
Examining the Effects of Enhanced Compilers on Student Productivity

by

Devon Harker

B.A., University of Northern British Columbia, 2015

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

December 2017

© Devon Harker, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by British Columbia's network of post-secondary digital repositories

https://core.ac.uk/display/236972542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Programs written by novices programmers often contain errors. Previous work

shows students struggle when compiler error messages are inaccurate, mislead-

ing, or both. Loss of productivity caused by poor error messages has not been

thoroughly explored in the literature. This thesis examines how enhanced compil-

ers improve the experiences of those learning to program.

The thesis follows fifty non-CS majors with little programming experience through

a one-semester CS1-like course at the University of Northern British Columbia, a

small western Canadian university. Half of the participants used the enhanced

compiler for Java named Decaf while the other half used the standard Java com-

piler. The evidence shows that Decaf is beneficial with regards to the number and

types of errors generated, productivity, frustration, and confidence in program-

ming ability, and compares results with the literature.

ii

TABLE OF CONTENTS

Abstract ii

Table of Contents iii

List of Figures vi

List of Tables vi

1 Introduction 1

2 Literature Review 6
2.1 Alternatives To Compiler Error Messages 7
2.2 Investigating Student Learning and Errors 9
2.3 Enhanced Compilers . 18
2.4 Non-Compiler Tools . 24

3 Problem Statement 27
3.1 What Problem Needs Solving? . 27
3.2 Why Is This Worth Investigating? . 28
3.3 Definition of Productivity . 29

4 Research Methodology 31
4.1 Participant Selection and Grouping 32
4.2 Laboratory Computer Setup . 34
4.3 Programming Pre-assessment and Anonymous Identifiers 35
4.4 Consent Form and Information Letter 37
4.5 Withdrawal Form . 37
4.6 Weekly Assignments . 38
4.7 Questionnaire 1 . 38
4.8 Questionnaire 2 . 39
4.9 Laboratory Quiz . 40
4.10 Questionnaire 3 . 40
4.11 Anonymous Identifier Corrections . 41
4.12 Participant Grade Scaling . 41
4.13 Database Preparation . 42

iii

4.14 Laboratory Quiz Snapshot Examination 43
4.15 Statistical Analysis . 43

4.15.1 Choice of α . 44
4.15.2 When Is An Error Considered To Be Successfully Fixed? . . . 44

4.15.2.1 Which Responses To Error Were Productive and Which
Were Unproductive? 46

4.15.3 What Are The Phases Of Compilation? 46
4.15.4 Why Is Timing Data Only Available For The Laboratory Quiz? 50
4.15.5 Q1 — Time and Compilations Per Program 51
4.15.6 Q2 — Productivity . 52
4.15.7 Q3 — Phases of Compilation 52
4.15.8 Q4 — Frustration When Fixing Errors 53
4.15.9 Q5 — Confidence in Programming Ability 54
4.15.10 Q6 — Compiler Appreciation 54
4.15.11 Q7 — Self-assessed Versus Measured PPE 55
4.15.12 Q8 — Participant Performance 55
4.15.13 Research Question Which Was Considered But Not Used . . 56

5 Statistical Analysis and Results 57
5.1 Questionnaires and Programming Pre-assessment 57

5.1.1 Notes On Collected Data . 58
5.1.2 Statistical Test Results . 58

5.2 Decaf Snapshot Analysis . 59
5.2.1 Compilation Error Distribution Analysis 60

5.2.1.1 Assignments . 60
5.2.1.2 Laboratory Quiz . 61

5.2.2 Timing Data Analysis . 61
5.2.3 Performance Analysis . 62

6 Discussion 64
6.1 Q1 — Time and Compilations Per Program 64

6.1.1 Analysis of Compilations . 65
6.1.2 Analysis of Time . 65
6.1.3 Conclusion . 65

6.2 Q2 — Productivity . 66
6.2.1 Analysis of Compilations . 66

6.2.1.1 Comparison of Proportions 66
6.2.1.2 Comparison of Averages 67

6.2.2 Analysis of Time . 67
6.2.2.1 Total Time Per Response Category 67
6.2.2.2 Time Per Compilation For Each Response Category 68

6.2.3 Conclusion . 68
6.3 Q3 — Phases of Compilation . 68

6.3.1 Assignments — Analysis of Compilations 69
6.3.1.1 Comparison of Proportions 69

iv

6.3.1.2 Comparison of Averages 70
6.3.2 Laboratory Quiz . 70

6.3.2.1 Analysis of Compilations 70
6.3.2.2 Analysis of Time . 71

6.3.3 Conclusion . 72
6.4 Q4 — Frustration When Fixing Errors 72

6.4.1 Conclusion . 72
6.5 Q5 — Confidence in Programming Ability 73

6.5.1 Confidence Change Over Time 73
6.5.2 Comparison of Control And Enhanced Groups 73
6.5.3 Conclusion . 74

6.6 Q6 — Compiler Appreciation . 74
6.6.1 Conclusion . 74

6.7 Q7 — Self-assessed Versus Measured PPE 75
6.7.1 Conclusion . 75

6.8 Q8 — Participant Performance . 75
6.8.1 Conclusion . 76

6.9 Top Ten Most Common Errors . 76
6.9.1 Comparison of Assignments and Laboratory Quiz 76
6.9.2 Comparison of Assignments and Similar Research 77

6.9.2.1 McCall and Kölling 77
6.9.2.2 Becker . 78
6.9.2.3 Rountree . 78
6.9.2.4 Jadud . 78
6.9.2.5 Jackson et al. 78

6.9.3 Conclusion On Error Types . 79

7 Conclusions 80
7.1 Summary of Conducted Study . 80
7.2 Conclusions and Recommendations 81

Bibliography 86

A Tables and Forms 89
A.1 Tables . 89
A.2 Diagrams . 102
A.3 Information Letter . 104
A.4 Withdraw Form . 108
A.5 Programming Experience Pre-assessment 110
A.6 Questionnaires . 114

A.6.1 Questionnaire 1 . 114
A.6.2 Questionnaire 2 . 116
A.6.3 Questionnaire 3 . 118

A.7 Laboratory Quiz . 120
A.8 Enhanced Error Messages Used In Study 131

v

LIST OF FIGURES

1.1 A Typical Novice Programmer’s First Java Program 2

A.1 Assignments — Top Ten Most Common Errors 103
A.2 Laboratory Quiz — Top Ten Most Common Errors 103

vi

LIST OF TABLES

A.1 Assignments — Total Number Of Errors Encountered Per Compi-
lation Phase. Okay = No Errors Detected 89

A.2 Assignments — Total Number Of Errors Encountered Per Compi-
lation Phase — χ2-test Results. Okay = No Errors Detected 90

A.3 Assignments — Average Number Of Errors Encountered Per Par-
ticipant For Each Compilation Phase. Okay = No Errors Detected . 90

A.4 Assignments — Average Number Of Errors Encountered Per Par-
ticipant For Each Compilation Phase — t-test Results. Okay = No
Errors Detected . 90

A.5 Laboratory Quiz — Total Number Of Errors Encountered Per Com-
pilation Phase. Okay = No Errors Detected 91

A.6 Laboratory Quiz — Total Number Of Errors Encountered Per Com-
pilation Phase — χ2-test Results. Okay = No Errors Detected 91

A.7 Laboratory Quiz — Average Number Of Errors Encountered For
Each Compilation Phase. Okay = No Errors Detected 91

A.8 Laboratory Quiz — Average Number Of Errors Encountered For
Each Compilation Phase — t-test Results. Okay = No Errors Detected 92

A.9 Laboratory Quiz — Distribution of Participant Responses to Error
Messages . 92

A.10 Laboratory Quiz — Distribution of Participant Responses to Error
Messages — χ2-test Results . 93

A.11 Laboratory Quiz — Average Number of Compilations Per Partici-
pant For Each Response Category . 93

A.12 Laboratory Quiz — Average Number of Compilations Per Partici-
pant For Each Response Category — t-test Results 94

A.13 Laboratory Quiz — Total Time Spent (in seconds) On Each Compi-
lation Phase. Okay = No Errors Detected 94

A.14 Laboratory Quiz — Total Time Spent (in seconds) On Each Compi-
lation Phase — t-test Results. Okay = No Errors Detected 94

A.15 Laboratory Quiz — Average Time Spent (in seconds) Per Compila-
tion For Each Compilation Phase. Okay = No Errors Detected . . . 95

A.16 Laboratory Quiz — Average Time Spent (in seconds) Per Compi-
lation For Each Compilation Phase — t-test Results. Okay = No
Errors Detected . 95

vii

A.17 Laboratory Quiz — Total Time Spent (in seconds) On Each Re-
sponse Category . 95

A.18 Laboratory Quiz — Total Time Spent (in seconds) On Each Re-
sponse Category — t-test Results . 96

A.19 Laboratory Quiz — Average Time Spent (in seconds) Per Compila-
tion For Each Response Category . 96

A.20 Laboratory Quiz — Average Time Spent (in seconds) Per Compila-
tion For Each Response Category — t-test Results 97

A.21 Laboratory Quiz — Participant Performance On Laboratory Quiz.
P = Perfect, I = Imperfect, N = Not Attempted 97

A.22 Laboratory Quiz — Participant Performance On Laboratory Quiz
— χ2-test Results. P = Perfect, I = Imperfect 98

A.23 Laboratory Quiz — Number Of Compilations For Each Laboratory
Quiz Question. P = Perfect, I = Imperfect 98

A.24 Laboratory Quiz — Number Of Compilations For Each Laboratory
Quiz Question — t-test Results. P = Perfect, I = Imperfect 99

A.25 Laboratory Quiz — Time Spent (in seconds) On Each Laboratory
Quiz Question. P = Perfect, I = Imperfect 99

A.26 Laboratory Quiz — Total Time Spent (in seconds) On Each Labora-
tory Quiz Question — t-test Results. P = Perfect, I = Imperfect . . . 100

A.27 Questionnaires and Programming Pre-assessment — Descriptive
Statistics. PPE = Prior Programming Experience 100

A.28 Questionnaires and Programming Pre-assessment — t-test Results.
PPE = Prior Programming Experience 101

A.29 Change in Confidence Over Time Within Each Group — Paired
Sample t-test Results . 101

A.30 Comparison of javac ’s and Decaf ’s Error Messages 142
A.31 Decaf Exclusive Error Messages . 144

viii

Chapter 1

Introduction

This thesis was completed as part of my graduate studies at the University of

Northern British Columbia (UNBC). UNBC is a small research university of about

3500 students located in Canada’s western-most province of British Columbia [28].

A super-majority of UNBC’s students are from British Columbia (myself included).

UNBC offers a variety of programs including Computer Science (which was my

major during my undergraduate studies). The participants for the study featured

in this thesis were UNBC students attending CPSC110 (that is, Introduction to Pro-

gramming For Non-Majors).

Many experts agree that programming is a difficult task to learn for a variety

of reasons. One notable reason is that many compilers that are used commercially

were designed for experts, not beginners. Another reason, and one that is related

to the previous, is inadequate compiler error messages. Many error messages do

not accurately inform the programmer about the actual cause of the error. Consider

the Java program in Figure 1.1 on the following page.

This program contains one syntax error; namely, the opening brace at the end

of line two is omitted. Compiling this program with javac does not report that

a brace is missing but it instead reports “; expected” This is unfortunate as no

number of semicolons will fix this problem. First year, and especially first semester,

1

1 public class HelloWorld {

2 public static void main(String[] args)

3 System.out.println("Hello World!");

4 }

5 }

Figure 1.1: A Typical Novice Programmer’s First Java Program

computer scientists often take error messages at face value as they do not know

that the compiler can lead them astray. Furthermore, these programmers may not

know how to consult online resources for advice on errors that are difficult to fix.

This results not only in decreased productivity (as the programmer spends a lot

of time to fix something that should take no more than a few seconds), but also

unnecessary frustration.

I was unsatisfied with the state of compilers used by myself and my peers when

learning how to program in our undergraduate Computer Science programs. In re-

sponse, I dedicated this thesis to finding a way to help novice programmers be less

frustrated and more productive not only when fixing errors but also when adding

new features to programs. The first step in doing so was to educate myself on

what programming errors are made by students and why. It was at this time that I

discovered the concept of enhanced compilers. Enhanced compilers attempt to ad-

dress the problem of poor error messages by providing further insight into causes,

and potential solutions, of detected errors. Compiling the program in Figure 1.1

with the Decaf enhanced compiler would generate an error message that there

is one fewer opening brace then closing braces and that this may be the cause of

the error. This pushes the programmer to take a closer look at their braces where

they are more likely to notice the absence of the opening brace at the end of line

two. I believed that enhanced compilers could be effective at helping beginners

make less errors, be more productive, and achieve more success but I also wanted

to also wanted to be through and investigate other options as well. As a result,

2

I examined a portion of the literature that provides alternatives to compiler error

messages. However, the solutions were not suitable for the first time program-

mers that I wanted to study so I settled on enhanced compilers as my approach

to helping programming novices overcome poor error messages. Specifically, I

choose Decaf as it was the most appealing of the enhanced compilers that were

considered. I also made note of the non-compiler tools that I felt could be helpful

in completing my thesis. My complete literature review, which contains the four

topics discussed above, can be found in Chapter 2 on page 6.

The problem of loss of productivity due to poor compiler error messages is

one that I feel should be addressed. Inadequate error messages are frustrating for

learners of programming languages and previous work has shown that frustration

can lead to lower academic performance and higher attrition rates. Getting stuck

on simple errors because of unhelpful compiler error messages surely does not do

any wonders for the confidence of novices. I believe that enhanced compilers have

the potential to address all three of these problems. These questions are discussed

in greater detail in Chapter 3 on page 27.

My thesis focuses on more than the three problems described above. Specif-

ically, the enhanced compiler’s effect on productivity while answering program-

ming problems, the number of errors generated by students, the types of those er-

rors, frustration experienced while fixing errors, confidence in programming abil-

ity, academic performance, and the appreciation of the compiler used are examined

with appropriate statistical tests. The explicit research questions that are answered

in this thesis are located in Section 4.15 on page 43.

Some components of my study, such as the focus on the enhanced compiler’s

effect on the number of errors generated, is similar to previous work conducted by

other authors. In other cases, such as the effect of the compiler on productivity and

frustration, there is little historical data to compare my results to. In either case,

3

it is useful to compare and contrast the aims of my thesis with other work. This

literature comparison is located in Chapter 2 on page 6.

In order to make the most of this opportunity, it was necessary to carefully

design an empirical study that would allow me to answer all of the research ques-

tions discussed above. I choose CPSC110 for this purpose as I believed this was

the best way to control for my participants’ prior programming experience. As a

precaution, I also held a programming pre-assessment to ensure that my partici-

pants were novices. Two groups of approximately equal size were formed. The

first group, named the control group, used the standard Java compiler javac. The

second group, name the enhanced group, used the enhanced Java compiler Decaf.

Over the course of the semester, the participants completed a number of assign-

ments and questionnaires in addition to a single laboratory quiz. The laboratory

quiz was treated similarly to an exam; no talking, no cheating, no leaving the room

and so on. However, the participants were informed that the laboratory quiz was

not graded and would not effect their final grades. After the final grades for the

course were made available, it was necessary to determine if the enhanced com-

piler had affected the academic performance of its users. If a significant difference

in final grades between the groups was found, the weaker group would be com-

pensated. Preparing the database containing all of the snapshots of the partici-

pants’ programs for statistical tests was the next step. The final component was

conducting all of the necessary statistical tests that would address my research

questions. For more information on the research methodology that was imple-

mented this thesis, see Chapter 4 on page 31.

The statistical tests used to analyze my results were an important part of my

thesis. The most common test I used was the independent samples t-test. This

type of test is ideal for comparing the means of two groups on some item (such as

the frustration experienced when fixing errors). Independent samples t-tests use

4

Cohen’s d to indicate how different the means are between the two groups that

are examined (also known as the effect size). Another common test I choose was

the χ2-test, which is a type of statistical test that is great for comparing a set of

proportions between two groups. This was the test that was used to determine if

one of the groups made significantly more or less errors for each of the phases of

compilation. Cramer’s V was the effect size used for the χ2-tests. There was also

one instance where I used a paired-samples t-test to compare that confidence in

programming ability between the control group and the enhanced group at three

different points in time. Lastly, Pearson’s correlation was the test of choice to de-

termine the relationship between a participant’s self-assessed Prior Programming

Experience versus their scores on the programming pre-assessment. The results of

the statistical tests mentioned here can be found in Chapter 5 on page 57.

The results of my thesis are quite promising. The enhanced compiler Decaf was

shown to significantly reduce the number of errors generated by students. Stu-

dents that used the enhanced compiler were able make to make progress on their

errors, especially semantic errors, faster than those who did not. Fixing errors

proved to be significantly less frustrating for programmers who learned to pro-

gram with Decaf. And lastly, the students who used Decaf underwent a greater

increase in their confidence than students who used javac. For additional dis-

cussion on my interpretation of the test results, see Chapter 6 on page 64. My

concluding remarks and recommendations that follow from these results can be

found in Chapter 7 on page 80.

5

Chapter 2

Literature Review

In this section, I summarize previous research on enhanced compilers and other

literature regarding student learning. There is much literature regarding compiler

error messages, including error message structure, weaknesses, and alternatives.

The literature regarding error message structure was an influencing factor on my

choice of enhanced compiler. Error message weaknesses has been recognized as

a problem for a long period of time; the first literature on this topic dates back to

1976 [27].

Before conducting my research, I knew that I wanted to assist programming

novices with inadequate compilation error messages. In order to contribute on this

matter, I needed to investigate what errors are made by students and why. This

topic also included some research on the effectiveness of various error message

structures as well as the responses made by students in response to error messages.

It was at this point in my literature survey that I came across a potential solution

to this problem in the form of enhanced compilers. This solution appealed to me

so I collected a number of articles on enhanced compilers. However, I also wanted

to investigate other alternatives to compiler error messages in the event that there

was an even better solution to improving poor messages than enhanced compilers.

I also came across some non-compiler tools that I thought would be helpful in the

6

data collections and analysis portions of my thesis.

The articles I found during my literature review naturally fell into one of the

four topics described above. I felt that these categories would be a useful for keep

related articles together. For the articles that discuss an alternative to compiler

error messages, see Section 2.1. For the collection of work that investigates errors

made by students and other information on error messages, see Section 2.2 on

page 9. The enhanced compilers that I considered for use in my thesis are located in

Section 2.3 on page 18. Lastly, the non-compilers tools that I thought had potential

in completing my thesis are described in Section 2.4 on page 24.

2.1 Alternatives To Compiler Error Messages

Some researchers were unhappy with the state of compiler error messages. In some

cases, these researchers attempted to solve this problem by creating alternatives to

poor messages. The alternatives to compiler error messages have been catalogued

here.

Brown, 1983 Brown is one researcher who sought an alternative to compilers.

As an aside in [7], Brown offers support for menu-driven programming; where

programmers use menus to create various programming constructs. The primary

advantage of menu-driven programming being that it reduces or even entirely

eliminates syntax errors and the need for a compiler as the constraints force the

programmer to create syntactically correct programs. While the possibility of com-

pletely eliminating syntax errors appeals to me, I worry that students who learn

to program using menu-driven programming will be unprepared if they are ever

required to use more traditional styles of programming. As such, I feel that menu-

driven programming is unsuitable for my thesis and will not be using it.

7

Barik et al., 2014 Barik et al. [3] also investigated alternatives to compilers. Their

alternative to compiler error messages was the creation of taxonomies for differ-

ent kinds of errors and a prototype IDE that displayed this information for the

programmer. Potential solutions to errors were suggested based on the relevant

taxonomy. The code segments relevant to the error were highlighted for increased

visibility. An advantage that this approach has is that the taxonomies and even the

suggested solutions may be applied across multiple programming languages.

Barik et al. note a weakness of the prototype IDE; it is not well equipped to

handle “bad practices” as the fixes to these issues tends to be more subjective than

other fixes. A second weakness is that the effectiveness of the prototype IDE is

highly dependent on the quality of the error messages provided by the compiler

that is being used. This second weakness is important as the entire field of en-

hanced compilers is the direct result of the low quality error messages produced

by many compilers.

