarantee good quality summaries (discussed 

in chapter 4). Due to this reason, only articles, prepositions, and conjunctions are removed 

during the pre-processing of text provided by the user.  

For the same sentences shown in Figure 6, Figure 7 illustrates the number of edges 

between both the sentences after pre-processing. The pre-processed sentences do not contain 

stop words, special characters, text (in brackets), prepositions and articles from the text. The 

number of edges is reduced by 50 percent for this selected example. This highlights the 

importance and necessity of having a pre-processing step. The impact of pre-processing on the 

number of edges varies from sample to sample but the inclusion of a pre-processing module 

always generates compact summaries with improved performance. For larger documents, the 

accumulated impact of pre-processing becomes even more significant.  
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The pre-processing module also removes text written in brackets, references and any 

special characters connected to the words so that correct number of edges can be calculated. 

For example, a word “summary” appears with a comma in one sentence as “summary,”. An 

edge must be generated for the word “summary” appearing in another sentence. Without pre-
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processing, this edge would not be generated because of the punctuation attached to the word. 

This also illustrates that adding a pre-processing module results in a more accurate 

representation of edges.  

In GAUTOSUMM, the pre-processing module performs the following actions: 

 Sentence boundaries are identified by period “.” or a question mark “?”. 

 Basic pre-processing, i.e. removes articles, prepositions and conjunctions. 

 Removes brackets “[{( )}]” and anything within brackets. 

 Removes special characters attached to words (to find true number of edges). 

3.2.2 Jaccard Distance 

The main concern in a Graph-based approach is that it tends to extract longer sentences. 

By managing sentence lengths, longer and less important sentences can be eliminated. The 

proposed method is incorporated with Jaccard distance [15] which calculates similarity 

between sentences by considering the lengths of the sentences in a more logical way, that is, 

by calculating the ratio of similar content between the two sentences. The Jaccard distance for 

two variables A and B [15] can be calculated as:  

D = | (AՍB – AՈB) | / | AՍB |    (1) 

We modified this equation for sentence lengths and similarities between two sentences A and 

B such that: 

Dissimilarity (A, B) =    | Length (A+B) – (# of edges between sentences A, B) |      (2) 

                                 Length (A+B) 

Similarity (A, B) = 1 – Dissimilarity (A, B)              (3) 
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The absolute value of the numerator in Equation 2 ensures that Dissimilarity and Similarity 

remains in the interval [0,1]. Consider, for example, the following sentences:  

Buy, buy, buy computers. Buy, buy, buy now. 

Dissimilarity = | (8 – 9) | / | 8 | 

Dissimilarity = 0.125 

Similarity = 0.875 

The similarity between sentences is determined by the length of sentences and the number 

of edges between them. For example, if we have the same number of edges between two pairs 

of sentences, i.e. 7 edges between sentences 1 and 2, and 7 edges between sentences 3 and 4, 

then it is not conclusive that the similarity between the two pairs would be same. Consider the 

length of first pair of sentences as 12 and 14 words, respectively. The similarities between 

sentences 1 and 2 is 7, which calculates Dissimilarity and Similarity from equations (1) and 

(2) as follows: 

Dissimilarity (1, 2) = | ((12 + 14) – 7) | / (12+14) 

Dissimilarity (1, 2) = 0.73 

Similarity (1, 2) = 0.27 

For the second pair of sentences, sentence 3 is 20 words and sentence 4 is 18 words long. 

The Dissimilarity and Similarity from equations (1) and (2) for this pair are: 

Dissimilarity (3, 4) = | ((20 + 18) – 7) | / (20+18) 

Dissimilarity (3, 4) = 0.81 
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Similarity (3, 4) = 0.19 

The number of edges being equal, the sentences which are longer in length contain more 

dissimilarity than shorter sentences. In the selected example, sentences with shorter sentence 

lengths i.e. sentences 1 and 2 would be selected in the generated summary instead of sentences 

3 and 4. By calculating similarity based on shorter sentence lengths, the summarizer generates 

compact and good quality summaries. 

3.2.3 Control Features 

In order to overcome the problem of longer sentence selection, we have included control 

features which are dependent on sentence lengths. The control feature works such that it takes 

a range of all the sentence lengths in a document and then modifies this range, depending on 

the difference of sentence lengths from the average length. The function checks for minimum 

and maximum sentence length and then, calculates optimal length. In this way, the range of the 

selected sentences is adjusted for each document to pick sentences with optimized lengths. 

Average sentence lengths are used instead of excluding the bottom and top range of sentences 

because sentence lengths are variable in each document and may depend on the topic of original 

document provided by the user. 

Another control feature is enforced by a function which can limit the length of selected 

sentences for the generated summary. An optimal sentence length can range from 15 to 25 

words [67]. Sentence lengths in the range from 35 to 50 words have also been recommended 

to avoid short and choppy sentences, depending on the topic [68]. To maintain a proper flow 

in generated summaries with meaningful content, sentence length may have to be more than 

25 words. Short sentences often lead to a disconnected summary with less coherence. Due to 
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this reason, we selected maximum sentence length of up to 50 words. Microsoft Office also 

contains a built-in function that provides a similar feature which highlights sentences 

containing more than 60 words and suggests that the user reconsider the sentence. 

Very long sentences not only overwhelm the user but may lose its meaning and content. 

Moreover, longer sentences may introduce more than one theme which also adds redundancy 

in the generated summary. Therefore, both control features are used in the proposed method to 

select sentences with optimal lengths. 

 

3.2.4 Interface of GAUTOSUMM and Post-processing Module 

An interface is designed for the proposed summarizer (GAUTOSUMM) by using 

MATLAB’s graphical user interface, GUIDE (GUI Development Environment). The user 

provides two inputs to GAUTOSUMM: text to be summarized and the number of desired 

sentences in the output summary. A post-processing module cleans the generated summary in 

order to make the output readable and easy to understand. The final output contains formatted 

sentences with no redundant special characters, bullets or spaces (Figure 8). 
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Figure 8: Generated output from GAUTOSUMM with post-processing  

  

 

3.3 Benefits of the Proposed Method 

The proposed method provides the following benefits: 

 The method does not include complex mathematical equations like a cosine similarity 

equation [4] used by LexRank. LexRank uses tf-idf for the calculation of cosine 

similarity, where tf-idf is a statistical feature which calculates term frequencies (tf) of 

the whole document. In contrast, our proposed method calculates tf’s for significant 

words only (which contribute towards the edges), thus making it more efficient in 

terms of finding edges which in turn improves the performance of the summarizer. 

Moreover, the proposed method does not include multiplication and dot product of 

matrices like a cosine similarity equation, which increases the execution time of 

algorithm. 
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 A pre-processing module is implemented rather than idf. With a pre-processing module, 

we get a part of idf by eliminating frequently occurring words such as articles and 

prepositions. In addition, pre-processing keeps words that occur frequently other than 

prepositions and articles, as described in the following examples: 

 

i. Suppose there are five sentences with an article “the” in four sentences. 

The idf is calculated as: 

idf = log (5/4) = 0.0969 

ii. Consider another example where total number of sentences is also five 

and an article “a” is present only in two sentences. In this case, idf is 

calculated as: 

idf = log (5/2) = 0.3979 

iii. This illustrates that the number of word occurrences in more sentences 

gives lower values of idf. Let us consider another example, where a word 

“summary” is present in all the five sentences of a document, then 

idf = log (5/5) = log (1) = 0 

From this, we can infer that any term which is present in all the sentences will be 

eliminated, because most likely that term is an article or preposition. Logarithmic 

functions only consider a range of values. Thus, idf can eliminate words that are 

frequently occurring but are not articles or prepositions. For instance, in example (iii), 

the word “summary” would be eliminated even though it might be an important word 

and related to the theme of the document. Those frequently occurring words which are 
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not from lexical categories can play an important role in the selection of good quality 

summary and must be included in the calculation of edges. Due to this reason, articles 

and prepositions are excluded along with bad/stop words (special characters, references 

in brackets and anything written in brackets) and conjunctions during the pre-

processing step of proposed method, instead of idf.  

 Pre-processing module has also improved time performance of the proposed method 

by eliminating stop or bad words, special characters, brackets, prepositions, articles and 

conjunctions, which in return removes false edges from the text. 

 The comparisons occur between the sentences i.e. from one sentence to the other but 

not within the sentence itself (Figure 9). This gives better results in a way that each 

sentence has its own significance/rank. Edges are not determined within a sentence to 

avoid any false edges which may lead to a generated summary that contains less 

important sentences.  

 
Figure 9: An example to illustrate True and False edges 
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3.4 Limitations of the Proposed Method 

Though we have demonstrated clear benefits of our proposed method, there are some 

limitations which are listed below: 

 

 Semantics are not included in the pre-processing module of the proposed method. 

Semantics consist of an add-on dictionary in the module along with anaphora 

resolution (when a synonym is used to replace a word to avoid repetition). This reduces 

false edges and results in precise summary with improved time performance. For 

example, consider two sentences: 

“Red car hit red house. Red car destroyed.” 

Here “red” is used for both car and house which shows that semantics are very 

important in terms of meaning and understanding of the text. 

 Post-processing module displays the summary in one paragraph instead of breaking it 

into smaller paragraphs. This part also belongs to semantics, where a summarizer must 

be able to recognize different themes in the generated summary. 

 The user interface of GAUTOSUMM currently only allows number of sentences as 

the input along with the original text. An improved interface with more input options 

(like number of words and keywords) would provide better impact and feel to the 

reader. 

 The proposed summarizer includes control features on sentence lengths. Control 

features play very important part in tweaking the summary to fit the reader’s 

requirement. The presence of additional control features like sentence position and cue 
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words (such as “in conclusion”, “therefore”) would improve the quality of generated 

summary. 

 The proposed summarizer is monolingual, i.e. it generates summaries only in English 

language and can be further extended to multi-lingual. 

 The summaries generated by GAUTOSUMM are mostly from documents which 

consists of general topics instead of scientific or more specialized papers like bank 

reports or medical procedures.  

 The size of document has a significant impact on execution time of the algorithm. 