The approach that I am taking with my thesis can be thought of as the opposite

of what was done by Barik et al. Instead of creating new taxonomies, I will use

the categories of errors that are present in javac which are then used by Decaf

to provide enhanced error messages. Barik et al. also use a prototype IDE in their

research. Creating an IDE is not a necessary, nor important, part of my thesis as

Decaf includes an editor for Java programs.

Campbell et al., 2014 Campbell et al. [8] believe that compiler error messages, es-

pecially in regards to syntax errors, can be frustrating. Campbell et al. address this

issue with a tool for Java that creates an N-gram language model of source code

tokens. This model predicts what a project should look like based off of previous,

error-free versions of the project. The tool flags code segments that are not in line

with the models predictions as suspicious and presents this information to the pro-

8

grammer. Programmers can then examine suspicious code segments to determine

if there are any syntax or semantic errors that need to be fixed. The model was

found to outperform the javac commercial compiler when a correct version of the

project was available for referencing. The tool was also found to perform better on

smaller projects.

While Campbell et al.’s work provides promising results, it is not suitable for

my thesis. The assignments and laboratory quiz questions completed by my par-

ticipants are relatively small in scope (solutions always consisted of one class and

often just one method). Furthermore, there was seldom reason to change code

segments that contained no errors as there was little reason to add more once the

code segment was completed for the first time. As a result, the suspicious code

segments flagged by the model for further review would likely always be the most

recently added feature. This is something that javac could inform the program-

mer, which diminishes the usefulness of the model in the context of implementing

it for my thesis.

2.2 Investigating Student Learning and Errors

Programmers have been making syntax and semantic errors in their programs for

many years. Research into this topic appears to have become more rapid in the last

decade. The topic of the errors made by students and the messages they receive

from the compiler is an important component of my thesis and is where I found

the most literature that could be used in my thesis. A description of each article

I found, as well as some observations and its relvance to my research topic, is

located below.

Brown, 1983 Brown examines the quality of error messages produced by a num-

ber of compilers for the Pascal programming language [7]. Each compiler was fed

9

a simple Pascal program that contained a single syntax error; a missing opening

parenthesis when calling a function. Nearly all of the compilers produced error

messages of poor quality; very few of the compilers were able to both identify the

error correctly as well as the location of the error.

Brown’s work confirms an observation I made prior to beginning my research:

namely, that compiler error messages are often poor as they struggle to correctly

identify the actual error made by novice programmers. I believe that enhanced

compilers may be effective at addressing poor error messages and previous work

in this field would agree.

Jackson et al., 2005 After working on the enhanced pre-compiler for Java named

Gauntlet, Jackson et al. interviewed faculty United States Military Academy on

what they thought were the most common errors expected by students [17]. Jack-

son et al. created an automated error collection system to determine if the faculties’

expectations were in line with reality. This system logged all of the syntax and se-

mantic errors made by both students and faculty using an IDE over the course of

a semester. Five of the top ten most frequent Java compilation errors encountered

by students are not in line with what the faculty was expecting. The error “Illegal

start of expression” was the third most common error that was encountered and

yet it was not in the faculty’s top ten list. It is noted that novice programmers may

struggle to fix this error for two reasons. First, illegal start of expression is an er-

ror message that is generated by many different causes, meaning the solution that

fixes the error is not immediately obvious. Second, the term “expression”, as it

pertains to Java, is unfamiliar for novice programmers. Conjecture about typical

causes for some of the other most common errors is also presented by Jackson et al.

The observation that an error message can be generated by multiple causes is

important for enhanced error messages to take into account if they want to be their

10

explanation for why an error occurred to be accurate and useful. One important

difference between mine and Jackson et al.’s data sets is that I want to collect more

than just the error messages generated by students. By collecting only the errors

that were detected, there is not enough information to assess the effectiveness of a

participant’s response to that error message. This is why, in addition to collecting

error messages, I am also collecting a snapshot of the participants’ program at

at the time of compilation. The snapshots will allow me to see everything that

a programmer changed from one compilation to the next which in turn makes it

much easier to determine the effectiveness of the programmer’s response to the

error message.

Jadud, 2005 and 2006 In 2005, Jadud investigated novice compilation behaviour

and states that this particular field is not well understood [18]. His research fo-

cuses on two questions: what novice students compile and when they do the com-

pilations. Java is the programming language used in Jadud’s study. That data

collected suggests that beginner programmers tend to write large amounts of code

all at once; frequently working for at least five minutes before compiling. The stu-

dents then make an effort to fix all of the errors that are present in their program.

Jadud notes that novice programmer behave differently once they have made an

error. In this scenario, half of the students’ compilations occur with twenty sec-

onds of the previous compilation. However, this fact does not necessarily indicate

that the novice programmers have fixed errors quickly; the data shows that many

of these compilations result in a program that still contains syntax or semantic er-

rors. Lastly, Jadud examined which types of errors were the most common. He

found that the three most common errors were trivial syntax errors that could be

fixed quickly and with few keystrokes by the novice programmers.

Jadud continued to investigates methods and tools for exploring novice com-

11

pilation behaviour [19] the year after his previous work on this matter. Included

in his research is an examination of the “edit-compile cycle”, which refers to the

the behaviours students engage in as they edit and compile their programs. CS1

students were observed learning how to program in Java over the course of two

years. Students are introduced to programming in an objects first approach with

the use of the BlueJ IDE. A snapshot of a student’s program was recorded every

time the program was compiled in the computer laboratory at the University of

Kent. Other recorded data types include: the types and frequency of errors and

time elapsed between compilations. The paper also includes a small case study

in the form of an analysis of a novice programmer and his attempts at a fixing

programming errors with the help of a compiler.

Jadud suggests that the final version of a student’s program is not indicative of

how much they struggled to get to that point. Instead, Jadud presents a measure

called “Error Quotient” (abbreviated as EQ). EQ is a measure of how well a par-

ticular programming session played out for a student. EQ is normalized between

0 and 1. An EQ of 0 means no error persisted through two consecutive compila-

tions, a score of 1 means that the same type of error was present in every single

compilation. As a student’s score approaches 1, the instructor’s belief that the stu-

dent is struggling with debugging becomes more substantiated. An algorithm is

given for calculating a student’s EQ, as well as details on how the algorithm can

be modified to give a different distribution of EQ scores. Jadud also studied the

relationship between a student’s EQ and the grade that student achieved on the

written final exam and found it to be weak.

It can be argued that Jadud and I are both examining the behaviour of novice

programmers. Specifically, productivity is the aspect of behaviour that I am ex-

amining. There are similarities in the types of data collected over the course of

our studies such as the types and frequencies of errors generated as well the time

12

between compilations. While Jadud’s theory on measuring programmer struggles

with Error Quotient is interesting, I will not be using it in my thesis as I feel there

my needs on this front have been satisfied with the rubric produced by Marceau et

al. [22].

Nienaltowski et al., 2008 Nienaltowski et al. study various compiler error mes-

sage formats to determine if there are any particular formats that are remarkable;

for good or bad reasons [26]. They note that there are three main approaches for

designing compilers that are helpful for beginners. The first is to build new com-

pilers from scratch. The second is to improve existing compilers by modifying

them. The third is to improve only the error messages reported without modifying

the compiler’s algorithms.

The format of error messages belongs to one of three categories; short form,

long form, and visual form. The short form of error message is often used by

production compilers such as javac. Short form error messages include the lo-

cation where the error occurs, the code segment containing the error, the type of

error, and a description of the error. Long form error messages include everything

a short form message has and more. Most notably, long form messages include

the token that resulted in the the error and possibly a suggestion for fixing the

error. Visual form error messages are often part of IDEs such as BlueJ. The er-

roneous code is highlighted (or is otherwise marked in a visible fashion) and a

brief description of the error is provided. I would argued that the error messages

produced by enhanced compilers such as Decaf fall into the long form category.

The data collected by Nienaltowski et al. shows that students with higher levels

of experience were able to recognize errors in written code segments more quickly

than students with less experience. Additionally, the experienced students were

more likely to provide the correct fixes for the errors. The observations hold re-

13

gardless of the format of the error message. Visual form error messages were

found, relative to short form messages, to improve response times to errors at a

cost of decreasing the ability to correctly fix the errors for students of all experi-

ence levels with beginners seeing a greater decrease. Long form messages were

not found to improve a student’s ability to fix an error correctly nor were they

found to improve a student’s response time relative to short form error messages.

Of the three strategies for designing compilers that are useful for beginners that

are discussed by Nienaltowski et al., Decaf definitely belongs to the third category

as, for the most part, as it receives the error messages from an unmodified javac

and rewords them in layman’s terms for ease of understanding. There is overlap

in between my thesis and Nienaltowski et al.’s study in that we both examine if

programmers with enhanced error messages (i.e. long form messages) are able to

correct error with better success and in less time than programmers who use short

form messages. One difference is that partial fixes for errors are treated positively

in my thesis and negatively in Nienaltowski et al.’s work.

Rountree et al., 2009 ClockIt, the data collection tool created by Rountree et al.,

was used in the examination of the development practices of introductory com-

puter science (CS1) students [12]. CS1 students participated in a study that took

place throughout Fall 2007 and Spring 2008. The data collected on novice develop-

ment practices was then compared against the results of a similar study performed

by Jadud [19]. Lastly, Rountree et al. note that the possibilities of making higher

level observations from the data collected, such as which students may be cheat-

ing and the effect of starting assignment later than recommended. Several differ-

ent kinds of data regarding the CS1 student’s programming habits are collected by

Rountree et al. For example, the types and frequencies of various compiler errors is

recorded as well as the amount of time between compilations of programs. Addi-

14

tionally, the amount of time that students of varying performance levels required

to finish their programming assignments is also recorded. One observation that

can be made is that students that achieve an F grade spend much more time on as-

signments that their C grade peers, and nearly as much as B students. A possible

explanation for this is that F students put effort towards their assignment but they

may not be able to fix all of the errors that they encounter (as they would be able

to achieve more than an F if they did).

There are some similarities between my work and Rountree’s as we both in-

vestigate the types and frequencies of errors generated by participants as well as

the time that elapses between compilations. Consequently, there are also similar-

ities between my work Jadud’s [19] which were discussed previously in this sec-

tion. ClockIt was one of the tools I considered for my thesis at it may have made

collecting the snapshots of the participants programs as well as measure student

productivity easier. However, I was informed that ClockIt had not been in recent

development and would likely be incompatible with newer versions of BlueJ. The

daunting time lines of my thesis proposal did not give me confidence that I could

update the software and test it for correctness before it was needed for CPSC110.

Barik et al., 2014 Barik et al. examine the construction of compiler error messages

[2]. They observe that programmers can understand what the error message is

trying to convey if they “think-aloud” during the process. Various forms of error

message annotations were tested. The purpose of the annotations is to reveal the

compiler’s internal reasoning for why a particular code segment was erroneous.

Visual annotations were found to be the most effective for this purpose. Barik et

al. noted that programmers began incorporating visual annotations into their own

explanations after encountering them for the first time.

Barik’s results are interesting though I am curious if the effectiveness of visual

15

annotations changes with the amount of experience held by the programmer. I

wanted to avoid visual form error messages and annotations for the enhanced er-

ror messages in my thesis. This is because I believed it would be more meaningful

to draw a comparison between the text-based javac and text-based enhanced er-

ror messages.

Kölling et al., 2014 Kölling et al. examine the difference between “logical errors”

and “compiler errors” [23]. They note that many previous works in this field focus

on which types of errors are the most common. Errors are categorized based off of

compiler error messages in these works. One example of a compiler error message

category is “; expected” . Kölling et al. instead chose to categorize errors based

on logical errors. The logical error reflects the actual mistake that a programmer

has made and this can differ from the mistake that is detected by the compiler.

Kölling et al. make two important observations that reveals a flaw with using only

compiler error message types to categorize errors; First, a given type of logical

error can produce different compiler error messages depending on the context in

which the logical error occurs. Second, the opposite was also found to be true;

different logical errors can produce the same error message. It is worth noting that

Jackson et al. also noted that different errors can produce the same error message

[17]. Kölling et al. conclude by advising researchers to be careful when dealing only

with relative frequencies of compiler errors as this may not tell the entire story.

I agree with Kölling et al.’s warning that researchers should be careful with

relying on the relative frequencies of compiler errors. I considered categorizing

errors by logical errors rather than by compiler errors for my thesis. However, I

was unable to create a consistent scheme for classifying logical errors in time for

CPSC110. My hope is that future work in the area of enhanced compilers will

address this issue by using logical errors for their error classifications.

16

Guzdial, 2015 Guzdial investigates the practice of teaching program to novice

computer scientists by having the students practice on their own, also known as

“minimally guided instruction” [15]. Guzidal was inspired by an earlier study

that compared two groups of math students one which were given worked out

problems while the other group had to solve them on their own. After the first set

of problems, each group then had to solve a second set of problems. The group

that was given the pre-worked problems solved the second set of problems faster

and with fewer errors than the other group. This finding is extended to computer

science; programmers have trouble writing programs when they are still learning

how to read and understand the programming language.

I believe enhanced compilers may be effective at helping programmers learn

how to program by providing a level of guidance above “minimally guided.” My

thesis will evaluate if this theory or valid or not by measuring the productivity of

novice programmers, the effectiveness of their responses to error messages, and

their academic performance.

Munson and Schilling, 2016 Munson and Schilling analyze novice program-

mers’ response to error messages [25]. They discussion how the cycle of “edit →

compile→ interpert errors” is used by some first time learners to learn the syntax

of a programming language. A criticism they have of compilers is that compil-

ers report “program-translation problems”, or the problems encountered as the

compiler tries to turn the source code into executable code. This is problematic

as the program-translation problem may not reflect the actual error the student

made (the similarities between this particular finding and the findings by Jackson

et al. [17] and Kölling et al. [23] should be noted). As an example, experienced stu-

dents recognize that a “; expected” error message does not necessarily mean that

a semicolon is missing in their code. Beginners were observed to struggle with

17

learning this concept. Furthermore, beginners struggle to learn the concept that

compiler errors beyond the first can be the result of the compiler being confused

by the first error and are not necessarily worth addressing. Students that achieved

higher grades were found to be more likely to fix the first reported error first, but

the opposite does not hold. Lastly students that achieved higher grades spent more

time in the edit phase of the cycle discussed above.

I believe that enhanced compilers may be effective at addressing the problem

of “an error of ‘; missing’ does not necessarily mean a semicolon is missing” as

enhanced compilers can provide suggestions about multiple potential causes of

the error that the programmer should investigate. I am not surprised that students

that addressed the first detected error first outperformed their peers as I view this

as a good practice. One of the reasons the Decaf enhanced compiler appealed

to me was that it follows this philosophy by only showing the first error that is

detected. I am also not surprised that students that spend less time fixing errors

also achieve more academic successful than students who spend a lot of time fixing

errors. As a consequence of this, I feel that enhanced compilers may help improve

the grades of its users if the compiler allows the novice programmers to fix errors

faster.

2.3 Enhanced Compilers

When designing my study, it was necessary to chose the enhanced compiler with

care as it was a crucial component of my thesis. Complicating matters were the two

requirements set by the instructor of CPSC110 that the enhanced compiler had to

meet. An enhanced compiler that failed either requirement was thus unsuitable

for my thesis. The first requirement was that the enhanced compiler was for the

Java programming language as this was the basics of this language were going

18

to be taught to the class. The second requirement was that the enhanced compiler

had to be compatible with an Integrated Development Environment (IDE). An IDE

can be thought of as an editor that can be used to create programs and they often

contain features that make this task simpler for the programmer. One such feature

is that IDEs often allow programmers to compile their programs without having to

use a command-line shell. It could be possible to take an existing IDE and modify

its inner workings to use an enhanced compiler. However, the aggressive time

lines that were present during my thesis proposal left no time for testing if the

resulting combination of software worked correctly and was free of bugs. These

two requirements had the effect of considerably narrowed the number of enhanced

compilers that were suitable for my thesis.

Lewis and Mulley, 1998 Lewis and Mulley [21] believe that commercial compil-

ers are unsuitable for learning a specific programming language and for learning

how to program in general. An enhanced compiler for the Modula-2 programming

language was tested with novice and experienced students. This is in contrast

to my thesis which explicitly focuses only on novice students with as little prior

programming experience as possible. The relative frequencies of syntax and se-

mantic errors was recorded. The data shows that beginning students mostly make

syntax errors while experienced students mostly make semantic errors. It is also

suggested that the enhanced error messages have a larger impact on novices with

regards to reducing the overall frequency of errors.

Lewis and Mulley’s enhanced compiler was considered but proved to be in-

compatible with my thesis. It is true that the second requirement described earlier

was satisfied as Lewis and Mulley’s enhanced compiler was designed to be used

with the Ceilidh IDE. However, the enhanced compiler was for the Modula-2 pro-

gramming language and not Java. This is the primary reason why the enhanced

19

Modula-2 compiler was not chosen for my thesis.

Hristova et al., 2003 Hristova et al. [16] observe that many textbooks cover basic

compiler errors in some fashion, but this is not sufficient to prevent students from

making the errors. Faculty members were interviewed about what they thought

the five most common types of errors were. This data was used to create an en-

hanced pre-compiler for the Java programming language named Expresso. That

is, Expresso is used to check a student’s programs for common mistakes before

using javac to check for all possible syntax and semantic rule violations. An

evaluation of Expresso ’s effectiveness was left for future work. Expresso was

inspired by other tools such as TA Online, DrScheme, and BlueJ. TA Online is a

resource that lists many common Java errors that students tend to make. How-

ever, TA Online is intended to be used as a reference as it goes not interact with

the programs written by students. The lack of interaction made TA Online unsuit-

able for the needs of Hristova et al. DrScheme is interactive but is for intended for

the Scheme programming language rather than Java. Hristova et al. note that Ex-

presso addresses many of the same problems that are addressed by DrScheme. The

examination of BlueJ suggests that it can cause beginner programmers to have

poor understanding of some programming concepts, possibly due to BlueJ ’s large

amounts of code auto-completion. For example, BlueJ automatically creates the

main method of a program when starting a new project; novices might not realize

that they need a main method, or they might not know how to properly create a

main method, since they do not write it by hand.

I previously mentioned that there were two requirements that the enhanced

compiler had to satisfy to be considered for my thesis. I considered using Expresso

for my thesis but it did not meet the second requirement of being compatible with

an IDE. As such, Expresso was unsuitable for use in my thesis.

20

Jackson et al., 2004 Jackson et al. [13] interview course instructors and found

that student frustrations regarding compiler error messages were a concern for

many of these instructors. Jackson et al. address the issue through with a pre-

compiler called Gauntlet. One of the motivations for Gauntlet is that students

were believed to be focusing too much on the fine details of the syntax of Java when

this was not the purpose of the exercises. Furthermore, there were discrepancies

between the errors that the faculty were expecting students to encounter versus

the errors that were actually encountered. As a result, the faculty was unable to

adequately prepare students for the challenges they would face.

Gauntlet is intended to make the act of programming more enjoyable for be-

ginners and this is accomplished with more informative error messages (such as

typical causes of the error), using humour, and praising the students for writing

an error-free program. Gauntlet was originally designed for the Java program-

ming language but it can be adapted to different programming languages. Jack-

son et al. evaluated the effectiveness of Gauntlet and observed that students that

used Gauntlet submitted work of higher quality. All of the instructors who used

Gauntlet in their classrooms stated that they believe that the system is a success.

The instructors also noted a lessened workload as office hours were less tied up

with syntax errors and assignments could be marked faster.

Gauntlet was one of the options for an enhanced compiler that was considered

for my thesis. However, I was unable to reach the authors of Gauntlet and as such

I was unable to use this enhanced compiler for my thesis.

Marceau et al., 2011 Marceau et al. [22] note that the DrRacket programming

environment for the Racket programming language makes a significant effort to-

wards having helpful error messages; this is done through various sub-languages

that correspond to the concepts that a student has learned. That is, a student

21

writing their first program may receive a different customized error message than

someone with more experience and knowledge of the programming language. The

effectiveness of DrRacket ’s strategy to enhancing error messages was examined.

Snapshots of students’ programs was collected each time the programs were

executed, as well as the keystrokes done in between runs. To measure the effec-

tiveness of an error message, a rubric was created that interviewers used to deter-

mine whether or not a students’ response to the error was reasonable. Marceau et

al. made two observations. First, syntax errors that occur early in the course are

difficult for students to fix, possibly due to inadequate code highlighting. Second,

syntax errors that occur later in the course were found to depend on the concepts

that students were working with during the assignments. As such, looking only

at the relative frequencies of errors within an assignment is a flawed approach. It

is noted that many invalid expressions can be flagged by the compiler in multiple

ways; closer inspection by a human was required to overcome this particular issue.

While DrRacket satisfies the second of the two requirements for my choice of

enhanced compiler, it fails the first condition as it is not an enhanced compiler for

the Java programming language. As such, I was unable to use DrRacket for my

thesis. The collection of snapshots of students’ programs did appeal to me and

this is ultimately what I did in my thesis (one difference is that I collected for every

compilation rather than every execution).

Becker, 2015 and 2016 Becker notes that programmers often encounter poor er-

ror messages early on in their careers. It is not uncommon for these poor error

messages to manifest in the first program that is created by a novice programmer.

Becker views this as problematic due to the fact that novice programmers have lit-

tle to no experience with fixing errors. As such novice programmers must rely on

the inadequate compiler error messages to help them. Becker attempted to address

22

this by creating an enhanced compiler for the Java programming language by the

name of Decaf, which was originally presented in 2015 [4]. Decaf displays the

error message from the javac commercial compiler alongside an enhanced error

message. This may allow programmers to have a better understanding of how to

correctly interpret the error messages from javac.

Decaf has been previously used in two studies. In the first study [5], Becker

tests Decaf in a classroom setting with novice programmers. The data collected

by Becker can be used to form several observations. The first is that programmers

who learn how to program with Decaf make less errors overall than programmers

who learn with the standard javac compiler. Second, the data shows that when

Decaf users do encounter an error, they are more likely to fix the error within one

compilation. In other words, Decaf users have less repeated errors. The version

of Decaf used in this study only provided enhanced messages for thirty different

types of errors; if the user makes an error that does not fall within these thirty, only

the standard error message from the javac displayed. The data shows that Decaf

users do not perform noticeably better or worse than their peers for the errors not

enhanced by Decaf which suggests that it is the enhanced error messages that are

helping students make less errors and not another factor.

The second study that Decaf was used in was focused on categorizing the er-

rors made by novice programmers [6]. The categorization is done with the help of

“Principal Component Analysis” (PCA). Becker et al. comment high dropout rates

in introductory computer science courses can be at least partially attributed to dif-

ficulties with programming including difficulties that arise due to poor compiler

error messages. Becker et al. note that studies often fall into one of two categories;

the first category attempts to categorize errors made by students in the source code,

the second categorizes compiler error messages (It should be noted that my thesis

encompasses both categories). Becker et al. use PCA to find hidden relationships

23

between various compiler error messages. That is, if a programmer makes an error

that generates a particular error message, PCA can identify other errors messages

that are likely to be generated by the programmer. It was found that programmers

who often forget closing braces are more likely to see, relative to programmers who

do not make this error, error messages such as “else without if” and “reached end

of file while parsing” as both of these error messages can be generated by the same

actual error (missing closing braces). Other groups of errors were also determined.

Becker et al. conclude that further investigation should be done on the groups of

errors that have been found under the belief that, if the groups are successfully

validated, intervention strategies specific to an error group can be devised.

I determined that using PCA to find hidden relationships among the errors

generated by my participants was outside of the scope that I wanted to research.

I did, however, consider using the enhanced compiler Decaf for use in my thesis.

It meets both of the requirements set by the instructor for CPSC110 as it is an en-

hanced compiler for Java and it includes and IDE for editing Java programs. I also

agree with Decaf ’s philosophy of showing only the first error that was detected

not only because this is a habit that I try to teach CS1 students (as every error de-

tected past the first may or may not actually exist) but also because it would allow

me to categorize student responses to errors more consistently as participants did

not have the option of choosing which error to respond to. As such, I requested

and was granted permission to use Decaf in my study.

2.4 Non-Compiler Tools

In order to speed the completion of my thesis, I wanted to use tools created by

others so that I could dedicated more of my efforts in other places of my research.

The non-compiler tools that I considered for use in my thesis are described below.

24

Kölling et al., 2003 Kölling et al. worked on an IDE intended for beginning pro-

grammer students named BlueJ [20]. BlueJ is designed to make it easier for

programmers to learn Object-Oriented Programming (OOP). Kölling et al. criticize

other IDEs on three main points; lack of object orientation with the editor itself,

overwhelming complexity (for beginners), and too strong of a focus on Graphical

User Interfaces builders.

I considered using BlueJ but determined it was not suitable for my thesis.

BlueJ appealed to me because it is compatible with extensions such as ClockIt.

Unfortunately, BlueJ does not come with an enhanced compiler, though it may be

possible to create an extension or change the inner workings of this IDE to include

one. However, the time lines I faced during the proposal of my thesis made me feel

doubtful that I could implement an enhanced compiler in this way and thoroughly

test that it worked correctly with BlueJ before the beginning of CPSC110. One as-

pect of Decaf which appealed to me is that it was designed to be a combination of

an IDE and an enhanced compiler. This combination allowed me to begin testing

its feasibility for my thesis earlier than would otherwise be possible.

Rountree et al., 2008 Rountree et al. present a tool called ClockIt [27, 30]. ClockIt

logs the development practices of novices so that educators can learn which prac-

tices are effective and which are not. ClockIt consists of two components: an

extension for the BlueJ IDE that acts as a data logger and visualizer, and a Web

Interface. It is noted by Rountree et al. that there are publications dating back to

1976 regarding programming languages being designed in such a way that they

are difficult to learn. ClockIt can used to find useful information such as the com-

pilation success rates of students, the types of errors encountered, and the amount

of time students work on their programs and when the work takes place. With the

data that can be collected, educators can discover which students are cheating.

25

I discussed previously that I considered using ClockIt, but was informed that

it was not in active development and would require updating to be compatible the

new versions of BlueJ. As such, it proved to be unsuitable for my thesis.

Marceau et al., 2011 Marceau et al. created a rubric that can be used to determine

the effectiveness of error messages [22]. The rubric allows “interviews” to deter-

mine if a students’ response to an error message (in the form of edits) is reason-

able. An effort was made to ensure that the rubric could be applied consistently

across different interviewers. Marceau et al. note that even subjective decisions

were made with surprising consistency. The final version of the rubric places a

student’s response into one of five categories: wholesale deletion of all of the er-

roneous code, response unrelated to the error, response unrelated to the error but

fixes another error, response related to the error but does not fix it, and fixes the

error.

I mostly agreed with the categories in the rubric created by Marceau et al. This

rubric was useful for my thesis as I needed inspiration for how to consistently

categorize responses to error messages across not only individual snapshots but

also across participant groups. However, as discussed in Section 4.15.2 on page 44,

I felt it was necessary to modify the rubric with the addition of two more categories

so that it would be ideal for my thesis and the data set that I had to work with.

26

Chapter 3

Problem Statement

I was often asked by my peers for assistance in troubleshooting errors in their Java

programs throughout my undergraduate education. One observation I made was

that my peers often experienced tunnel vision where their focus on the compiler’s

error message blinded them to other details that were critical to fixing their error. I

continued to witness this sort of behaviour when I became a teaching assistant for

CPSC 101 at UNBC. As a result of these experiences, I agree with the experts with

regards to compiler error messages being inadequate and unsuitable for beginners.

My hope is that, by providing more information and by pushing students into

thinking of possible causes of an error, enhanced compilers will allow novices to

experience less tunnel vision when debugging.

3.1 What Problem Needs Solving?

Students can encounter significant frustrations during debugging as a result of

poor compiler error messages. The time students spend on fixing errors can be con-

sidered to be unproductive in the same way that a math student that tries to solve

a problem via trial-and-error is unproductive; the student does not make progress

on their assignment unless they stumble across the correct solution (which they

27

may not be able to replicate in the future!). Students should be equipped with

software that allows them to work productively and achieve success; commercial

compilers, at least for novice programmers, are not good enough.

3.2 Why Is This Worth Investigating?

An investigation into increasing student productivity is worthwhile as it would

have three notable outcomes. First, students may be able to work more produc-

tively by using less time and effort to fix programming errors. Increased student

productivity may allow students to finish their assignments faster. If achieved, this

will lead to two further outcomes; either the students will have more time to relax

and thus less stress (and potentially reduced attrition rates), or instructors can fit

more concepts into their assignments (which will better prepare students for the

future).

Second, students may experience less frustration while debugging as it will not

be as difficult a task and they will have more support from the compiler. Frustra-

tion is a two-edged sword in learning. On one edge, there is evidence that frustra-

tion pushes subjects to be more creative and improves concept learning [32]. On

the other side, too much failure-induced frustration can induce helplessness [32].

Furthermore, frustration is a reaction to stress [24] and previous work has shown

that stress has a negative impact on university student graduation rates [29] and

academic performance [34].

Lastly, students may have more confidence in their programming ability if they

are able to do more without asking help. This may prompt students into experi-

menting more when programming and this can be a useful learning opportunity.

There is a reasonable body of literature on enhanced compilers. However, there

has been little work in the area of their effect on student productivity and of their

28

effect on student frustration. I intend to lay the foundation for future work with

my thesis.

Students in CS1 courses begin writing programs early on in their university ca-

reers (at UNBC, students write a “Hello World” program similar to 1.1 on page 2

within the first three weeks of classes). Novice programmers often struggle as they

are expected to write correct programs in a language they have never used before

while they are still learning the core concepts of the language. For example, the

Java concepts of statements and expressions may not be taught in CS1 and as such

students may not understand what javac is referring to with error messages like

“illegal start of expression” and “not a statement” . First year computer

science courses often have laboratory assignments that feature programming ques-

tions. If students are not able to finish an assignment entirely within a lab session,

they must work on their own with little support. This is done under the guise of

learning to do something by doing it yourself, also known as “minimally guided

instruction.” It has been argued that novice computer scientists do not learn how

to program well under minimally guided instruction [15]. If enhanced compilers

successfully improve student productivity, then they can be used to help students

write programs and provide guidance above minimally guided instruction.

3.3 Definition of Productivity

Webster Dictionaries defines productivity as “the power of producing, the state or

quality of being productive” [31]. Productivity can be thought of as the ratio of

output (object created) to input (resources consumed) with larger ratios represent-

ing higher levels of productivity.

In the context of my thesis, there are two types of output. The first is a com-

pleted programming problem. An example of a completed programming prob-

29

lem would be one of the questions on the laboratory quiz (see Appendix A.7 on

page 120) or one of the questions on the students’ weekly programming assign-

ments. The second type of output would be a successful fix for an error in that is

in the students’ programs.

Regardless of which type of output is being considered, there are two input fac-

tors; time and effort. It is trivial to calculate how much time has elapsed between

compilations since each compilation is timestamped (see Section 4.2 on page 34

for more information). Consequently, I am also able to calculate how much time

was required to finish a programming problem or to fix an error. The second input

factor, effort, is harder to quantify. I will be using the number of compilations re-

quired to achieve the output as a proxy for effort. For example, a student who can

fix a ‘;’ expected error in three compilations uses less effort than a student who

requires seven compilations to fix the same error.

30

Chapter 4

Research Methodology

The methodology described in this section is what was approved by both my su-

pervisory committee and the Research Ethics Board (REB) as well as being the

methodology that was ultimately carried out. The methodology that I originally

proposed is compared to the methodology that was actually done on an item by

item basis.

Section 4.1 on the following page discusses how the participants for the study

were selected and placed into two groups. Also included in this section is how the

participants were informed of and consented to the study. Section 4.2 on page 34

outlines the software that the participants used extensively over the course of the

semester, which was installed on the laboratory computers. The programming

pre-assessment, anonymous identifiers, information letter and consent form, and

the withdrawal form were all distributed at the same time. The former two are

discussed in Section 4.3 on page 35 while the latter two are discussed in Section 4.4

on page 37 and Section 4.5 on page 37, respectively.

The weekly assignments completed by the participants as a part of CPSC110

are discussed in Section 4.6 on page 38. Questionnaires 1 and 2 are discussed in

Section 4.7 on page 38 and Section 4.8 on page 39 respectively. The laboratory

quiz, where much of my data was collected, is described in Section 4.9 on page 40.

31

Questionnaire 3, the final questionnaire of my study, is detailed in Section 4.10 on

page 40.

Section 4.11 on page 41 discusses what was done to correct mistakes in the

participants’ anonymous identifiers on the three questionnaires. Section 4.12 on

page 41 examines the topic of how I determined if the enhanced compiler affected

the grades of my participants and what response was required. Some of the op-

erations that were done to prepare the mySQL database for use in statistical anal-

ysis is discussed in Section 4.13 on page 42. A description of how I examined the

snapshots of participants’ programs is provided in Section 4.14 on page 43 Lastly,

Section 4.15 on page 43 discusses the research questions for the study, which com-

ponents of the collected data are relevant, and which statistical tests were chosen

to answer the research questions.

4.1 Participant Selection and Grouping

In typical CS1 classes there may be some variety in the amount of Prior Program-

ming Experience that the students have coming in to the class. This is because CS1

is a required class for Computer Science majors (at least at the University of North-

ern British Columbia). As such, CS1 will include students who have never learned

anything related to programming as well as students who have at least some ex-

perience writing programs. When designing my study, I was concerned that my

results could be skewed if my two groups featured unequal amounts of students

with Prior Programming Experience. I attempted to control for this by selecting

CPSC110 as the class in which to conduct my study. CPSC110, or Introduction to

Programming for Non-Majors, is a class intended for students who need a Com-

puter Science course to graduate but do not want to declare a major in this field. I

argue that the students in CPSC110 are less likely to have any Prior Programming

32

Experience as students that are interested enough in programming to have Prior

Programming Experience are much more likely to major in Computer Science and

take the course intended for majors instead. In this regard, my study differs from

others conducted in the field on enhanced compilers as the other studies often take

in place in CS1 or CS1-like environments where a variety of Prior Programming

Experience can be reasonably expected [21] [13] [22] [5].

At the beginning of the semester, CPSC110 students were informed of the study

and were given the choice of opting out. It was made clear that students could

refuse consent without penalty and that they could withdraw at any time also

without penalty using a Withdraw Form (see Appendix A.3 on page 104 for the

consent form and Appendix A.4 on page 108 for the withdraw form that were

used). Participants also had the option to opt-out by ticking the appropriate boxes

on each of the three questionnaires (see Appendix A.6 on page 114). By the end of

the study, three participants had withdrew; all via the questionnaires.

The class of approximately fifty students was split into five lab sections. Each

lab section was deemed to be either part of the “control group” or the “enhanced

group”; this was done to preserve the independence of the two groups and to

avoid situations where participants in the control group could easily that some

of their peers had enhanced error messages while they did not. The lab sections

were chosen such that the control group and the enhanced group were of approxi-

mately equal size. After accounting for the participants who withdrew, the control

group contained twenty-three participants while the enhanced group had a size of

twenty-five. However, these numbers include participants who dropped the class

but did not choose to withdraw from the study. These participants still contributed

to the data used in my statistical tests.

The enhanced compiler Decaf [5] is bundled with an editor for creating Java

programs. This editor has an option to enable or disable enhanced error messages.

33

The participants in the enhanced group had Decaf configured such that enhanced

error messages are enabled. For participants in the control group, enhanced error

messages were disabled.

This component of my methodology saw large changes from between how it

was original proposed and its final version, though the Withdrawal form and the

process with which groups were created were present at all stages. The first draft

of my participant selection originally involved students providing consent to the

study when registering for the class. However, this approach was denied in part

due to the finalization of my methodology occurring after most of the students

had registered for the class. The next version of the methodology included an

opt-in study and an incentive in the form bonus credit to the final grades for all

participants of the study. In this version, potential participants would have been

informed of the bonus credit (and the fact that withdrawing from the study would

void the credit) before consent forms were distributed. The final version of the

methodology switched to an opt-out study with no incentive. One of the reasons

that drove the switch to an opt-out study was the maximize the sample sizes for

my statistical tests as that would enable me to get the most meaningful results from

this research opportunity.

4.2 Laboratory Computer Setup

Each laboratory computer had Decaf installed. Configuration files for Decaf, which

included the toggle for enhanced error messages, were generated for each user

based off of their username. This enabled a participant to have access to the same

type of error message throughout the entire study, regardless of which lab com-

puter was used and when. It also eliminated the possibility of participants tam-

pering with the configuration file as Decaf read from the configuration file imme-

34

diately after if was generated.

Decaf was also equipped with a data logger. This data logger records some

useful information every time a program is compiled including a snapshot of the

program being compiled, the date and time at which the compilation occurred,

and the type of error that was detected (if any). A record is created with this in-

formation and shipped to a mySQL database. Participants who withdrew from

the study were not subject to this data collection. The data collected can be used

to gauge student productivity. Student productivity is divided into a number of

categories, see Section 4.15 on page 43 for more details.

I originally intended to use a software Frankenstein in the form of the BlueJ

IDE, modified to use the enhanced compiler Decaf, and extended to use the data

collection extension for BlueJ named ClockIt. This combination would have been

installed on each of the laboratory computers. I believed ClockIt was necessary

at the time as I was unfamiliar with Decaf ’s data collection features. However, I

discovered that ClockIt would be unsuitable for use in my study after discussing

the matter with people close to the project. Without ClockIt, there was less of a

reason to use BlueJ as an editor for programs when Decaf was also an editor. As

such, I pivoted to a design where Decaf was used to meet my enhanced compiler,

program editor, and data collection needs.

4.3 Programming Pre-assessment and Anonymous Iden-

tifiers

The first day of class for the Winter 2017 semester was January 4th. Participants

were supplied with paper slips containing anonymous identifiers on January 9th.

Anonymous identifiers were comprised of two components in the following or-

der: a noun and a three digit number. All of the nouns and numbers were unique;

35

this provided enough redundancy to correct a participant’s identifier if minor mis-

spellings were present.

Immediately following the distribution of identifiers was the programming

pre-assessment (see Appendix A.5 on page 110). This entrance quiz featured many

of the intended learning outcomes for the course but was not graded. The purpose

of the pre-assessment was to provide a good indicator of how much prior pro-

gramming experience each participant had. The questions were approved by both

my supervisor and by the instructor for the course. The advantage that the pro-

gramming pre-assessment quiz has over Questionnaire 1 (see Appendix A.6.1 on

page 114) is that it is a more objective measurement of a participants’s level of prior

programming experience.

Before turning in the pre-assessments, participants were directed to write their

anonymous identifiers on the programming pre-assessments and to keep the paper

slips for later use. Lastly, participants were instructed to include their name so

that their identifier could be recovered if was forgotten it and the paper slip was

misplaced.

Some participants were absent and wrote the pre-assessment at a later date.

However, late writers had very large advantage over those who wrote the pre-

assessment on January 9th. This was due to the lectures in the days following

covering many of the concepts that were featured on the pre-assessment. As a re-

sult, late writers were not included in statistical analysis as it would have distorted

the data.

The programming pre-assessment did not change much between how it was

originally imagined and its final draft. Anonymous identifiers were originally pro-

posed to be generated by the participants rather than me. However, I could not

guarantee that the participants would include enough redundant, or unique, in-

formation to correct minor mistakes in their responses to questionnaires. As such,

36

this approach was discarded in favour of anonymous identifiers created by me.

4.4 Consent Form and Information Letter

Students were provided with a consent form / information letter (see Appendix A.3

on page 104) and a withdrawal form (see Appendix A.4 on page 108) for the opt-

out study on January 25th. Absent students were provided with the same materials

at the earliest opportunity in lab and tutorial sessions.

As alluded to in Section 4.1 on page 32, the first version of my study required

participants to opt-in. This was latter changed to opt-out due to concerns with

small sample sizes. The consent form / information letter changed accordingly.

4.5 Withdrawal Form

At the same time that programming pre-assessments were distributed, all partic-

ipants were given a dedicated withdrawal form that could be used to end their

participation in the study. The advantage of the withdrawal form over other forms

of withdrawing is that it could be used at any time. Regardless of the manner

and timing in which the withdrawal occurred, participants only needed to include

their anonymous identifier and a clear indication of their intention to withdraw by

ticking the appropriate box.

The withdrawal form in the first draft of my methodology required participants

to include their name when withdrawing from the study. The Research Ethics

Board (REB) that evaluated my study was concerned that this presented a per-

ceived or real vulnerability to bias by the researcher. My response to the REB’s

concern was to remove the requirement for withdrawing participants to include

their name. The withdraw from was modified such that only the participants’s

identifier was required to withdraw.