Generally, documents exceeding 950 sentences, or those larger than 100 KB, 

take substantially more time to generate a summary. 
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In this chapter, we discussed the design and implementation of our proposed method 

which uses a Graph-based approach and consists of a pre-processing module, control features 

and a post-processing module. The pre-processing step has been demonstrated to be useful for 

generating summaries with better quality and improved time performance. Moreover, it 

overcomes the deficiencies resulting from idf by keeping the frequently occurring words (other 

than articles, prepositions and conjunctions) for the calculation of edges. Selection of longer 

sentences in the generated summary is avoided by incorporating Jaccard distance and control 

features. Jaccard distance helps to identify the sentences with fewer redundancies and precise 

information, whereas, control features eliminate the sentences with longer lengths to avoid 

redundant information in the generated summary. Post-processing module produces a user-

friendly and coherent summary. When compared with online text summarizers, 

GAUTOSUMM performed better in eight out of ten topics (chapter 4) for the datasets DUC 

2007 and Opinosis. The quality of summary is measured by using the ROUGE evaluation 

software. 
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Chapter 4 

4. Evaluation and Results 

This chapter includes an evaluation of generated summaries from proposed summarizer 

(GAUTOSUMM) and online text summarizers, both in terms of quality and time performance. 

We have used Opinosis [69] and DUC 2007 datasets [70] provided by NIST, and ROUGE 

software in the evaluation process of GAUTOSUMM and online summarizers. DUC 2007 

dataset includes samples from ten topics and provides gold standard summaries which are 

produced by human judges. The summaries produced by human judges focus on measuring 

readability, coherence, precision, grammar, and content. Human evaluations are easy to 

produce when the dataset is small and small number of documents are involved in the 

evaluation process. For larger datasets, even with simple and few linguistic quality questions, 

thousands of hours are required to read original samples and produce corresponding 

summaries. Generally, a large dataset is required from different topics to make sure that the 

summaries generated by text summarizer are of good quality and fulfill the need of the user.  
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4.1 ROUGE 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [71] evaluates the 

quality of extracted summary by comparing it to model or gold standard summaries created by 

human judges. ROUGE uses precision, recall, and F-score metrics for this evaluation. To 

understand precision and recall, consider two summaries ‘A’ and ‘B’ where A (“retrieved”) is 

the summary generated by the summarizer and B (“relevant”) is the gold standard summary 

[8]: 

Precision, P = | (AՈB) | / | A | 

Recall, R = | (AՈB) | / | B | 

F-score (harmonic mean of precision and recall) is then defined as: 

F = 2PR / (P+R) 

Precision and recall measures the quality of a summary and F-score is the harmonic 

mean of both the metrics. The value of precision metric reveals the correctness of the content 

of generated summary with respect to the gold standard summaries. Usually short summaries 

are similar in length to gold standard summaries and thus yield higher values of precision. On 

the other hand, recall metric provides the information about flow and structure of a generated 

summary. A higher value of recall is attained when number of sentences increases in the 

summary. As precision and recall are inversely related, a higher value of recall decreases 

precision proportionately, and vice versa. Due to this reason, a harmonic mean of the two 

metrics is generated to determine the overall quality of a summary. 
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ROUGE requires reference summaries and system summaries as its inputs. Reference 

summaries are the gold standard summaries (model summaries) and system summaries are 

those produced by the summarizer. ROUGE includes a configuration file where the settings 

like ngram size, stop words file and ROUGE type can be changed. The output file generates 

three metrics: Avg_recall, Avg_precision and AvgF_score whose values range from 0 to 1. 

The values of these metrics depend on the content of reference and system summaries. For 

example, if the reference and system summaries are identical, then a score of 1 is generated for 

all three metrics. When there is no match between reference and system summaries, then a 

score of 0 is generated for all metrics. The values of ROUGE evaluation metrics depend on the 

gold standard summaries provided by human judges. This is a disadvantage because metric 

values completely depend on the sentences provided in gold standard summaries which may 

produce biased results. We believe that ROUGE evaluation combined with qualitative analysis 

of generated summaries would likely provide better assessment of summaries and unbiased 

results. 

 

4.2 Datasets 

Opinosis dataset is available online, while DUC 2007 dataset requires access from NIST 

(National Institute of Science and Technology).  

 Opinosis Dataset: Opinosis [69] is “topic-oriented opinion sentences” from different 

topics such as, hotels, cars and products (such as iPods, GPS and kindle). It contains 

reviews from the users of product or service. The dataset contains 51 samples in total 

and each sample consists of approximately 100 sentences. Each sample has 4 to 5 gold 
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standard summaries that are produced by human judges. The gold standard summaries 

in Opinosis are short in length, often 2 to 3 sentences, because the dataset was originally 

designed for abstractive summarizers which summarize the topic in a broader concept.  

 

 DUC 2007 Dataset: DUC (Document Understanding Conference) is a series of 

summarization evaluations conducted by National Institute of Standards and 

Technology (NIST) since 2001 [72]. The main objective of DUC is to help the progress 

in automatic text summarization and to enable researchers to participate in large-scale 

experiments for the implementation, development and evaluation of text 

summarization systems [72]. DUC comprises of two tasks: Main task and Update task. 

The Main task consists of real world “complex question answering”, in which a 

question cannot be answered by simply stating a “name”, “date” and “quantity” [72]. 

The Main task contains 45 samples in total with 25 documents in each sample. The task 

expects a summary of 250 words and it must be well organized and structured in terms 

of the topic statement. The Update task expects a summary of 100 words from each 

sample and is designed to “inform the reader about new information” which is related 

to the given sample [72]. For the evaluation and comparison of our proposed 

summarizer, a Main task dataset is selected to have the summaries in the range of 250 

to 280 words. The evaluation from ROUGE shows that for most of the topics (eight out 

of ten), GAUTOSUMM generated good quality summaries. We have selected four 

online summarizers (SMMRY, Tools4noobs, FreeSummarizer and SplitBrain) for 

comparisons, as most of the other summarizers are unable to process long documents 

and they limit online access after multiple usage of the software.  
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4.3 Online Text Summarizers 

Eleven online summarizers were considered for the evaluation process. These are listed 

below: 

 SMMRY [73] 

 Tool4noobs [74] 

 FreeSummarizer [75] 

 AutoSummarizer [76] 

 SplitBrain [77] 

 Text Compactor [78] 

 Shvoong [79] 

 HelpfulPapers [80] 

 Article Summarizer Online [81] 

 MS Word Summarization [82] 

Most of these online summarizers (for example, SplitBrain [77] and Shvoong [79]) do 

not allow access to the information about their underlying algorithm or the platform. However, 

some summarizers provide a brief introduction. For instance, FreeSummarizer [75] is more 

suitable for news and long texts. Tool4noobs [74] generates a summary for the given text by 

ranking each sentence considering the relevance. Text Compactor [78] is mainly designed for 

busy students, teacher or professionals. SMRRY’s [73] task is to provide an efficient way of 

understanding the text, which is done primarily by reducing the text to the most important 

sentences. AutoSummarizer [76] uses several algorithms to produce better summaries. 

According to the developer, it uses K-means for clustering the sentences and a Bayer’s Naïve 
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Bayes classifier to calculate the probabilities between words and sentences. Article 

Summarizer Online [81] underlines the main ideas, provides a brief overview, reflects the 

writing style and rephrases the original text. Article summarizer helps in figuring out the main 

message of the document and breaks down the text to identify different aspects of the original 

document. Finally, MS Word Summarization [82] includes an AutoSummarize tool in MS 

Word 2007 which identifies the key points in a document by analyzing and assigning a score 

to each sentence. Sentences that contain frequently used words are given a higher score. User 

can select a percentage of highest-scoring sentences to display in the summary. It works best 

on well-structured documents like reports, articles and scientific papers [83].  

We began by using all these online text summarizers to generate summaries. By 

studying their extracted output summaries, some of the limitations were identified. The 

analysis of evaluation was done by using a dataset of 1000 passages from six topics: business, 

sports, politics, medical, religion, and science. The identified limitations are briefly described 

below: 

 Most summarizers could not generate summaries for longer text. For example, 

HelpfulPapers could not generate a summary for the documents larger than 60KB in 

size. 

 Generated summaries are difficult to read due to the presence of special characters and 

broken sentences (which may contain text from header or footer). 

 Summarizers ignored questions in the document, for example, text appearing as a 

question. 

 Most summarizers consider series of questions as one sentence, which introduces 

redundancy. 
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 Summarizers are unable to identify sentence boundaries if there is no space between 

two sentences. 

 Some summarizers include only a part of the sentence because of semicolons. This is 

good for few examples or topics but in most part this feature produced meaningless 

summaries. 

 Summarizers [80] could not deal with punctuation properly. 

 If a period comes within a sentence, such as, “Sr. Analyst”, many summarizers consider 

this as two sentences. 

After discovering these limitations, four of the online text summarizers are selected out of 

eleven for evaluation and comparison with GAUTOSUMM. The selected online summarizers 

are: SMMRY, Tools4noobs, FreeSummarizer, and SplitBrain. In the next section, results for 

Opinosis are assessed. 

 

4.4 Results Using Opinosis Dataset 

The evaluation of summary quality is carried out by comparing the results generated 

by ROUGE for proposed method and online text summarizers. An output from ROUGE using 

a sample from Opinosis and the respective gold standard summaries is shown in Table 3. 

Avg_Recall Avg_Precision AvgF_Score 

0.62528 0.0655 0.11858 
Table 3: ROUGE evaluation metrics from SMMRY (sample from Opinosis dataset) 
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The significance of these numbers depends on the lengths of the generated and gold 

standard summaries. By observing different outputs from ROUGE, a higher value indicates 

that summary quality is good. The values of recall and precision significantly depend on gold 

standard summaries. For example, when the generated output summary is longer than gold 

standard summary, then the value of recall increases but precision drops. A higher value of 

precision is obtained for short and precise summary. SMMRY [73] generated good quality 

summaries for documents which are not very long (one paragraph to one page). For longer 

documents, the performance of SMMRY is not significant. A comparison between the 

evaluation metrics of online text summarizers and proposed method is shown in Table 4 for a 

sample selected from Opinosis [69] dataset. In this table, only those values of metrics are 

highlighted which are lower than the proposed summarizer.  