37

The REB was also concerned that participants who withdrew could be eas-

ily identified when it was time for the class to fill out questionnaires (as they

would otherwise be doing nothing during that time). The REB suggested that

non-participants should be given something to do on the questionnaire to prevent

their identification. I implemented this by including trivia-like questions related

to Java on each of the three questionnaires.

4.6 Weekly Assignments

The students’ weekly programming assignments began on January 10th and con-

tinued for the rest of the semester. Decaf was used from the second assignment

(January 17th) and onwards. As described in Section 4.2 on page 34, a snapshot

was generated and shipped to a database each time one of the participants com-

piled a program. No snapshots were generated for students who were not partici-

pating in the study.

I had little control over the assignments that were completed by CPSC110 stu-

dents as that was under the domain of the class’s instructor. As such, the weekly

assignments saw no change between the first and last versions of my thesis.

4.7 Questionnaire 1

I distributed Questionnaire 1 to the students on the week of January 31st (see Ap-

pendix A.6.1 on page 114). The purpose of this questionnaire was to allow par-

ticipants to self-assess both their level of prior programming experience as well

as their confidence in their ability to solve programming problems. Students had

completed their first programming assignment by this point in time.

Questionnaire 1 was a component of my methodology since the early stages

of my thesis. Like the other two questionnaires, Questionnaire 1 saw two notable

38

changes between what I originally imagined and what was given to participants in

my study. One of the major changes is that participants no longer have to include

their name when withdrawing from the study via questionnaire. As discussed in

Section 4.5 on page 37, the original purpose behind including the names of the

participants was to ensure that only participants currently in the study received

a bonus credit to final grades. Once this incentive was removed in later revisions

of my methodology, there was no further reason to identify withdrawing partici-

pants. The second change that occurred to the questionnaires was the addition of

activities for participants who had either withdrawn or were withdrawing from

the study. This was done at the request of my Research Ethics Board who were

concerned that non-participants identified by their peers could suffer from dimin-

ished social standing.

4.8 Questionnaire 2

Questionnaire 2 was distributed to the students throughout the week of February

28th (see Appendix A.6.2 on page 116). This questionnaire also asked participants

to self-assess their confidence in their ability to solve programming problems. One

of the differences between the two questionnaires is that Questionnaire 2 also asks

participants to self-assess the level of frustration they experience when fixing pro-

gramming errors.

Questionnaire 2 changed from beginning to end in precisely the same way as

questionnaire 1. For more information on which changes occurred, see Section 4.7

on the preceding page.

39

4.9 Laboratory Quiz

A laboratory quiz was held during the week of March 28th (see Appendix A.7 on

page 120). Much of the data used in statistical analysis was collected during the

quiz. The questions were structured to be very similar to the problems students en-

countered on the lab assignments they had completed previously. Students were

instructed to complete as many of the questions as possible in 60 minutes. The

quiz had exam-like conditions; students only had access to Decaf and their pro-

gramming expertise. The laboratory quiz was primarily for my study, although

the students may have found it useful as a review for the final exam.

The original draft for my study included a bonus credit of approximately 3% for

participants who were still a part of the study when they completed the laboratory

quiz. This incentive was removed in the later versions of my methodology.

4.10 Questionnaire 3

The third and final questionnaire was given to students through the week of April

3rd (see Appendix A.6.3 on page 118). Like the first and second questionnaires,

Questionnaire 3 also asked participants to self-assess their confidence in their abil-

ity to solve programming problems. Questionnaire 3 also asked students if they

would recommend the compiler that they used to other novice programmers. The

purpose for this question was to gauge how much appreciation there was towards

the compiler.

Like the other two questionnaires, questionnaire 3 saw some changes from

what I originally proposed. The details on these changes are described in Sec-

tion 4.7 on page 38.

40

4.11 Anonymous Identifier Corrections

After cursory inspection of the data entered into the database, I discovered that

there were some discrepancies in the anonymous identifiers used by participants.

Namely, that some participants were inconsistent in how they spelled their identi-

fier over the course of the study. In the majority of cases, the participant’s mistake

was with the numeral portion of their identifier. This issue was corrected in cases

where I was very confident I could do so while preserving the integrity of the col-

lected data.

The original design of my research methodology did account for this phenomenon.

As described in Section 4.3 on page 35, anonymous identifiers were designed to

contain two unique parts. This redundancy would allow me to correct mistakes in

the written responses by the participants.

4.12 Participant Grade Scaling

I consulted with the instructor for the course on possible mitigation strategies and

he requested that I use the following rules (which were then approved by the chair

of the department and by the Research Ethics Board):

• Compute the mean final grade of the control group and the enhanced group.

• If the difference between the means is greater than 3%, apply half the differ-

ence to all the students in the group with the lower mean.

I also went one step further than necessary and determined if a significant differ-

ence existed at all between the two groups using an independent samples t-test.

In the interest of respecting the privacy of the students, I will not be reporting the

exact statistics that were computed for grade scaling purposes. However I will say

that not only was the mean difference between the groups less than the required

41

3%, an independent samples t-test showed that there was no significant difference

between the control group and the enhanced groups. With these two pieces of

evidence, I could say with confidence that no grade scaling was necessary.

The data for this determination was based off of the student’s final grades,

which were provided by the course instructor. It should be noted that the provided

grades were for “students” and not “participants”. The students’ names were then

linked to individual participants with the help of the programming pre-assessment

(see Appendix A.5 on page 110) which contained both pieces of information by de-

sign. In other words, it was a necessary evil to compromise participant anonymity

as otherwise I would not have been able to determine if participants’ grades had

been unfairly impacted by the study.

In the first version of my research methodology, I did not have a strategy for

scaling the participants grades. The REB was concerned that the enhanced com-

piler may have had a significant effect on the student’s grades and they asked that

I clearly outline a strategy for mitigating this risk. My response to their concerns,

addressed above, was accepted.

4.13 Database Preparation

Once all the data was collected and entered, I began preparing the database so that

I could easily (and repeatedly if necessary) pull the data required for the statisti-

cal tests I needed to conduct to answer my research questions. This included the

process of separating laboratory quiz snapshots from assignment snapshots and

organizing snapshots into pairs of consecutive snapshots. In the process of doing

so, it became apparent that I had the data required to answer additional research

questions that I had not imagined during my proposal.

This component of my thesis was not present in my original methodology. It

42

was only once I had seen the data in the mySQL database that I was able to deter-

mine what needed to be done.

4.14 Laboratory Quiz Snapshot Examination

I examined each pair of snapshots that was captured during the laboratory quiz

and categorized each response according to the rubric by Hristova et al. [22] (out-

lined in Section 4.15.2 on the following page). The group that a participant be-

longed to (i.e., control or enhanced) was intentionally hidden during this process

to minimize the potential for bias in applying the rubric.

Additionally, I also examined the last snapshot that was available for each of

a participant’s programs. The purpose of this examination was to categorize that

participant’s performance on the laboratory quiz. The final snapshot for each ques-

tion was placed into one of three categories using the following rubric. The first

category, labelled as perfect, was for attempts that not only answered the ques-

tion but did so without containing any compilation errors. The second category is

labelled as imperfect. This category includes attempts at solving a quiz question

that contain compilation errors or did not completely answer the question. The

final category is for participants who did not even attempt a question.

I came across the rubric by Hristova et al.’s rubric early on in my research. It

has been a part of my methodology since then. Once I began examining snapshots

however, I felt the need to modify the rubric to better suit my needs. The additional

categories are described in Section 4.15.2 on the next page.

4.15 Statistical Analysis

This section contains all of the research questions that I answered with the data I

had collected over the course of my study. Included is a description of where the

43

data for the research question originates as well as the statistical test used to ana-

lyze it. The alternate and null hypotheses are included for each research question.

The statistical test results can be found in Chapter 5 on page 57 and the interpreta-

tion of those results in Chapter 6 on page 64.

4.15.1 Choice of α

Academic research often uses an α of 0.05. For my statistical tests, I use an α = 0.10

for two reasons. First, thanks to the exploratory nature of study, there is little in

the way of historical data to compare my results to. Second, the small sample sizes

used in my study have made it difficult to detect small effect sizes with confidence.

Using α = 0.10 is a reasonable compromise between minimizing the risk of Type

I and type II errors while extracting as many useful observations as I can for the

data set that I have.

The χ2-tests in my study often feature multiple tests on the same data in order

to compare two proportions out of a set (i.e., X and NOT X, Y and NOT Y) between

the control group and the enhanced group. In these cases, a Bonferroni correction

has been used in an attempt to be conservative with my findings. As a result, the

α used for these tests is not α = 0.10 but instead α = 0.10/N, where N is the number

of repeated tests done on the same data set.

4.15.2 When Is An Error Considered To Be Successfully Fixed?

Consider a hypothetical assignment where students are learning about the differ-

ent data types in Java. Part of the assignment involves matching values specified

in the assignment with an appropriate data type. If the student tries to assign the

value of 1.23 with the statement int x = 1.23;, a semantic error will occur as

decimals are prohibited for the int datatype. If the student then attempts to fix

the error by rewriting the statement as int x = ‘‘1.23’’;, this would not be con-

44

sidered a correct fix as the student is no closer to solving the root of the issue. If

the student instead rewrites the original statement as int x = 1; that would be

considered a correct fix as it correctly addresses the problem.

It is possible that students may take a reasonable approach to fix an error, only

to make a typing mistake or some other error in the process (which would then

cause another syntax or semantic error). In this scenario, the students’ attempt

would be flagged as partially fixed. By using this categorization, I can determine

if the enhanced error messages affect the rate at which new errors were introduced

when debugging. I used the rubric created by Hristova et al. [22] to assist me in cor-

rectly categorizing the fixes attempted by programmers. This rubric features the

following categories for responses to the first error message shown to program-

mers:

• DEL — Wholesale deletion of code, which may include code segments that

were not problematic.

• UNR — Unrelated to the cause of the error.

• PART — Partially addresses the cause of the error.

• FIX — Adequately addresses the cause of the error.

• DIFF — Partially or adequately addresses an error that is unrelated to the

current error message.

After observing some of the laboratory quiz snapshots, I felt compelled to in-

troduce two additional categories:

• OTHER — Intentionally ignores error message to work on unrelated compo-

nents of the program.

• NRN — No response needed, for pairs of snapshots where the first snapshot

was error-free.

45

The modified rubric above is what I used to categorize a participants’s response

to an error message in the later phases of my research.

4.15.2.1 Which Responses To Error Were Productive and Which Were Unpro-

ductive?

I deemed each of the categories above to be either productive or unproductive. My

reasoning for each category can be found in the list below.

• DEL — Unproductive. The programmer will (eventually) have to retype at

least some of what was deleted.

• UNR — Unproductive. The programmer is, at best, no closer to fixing the

error that is stopping future progress.

• PART — Productive. Even incomplete progress on an error is more produc-

tive than no progress at all.

• FIX — Productive. There is one fewer error stopping the programmer from

adding new features to their program (or from being finished entirely).

• DIFF — Productive. Similar to PART and FIX with the only difference being

is the the error addressed was not the error that was reported.

• OTHER — Productive. Adding new features to the program is being produc-

tive, even if it means procrastinating on fixing an error.

• NRN — Productive. Not needing to fix errors allows the programmer to add

new features to their program or to test existing features.

4.15.3 What Are The Phases Of Compilation?

Some compilers such as javac operate in phases where a different aspect of the

program being compiled is examined in each phase. These compilers are called

46

multi-pass compilers. An example of some phases that appear in multi-pass com-

pilers would be a lexical phase (creates tokens of the characters that appear in the

program), syntactic phase (uses the tokens to create an abstract syntax tree and de-

termines if any syntax rules have been violated), and a semantic phase (determines

if any semantic rules have been violated).

Compilers struggle to detect a category of semantic errors called runtime errors.

Runtime errors, as the name suggests, occur when attempting to run the program.

Integer division by zero is an example of a runtime error (since the result of this

division is undefined). Since runtime errors are a type of semantic error, some run-

time errors can be detected during the semantic phase. For example, an observant

compiler will notice that the statement “int x = 1 / 0;” will always result in a

runtime error and this information can be conveyed to the programmer. How-

ever, “int y = 1 / z;” will not always result in a runtime error since the value

of z (which may be zero) cannot be determined at compile time. Runtime errors

(specifically, those that cannot be detected at compile time) are outside the scope

of my thesis as I focus on what can be detected a compile time.

While not exactly a compilation phase, programmers should also be concerned

about a type of error that I call logical errors. Logical errors occur when a program

compiles successfully but does not work as intended. Consider the following ex-

ample. A programmer wants to calculate the average of two numbers. To do this,

an experienced programmer may use the statement “int x = (a + b) / 2;” . A

novice programmer, unaware that Java considers operator precedence, may in-

stead try “int x = a + b / 2;” . The novice programmer’s statement contains

a logical error as it does not behave as the programmer intended. Both of the

expressions are syntactically and semantically correct, meaning that the compiler

will not report any errors. Additionally, neither statement will cause any runtime

errors. As a result, it is virtually impossible for compilers to detect logical errors as

47

they would have to consider the programmer’s intentions and this is not possible

with the current technology. Like runtime errors, logical errors are also outside the

scope of my thesis.

In order to move from the current compilation phase to the next, the compiler

must not detect any errors during the current phase. First time programmers are

often confused when a multi-pass compiler reports that it has detected more errors

after an error was fixed. This phenomenon is a consequence of using a multi-

pass compiler on a program that contains errors in more than one compilation

phase. For example, if a program contains a lexical error, javac will not proceed

to the next phase (and thus will not detect any syntactic or semantic errors). When

the lexical error is fixed, javac will then detect all of the syntactic errors that are

present (which may be much higher than the previous number of errors that was

reported). This phenomenon also applies to my study in terms of what data is

collected; if a participant’s program contains errors in multiple phases, only the

earliest compilation phase will be recorded. Addressing this limitation would be

unfeasible for my study simply due to the nature of how multi-pass compilers

work. Decaf may mitigate this effect; both the control and enhanced groups were

only shown one error at a time. However, the total number of errors detected is

also reported which still presents an opportunity for students to become confused.

Up until this point, I have been discussing how typical multi-pass compilers

behave. It was necessary for me to determine if javac functioned like a typical

multi-pass compiler or if it was something entirely different. I read [9] not only

for information on how the javac compiler behaves but also to determine which

compilation phases were necessary to include in my study. I determined that javac

is not significantly different from the multi-pass compilers discussed above.

The participants of the study also needed to be considered before creating a list

of compilation phases to include in my research. As first time Java programmers,

48

my participants could not be expected to generate errors of all possible types as

they simply did not work with enough Java features to have the opportunity to

do so. For example, most or even all of the programming problems featured on

the assignments and the laboratory quiz could be completed with a single public

method contained in a single public class. As a result, the students were unlikely

to generate errors related to anonymous inner classes. This also means that the

participants were unlikely to generates errors for all of the compilation phases.

With this in mind, it should not be a surprise that some of the compilation phases

discussed in [9] were underpopulated and could not be used with the χ2-tests that

I wanted to use. I addressed this by employing a standard trick of χ2-tests where

underused categories are combined with related categories. The end result of this

trick is a smaller number of more populated categories, all of which can be used in

χ2-tests.

The final list of compilation phases that are considered in this thesis, and an

example error for each, can be found below.

• Lexical 1 — Failing to close a String literal (i.e., a double quote) that was

previously opened.

• Syntactic — Failing to terminate a statement with a semicolon (;).

• Semantic (1) — Attempting to assign a String (e.g., "hello") to an integer

variable.

• Semantic (2) — Including a statement that is unreachable and will never ex-

ecute.

• Okay — No errors detected by javac.

1This category was underpopulated for the laboratory quiz only. As such, it was combined with
the Syntactic category using the trick for χ2-tests mentioned previously.

49

The reason that Semantic (1) and Semantic (2) were both kept as separate cat-

egories was due to each category containing a sufficient number of errors to be

used in statistical testing. It should be noted that the lexical and syntactic cate-

gories were combined for the laboratory quiz as they did not have the required

counts for the statistical tests I used.

I examined the types of errors that were generated by my participants and

choose the category which best represented the error. I am confident I picked the

correct categories was there was little ambiguity about which category a type of

error belong to.

4.15.4 Why Is Timing Data Only Available For The Laboratory

Quiz?

The laboratory quiz featured a heavily controlled environment with minimal dis-

tractions. This environment was intended to minimize the time participants spent

on doing non-programming related activities (such as conversing with friends, up-

dating their Facebook status, and going to the bathroom) so that they could instead

focus on the laboratory quiz. As a result, if 30 seconds had elapsed between two

compilations, I could be fairly confident that the participant had spent that entire

time working on their program. On the other hand, as I observed first hand, the

assignments were not free of distractions and there were few clues to indicate how

much time was spent on non-programming activities. In order to preserve the

quality of my data, and of my statistical results, I chose to not analyze the timing

data of the assignments.

50

4.15.5 Q1 — Time and Compilations Per Program

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect the amount of time and/or number of compilations required to

complete a programming problem from start to finish?

As described earlier, a record is created for each compilation. Records were

then reorganized to contain pairs of consecutive snapshots (provided that the snap-

shots were both from the same participant and for the same program). The time

taken to complete a task is determined as the sum of the time elapsed between

each pair of snapshots. The number of compilations is the number of records that

exist for each question.

One flaw with this method is that the time elapsed between opening the IDE

and the first compilation is not recorded. Solving this flaw by making a record for

opening the IDE introduces a different set of problems. Some students will open

the IDE, read through the programming problem, and then start programming.

Other students will read through the programming problem first before opening

the IDE. Both types of users should finish the assignment in approximately the

same amount of time. However, by creating a record when opening the IDE, the

time elapsed will be different between these two types of users when no real dif-

ference exists.

For both time and compilations, an independent samples t-test will be used to

compare the means of the control and enhanced groups for statistical significance.

The null hypothesis, Q1.0, is “The enhanced compiler has no effect on the

amount of time/effort required to complete a programming problem.” The al-

ternative hypothesis, Q1.A, is “The enhanced compiler has some effect the amount

of time/effort required to complete a programming problem.”

51

4.15.6 Q2 — Productivity

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect student productivity?

The data for this research question originates from the snapshots captured dur-

ing the laboratory quiz. Similar to Q1, snapshots were grouped into pairs of con-

secutive compilations. Each pair was examined by hand to determine if a student’s

response to an error was productive or unproductive (see Section 4.15.2 on page 44

for more information on how this was done). A χ2-test test was used to determine

if the proportion of productive to unproductive compilations differed between the

two groups.

Additionally, the time spent on productive and unproductive activities, both

in total as well as on a per compilation basis, is also examined. In both cases,

an independent samples t-test is used to determine if significant differences exist

between the control group and the enhanced group.

The null hypothesis, Q2.0, is “The enhanced compiler has no effect on student

productivity.” The alternative hypothesis, Q2.A, is “The enhanced compiler has

some effect on student productivity.”

4.15.7 Q3 — Phases of Compilation

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect the distribution of compilations and/or time across the phases of

compilation (including the “Okay” phase)?

The data for Q3 originates from the snapshots collected over the course of

the study. Snapshots from the laboratory quiz will be analyzed separately from

snapshots collected during assignments. Each snapshot is placed into the compi-

lation phase that best represents the first error that was detected. For example a

52

‘;’ expected error would be considered as a syntactic error. Snapshot that contain

no compilation errors are placed into the Okay phase. A χ2-test test can determine

if there is a significant difference between the two groups with regards to how the

compilations are distributed.

Furthermore, the time spent on each compilation phase, both in total as well

as on a per compilation basis, is also analyzed. An independent samples t-test

is used in both of these cases to determine if significant differences between the

control group and the enhanced group are present.

The null hypothesis, Q3.0, is “The enhanced compiler has no effect on the distri-

bution of compilations/time among the phases of compilations.” The alternative

hypothesis, Q3.A, is “The enhanced compiler has some effect on the distribution

of compilations/time among the phases of compilations.”

4.15.8 Q4 — Frustration When Fixing Errors

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect the levels of frustration experienced by students when they are

fixing errors in their program?

The data to Q4 will come from participants’ answers to Questionnaire 2, Ques-

tion 1 (see Appendix A.6.2 on page 116). A independent samples t-test will deter-

mine if there is a difference in mean frustration experienced by the control group

and enhanced group.