Summarizer Avg_Recal Avg_Precision AvgF_Score 

SMMRY 0.62528 0.0655 0.11858 

Tools4noobs 0.54834 0.0859 0.15254 

FreeSummarizer 0.43640 0.11860 0.18652 

Split brain (5%) 0.45769 0.10000 0.16414 

Split brain (10%) 0.63053 0.06460 0.11720 

Proposed 0.58796 0.06061 0.10989 

Table 4: Comparison of ROUGE evaluation metrics for online summarizers and GAUTOSUMM (without pre-
processing) 
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Example: 

We have taken a sample from Opinosis to observe the changes in values of metrics and 

the corresponding generated summary. The original text can be found online from the Opinosis 

dataset [69]. The model summaries produced by human judges are as follows: 

Model Summary 1:  

“The battery life is longer then 5 hours. 

But due to the battery charger this may decrease or not work at all.” 

Model Summary 2:  

“Battery lasts about 5 hours. 

Time is shorter when running many drives or using bright backlight.” 

Model Summary 3:  

“battery-life is fantastic and good. 

The 6 hours battery life is great.” 

Model Summary 4:  

“Battery lasts about 5 hours. 

Time is shorter when running many drives or using bright backlight.” 

Model Summary 5:  

“Battery lasts about 5 hours. 

Time is shorter when running many drives or using bright backlight.” 

 

For the same sample, one and two sentence summaries generated by SMMRY and 

GAUTOSUMM together with their ROUGE metric values are: 
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SMMRY (two sentences): 

“The warranty card plainly states that the warranty covers everything but, the battery or free 

accessories such as mice or laptop bag. 

Unboxed the netbook, put in the battery, charged it up, everything was great.” 

 

Avg_Recall Avg_Precision Avg_FScore 
0.17955 0.08333 0.11383 

 

GAUTOSUMM (two sentences): 

“I spend a lot of time in battery, power environments for other technical devices, so I'm a bit 

more forgiving when it comes to expected battery life versus real battery life . 5 hours of 

battery life, bluetooth, a better webcam can someone confirm this?” 

 
Avg_Recall Avg_Precision Avg_F-Score 

0.3178 0.11304 0.16677 
 

SMMRY (one sentence): 

“Unboxed the netbook, put in the battery, charged it up, everything was great.” 
 
 

Avg_Recall Avg_Precision Avg_FScore 
0.11477 0.13846 0.12551 

 

GAUTOSUMM (one sentence): 

 “5 hours of battery life, bluetooth, a better webcam can someone confirm this?” 

 

Avg_Recall Avg_Precision Avg_F-Score 
0.21553 0.24286 0.22838 
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The recall of generated summaries of two sentences is higher than that of one sentence 

for both the summarizers. Conversely, the precision is higher for one sentence summaries as 

compared to two sentences. From this example, we can infer that the summaries which contain 

words that are present in model summaries and are shorter in length generate higher values of 

precision and F-score.  

When a pre-processing module is added along with control features, significant 

improvement in the values of recall, precision and F-score is observed (Table 5 and Table 6). 

These results show that with pre-processing, summaries are more precise and contain less 

redundant information. Table 5 shows results of a sample where extensive pre-processing is 

applied by removing articles, prepositions, and conjunctions. In Table 6, only articles and few 

prepositions are removed from the original document. Removing all lexical categories (which 

includes determiners, conjunctions etc.) from the sentences or extensive pre-processing does 

not produce summaries with better quality. This can be observed for the selected sample in 

Table 5 and Table 6. 

 

Summarizer Avg_Recal Avg_Precision AvgF_Score 

SMMRY 0.57975 0.06604 0.11857 

Tools4noobs 0.56052 0.06490 0.11634 

FreeSummarizer 0.43278 0.07246 0.12414 

Split brain 0.61056 0.07353 0.13125 

Our (3 sentences) 0.50179 0.08871 0.15077 

Table 5: Comparison of ROUGE evaluation metrics for online summarizers and GAUTOSUMM (extensive 
pre-processing) 
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Summarizer Avg_Recal Avg_Precision AvgF_Score 

SMMRY 0.61073 0.05063 0.09351 

Tools4noobs 0.51503 0.06182 0.11039 

FreeSummarizer 0.60535 0.06154 0.11172 

Split brain 0.54470 0.06154 0.11058 

Our (3 sentences) 0.65184 0.07544 0.13523 

Table 6: Comparison of ROUGE evaluation metrics for online summarizers and GAUTOSUMM (basic pre-
processing) 

 

 

4.5 Evaluation and Results Using DUC Dataset 

 The second dataset, DUC 2007, is used for the evaluation of generated summary quality 

for all summarizers. For GAUTOSUMM’s summary quality, evaluation metrics of ROUGE 

are calculated after the implementation of control features and post-processing module. DUC 

2007 dataset contains 45 samples from ten topics which are used to generate output summaries 

of 250 words and 5% of the original document. The 250 words limit is a requirement of the 

main task of DUC 2007 and the model summaries. We have limited the output summary to 5% 

of the original document because SplitBrain only allows to generate summaries in percentages 

instead of number of words or sentences. 5% is the lowest percentage allowed by SplitBrain 

for the generated summary. A percentage higher than 5% is not used to generate summaries 

because of the length of documents provided by DUC 2007; the resulting longer summaries 

produce lower values of ROUGE metrics as shown in Figure 11. 

 Tableau software [84] is used to generate and evaluate results produced by ROUGE. 

The outliers are removed for a more representative analysis of results. Figure 10 shows the 

results of generated summaries from GAUTOSUMM and online text summarizers for 45 
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samples using ROUGE metric: F-score. A median is calculated to define a cut off in Tableau 

to generate the bar charts for each summarizer. For 250 words length summaries, 

GAUTOSUMM showed better results in eight out of ten topics. For summaries restricted to 

5% of the original document (Figure 11), Tools4noobs showed the least performance in terms 

of summary quality. SplitBrain, SMMRY and FreeSummarizer presented almost the same 

values of F-score while GAUTOSUMM performed better than other summarizers. F-scores 

are lower when output is limited to 5% of the original document as compared to 250 words 

output. 

 In the next section, we discuss the effects of document length on F-score of the 

generated summaries.  
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Figure 10: F-score for online text summarizers and GAUTOSUMM for 250 words output 
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Figure 11: F-score for online text summarizers and GAUTOSUMM for 5% output  
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4.5.1 Document Length  

Figure 12 represents the size of each sample in number of sentences which shows that 

sample 741 is the largest (1693 sentences) and sample 703 is the smallest (210 sentences). It is 

observed that summaries which are longer in length generally produce lower values of F-score. 

 

 
Figure 12: Size of samples with respect to increasing number of sentences 

 

 Figure 13 to Figure 17 shows the F-score, with increasing number of sentences, for all 

the samples producing 250 words of generated summary. From these figures, we observe that 

GAUTOSUMM generated good quality summaries and outperformed online text summarizers 

in 24 out of 45 samples. FreeSummarizer showed better results than other summarizers in 9 

out of 45 samples, SMMRY was superior in 7 samples and Tools4noobs ranks lowest with 5 

samples. 
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Figure 13: Comparison of F-score (250 words output) with increasing number of sentences: 210 - 365 
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Figure 14: Comparison of F-score (250 words output) with increasing number of sentences: 374 - 542 
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Figure 15: Comparison of F-score (250 words output) with increasing number of sentences: 548 - 786 
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Figure 16: Comparison of F-score (250 words output) with increasing number of sentences: 799 - 962 
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Figure 17: Comparison of F-score (250 words output) with increasing number of sentences: 1029 - 1693 
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In the next study, to include SplitBrain in the evaluation, summaries were restricted to 

5% of the original document1 (Figure 18 to Figure 22). Once again, GAUTOSUMM performed 

well in 23 out of 45 samples among all other summarizers and Tools4noobs remained the 

lowest with only 2 better summaries out of 45 samples. Similarly, SMMRY, FreeSummarizer 

and SplitBrain performed better in 9, 6 and 5 samples, respectively.  

The length of a document affects the quality of generated summary. This effect is more 

prominent with 5% output (Figure 21 to Figure 22), where all the summarizers showed lower 

values of F-score as compared to 250 words output. The reason for degraded summary quality 

is that the original documents provided by DUC 2007 dataset are varying in length (between 

210 to 1693 sentences). When the results of 5% output are calculated for samples larger than 

60 KB (or approximately 500 sentences), the value of F-score drops. This happens because the 

evaluation metrics of ROUGE change such that recall produces higher value (for longer 

summaries) while precision drops by a significant amount thus decreasing the values of F-

score. Ideally, for longer documents, a summarizer must generate a summary which is not 

affected by length of the document. The control features in GAUTOSUMM are added to 

overcome this problem and thus showed better results as compared to online text summarizers. 

 
 

                                                           
1 SplitBrain does not allow summaries less than 5%  
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Figure 18: Comparison of F-score (5% output) with increasing number of sentences: 210 - 365 
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Figure 19: Comparison of F-score (5% output) with increasing number of sentences: 374 - 542 
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Figure 20: Comparison of F-score (5% output) with increasing number of sentences: 548 - 786 
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Figure 21: Comparison of F-score (5% output) with increasing number of sentences: 799 - 962 
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Figure 22: Comparison of F-score (5% output) with increasing number of sentences: 1029 - 1693 
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The outliers are eliminated from the results of all summarizers. Figure 23 illustrates the 

values of F-score (with outliers), as compared to the results shown in Figure 10, where outliers 

are removed. The percentage difference in the values of F-score is 4.01 without outliers. The 

figure shows a color scheme from yellow (Min) to green (Max) for 250 words of generated 

summary with a median at 0.31661. Even with outliers, the F-score of GAUTOSUMM for 

most of the samples are above the median and towards the green (Max) range. 