The null hypothesis, Q4.0, is “The enhanced compiler has no effect on the frus-

tration experienced by the student when fixing errors.” The alternative hypothesis,

Q4.A, is “The enhanced compiler has some effect on the frustration experienced by

the student when fixing errors.”

53

4.15.9 Q5 — Confidence in Programming Ability

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect the level of confidence (and the degree of change for confidence)

that students have in their ability to solve programming problems?

The answer to Q5 will come from participants’ answers to Question 2 across

Questionnaires 1, 2, and 3 (see Appendix A.6.1 on page 114, A.6.2 on page 116,

and A.6.3 on page 118). The data will be examined with two different methods. For

level of confidence, an independent samples t-test will determine if a significant

difference in confidence exists between the two groups at any of the three points

in time. For the degree of change for confidence over time, a paired-samples t-

test will determine if there is a significant change in confidence between the three

points in time for each of the groups.

The null hypothesis, Q5.0, is “The enhanced compiler does not have any effect

on the confidence students have in the programming ability.” The alternative hy-

pothesis, Q5.A, is “The enhanced compiler does have some effect on the confidence

students have in the programming ability.”

4.15.10 Q6 — Compiler Appreciation

For students with similar levels of Prior Programming Experience, do enhanced

compilers affect the degree to which students recommend the compiler that they

used?

The answer to Q6 will come from participants’ answers to Questionnaire 3,

Question 1 (see Appendix A.6.3 on page 118). An independent samples t-test will

determine if there is a difference in the mean “appreciation” participants have for

the compiler in the control group and enhanced group.

The null hypothesis, Q6.0, is “The enhanced compiler has no effect on whether

54

they would recommend the compiler to other students.” The alternative hypoth-

esis, Q6.A, is “The enhanced compiler has some effect on whether they would

recommend the compiler to other students.”

4.15.11 Q7 — Self-assessed Versus Measured PPE

Does a relationship exist between a participant’s self-assessed Prior Programming

Experience and the results of the programming pre-assessment?

The answer to Q7 will come from participants’ answers to Questionnaire 1,

Question 1 (see Appendix A.6.1 on page 114) and the programming pre-assessment

(see Appendix A.5 on page 110). Pearson’s correlation will be used to determine

what relationship exists between a participant’s self-assessed Prior Programming

Experience and their performance on the programming pre-assessment.

The null hypothesis, Q7.0, is “There is no relationship between the two mea-

sures of participant Prior Programming Experience.” The alternative hypothesis,

Q7.A, is “There is some relationship between the two measures of participant Prior

Programming Experience.”

4.15.12 Q8 — Participant Performance

Does the enhanced compiler affect a participant’s performance on programming

questions answered under exam-like conditions?

This research question was created at the suggestion of my supervisory com-

mittee, who were concerned at the possibility that programmers who learned how

to program with the enhanced compiler could become worse programmers than

those whose learned with standard compilers such as javac. The data for Q8 will

come from the participants’ snapshots. For performance, I will examine only the

last snapshot available for each program that was written for the laboratory quiz.

As described in Section 4.14 on page 43, each question will receive a score of per-

55

fect, imperfect, or not attempted. A χ2-test will be used to determine if one of

the groups has significantly different performance than the other for each of the

questions as well as in general.

The null hypothesis, Q8.0, is “The enhanced compiler has no effect on the per-

formance of programming questions answered during a laboratory quiz.” The

alternate hypothesis, Q8.A, is “The enhanced compiler has some effect on the per-

formance of programming questions answered during a laboratory quiz.”

4.15.13 Research Question Which Was Considered But Not Used

I considered investigating the the enhanced compilers effect on the amount of time

and compilations spent on each type of error. For both of these measurements,

totals across all occurrences of the error were considered as well as average per oc-

currence. However, I choose not to pursue this research question for two reasons.

The first reason is that it would have required a considerable amount of time, too

much for one researcher on a tight timeline, to do this for the assignments. The

second reason is that, for the laboratory quiz, the sample sizes for each type of

error were simply too small to find statistical significant results.

This preliminary research question was broadened to use phases of compilation

rather than individual types of errors. Additionally, the component of time was ex-

cluded for assignments (though it remained for the laboratory quiz). This modified

version of the research question became Q3 (see Section 4.15.7 on page 52).

56

Chapter 5

Statistical Analysis and Results

This section contains all of the statistical analysis that I have conducted over the

course of the thesis. The statistical tests that I have conducted belong to one of two

categories. The first category, discussed in Section 5.1, contains that statistical tests

that I have done for the questionnaires and the programming pre-assessment that

participants completed at various points over the course of the study. The second

category, discussed in Section 5.2 on page 59, is the result of the data collected by

Decaf as the participants completed their programming assignments and labora-

tory quiz.

5.1 Questionnaires and Programming Pre-assessment

This section contains the statistical tests conducted to analyze the data collected

from the questionnaires (see Appendix A.6 on page 114) and programming pre-

assessment (see Appendix A.5 on page 110) that were distributed to the partici-

pants at various points of time.

57

5.1.1 Notes On Collected Data

In total, 45 participants wrote the pre-assessment. However, some of the partic-

ipants were late writers and were not included in statistical analysis for reasons

discussed in Section 4.3 on page 35. Since the pre-assessment took place before the

second laboratory assignment (and thus before the enhanced group had a chance

to use Decaf), it was not necessary to split the participants into the control group

and the enhanced group.

The questionnaires used a five-point Likert scale, meaning that the maximum

possible for these items was 5 and the minimum was 1. The pre-assessment con-

tains fourteen questions. Each answer was graded as 2 if it was correct, 1 if it

was partially correct, and 0 if it was incorrect or the answer was missing entirely.

In other words, the maximum possible score for the entire pre-assessment was 28

and the minimum was 0. The pre-assessment contained an extreme outlier with a

score of 14. This outlier was removed before the data was further analyzed, leaving

a sample size of 39.

5.1.2 Statistical Test Results

Descriptive statistics for both the control group and the enhanced group were com-

puted in regards to their performance on the programming pre-assessment, self-

assessed Prior Programming Experience, the amount of frustration experienced

when fixing errors, the amount of appreciation participants held for the compiler

they used, and their confidence at three points in the study. These statistics can be

found in Table A.27 on page 100.

The two groups were then compared for each of the items noted previously

using an independent-samples t-test. The results of the t-test can be found in Ta-

ble A.28 on page 101. The change in confidence over time is examined with the use

58

of a paired-samples t-test. The results of this t-test can be found in Table A.29 on

page 101.

Relationship between self-assessed and measured Prior Programming Experi-

ence Lastly the relationship between a participant’s self assessed Prior Program-

ming Experience and their performance on the programming pre-assessment was

examined by computing Pearson’s r. Pearson’s correlation determined that there

is a moderate relationship between the participants self-assessed Prior Program-

ming Experience and their pre-assessment scores (r(30) = 0.41, p = 0.02). This

test combined the control group and the enhanced group’s self-assessed Prior Pro-

gramming Experience since pre-assessment was already combined. The outlier

discussed earlier was also removed for this analysis.

5.2 Decaf Snapshot Analysis

This section focuses on analyzing the snapshots collected by Decaf. The snapshots

are aggregated into two groups. The first group, labelled as “Quiz” consists of

snapshots that occurred during the laboratory quiz. The second group, labelled as

“Assignments”, consists of all other snapshots that were captured.

The statistical tests fall into one of two categories. The first category, found

in Section 5.2.1 on the following page, includes an analysis of the distribution of

compile time errors grouped by compilation phase with both group totals and par-

ticipant averages, the participant’s responses to those errors (quiz only), also in

terms of group totals and participant averages. The phases of compilation that

are considered are detailed in Section 4.15.3 on page 46 The categories of partic-

ipant responses is outlined in Section 4.15.2 on page 44 with the reasoning for

the productive and unproductive categories being discussed in Section 4.15.2.1 on

page 46.

59

The second category, Section 5.2.2 on the following page, includes an analysis

of the total amount of time participants spent on each phase of compilation as well

as the average time spent per compilation for each phase. Also included is an

examination of time that was spent on each type of response to an error. It should

be noted that this section is entirely focused on the quiz for reasons discussed in

Section 4.15.4 on page 50.

The section concludes with a histogram of the most common compilation errors

encountered for both groups for both the assignments and the quiz.

5.2.1 Compilation Error Distribution Analysis

Snapshots were grouped with two different methodologies. The first method was

to group by which phase of compilation was an error first detected in. Assign-

ment snapshots were analyzed separately from laboratory quiz snapshots. For

assignment analysis, see Section 5.2.1.1. For the analysis of the laboratory quiz, see

Section 5.2.1.2 on the next page

5.2.1.1 Assignments

The distribution of the total number of errors encountered per compilation phase

in the laboratory assignments can be found in Table A.1 on page 89. Multiple

χ2-tests for independence were used to determine if there was a difference in the

distribution of errors between the control group and the enhanced and where ex-

actly the differences, if any, were located. The results from this test can be found in

Table A.2 on page 90.

The average number of errors encountered per participant for each compilation

phase is in Table A.3 on page 90. An independent samples t-test was conducted to

determine if there was a difference between the groups for each phase. The results

of that test are held in Table A.4 on page 90.

60

5.2.1.2 Laboratory Quiz

The distribution of the total number of errors encountered per compilation phase

in the quiz can be found in Table A.5 on page 91. Multiple χ2-tests for indepen-

dence were used to determine if there was a difference in the distribution of errors

between the control group and the enhanced and where exactly the differences, if

any, were located. The results from this test can be found in Table A.6 on page 91.

The average number of errors encountered per participant for each compilation

phase is in Table A.7 on page 91. An independent samples t-test was conducted to

determine if there was a difference between the groups for each phase. The results

of that test are held in Table A.8 on page 92.

The distribution of the total number of responses for each response category is

captured in Table A.9 on page 92. Multiple χ2-tests for independence were used to

determine if there was a difference in the distribution of errors between the control

group and the enhanced and where exactly the differences, if any, were located.

The results from this test can be found in Table A.10 on page 93.

The average number of participant responses for each response category is

stored in Table A.11 on page 93. An independent samples t-test was conducted

to determine if there was a difference between the groups for each response cate-

gory. The results of that test are held in Table A.12 on page 94.

5.2.2 Timing Data Analysis

Timing data recorded for the participants was examined in multiple ways. The

first was examining how participants spent their time with regards to the many

phases of compilation. The total amount of time that each group spent on each

compilation phase can be found in Table A.13 on page 94. An independent samples

t-test was conducted to determine if there was a difference in the above data, with

61

the results of the test contained in Table A.14 on page 94. The average period of

time between compilations for each phase was also analyzed and can be is located

in Table A.15 on page 95. Like the previous data, an independent-samples t-test

was used to determine if a difference between the two groups existed. The t-test

results can be found in Table A.16 on page 95.

The second approach for examining timing data was to look at how much time

participants spent the different categories of responses to error messages. The to-

tal amount of time each group spent on each response category is contained in

Table A.17 on page 95. An independent samples t-test was used to check if the two

groups were significantly different for any of the categories. The results of the t-

test are in Table A.18 on page 96 The average amount of time that elapsed between

compilations for each response category is stored in Table A.19 on page 96 And

independent samples t-test was used to determine if there was difference in the

average length of time between compilations. The results of this test can be found

in Table A.20 on page 97.

5.2.3 Performance Analysis

The performance of each group on each of the laboratory quiz questions is con-

tained in Table A.21 on page 97. Multiple χ2-tests for independence were con-

ducted to determine if there was a difference between the two groups for any of

the questions as well as in general. The number of compilations required to an-

swer each laboratory question was also recorded and this data can be found in

Table A.23 on page 98. An independent samples t-test was used to determine if

the two groups required a different number of compilations for each of the quiz

questions. The results of the t-tests are stored in Table A.24 on page 99. Lastly, the

time that participants spent on each questions is stored in Table A.25 on page 99.

The test used to determine if the control group and the enhanced group required

62

different amounts of time for each question was an independent samples t-test.

The t-test results can be found in Table A.26 on page 100.

63

Chapter 6

Discussion

This section contains discussion of the research questions that were outlined in

Section 4.15 on page 43 and of the statistical test results that support or refute the

theories I formulated before conducting my research. The α used to determine

statistical significance is 0.10 unless explicitly stated otherwise, (see Section 4.15.1

on page 44 for an explanation on why α varies). Additionally, the top ten most

common errors are discussed in Section 6.9 on page 76.

6.1 Q1 — Time and Compilations Per Program

My interest in the productivity of first time programmers led to the development

of research question 1, which examines the novice programmers’ ratio of output

to input. In the context of Q1, the output is a laboratory quiz question (see Ap-

pendix A.7 on page 120) while the input is examined with two approaches. The

first approach, detailed in Section 6.1.1 on the next page analyzes the number of

compilations required, on average, to complete each question on the laboratory

quiz. The second approach, discussed in Section 6.1.2 on the following page exam-

ines how the average amount of time that was required to complete a laboratory

quiz question. In both cases, the participants’ performance is also considered. The

64

interpretation of these test results is held in Section 6.1.3.

6.1.1 Analysis of Compilations

Table A.24 on page 99 holds the test results that are used in the following anal-

ysis. There was insufficient data to use a t-test to analyze Question 1 (imperfect

performance), Bonus Question 1 (perfect performance) and Bonus Question 2. For

the questions where there was enough data, none of them showed a significant

difference between the control group and the enhanced group.

6.1.2 Analysis of Time

The results of the t-test discussed here are contained in Table A.26 on page 100.

There was not enough data to conduct a t-test for Question 1 (imperfect perfor-

mance), Bonus Question 1, and Bonus Question 2 (perfect performance). Question

2, Question 3, and Bonus Question 2 (imperfect performance) do not show a sig-

nificant difference between the control group and the enhanced group.

The only question which showed a significant difference between the control

group and enhanced group is Question 1. This difference is of medium effect size

(0.50 < (d = 0.67) < 0.80) and is in favour of the control group. The enhanced

group did have a noticeable outlier with a time of 680 seconds, which is more than

three standard deviations above the mean. However the test was still significant

even after the outlier had been removed.

6.1.3 Conclusion

The evidence above suggests that there are minimal differences between the en-

hanced compiler and the standard compiler on both measures of input that are

needed to write programs. In fact, there is some evidence that the enhanced com-

65

piler actually decreases productivity for simple programs. A possible explanation

is that the enhanced group may have lost productivity if its users felt compelled to

read the entirety of the longer error messages for easy-to-fix errors.

6.2 Q2 — Productivity

I was curious about what effect an enhanced compiler would have, if any, on the

effectiveness of first time programmer responses to error messages and their pro-

ductivity when fixing errors. Research question 2 explores this topic. This ques-

tion is approached with two methods. In the first method, I examine the number

of compilations for for each response category. The results of this method are in

Section 6.2.1. In the second method, I examine the time spent on each response cat-

egory. This method’s results are in Section 6.2.2 on the next page. My conclusions

for research question 2 are discussed in Section 6.2.3 on page 68.

6.2.1 Analysis of Compilations

The analysis of compilations examines both proportions and averages. For the

comparison of proportions between the control group and the enhanced group, see

Section 6.2.1.1. For the comparison of averages, see Section 6.2.1.2 on the following

page.

6.2.1.1 Comparison of Proportions

Table A.10 on page 93 has the results of the χ2-test that are discussed here. A Bon-

ferroni correction is applied to the α for these tests, giving α = 0.10/7 = 0.014 ≈ 0.01.

With this modified α, the χ2-tests reveal that there a significant difference in for

responses in the OTHER (5.00% vs 1.72%) and NRN (16.96% vs 23.44%) categories.

When reducing the categories to just two, productive and unproductive, the χ2-test

66

shows that enhanced group also has a greater proportion of productive compila-

tions (70.15% vs 77.85%).

6.2.1.2 Comparison of Averages

The table that holds the the independent samples t-test that is relevant to this

question is Table A.12 on page 94. Only one response category has a significant

result; the OTHER category. Specifically, the enhanced group had fewer com-

pilations where they ignored the most error message to work on other parts of

their program. The enhanced compiler had a medium large effect in this instance

(0.50 < (d = 0.70) < 0.80).

6.2.2 Analysis of Time

I used two approaches to analyze how much time was spent on each response

category between the control group and the enhanced group. The first approach

looks at the total time spent on each response category for each of the groups. This

approach is discussed in Section 6.2.2.1. The second approach examines the time

between individual compilations in each of the response categories. This discus-

sion of this approach can be found in Section 6.2.2.2 on the following page

6.2.2.1 Total Time Per Response Category

The test results that are relevant to this approach are in Table A.18 on page 96.

The test reveals that the enhanced group spent significantly less time on the DEL

and UNR categories. For the DEL category, the enhanced compiler had a large

effect (0.80 < (d = 0.82)). The impact on the UNR category was medium in size

(0.50 < (d = 0.60) < 0.80). Reducing the categories to just two, productive and

unproductive, reveals that the enhanced group also spent significantly less time

67

overall on unproductive compilations. The effect size here is large (0.80 < (d =

0.81)).

6.2.2.2 Time Per Compilation For Each Response Category

Table A.20 on page 97 holds the independent samples t-test that is the focus of this

approach. The results show that the enhanced group, on average, spent signifi-

cantly less time per compilation for the DIFF and FIX categories. The enhanced

compiler had a medium impact on the DIFF category (0.50 < (d = 0.53) < 0.80)

while the FIX category experienced a small change (0.20 < (d = 0.23) < 0.50).

6.2.3 Conclusion

It can be stated with confidence that the enhanced compiler improves the pro-

portion of compilations that are productive. This is primarily by accomplished

increasing the proportion of compilations where there are no errors to fix. Users

of the enhanced compiler made much better use of their time as they spent signif-

icantly less time on both types of unproductive responses overall. Students in the

enhanced group fixed their errors faster than their peers in the control group.

6.3 Q3 — Phases of Compilation

Research question 3 explores the topic of how the compilations of the participants’

programs are distributed through the various phases of compilation (for more in-

formation on the phases of compilation, see Section 4.15.3 on page 46). I wanted

to determine if an enhanced compiler would have any effect on this distribution

as well as how much time is spent on each phase. The laboratory quiz and the

assignments were examined separately as the former was a tightly controlled en-

vironment and the latter was not. The findings for the assignments can be found

68

in Section 6.3.1 whereas the findings for the quiz are contained in Section 6.3.2 on

the next page. My conclusions on Q3 can be found at Section 6.3.3 on page 72.

6.3.1 Assignments — Analysis of Compilations

The analysis of the number of compilations in each compilation phases for the

assignments requires two approaches in the first approach, I compare proportions.

This comparison is located in Section 6.3.1.1. The second approach examines the

average number of errors encountered by each student for each compilation phase.

This approach is held in Section 6.3.1.2 on the following page.

6.3.1.1 Comparison of Proportions

Table A.2 on page 90 has the test results that are of interest. As mentioned in

Section 4.15.1 on page 44, a Bonferroni correction is being used. With a total of six

separate χ2-tests being done on the same data set, the α is calculated as α = 0.10/6 =

0.017 ≈ 0.02.

Even with this conservative α, there is a statistically significant difference be-

tween the control group and the enhanced group for every compilation phase

(with the sole exception of the lexical phase) as well as in general. This should

not be terribly shocking as the χ2-test is quite sensitive to sample size. With more

than 14000 errors considered, it would be more surprising if the tests were not sig-

nificant. Instead, the focus should be more on the effect size which gives a better

idea of just how much difference there is between the groups. The effect size is

determined with Cramer’s V which considers the degrees of freedom to determine

whether an effect is of small, medium, or large size [33]. It turns out that the effect

size for comparison of individual compilation phases, including the “Okay” phase

where no errors are detected, each has a small effect size (since V < 0.1). However,

comparing the populations gives a effect size that is in between small and medium

69

(0.05 < (V = 0.09) < 0.15. The enhanced group has a slightly larger proportion

of compilations containing syntactic errors (30.80% vs 32.54%) and of compilations

containing no errors (32.72% vs 37.87%) while also having slightly smaller propor-

tions for both the first semantic phase (32.40% vs 26.94%) and the second semantic

phase (3.59% vs 2.00%).

6.3.1.2 Comparison of Averages

The test results discussed here are derived from Table A.4 on page 90. The re-

sults for both the semantic phases are significant with an α = 0.10. The enhanced

compiler’s effect on this issue is of medium size (0.20 < d < 0.80). The Lexical,

Syntactic, and Okay phases are not significant.