 

4.5.2 Time Performance 

The performance of GAUTOSUMM is measured by execution time on MATLAB. The 

performance of MATLAB is same on Windows or any other operating system but there are 

hardware dependencies such as CPU (number of processors), the bandwidth of the system bus, 

memory (RAM), hard disk, GPU (Graphics Processing Unit) for display and computations 

[85]. The execution time of GAUTOSUMM is compared between two systems: System 1 and 

System 2 (Figure 24). System 2 contains more cached memory, RAM and high-speed 

processor as compared to System 1. From the figure, we can see that execution time increases 

with number of sentences for both the systems. The hardware dependencies show that System 

2 generated summaries 1.5 times faster than System 1. Figure 25 shows that Tools4noobs 

provides the best performance among all summarizers though it generated summaries with 

lower F-score.  
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Figure 23: F-score showing outliers of online summarizers and GAUTOSUMM for 250 words 
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Figure 24:  Comparison of time performance for GAUTOSUMM  

 



87 
 

 
Figure 25: Time Performance of online text summarizers and GAUTOSUMM 

 

4.5.3 Impact of pre-processing 

Three levels of pre-processing were examined for the proposed summarizer: 1) 

Extensive pre-processing (removal of all lexical categories), 2) Basic pre-processing (removal 

of articles, prepositions, and conjunctions) and 3) No pre-processing. Figure 26 to Figure 28 

shows the impact of pre-processing on execution time for all 45 samples for the three levels of 

pre-processing with increasing number of sentences. We observe that without pre-processing, 

the largest sample 741 took 82 seconds to generate the output summary and the smallest sample 

703 took 0.41 seconds. The difference in execution time is a result of an increase in number of 
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sentences which in turn generates more edges. Extensive and basic pre-processing reduces the 

execution time because the number of edges are reduced after the removal of lexical categories 

(Table 8). Figure 29 provides a different perspective of the same observations. The samples 

are represented by circles of corresponding size. Most of the samples provided by DUC 2007 

are large which impacts the number of sentences and edges. By including a pre-processing 

step, number of edges are greatly reduced and subsequently, the time performance of the 

proposed summarizer is improved. Without pre-processing, the largest sample of DUC 2007, 

741, contributed towards more than five million edges, whereas with basic pre-processing, 

number of edges are reduced to almost one million. Extensive pre-processing further reduced 

this number to around 891,000 (Table 7). The smallest sample, 703, generated over three 

million edges without pre-processing and the number of edges are reduced to 58,717 with pre-

processing and then to 55,942 with extensive pre-processing. These figures clearly demonstrate 

the importance of pre-processing step and its impact on time performance of GAUTOSUMM. 

 

 
Figure 26: Impact of pre-processing on execution time with increasing number of sentences: 210 - 480 
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Figure 27: Impact of pre-processing on execution time with increasing number of sentences: 482 – 811 

 

 

Figure 28: Impact of pre-processing on execution time with increasing number of sentences: 849 – 1693 
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Table 7: Impact of pre-processing on number of edges for GAUTOSUMM 
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Figure 29: Execution time comparison for three levels of pre-processing: Extensive pre-processing, Basic pre-

processing and No Pre-processing 

 

 

 

 



92 
 

 
Table 8: Number of Edges and Sentences of samples together with execution time of GAUTOSUMM. 
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4.5.4 Complexity of GAUTOSUMM 

 Our proposed summarizer uses a Graph-based approach whose performance is 

dependent on the number of nodes and edges. The complexity of GAUTOSUMM is O (N x 

M), where N is a number of sentences (or nodes) and M is the number of shared words (or 

edges). Typically, the number of sentences is less than the number of words in a document. 

The number of sentences versus edges for all the samples of DUC 2007 dataset are shown in 

Figure 30.  

 
Figure 30: Number of Sentences and Edges for samples from DUC 2007 dataset 

 

To elaborate a relation between number of sentences and edges, the samples are further 

grouped and plotted on a log-log scale with the best fit line (Figure 31). From the figure we 

can infer that, for this selected dataset, the number of edges increases with the number of 

sentences, with an exponent of 1.13. The value of R  shows that data points are 96.63% closer 

to the best fit line and number of sentences versus edges are linearly related. 
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Figure 31: Complexity of GAUTOSUMM 

 

Figure 32 shows a relation between number of sentences and execution time on a log-

log scale. As compared to Figure 31, the slope of the line is linear but steeper with a value of 

2.59. 

 

Figure 32: Complexity of GAUTOSUMM (Sentences Vs Time) 
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Figure 33 displays a trend between number of sentences and edges for all the samples 

where pre-processing was used. As discussed in the previous section, the number of edges 

increases by a significant amount without pre-processing and this impact can also be observed 

in Figure 34. 