6.3.2 Laboratory Quiz

The analysis of compilation phases for the laboratory quiz is divided into two

parts. In the first part, the number of compilations for each phase is examined. This

part can be found in Section 6.3.2.1. In the second part, discussed in Section 6.3.2.2

on the next page the time spent on each compilation phase is discussed.

6.3.2.1 Analysis of Compilations

The analysis of the number of compilations in each compilation phases for the lab-

oratory quiz requires two approaches in the first approach, I compare proportions.

This comparison is located in Section 6.3.2.1. The second approach examines the

average number of errors encountered by each student for each compilation phase.

This approach is held in Section 6.3.2.1 on the next page.

Total Errors Per Compilation Phase Table A.6 on page 91 contains the test re-

sults that are discussed here. A Bonferroni correction has been applied to these

70

test results, giving α = 0.10/5 = 0.02. The results show a significant differences

between the control group and the enhanced group for just two categories; for

compilations containing no errors (21.92% vs 30.02%) as well as general difference

between the two populations. Cramer’s V , using the guidelines in [33], shows that

the enhanced compiler had a small effect on the proportion of error-free to erro-

neous compilations ((V = 0.09) < 0.10) as well as a small-medium effect on the

populations in general (0.06 < (V = 0.10) < 0.17).

Average Number Of Errors Per Compilation Phase The table holding the tests

result discussed in this section is Table A.8 on page 92. None of the tests show a

significant difference between the control group and the enhanced group.

6.3.2.2 Analysis of Time

Two methods were used the investigate the time spent on each compilation phase.

The first approach looks at the total time dedicated to each compilation phase.

The second approach looks at the average time spent on each compilation for each

phase. Both approaches are discussed below.

Total Time Per Compilation Phase The tables that contains the independent

samples t-test results discussed here is Table A.14 on page 94. The only test that

is significant is for the first semantic phase. This test shows that the enhanced

group spent significant less time on this type of semantic error. The difference is of

medium size (0.50 < (d = 0.67) < 0.80).

Average Time Per Compilation For Each Phase Table A.16 on page 95 holds

the test results that are relevant here. Like the previous test, the enhanced group

requires significantly less time to respond to errors of the first semantic phase. The

71

effect of the enhanced compiler here is of small-medium size (0.20 < (d = 0.30) <

0.50).

6.3.3 Conclusion

The evidence above shows that the enhanced compiler has an effect on how its

users’ compilations are distributed across the phases of compilation. Perhaps most

importantly, the enhanced group has an greater proportion of compilations that

contain no compilation errors on both assignments and laboratory quizzes. The

enhanced group has a greater proportion of syntactic errors and a reduced propor-

tion of semantic errors on programming assignments. Furthermore, the enhanced

compiler reduces the average number of compilations containing errors detected

during both semantic phases. Lastly, users of the enhanced group spend signifi-

cantly less time overall on errors of the first semantic phase which is likely due to

significantly quicker responses to these errors.

6.4 Q4 — Frustration When Fixing Errors

The frustration experienced by first time programmers when they fix errors in their

programs is the topic of Research question 4. Table A.28 on page 101 contains

the results of the independent samples t-test that answers this question. This test

shows a significant difference with α = 0.10. Using Cohen’s d as the effect size

reveals the difference is of large size ((d = 0.75) < 0.80).

6.4.1 Conclusion

I can say with confidence that the the enhanced compiler greatly reduces the frus-

tration experienced by novice programmers when they attempt to fix errors in their

programs.

72

6.5 Q5 — Confidence in Programming Ability

The confidence of novice programmers, how this confidence changes over time,

and what effect the enhanced compiler has on this confidence is the focus of re-

search question 5. I used two different approaches to examine this question. In the

first approach, I examined change of confidence over time for the control group

and the enhanced groups separately. My findings for this approach can be found

in Section 6.5.1. For the second approach, I compared the two groups at each of

the points in time that I measured confidence. I discuss this approach more in

Section 6.5.2. A summary of my findings for research question 5 are contained in

Section 6.5.3 on the next page.

6.5.1 Confidence Change Over Time

The paired samples t-test results that are discussed here originates from Table A.29

on page 101. It is clear that the control group does not experience any significant

change over the course of the study. However this observation does apply to the

enhanced group which does see change between change between all but the first

and second time points.

6.5.2 Comparison of Control And Enhanced Groups

The results of the independent samples t-test that was used to determine if the

two groups had significantly different confidence at any point in time is held in

Table A.28 on page 101. With none of the tests showing significant results, it cannot

be stated with confidence that the two groups had different levels of confidence.

73

6.5.3 Conclusion

The enhanced compiler had a small effect on how confidence changed over time.

Specifically the programmers who used the enhanced compiler Decaf, at least in

the second half of the semester, experienced a greater increase in confidence in their

programming abilities, than their peers who used the commercial compiler javac.

Despite this finding, there is no evidence that the two groups had different levels

of confidence at any of the three points in time where confidence was measured.

6.6 Q6 — Compiler Appreciation

I was curious about whether first time programmers would notice that effects on

an enhanced compiler or not. Research question 6 explores this idea. Table A.28

on page 101 is home to the results of the independent samples t-test that answer

this question.

With α = 0.10, the test shows that there is a significant difference between the

two groups. Specifically, members of the enhanced were much more eager (0.80 <

(d = 0.83)) to recommend the compiler that they used over participants in the

control group.

6.6.1 Conclusion

The evidence above shows that first time programmers, even with the little ex-

perience they have in the world of programming, are able to appreciate what the

enhanced compiler does to make programming more bearable.

74

6.7 Q7 — Self-assessed Versus Measured PPE

Controlling for the participants’ Prior Programming Experience, if any, was a nec-

essary in order to obtain meaningful results for my other research questions. I was

also interested in the strength of the relationship between my two measures of

Prior Programming Experience and decided to this the focus of research question.

The result that is of interest here is originally noted in Section 5.1.2 on page 59.

With α = 0.10, Pearson’s correlation shows that the relationship between the

two measures of Prior Programming Experience is significant. The relationship

coefficient r = 0.41 means that a moderate positive correlation exists.

6.7.1 Conclusion

The evidence above suggests that study participants can be trusted to accurately

report how much Prior Programming Experience they have coming into a class.

6.8 Q8 — Participant Performance

The concern that novices who learn using the enhanced compiler may perform

worse programmers than programmers who learn with commercial compilers is

explored in research question 8. I used a χ2-test to determine if this was the case

and the results of this test are stored in Table A.22 on page 98. Bonus Question 1

was not attempted by anyone in the control group and could not be examined with

a χ2-test. None of the remaining tests show that there was a significant difference in

performance between the two groups on any of the questions as well as in general.

75

6.8.1 Conclusion

The evidence shows that the enhanced compiler may not have any effect on a par-

ticipant’s performance on laboratory quiz questions. This is corroborated by a

previous finding in this thesis; consider the participants’ final grades of which lab-

oratory assignments are a sizable portion. As discussed in Section 4.12 on page 41

there was no difference in the participants’s final grades between the control group

and the enhanced group. Since the enhanced compiler appears to have no effect

on participant performance in both examination and assignment settings, it can be

said with reasonable confidence that the enhanced compiler has no effect at all on

the performance of first time programmers.

6.9 Top Ten Most Common Errors

This section discusses the top ten most common errors that were encountered by

the control group and how the enhanced group compares. The top ten most com-

mon errors can be found in Appendix A.1 on page 103 for the assignments and

Appendix A.2 on page 103 for the laboratory quiz. Section 6.9.1 compares the top

ten from the assignments and the laboratory quiz. Section 6.9.2 on the next page

examines how the top ten for the assignments compares with similar research by

other authors.

6.9.1 Comparison of Assignments and Laboratory Quiz

Six of the ten most common errors on the assignments were also featured in the

ten most common laboratory quiz errors. The six error types are “Cannot find

symbol”, “; missing/expected”, “‘)’ expected”, “Illegal start of expression”, “Not

a statement”, and “<identifier> expected”. The “Cannot find symbol” error was

the most common error by far for assignments and laboratory quizzes. I am not

76

surprised by this finding; the error that I had to help the participants with the most

on their assignments was misspellings of variable names which often generates a

“Cannot find symbol” error.

6.9.2 Comparison of Assignments and Similar Research

In this section, I compare the top ten most common errors encountered with the

most common errors encountered by participants in other studies. It should be

noted that the top ten most common errors in my work are unlikely to be identical

to the work of other researchers as everyone appeared to use a different set of as-

signments (with each set of assignments having a different set of errors that could

be reasonable generated by participants). The comparisons have been grouped by

author. Some of the errors reported in other studies may seem like they are very

different from the errors in my top ten but the causes of the error are identical and

so I have treated these categories as identical as well. I will report the names of the

categories as they appear in the work where they are found. The names of my er-

rors were inspired by the actual errors messages generated by javac whereas other

researches may have followed a different philosophy for naming their errors.

6.9.2.1 McCall and Kölling

In the study conducted by McCall and Kölling [23], the categories that are used

are a little vague but nevertheless there is some overlap between the most com-

mon errors that are encountered. The four errors that are included in both of our

studies are: “; missing”, “variable name written incorrectly” (a match for “can-

not find symbol”), “Invalid syntax” (a possible match for “‘)’ expected”), and type

mismatch in assignments (a match for “incompatible types”).

77

6.9.2.2 Becker

Becker has conducted multiple studies that feature common errors that students

make [4–6]. There is little variation in the top ten most common errors across these

studies so I will compare my results to just [5]. The six errors that can be found in

both of our top tens are: “Cannot find symbol”, “‘)’ expected”, “not a statement”,

“illegal start of expression”, “reached end of file while parsing”, and “<identifier>

expected”.

6.9.2.3 Rountree

The categories used in Rountree’s study [30] are broader than what I used and

only six of their ten most common errors were reported. However there are still

four errors that are common between both of our studies. These errors are: “un-

known variable” (a match for “cannot find symbol”), “missing ;”, “bracket ex-

pected” (matches with “ ‘)’ expected”), and “illegal start of expression”.

6.9.2.4 Jadud

The top ten most common errors recorded in Jadud’s study [18] contains seven er-

rors that are also in my top ten. The errors that are in both of our top tens are: “;

expected”, “unknown variable” (matches with “cannot find symbol”), “bracket ex-

pected” (matches with “ ‘)’ expected”), “illegal start of expression”, “incompatible

types”, “class or interface expected”, and “<identifier> expected”.

6.9.2.5 Jackson et al.

In Jackson et al.’s work, [17], also features seven errors that were in both of the

top ten most common errors encountered. The seven errors that match are: “can-

not resolve symbol”, “; expected”, “illegal start of expression”, “class or interface

expected”, “‘)’ expected”, “incompatible types”, and “not a statement”.

78

6.9.3 Conclusion On Error Types

Overall, there was a large overlap between the errors encountered by the partic-

ipants in my study and the participants in other studies. Every study, mine in-

cluded, feature an error in the top ten that is most often caused by misspelling

the name of a variable. I would recommend that novice programmers learn to

program with a tool that has some sort of built in “spell checker” (at least for the

names of variables) as I feel this may be an effective way to address this common

error. All but one of the studies that were examined featured missing semicolons

as one of the most common errors. It may be worthwhile for future researchers

to investigate how to teach novice programmers the importance of semicolons to

reduce the frequency with which this punctuation is forgotten.

79

Chapter 7

Conclusions

This chapter is split into two sections. The first section, Section 7.1, is a brief

overview of what occurred over the course of the study. The second section de-

scribes my results and recommendations for the future. Additionally, the second

section also compares the results of my thesis with similar work. This section is

located at Section 7.2 on the next page.

7.1 Summary of Conducted Study

During my time as an undergraduate Computer Science student, as well as during

my tenure as a Teaching Assistant, I have had first hand experience with helping

novice programmers fix frustrating errors in their programs. My experiences have

made me curious on how much productivity is lost among novice programmers

who may resort to trial-and-error to fix programming errors. I also wanted to in-

vestigate possible approaches that could improve this productivity. To satisfy my

curiosity, I conducted a study at the University of Northern British Columbia over

the course of the Winter 2018 semester. The class I choose to use for my study was

CPSC110 (Introduction to Programming For Non-Majors), which teaches the basics

of programming with Java to students who have little to no experience with pro-

80

gramming. I choose this class over typical CS1 classes because I wanted my study

to focus on first time programmers with as little Prior Programming Experience

as possible. The class was split into two groups of approximately equal size. The

control group used the javac compiler while the enhanced group used the Decaf

enhanced compiler. Decaf takes the error messages that are output by javac and

restructures them so that they are easier to understand for first-time programmers.

Every compilation performed by the participants generated a snapshot that was

shipped to a database for further analysis. Participants in the study completed a

number of study materials including a prior programming pre-assessment, three

questionnaires, and a laboratory quiz. My findings are presented below, along

with recommendations that follow these conclusions and potential future work in

related areas.

7.2 Conclusions and Recommendations

The enhanced compiler was successful at reducing the proportion of compilations

that contained compilation errors generated in both assignment and laboratory

quiz settings. In other words, a greater proportion of compilations were dedicated

to adding new features to programs instead of fixing errors. I feel that this impact

alone is enough to recommend to universities like UNBC that they use enhanced

compilers in the teaching of Computer Science and the basics of programming to

students. There is potential for future work in this area; namely, more studies need

to be conducted to determine if this finding holds true for students with more

programming experience (such as second and third year students). My findings

corroborate Becker’s as he also found that users of enhanced compilers generate

less errors than users of commercial compilers [4, 5].

The enhanced compiler has an impact on the distribution of compilations across

81

the various phases of compilation for both assignments and laboratory quizzes.

Specifically, the novice programmers who used the enhanced compiler were slightly

more likely to generate syntactic errors and slightly less likely to generate seman-

tic errors on their assignments. Even with the much smaller number of errors that

were considered for the laboratory quiz, it can be stated with confidence that the

enhanced compiler was effective at addressing errors of the first semantic phase

(which includes errors related to type checking). The additional information in

the enhanced compiler’s error messages may have helped its users understand the

causes of the semantic errors which in turn would have helped these programmers

avoid these errors in future compilations. Decaf ’s users were able to address these

errors faster when they did occur than users of javac, which resulted in the en-

hanced group spending significantly less time overall on these errors. As for the

syntactic errors, the additional information may have been less helpful for some of

the errors in this category. For example, programmers in both groups were serial

forgoers of semicolons despite being well aware that statements in Java must end

with this punctuation. Future work can investigate this change in distribution and

whether it has beneficial, harmful, or neutral impact on novice programmers. In

my thesis, syntax errors outnumbered semantic errors (with the exception of the

control group on assignments, where semantic errors were slightly more common).

This agrees with Lewis and Mulley’s results [21]; namely, that novices generate a

greater proportion of syntax errors while experienced programmers have a greater

proportion of semantic errors.

The enhanced compiler was successful at reducing the frustration that novice

programmers experience when they fix errors in their programs. I have previously

discussed in Section 3.2 on page 28 why I believe it is beneficial to reduce the

frustration encountered by novice programmers. This finding is another reason

why I recommend the use of enhanced compiles in CS1 classrooms for universities

82

like UNBC. Becker’s findings agree with my own; we both found that enhanced

compilers are successful at making compiler errors less frustrating for students [4].

The enhanced compiler has mixed results on the productivity of novice pro-

grammers on laboratory quizzes. For very simple programs, there is evidence that

the enhanced compiler can actually reduce the productivity of its users. This may

be a consequence of the enhanced compilers longer error messages. Future work

on enhanced compilers can focus on the effect of message length on the productiv-

ity of CS1 students. The enhanced compiler did not have a discernible effect on the

time nor compilations required to complete the more sophisticated quiz questions.

Users of the enhanced group had a greater proportion of compilations that were

productive and spent significantly less time overall on both types of unproductive

activities. There is also evidence that students who used the enhanced compiler

were able to make progress, including complete fixes, on errors faster than stu-

dents in the control group. This is finding is yet another reason why I recommend

the use of enhanced compilers in the teaching of CS1. It should be noted that my

study only measured productivity on laboratory quiz questions. Future studies

can focus on the effect of the enhanced compiler, if any, on novice programmers’

productivity on assignments. This would require a scheme to minimize the effect

of the participants being distracted by causes not related to programming. Other

work in the future can examine different approaches for improving the productiv-

ity of novice programmers. My results run contrary to Nienaltowski et al.’s [26]

who found that “long form” error messages, like the ones used by Decaf, did not

impact response times relative to the “short form” error messages produced by

javac.

The enhanced error messages generated by Decaf were less likely to be ignored

by its users than novice programmers who had used javac. This is beneficial as

procrastinating on an error fix can cause trouble later on in the development of

83

a program. Specifically, the compiler cannot consistently determine if any code

segments after the first error, including new features, are erroneous or not. As

such, novice programmers may waste time and effort if they attempt to fix errors

in the new code segments if those errors don’t actually exist and I believe this habit

should be discouraged early on in a novice programmer’s studies. The evidence

suggests that enhanced compilers can be used to achieve this. I was unable to find

any historical data on how enhanced compilers affect the proportion of responses

which ignore the reported error message. Future studies should examine the im-

pact of the enhanced compiler on the rate of error messages that are ignored. In

doing so, it will become more clear if this observation exists in more classrooms

than just those in western Canadian universities.

The enhanced compiler that was used did not have any affect on the academic

performance of novice programmers for both assignments and laboratory quizzes.

This finding may be useful for universities that are considering using an enhanced

compiler but are concerned their effects in academic achievement. I was unable

to find any historical data on the effect of enhanced compilers on academic per-

formance nor the effect on attrition rates. Rountree attempted to address attrition

rates with ClockIt but provides no data nor statistics on the effectiveness of this

tool [30]. I believe that future work in this area is important and the field of Com-

puter Science would benefit from examining the effects of enhanced compilers on

not only academic achievement but also student attrition rates over a number of

years.

Students who used the Decaf enhanced compiler were much more eager to

recommend it to other first time programmers than students who used the javac

commercial compiler. It appears that even first time programmers are capable of

noticing and appreciating more helpful error messages. Becker also examined if

there was a significant difference in eagerness to recommend the enhanced com-

84

piler [4]. It is worthwhile to compare my results with Becker’s as the format of

our studies were similar with regards to how error messages were presented to

the participants. (the control group was presented with javac messages while the

the enhanced/intervention group was presented with both javac and Decaf mes-

sages). Becker used two approaches for this examination. In the first approach,

Becker used a independent samples t-test to compare the groups’ answers to a

questionnaire asking “Would you recommend Decaf to someone who wants to

learn Java but has never programmed before?”. The results of the test suggest that

there is no conclusive evidence that the groups were significantly different in this

regard. It should be noted that my test results on this question were almost iden-

tical to Becker’s (0.06 vs 0.07) and that Becker’s results are significant with the α

that I used (α = 0.10). The participants in Becker’s study also had the option of

adding comments to their questionnaire answers. Becker’s second approach fo-

cuses on these comments. It should be noted that Becker’s intervention group left

numerous comments recommending Decaf while the control group did not leave

any. This can be taken as evidence that the intervention group was more eager to

recommend Decaf than the control group. In light of the above comparisons, it

can be stated that my findings agree with Becker’s.

Many of the tests that were performed during the study, especially for the lab-

oratory quiz, featured only a small number of participants and were lacking in

statistical power as a result. It would be beneficial to repeat these tests with a fu-

ture study that has either more participants or more laboratory quizzes to examine.

The repeat tests would have increased statistical power and would provide more

conclusive results on how the enhanced compiler affects laboratory quizzes.

85

Bibliography

[1] M.D. Balso and A.D. Lewis, First steps: A guide to social research, Nelson
Thomson Learning, 2005.

[2] Titus Barik, Kevin Lubick, Samuel Christie, and Emerson Murphy-Hill,
How developers visualize compiler messages: A foundational approach
to notification construction, Software Visualization (VISSOFT), 2014 Second
IEEE Working Conference on, IEEE, 2014, pp. 87–96.

[3] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-
Hill, Compiler error notifications revisited: An interaction-first approach
for helping developers more effectively comprehend and resolve error
notifications, Companion Proceedings of the 36th International Conference
on Software Engineering, ACM, 2014, pp. 536–539.

[4] B.A. Becker, An exploration of the effects of enhanced compiler error
messages for computer programming novices, Master’s thesis, Dublin Insti-
tute of Technology, November 2015.