 

 

 
Figure 33: Number of Sentences Vs Number of Edges with basic pre-processing 
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Figure 34: Number of Sentences Vs Number of Edges with no pre-processing 

 

In this chapter, we discussed the evaluation and results of all the summarizers based on 

ROUGE metrics. Two datasets, Opinosis and DUC 2007, were used for the evaluation of 

generated summaries from online text summarizers and GAUTOSUMM. A brief introduction 

to the online text summarizers was also presented. Results are discussed for all summarizers 

using an Opinosis dataset. Finally, evaluation and results obtained from the summaries 

generated using DUC 2007 dataset were presented. These results showed improvements in 

ROUGE metric values after implementation of the pre-processing module, control features and 

post-processing module. The next chapter concludes this work and provides direction for future 

research. 
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Chapter 5 

Conclusion and Future Direction 
 

The need for text summarization has been long known but it has now become even 

more important due to large amount of data accessible on the Internet. In this thesis, we 

presented the concepts behind text summarization, related work and different approaches taken 

to generate summaries. Over the years, many methods have been proposed by researchers to 

produce a good quality summary in terms of cohesion and readability. These efforts led to 

several text summarizers which are available online to generate summaries from a variety of 

topics. Unfortunately, the existing summarizers generate output with poor readability, 

redundant information and disconnected sentences. To address these shortcomings, we have 

proposed a Graph-based automatic summarizer, GAUTOSUMM, and have compared results 

with existing online text summarizers. Initially, eleven online summarizers were selected out 

of which four (SMMRY, Tools4noobs, FreeSummarizer and SplitBrain) were used for 

evaluation due to several factors such as limited access, usage limitations for longer 

documents, and frequent error messages. Our proposed method is different from the existing 

work in many ways, for example, tf’s are calculated only for words which are shared among 

other sentences. A pre-processing module was included in the algorithm to remove articles, 

prepositions, conjunctions, stop or bad words, brackets and text within brackets. A post-
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processing module was added to generate aligned and formatted output, to maintain sentence 

structure and for easy readability.  Intra-sentence edges were not considered by the algorithm 

to decrease the probability of redundant information selection. Finally, Jaccard distance was 

incorporated to determine the similarity between sentences. 

Two datasets, Opinosis and DUC 2007, were used for evaluation of the summarizers. 

The documents in Opinosis ranges from 5 pages to 15 pages in length and contain different 

topics such as cars, hotels and food. The results showed that the metric values of Avg_Precision 

were very low as compared to Avg_Recall, because the gold standard summaries only 

consisted of 2 to 3 sentences. For longer documents, the value of precision drops even further. 

The decreased values of precision metric also reduced the values of harmonic mean 

AvgF_Score. On the other hand, DUC 20072, which is designed for extractive summaries, is 

more reliable and used as an industry standard for evaluation of text summaries. We used DUC 

2007 dataset to evaluate GAUTOSUMM and online text summarizers for 45 samples. The 

comparison of generated summaries showed that for most of the topics (eight out of ten), 

GAUTOSUMM showed better metric values because of the inclusion of pre- and post-

processing step together with control features which led to selection of sentences with less 

redundancy and precise information.  

The results from ROUGE evaluation showed that GAUTOSUMM also generated good 

quality summaries for larger documents as compared to other summarizers. The generated 

summaries do not contain any stop words or redundant information due to a pre-processing 

module.  Outliers were eliminated from the results for a more realistic analysis of summary 

                                                           
2 supplied by NIST (National Institute of Standards and Technology) 
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quality. The execution time of GAUTOSUMM was significantly reduced by pre-processing 

due to elimination of redundant edges. The time performance of proposed summarizer is 

hardware dependent and can be further improved by adding resources such as cache, high-

speed processor and RAM. GAOUTOSUMM has also been shown to be very scalable because 

the number of edges increase linearly with the number of sentences. The outputs from 

GAUTOSUMM are evaluated for general English topics rather than specialized documents. 

This shows that GAUTOSUMM works efficiently for documents which are from general 

topics such as those included in both datasets. For more specialized documents, semantics 

would be required to be incorporated.  

 

5.1 Future Work 

 Based on the promising results, we believe that this research can be extended further in 

several directions. For instance: 

 In our proposed method, a pre-processing module improved results significantly. A 

module embedded with semantics would likely produce even better results and high 

quality summaries. However, semantics introduces complex calculations in the 

algorithm and may require training that could affect the execution time significantly. 

 A dictionary attached to the algorithm can also reduce the number of comparisons and 

false edges. 

 An improved interface of GAUTOSUMM with more input options (such as number of 

words and keywords) would provide better impact to the reader. 
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 For the evaluation of GAUTOSUMM and online text summarizers, we have used a 

dataset from NIST. DUC 2007 dataset contains 45 samples from ten topics. A larger 

dataset can be used to evaluate more samples and number of topics covered.  

 In GAUTOSUMM, we have included two control features which are related to length 

of the document. These control features seem to greatly impact the generated summary. 

More control features (such as sentence position and cue words) can be added to 

observe their impact on the generated summary. 
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Appendix 1 

 The following table shows a comparison of readability, redundancy and similarity for 

the approaches described in chapter 2. 

 

 Approach Readability Less redundancy Similarity 

1. Machine Learning  
 

  

2. Clustering Based   
 

 

3. Lexical Chaining  
 

  

4. Frequent Term    
 

5. Information Retrieval     

6. Graph-based  
   

 

As we can observe from the above table that Graph-based Approach results in better 

readability in terms of the content of generated summary by removing stop words from the original 

document. The generated summary contains less redundant information (after including control 

features, such as for sentence length) as compared to other approaches, and objectively calculates 

similarity between sentences (or the content of sentences). 
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