[5] , An effective approach to enhancing compiler error messages, Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Edu-
cation, ACM, March 2016, pp. 126–131.

[6] B.A. Becker and C Mooney, Categorizing compiler error messages with
principal component analysis, 12th China-Europe International Symposium
on Software Engineering Education (2016).

[7] Philip J Brown, Error messages: The neglected area of the man/machine
interface, Communications of the ACM 26 (1983), no. 4, 246–249.

[8] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral, Syntax
errors just aren’t natural: Improving error reporting with language models,
Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, ACM, 2014, pp. 252–261.

[9] David Erni and Adrian Kuhn, The hackers guide to javac, University of Bern,
Bachelor’s thesis, supplementary documentation (2008).

86

[10] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang, Statistical
power analyses using g* power 3.1: Tests for correlation and regression
analyses, Behavior research methods 41 (2009), no. 4, 1149–1160.

[11] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner, G* power
3: A flexible statistical power analysis program for the social, behavioral, and
biomedical sciences, Behavior research methods 39 (2007), no. 2, 175–191.

[12] James B. Fenwick, Jr., Cindy Norris, Frank E. Barry, Josh Rountree, Cole J.
Spicer, and Scott D. Cheek, Another look at the behaviors of novice
programmers, SIGCSE Bull. 41 (2009), no. 1, 296–300.

[13] Thomas Flowers, Curtis A Carver, and James Jackson, Empowering students
and building confidence in novice programmers through gauntlet, Frontiers
in Education, 2004. FIE 2004. 34th Annual, IEEE, 2004, pp. T3H–10.

[14] D. Freedman, R. Pisani, and R. Purves, Statistics, International student edi-
tion, W.W. Norton & Company, 2007.

[15] Mark Guzdial, What’s the best way to teach computer science to beginners?,
Commun. ACM 58 (2015), no. 2, 12–13.

[16] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri,
Identifying and correcting java programming errors for introductory
computer science students, ACM SIGCSE Bulletin, vol. 35, ACM, 2003,
pp. 153–156.

[17] James Jackson, MJ Cobb, and Curtis Carver, Identifying top java errors for
novice programmers, Frontiers in Education Conference, vol. 35, STIPES,
2005, p. T4C.

[18] Matthew C Jadud, A first look at novice compilation behaviour using bluej,
Computer Science Education 15 (2005), no. 1, 25–40.

[19] Matthew C. Jadud, Methods and tools for exploring novice compilation
behaviour, Proceedings of the Second International Workshop on Computing
Education Research (New York, NY, USA), ICER ’06, ACM, 2006, pp. 73–84.

[20] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg, The
bluej system and its pedagogy, Computer Science Education 13 (2003), no. 4,
249–268.

[21] Stuart Lewis and Gaius Mulley, A comparison between novice and
experienced compiler users in a learning environment, ACM SIGCSE Bulletin,
vol. 30, ACM, 1998, pp. 157–161.

[22] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi, Measuring the
effectiveness of error messages designed for novice programmers, Proceed-
ings of the 42nd ACM technical symposium on Computer science education,
ACM, 2011, pp. 499–504.

87

[23] Davin McCall and Michael Kölling, Meaningful categorisation of novice
programmer errors, 2014 IEEE Frontiers in Education Conference (FIE) Pro-
ceedings, IEEE, 2014, pp. 1–8.

[24] Redford Williams M.D, How does stress differ from frustration? - abc news,
2008.

[25] Jonathan P Munson and Elizabeth A Schilling, Analyzing novice
programmers’ response to compiler error messages, Journal of Comput-
ing Sciences in Colleges 31 (2016), no. 3, 53–61.

[26] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer, Compiler
error messages: What can help novices?, SIGCSE Bull. 40 (2008), no. 1, 168–
172.

[27] Cindy Norris, Frank Barry, James B. Fenwick Jr., Kathryn Reid, and Josh
Rountree, Clockit: Collecting quantitative data on how beginning software
developers really work, SIGCSE Bull. 40 (2008), no. 3, 37–41.

[28] University of Northern British Columbia, Facts and statistics — university of
northern british columbia, 2017.

[29] Daphne E Pedersen, Jenelle Swenberger, and Katlyn E Moes, School spillover
and college student health, Sociological Inquiry 87 (2017), no. 3, 524–546.

[30] Joshua Joel Rountree, Clockit: Monitoring and visualizing student software
development profiles, Ph.D. thesis, Appalachian State University, 2010.

[31] V.S. Thatcher, A. McQueen, and N. Webster, The new webster encyclopedic
dictionary of the english language, Avenel Books, 1984.

[32] Paul T. Wong, Frustration, exploration, and learning., Canadian Psychological
Review/Psychologie canadienne 20 (1979), no. 3, 133 – 144.

[33] Charles Zaiontz, Effect size for chi-square test — real statistics using excel,
2013.

[34] Anna Zajacova, Scott M Lynch, and Thomas J Espenshade, Self-efficacy, stress,
and academic success in college, Research in higher education 46 (2005), no. 6,
677–706.

88

Appendix A

Tables and Forms

A.1 Tables

Group Control Enhanced

Phase Count Count

Lexical 40 44
Syntactic 2442 2167

Semantic (1) 2569 1794
Semantic (2) 285 133

Okay 2592 2522

Table A.1: Assignments — Total Number Of Errors Encountered Per Compilation
Phase. Okay = No Errors Detected

89

Group Control Enhanced

Phase Count Count χ2 df sig Cramer’s V

Lexical 40 44 1.54 1 0.21 0.01
Not Lexical 7888 6616

Syntactic 2442 2167 5.04 1 0.02 0.02
Not Syntactic 5486 4493

Semantic (1) 2569 1794 49.4 1 <0.01 0.06
Not Semantic (1) 5359 4866

Semantic (2) 285 133 33.20 1 <0.01 0.05
Not Semantic (2) 7643 6527

Okay 2595 2522 42.55 1 <0.01 0.05
Not Okay 5336 4138

Population 101.04 4 <0.01 0.08

Table A.2: Assignments — Total Number Of Errors Encountered Per Compilation
Phase — χ2-test Results. Okay = No Errors Detected

Group Control Enhanced

Phase Mean SD Mean SD

Lexical 2.00 2.53 2.10 3.19
Syntactic 122.10 78.64 103.19 67.83

Semantic (1) 128.45 92.23 85.43 49.51
Semantic (2) 14.25 13.51 6.33 4.53

Okay 129.60 112.04 120.10 67.35

Table A.3: Assignments — Average Number Of Errors Encountered Per Participant
For Each Compilation Phase. Okay = No Errors Detected

Phase t df sig Cohen’s d

Lexical −0.11 39 0.92 0.03
Syntactic 0.83 39 0.41 0.26

Semantic(1) 0.14 39 0.07 0.58
Semantic(2) 2.49 23.04 0.02 0.79

Okay 0.33 39 0.74 0.10

Table A.4: Assignments — Average Number Of Errors Encountered Per Participant
For Each Compilation Phase — t-test Results. Okay = No Errors Detected

90

Group Control Enhanced

Phase Count Count

Lexical 3 0
Syntactic 227 232

Semantic (1) 160 131
Semantic (2) 9 10

Okay 112 160

Participants 17 18

Table A.5: Laboratory Quiz — Total Number Of Errors Encountered Per Compila-
tion Phase. Okay = No Errors Detected

Group Control Enhanced

Phase Count Count χ2 df sig Cramer’s V

Lexical + Syntactic 230 232 0.23 1 0.63 0.01
Not Lexical + Syntactic 281 301

Semantic (1) 160 131 5.88 1 0.02 0.08
Not Semantic (1) 351 402

Semantic (2) 9 10 0.02 1 0.89 < 0.01
Not Semantic (2) 502 523

Okay 112 160 8.89 1 < 0.01 0.09
Not Okay 399 373

Population 10.96 3 0.01 0.10

Table A.6: Laboratory Quiz — Total Number Of Errors Encountered Per Compila-
tion Phase — χ2-test Results. Okay = No Errors Detected

Group Control Enhanced

Phase Mean SD Mean SD

Lexical + Syntactic 13.53 7.26 12.89 8.22
Semantic(1) 9.41 6.70 7.28 5.08
Semantic(2) 0.53 1.28 0.56 1.25

Okay 6.59 5.08 8.89 6.61

Table A.7: Laboratory Quiz — Average Number Of Errors Encountered For Each
Compilation Phase. Okay = No Errors Detected

91

Phase t df sig Cohen’s d

Lexical + Syntactic 0.24 33 0.81 0.08
Semantic (1) 1.07 33 0.29 0.36
Semantic (2) −0.61 33 0.95 0.02

Okay −1.15 33 0.26 0.39

Table A.8: Laboratory Quiz — Average Number Of Errors Encountered For Each
Compilation Phase — t-test Results. Okay = No Errors Detected

Group Control Enhanced

Response Count Count

DEL 20 11
UNR 120 92
PART 55 66
DIFF 21 17
FIX 143 162

OTHER 23 8
NRN 78 109

Productive 320 362
Unproductive 140 103

Participants 17 18

Table A.9: Laboratory Quiz — Distribution of Participant Responses to Error Mes-
sages

92

Group Control Enhanced

Phase Count Count χ2 df sig Cramer’s V

DEL 20 11 2.81 1 0.09 0.06
Not DEL 440 454

UNR 120 92 5.20 1 0.02 0.07
Not UNR 340 373

PART 55 66 1.02 1 0.31 0.03
Not PART 405 399

DIFF 21 17 0.49 1 0.49 0.02
Not DIFF 439 448

FIX 143 162 1.47 1 0.22 0.04
Not FIX 317 303

OTHER 23 8 7.68 1 <0.01 0.09
Not OTHER 437 457

NRN 78 109 6.03 1 0.01 0.08
Not NRN 382 356

Productive 320 362 8.19 1 <0.01 0.09
Unproductive 140 103

Table A.10: Laboratory Quiz — Distribution of Participant Responses to Error Mes-
sages — χ2-test Results

Group Control Enhanced

Response Mean SD Mean SD

NRN 4.59 4.27 6.06 5.50
DEL 1.18 1.24 0.61 0.70
UNR 7.06 3.99 5.11 5.71
DIFF 1.24 1.64 0.94 1.55
PART 3.24 2.84 3.67 5.65
FIX 8.41 4.57 9.00 5.03

OTHER 1.35 1.69 0.44 0.71

Productive 18.82 9.17 20.11 11.73
Unproductive 8.24 4.78 5.72 5.91

Table A.11: Laboratory Quiz — Average Number of Compilations Per Participant
For Each Response Category

93

Response t df sig Cohen’s d

NRN −0.88 33 0.39 0.30
DEL 1.68 24.95 0.11 0.57
UNR 1.16 33 0.25 0.30
DIFF 1.80 33 0.25 0.13
PART 0.54 33 0.59 0.10
FIX −0.36 33 0.78 0.12

OTHER 2.05 21.13 0.05 0.70

Productive −0.36 33 0.72 0.12
Unproductive 1.40 33 0.17 0.47

Table A.12: Laboratory Quiz — Average Number of Compilations Per Participant
For Each Response Category — t-test Results

Group Control Enhanced

Phase Mean SD Mean SD

Lexical + Syntactic 751.06 726.50 588.61 670.26
Semantic(1) 610.12 542.08 327.17 245.76
Semantic(2) 21.71 23.67 23.67 62.66

Okay 649.41 571.81 818.22 709.28

Table A.13: Laboratory Quiz — Total Time Spent (in seconds) On Each Compilation
Phase. Okay = No Errors Detected

Phase t df sig Cohen’s d

Lexical + Syntactic 0.69 33 0.50 0.23
Semantic (1) 1.97 22.03 0.06 0.67
Semantic (2) −0.09 33 0.93 0.04

Okay −0.77 33 0.44 0.26

Table A.14: Laboratory Quiz — Total Time Spent (in seconds) On Each Compilation
Phase — t-test Results. Okay = No Errors Detected

94

Group Control Enhanced

Phase Mean SD Mean SD

Lexical + Syntactic 59.11 116.75 48.82 120.90
Semantic (1) 65.23 54.76 45.30 57.42
Semantic (2) 52.71 51.15 47.33 25.93

Okay 141.54 140.43 135.12 190.56

Table A.15: Laboratory Quiz — Average Time Spent (in seconds) Per Compilation
For Each Compilation Phase. Okay = No Errors Detected

Phase t df sig Cohen’s d

Lexical + Syntactic 0.90 431 0.37 0.09
Semantic (1) 2.27 287 0.02 0.30
Semantic (2) 0.28 14 0.79 0.13

Okay 0.25 185 0.80 0.04

Table A.16: Laboratory Quiz — Average Time Spent (in seconds) Per Compilation
For Each Compilation Phase — t-test Results. Okay = No Errors Detected

Group Control Enhanced

Response Mean SD Mean SD

NRN 649.41 571.81 818.22 709.28
DEL 83.13 101.06 21.78 31.87
UNR 307.76 222.15 174.72 221.28
DIFF 51.82 91.21 25.06 45.05
PART 234.76 379.03 284.22 389.79
FIX 455.06 299.08 317.67 198.16

OTHER 250.35 239.54 116.00 253.44

Productive 1641.41 853.51 1561.17 811.81
Unproductive 390.88 254.35 196.50 222.73

Table A.17: Laboratory Quiz — Total Time Spent (in seconds) On Each Response
Category

95

Response t df sig Cohen’s d

NRN −0.77 33 0.45 0.26
DEL 2.39 18.99 0.03 0.82
UNR 1.77 33 0.09 0.60
DIFF 1.11 33 0.28 0.37
PART −0.38 33 0.71 0.13
FIX 1.61 33 0.12 0.54

OTHER 1.20 27.2 0.23 0.54

Productive 0.29 33 0.78 0.10
Unproductive 2.40 33 0.02 0.81

Table A.18: Laboratory Quiz — Total Time Spent (in seconds) On Each Response
Category — t-test Results

Group Control Enhanced

Response Mean SD Mean SD

NRN 141.54 140.43 135.12 190.56
DEL 70.65 88.43 35.64 31.27
UNR 43.60 41.04 34.18 41.01
DIFF 41.95 34.17 26.53 17.44
PART 72.56 145.39 77.52 185.69
FIX 54.10 101.68 35.30 51.61

OTHER 185.04 180.47 261.00 199.08

Productive 87.20 131.66 77.63 147.35
Unproductive 47.46 51.00 34.34 39.95

Table A.19: Laboratory Quiz — Average Time Spent (in seconds) Per Compilation
For Each Response Category

96

Response t df sig Cohen’s d

NRN 0.25 185 0.80 0.04
DEL 1.60 26.06 0.12 0.53
UNR 1.67 210 0.10 0.23
DIFF 1.80 30.94 0.08 0.57
PART −0.16 119 0.87 0.03
FIX 2.00 204.61 0.05 0.23

OTHER −1.00 29 0.33 0.40

Productive 0.89 680 0.37 0.07
Unproductive 2.25 240.02 0.03 0.29

Table A.20: Laboratory Quiz — Average Time Spent (in seconds) Per Compilation
For Each Response Category — t-test Results

Group Control Enhanced

Question P I N P I N

Question 1 15 1 1 17 1 0
Question 2 7 10 0 6 12 0
Question 3 3 6 8 3 7 8

Bonus 1 0 0 17 2 1 15
Bonus 2 0 1 16 5 2 11

Total 25 18 42 33 23 34

Table A.21: Laboratory Quiz — Participant Performance On Laboratory Quiz. P =
Perfect, I = Imperfect, N = Not Attempted

97

Group Control Enhanced

Question Performance Count Count χ2 df sig Cramer’s V

Question 1 P 15 17 0.01 1 0.93 0.01
I 1 1

Question 2 P 7 6 0.23 1 0.63 0.08
I 10 12

Question 3 P 3 3 0.02 1 0.88 0.03
I 6 7

Bonus 1 P 0 2 — — — —
I 0 1

Bonus 2 P 0 5 1.90 1 0.17 0.49
I 1 2

All Questions P 25 33 0.01 1 0.93 0.01
I 18 23

Table A.22: Laboratory Quiz — Participant Performance On Laboratory Quiz —
χ2-test Results. P = Perfect, I = Imperfect

Group Control Enhanced

Question Performance Mean SD Mean SD

Question 1 P 2.87 2.00 4.35 3.53
I 7.00 — 6.00 —

Question 2 P 14.29 13.77 10.50 4.42
I 21.40 10.88 16.17 9.68

Question 3 P 22.00 4.00 11.67 8.33
I 10.83 9.39 10.29 9.27

Bonus 1 P — — 19.00 16.97
I — — 7.00 —

Bonus 2 P — — 5.40 2.88
I 13.00 — 8.00 4.24

Table A.23: Laboratory Quiz — Number Of Compilations For Each Laboratory
Quiz Question. P = Perfect, I = Imperfect

98

Question Performance t df sig Cohen’s d

Question 1 P −1.44 30 0.16 0.52
I — — — —

Question 2 P 0.69 7.40 0.51 0.37
I 1.19 20 0.25 0.51

Question 3 P 1.94 4 0.13 1.58
I 0.11 11 0.92 0.06

Bonus 1 P — — — —
I 0.96 1 0.51 1.67

Bonus 2 P — — — —
I — — — —

Table A.24: Laboratory Quiz — Number Of Compilations For Each Laboratory
Quiz Question — t-test Results. P = Perfect, I = Imperfect

Group Control Enhanced

Question Performance Mean SD Mean SD

Question 1 P 41.40 58.04 126.94 170.81
I 121.00 — 436.00 —

Question 2 P 920.00 695.23 694.17 351.07
I 1604.90 891.27 1161.58 848.28

Question 3 P 1765.00 352.26 762.00 739.28
I 842.17 560.10 633.57 591.12

Bonus 1 P — — 1107.00 256.39
I — — 235.00 —

Bonus 2 P — — 202.60 173.23
I 944.00 — 378.50 406.59

Table A.25: Laboratory Quiz — Time Spent (in seconds) On Each Laboratory Quiz
Question. P = Perfect, I = Imperfect

99

Question Performance t df sig Cohen’s d

Question 1 P −1.94 20.07 0.07 0.67
I — — — —

Question 2 P 0.75 9.13 0.47 0.28
I 1.19 20 0.25 0.51

Question 3 P 2.12 4 0.10 1.73
I 0.65 11 0.53 0.36

Bonus 1 P — — — —
I — — — —

Bonus 2 P — — — —
I 1.14 1 0.46 1.97

Table A.26: Laboratory Quiz — Total Time Spent (in seconds) On Each Laboratory
Quiz Question — t-test Results. P = Perfect, I = Imperfect

Group Control Enhanced

Item Mean SD Mean SD

Self-Assessed PPE 1.50 0.79 1.63 0.83
Measured PPE 5.06 3.46 4.44 1.98

Frustration 3.67 0.99 2.88 1.11
Compiler Appreciation 3.44 0.88 4.07 0.62

Confidence (T1) 2.72 0.83 2.53 0.70
Confidence (T2) 2.58 0.79 2.76 0.66
Confidence (T3) 3.00 0.71 3.43 0.65

Table A.27: Questionnaires and Programming Pre-assessment — Descriptive
Statistics. PPE = Prior Programming Experience

100

Item t df sig Cohen’s d

Self-assessed PPE −0.49 35 0.62 0.16
Measured PPE 0.65 27.05 0.52 0.22

Frustration 2.00 25.5 0.06 0.75
Compiler Appreciation −2.01 21 0.06 0.83

Confidence (T1) 0.78 35 0.44 0.25
Confidence (T2) −0.67 27 0.51 0.25
Confidence (T3) −1.50 21 0.15 0.63

Table A.28: Questionnaires and Programming Pre-assessment — t-test Results.
PPE = Prior Programming Experience

Group Time Interval Mean Difference SD t df sig

Control
T1→ T2 0.00 1.18 0.00 10 1.00
T2→ T3 −0.17 0.41 −1.00 5 0.36
T1→ T3 −0.13 0.99 −0.36 7 0.73

Enhanced
T1→ T2 −0.13 0.72 −0.70 15 0.50
T2→ T3 −0.54 0.66 −2.94 12 0.01
T1→ T3 −0.77 0.93 −2.99 12 0.01

Table A.29: Change in Confidence Over Time Within Each Group — Paired Sample
t-test Results

101

A.2 Diagrams

102

Figure A.1: Assignments — Top Ten Most Common Errors

Figure A.2: Laboratory Quiz — Top Ten Most Common Errors

103

A.3 Information Letter

Attached is a copy of the information letter that I intend to give to students during

the first week of classes if the opt-out study is approved

104

Information Letter
Examining the Effect of Enhanced Compilers on Student Productivity

02/01/2017

Research Team

Project Lead: Devon Harker
Department of Computer Science, University of Northern British Columbia
Cell: 250-640-2934
Email: harker@unbc.ca

Supervisor: David Casperson
Assistant Professor and Chair of Computer Science Department,
University of Northern British Columbia
Office: 250-960-6672
Email: casper@unbc.ca

This research is Devon Harker's thesis and is a part of his graduate degree in computer science.
The results of this study may be published in scientific journals and may be used to improve the
software tools that are used by first year programmers.

Purpose of Project

The software tools used to teach the art of programming to students have not seen much change for
many years. This study will help us learn if new software tools will increase student productivity and
make it easier for students to complete assignments.

Participation in this research is voluntary and you can withdraw from it at any time with no penalty.
You are also free to refuse to answer any questions that make you feel uncomfortable. If you choose
to withdraw from the study, any information and data that you have provided will be destroyed unless
you consent to the information being preserved and analyzed.

What happens to you in the study? What will be expected of you?

This study will require you to complete the laboratory assignments using software tools that have
been installed on the lab computers. Each assignment has been designed so that you can finish it in
a single laboratory session and you are not expected nor required to work from home.

There will be two versions of the software tools; the version of the tool that you are using will be
randomly decided. Your peers in the laboratory section will be using the same version that you are.

 Page 1 of 3

INFORMATION LETTER

You will be required to answer 3 questionnaires over the course of the semester. The questionnaires
are short and can be completed in a few minutes. Questionnaires will be given out at the start of lab
sections. You will also have to take a laboratory quiz in the middle of the semester. This quiz is not
for marks and will be used as a final test of both your abilities and of the effectiveness of the
software tools that you have been using. The quiz will have exam-like conditions (no talking to
friends, no looking online for help, etc.)

Risks or benefits to participating in the project

This study is not intended to harm you in any way. If, at any point in the study, you feel
uncomfortable or upset and wish to end your participation, please notify the researcher immediately
and your wishes will be respected.

By participating in the study, you may have the opportunity to use the latest versions of software
tools that are intended to help you write programs. These tools are not publicly available. It is
possible that the software you use will affect the difficulty of laboratory assignments and,
consequently, the grade you will receive for the laboratory component. Measures are in place to
ensure you will not be negatively impacted by the software.

If the software tools prove to be effective at helping novice programmers be productive, future
programmers will have an easier learning how to program if the tools become accepted for wide-
spread use in teaching programming.

How will your identity be protected?

Beginning next week, you will be given a paper slip with your identifier on it. This study will require
you to use the same identifier throughout the entire study. The identifier will be used to link the
various pieces of data that will collected to a single person while maintaining your anonymity. You will
be required to not share your identifier with anyone as this poses a threat to
your anonymity.

The third lab session will require you to send an email to your UNBC email account with a message
that contains your identifier. This will allow you to recover your identifier if you ever lose the paper
slip.

The data that will be collected will be stored on a database located on the UNBC campus and will
not be given to anybody. This database is password-protected and the password is known only to
the research team. Your name is required to ensure you are given the same software that your peers
in your laboratory session are using. The link between your name and your identifier will be
destroyed before the data is analyzed.

Study Results

You will be provided with a summary of the results of the study via your UNBC email address. If you
wish to access the entire thesis, it will be stored in the library. The results may also be published in
scientific journals.

Who do I contact if I have questions or concerns about the study?

 Page 2 of 3

If you have any questions or concerns about the study, the research team would be happy to
address them. The contact information of the research team is found at the top of the first page of
this form.

Who do I contact if I have complaints about the study?

If you have any concerns or complaints about your rights as a research participant and/or your
experiences while participating in this study, contact the UNBC Office of Research at 250-960-6735
or by e-mail at reb@unbc.ca.

Participant Withdrawal

Taking part in this study is entirely up to you. You have the right to refuse to participate in this study.
If you decide to take part, you may choose to pull out of the study at any time without giving a reason
and without any negative impact on your class standing or anything else.

If you wish to withdraw from the study, you may complete the provided withdrawal form at any time.
You will also be given an opportunity to withdraw each time you write a quiz or a questionnaire.

 Page 3 of 3

A.4 Withdraw Form

Attached is the form that I intend to use for allowing participants to withdraw

from the study.

108

Examining the Effects of Enhanced Compilers on Stu-

dent Productivity - Withdraw Form

This form is for participants who no longer wish to participate in the study “Ex-

amining the Effect of Enhanced Compilers on Student Productivity”.

Withdrawing can be done at any time and with no penalty. When you withdraw,

any data collected on your activities will also be destroyed unless you indicate oth-

erwise. Your identifier is required so that the research team knows who to remove

from the study.

Identifier

I am WITHDRAWING from the study �

I want all of the data collected on my activities to be PRESERVED for research

use �

109

A.5 Programming Experience Pre-assessment

Attached is the entrance quiz that I will use to assess the level of prior program-

ming experience of students in the class.

110

Programming Experience Pre-assessment

The purpose of the quiz is to evaluate how much experience you have with pro-

gramming in Java (if any). This quiz is not for marks. Your answers to the quiz

questions will allow the professor and teaching assistants to be more effective at

teaching the course material to you and future students who take the course. If

you don’t know the answer to a question, please write “Don’t know” (or some-

thing equivalent) instead of leaving the answer blank or making a wild guess. You

need to write down an anonymous identifier of your choosing below. You will use

this identifier for other material in the course so please copy it into your notes for

future reference. If you cannot think of an anonymous identifier, you can draw one

from a box of pre-made identifiers.

Name

Identifier

1. What is a conditional statement? Why are they useful for programmers?

2. What is the Array data structure used for in Java?

111

3. What is the ArrayList datatype used for in Java?

4. What does the Java statement “x++;” do? Does it do the same thing as “++x;”?

5. Describe a scenario in a Java program where a do-while loop is a better choice

than a while loop.

6. How can you determine if a program you have created contains any program-

ming mistakes?

112

7. Is syntactic sugar mandatory or optional? Explain why.

8. What is the relationship between a class and an object in Java?

9. Describe what a pointer is and why programmers would want to use one.

10. Describe some of the possible values for the following data types in Java:

10a. Integer

10b. String

10c. Float

10d. Double

10e. Boolean

113

A.6 Questionnaires

A.6.1 Questionnaire 1

This Questionnaire is a required component of the “Examining the Effects of En-

hanced Compilers on Student Productivity” study that you may have consented

to participate in. Your answers will not affect your grade in any way so please be

honest with how you feel. If you wish to continue being a part of this research,

please fill out the entire questionnaire EXCEPT for the checkboxes that are used

to withdraw from the study. If you wish to be removed from this research, please

check the first check box, which indicates that you wish to be removed. If you are

not participating in the study, please answer questions A and B.

Identifier

I am WITHDRAWING from the study �

I want all of the data collected on my activities to be PRESERVED for research

use �

Question 1: On a scale of 1 through 5, how much prior programming experience

have you had coming into this class?

O O O O O

1: 2: 3: 4: 5:

None Little Some Much Very Much

Question 2: On a scale of 1 through 5, how much confidence do you have in your

ability to solve programming problems?

114

O O O O O

1: 2: 3: 4: 5:

None Little Some Much Very Much

If you are withdrawing or are not participating in the study, please answer the

questions below. These questions are not for marks.

Question A: In the Java programming language, the “int” data type is compat-

bile with both integers and decimal numbers.

� �

True False

Question B: It is unnecessary to use semicolons to terminate Java statements.

� �

True False

115

A.6.2 Questionnaire 2

This Questionnaire is a required component of the “Examining the Effects of En-

hanced Compilers on Student Productivity” study that you may have consented

to participate in. Your answers will not affect your grade in any way so please be

honest with how you feel. If you wish to continue being a part of this research,

please fill out the entire questionnaire EXCEPT for the checkboxes that are used

to withdraw from the study. If you wish to be removed from this research, please

check the first check box, which indicates that you wish to be removed. If you are

not participating in the study, please answer questions A and B.

Identifier

I am WITHDRAWING from the study �

I want all of the data collected on my activities to be PRESERVED for research

use �

Question 1: On a scale of 1 through 5, how much frustration do you experience

when fixing errors in your programs?

O O O O O

1: 2: 3: 4: 5:

None Little Some Much Very Much

Question 2: On a scale of 1 through 5, how much confidence do you have in your

ability to solve programming problems?

O O O O O

1: 2: 3: 4: 5:

None Little Some Much Very Much

116

If you are withdrawing or are not participating in the study, please answer the

questions below. These questions are not for marks.

Question A: In the Java programming language, the “boolean” data type is suit-

able for use in if-statements.

� �

True False

Question B: The variable name “$123” is legal in Java.

� �

True False

117

A.6.3 Questionnaire 3

This Questionnaire is a required component of the “Examining the Effects of En-

hanced Compilers on Student Productivity” study that you may have consented

to participate in. Your answers will not affect your grade in any way so please be

honest with how you feel. If you wish to continue being a part of this research,

please fill out the entire questionnaire EXCEPT for the checkboxes that are used

to withdraw from the study. If you wish to be removed from this research, please

check the first check box, which indicates that you wish to be removed. If you are

not participating in the study, please answer questions A and B.

Identifier

I am WITHDRAWING from the study �

I want all of the data collected on my activities to be PRESERVED for research

use �

Question 1: On a scale of 1 through 5, would you recommend the compiler that

you used to other novice programmers?

O O O O O

1: 2: 3: 4: 5:

Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

Question 2: On a scale of 1 through 5, how much confidence do you have in your

ability to solve programming problems?

118

O O O O O

1: 2: 3: 4: 5:

None Little Some Much Very Much

If you are withdrawing or are not participating in the study, please answer the

questions below. These questions are not for marks.

Question A: In the Java programming language, two String variables should be

compared with “==” .

� �

True False

Question B: Every program in Java contains the method “public main static void”.

� �

True False

119

A.7 Laboratory Quiz

Attached is the laboratory quiz that was distributed to participants of the study.

120

CPSC 110 - Laboratory Quiz

March 28, 2017

Introduction

This quiz is a part of the “Examining the Effect of Enhanced Compilers on Student

Productivity” study that you may have consented to participate in. This quiz is NOT

for marks, but will instead be used to evaluate how quickly and accurately you are

able to complete programming problems that are similar to what you have completed

previously in the course. The Teaching Assistant for this course will provide feedback

on the programs created for this quiz. If you have withdrawn from the study previ-

ously, you should still write the quiz anyways; no data will be collected on how you

do but the quiz provides a unique opportunity to test your programming skills.

Please read and follow ALL of the following rules:

Rules

• This quiz will have exam-like conditions including, but not limited to: no talk-

ing, no cheating or looking at your notes, phones turned off, and unnecessary

applications closed.

1

• Once the quiz has started, you cannot leave the room until you have finished

or time runs out, barring exceptional circumstances.

• The invigilator cannot help you fix errors in your programs. However, you may

ask for clarification on what a question is asking you to do.

• When you have finished the quiz OR when time runs out, please compile your

programs and then print them. Instructions for printing can be found in the

glossary, located at the end of the quiz.

• Consult the glossary if you are unsure of how to solve a problem.

• You MUST name your program using the name listed in each quiz question.

• Your programs MUST be saved in a directory named “quiz” (without the double

quotes). This directory should be inside the cpsc110 directory that you have

been using for your lab assignments. If you are unsure of how to create this

directory, consult the quiz invigilator.

2

Question 1

Write a program named QuizQuestion1 that displays the following message:

Hello World!

Figure 1: Example output for QuizQuestion1

Question 2

Write a program named QuizQuestion2 that asks the user for the length of 3 sides

of a right triangle.

• If the 3 side lengths form a legal right triangle, the program should compute

the length of the triangle’s perimeter as well as its area.

• If the right triangle is illegal, the program should display a message that it is

illegal.

• The user MUST be able to enter decimal numbers for side lengths.

• You MUST use either the Math.pow method OR the Math.sqrt method to

complete this question (see the glossary).

3

Figure 2: A Right triangle with side lengths of a, b, and c. Credit to: A Malik

Pakistan on Wikipedia

What is the length of the first side? 3.0

What is the length of the second side? 4.0

What is the length of the third (and longest) side? 5.0

The perimeter of this triangle is: 12.0

The area of this triangle is: 6.0

Figure 3: Example output for QuizQuestion2 with legal input

4

What is the length of the first side? 77.5

What is the length of the second side? 0.0

What is the length of the third (and longest) side? –35.0

This triangle is illegal!

Figure 4: Example output for QuizQuestion2 with a illegal input

Question 3

Write a program named QuizQuestion3 that asks the user for 5 integers, which should

be stored in an array of integers. Include a swap method that is capable of swapping

ANY two elements in the array of integers. This method must be able to take the

following as input:

• The index of the first element to swap

• The index of the second element to swap.

• The array that the indices above are for.

Lastly, use a loop to print each element in the array.

5

Enter 5 integers with spaces between them:

10 11 12 13 14

Enter two indices (start from 0) to swap, with spaces between them:

0 2

The array is now:

12 11 10 13 14

Figure 5: Example output for QuizQuestion3

Bonus Question 1

Write a program named BonusQuestion1 that asks the user for 5 doubles, which

should be stored in an array of doubles. Then, write a method that finds the largest

element in the array and prints it. You CANNOT sort the array or force the user to

enter it in sorted order.

Enter 5 doubles with spaces between them.

3.0 2.5 7.5 3.5 2.0

The largest element is: 7.5

Figure 6: Example output for BonusQuestion1

6

Program Level Snack

CPSC Undergrad Burger

CPSC Graduate Spaghetti

PHYS Undergrad Pizza

PHYS Graduate Sandwich

Figure 7: Snack Matrix

Bonus Question 2

Write a program named BonusQuestion2 that determines which snack is appropriate

for various university students.

What is your program? CPSC

What is your level? Graduate

You get Spaghetti!

Figure 8: Example output for BonusQuestion2

7

Glossary

Imports

You may need the following import to complete the questions on this quiz that have

user input.

• import java.util.Scanner;

Methods

You may find these methods useful for some of the questions. The return type of a

methods is listed first, then the name. The input that a method uses, if any, can be

found in the parenthesis after the name. The comment at the end summarizes what

the method does.

System Methods

• void System.out.print(...) //Prints a message to the screen.

• void System.out.println(...) //Prints a message to the screen and inserts

a line break after the message.

Math methods

• double Math.pow(double x, double y) //Returns the result of xy.

• double Math.sqrt(double x) //Returns the result of
√
x.

String methods

• boolean String.equals(String b) //Compares two strings and returns true

if they have the same contents.

8

Formulae

Where a, b, and c are the sides of the triangle.

• Legality of a right triangle: legal if ALL of the following conditions are met.

◦ a > 0, b > 0, c > 0

◦ a2 + b2 = c2

• Area of a right triangle: area =
a ∗ b

2

• Perimeter of a right triangle : perimeter = a + b + c

Boolean expressions

• a && b - a and b must both be true for the whole expression to be true.

• a || b - The expression is true if a or b are true or if both are true.

Printing Instructions

• First, you must change to the quiz directory (as this is where your programs

are located).

◦ cd cpsc110/quiz

• Then, use the following set of commands for EACH of your programs. Note:

underlined components are placeholders that you need to change.

◦ script nameOfTheQuestion.script

◦ cat nameOfYourProgram.java

◦ javac nameOfYourProgram.java

◦ java nameOfYourProgram

9

◦ (User input, if any. Use what is shown in the figures by each question)

◦ exit

◦ /opt/scriptfix/scriptfix nameOfTheQuestion.script > nameOfTheQuestion.clean

◦ enscript -2rG -P prn8-457 nameOfTheQuestion.clean

10

A.8 Enhanced Error Messages Used In Study

This appendix contains an exhaustive list of the error messages that were enhanced

by Decaf. The format of the error messages has been adjusted to better fit this

appendix. The enhanced error messages have been split across two table. In the

first table, Table A.30 on page 142 the error messages from javac and Decaf are

compared. Some errors, such as error number 8, vary slightly. The enhanced error

messages for each of the variants are included. The second table, Table A.31 on

page 144, contains error messages that do not have a javac equivalent. These error

messages very rarely appear on their own. Instead, they are prefixed to an error

message from the first table. The rationale for this process is that the information

in the prefixed message may be relevant for solving the error that was reported in

the first error message.

131

Error javac

Decaf

4 unclosed string literal

There are mis-matched ”’s on line *number*

5 unclosed character literal

There are mis-matched ”s on line *number*

6 undefined variable

On the specified line there is a mis-spelled or missing variable dec-

laration. Check spelling and that you are not using a variable that

is not declared previously.

7 cannot find symbol symbol: variable length

To get the length of a String, use <String name>.length()”

8A cannot find symbol symbol: variable *name*

The compiler is confused about a variable which is named

”*name*”. If this is supposed to be a method, make sure that there

are opening and closing parentheses (something like ”*name*()”).

Alternatively, check that ”*name*” has been declared, is in scope,

and is spelled correctly.

8B cannot find symbol symbol: method *name*

The compiler is confused about a method which is named

”*name*”. If this is supposed to be a variable, make sure that

there are no parentheses immediately after ”*name*”. Alternatively,

check that ”*name*” has been declared and is spelled correctly.

132

9 ’)’ expected

Insert missing ’)’ where indicated

10 class *name* is public, should be declared in a file named

name.java

Make sure that your class name and file name are the same!

11 variable *name* is already defined in method *name*

Variable *name* is already declared, you cannot have multiple iden-

tifiers with the same name

12 array required but *type* found

An array is required here but a *type* was found

13 invalid method declaration; return type required

The method *name* does not have a return type. Make sure the

return statement exists and is correct. If the return type should be

void, check that you did not forget ’void’ as the return type of a

method declaration.

14 unreachable statement

The statement on the stated line can never be executed. Check that

it does not occur after a return, a break, or a continue statement.

15 invalid flag: null

It looks like you tried to compile an empty program!

133

17 ’.’ expected import *name*

Check import statement on indicated line. Import statements

must be of the form ”import packagename.*;” or ”import packa-

gename.ClassName;”

18 ’;’ expected

Check for missing semicolon or unnecessary ’(’ or ’)’ on indicated

line. If this is for a method declaration, make sure the opening and

closing braces that enclose the method’s body are present.

19 ’[’ expected

[missing on indicated line.

20 ’]’ expected

] missing on indicated line.

21 variable might not have been initialized

variable might not have been initialized. The variable may not al-

ways have a value before it is used. Consider initalizing the variable

on the line where it is declared (e.g. int x = 0;).

22 not a statement

Check indicated line for mis-spellings. If a method is being called,

make sure that the number and types of arguments are correct. If

the method has no arguments, make sure that empty parenthesis

’()’ appear after method name. Also check that no variable names

start with numbers or other disallowed characters. Check that you

did not use == where you meant to use = . Check that you did not

use + = instead of += . Also check for a stray semicolon

134

23 illegal character

Check your ’ and ”. If you copied and pasted code from a word

processor, the web, or another source you may have to delete and

replace them with characters typed in this editor.

24 illegal start of expression

Check the following: Did you type something like x + = 1 instead

of x+=1? If in a switch statement, make sure you type ’case some-

thing:’ instead of ’case: something’ Make sure you are not writing a

method inside another method. Make sure you are not declaring a

static variable inside of a method.

25 invalid type expression

Check for a missing ; on the indicated line.

27 <identifier> expected

Check three things: Are you trying to use a variable before it has

been declared? For example, did you write ”x = 3;” rather than ”int

x = 3;”? If so, then declare the variable first. If this is a statement and

it is outside of a method, try moving it inside of a method. If this is

a method declaration, make sure you are not using ’void static’. A

static and void method must be declared ’static void’.

28 method *name* not found in class *name*

undefined (missing) method on line indicated. Did you write some-

thing like MyClass y = MyClass() instead of MyClass y = new My-

Class ?

135

29A return required

Ensure the method ending on this line (with this ’}’) has a return

statement, which returns a type indicated in the method’s declara-

tion.

29B missing return statement

Ensure the method ending on this line (with this ’}’) has a return

statement, which returns a type indicated in the method’s declara-

tion.

30 non-static variable *name* cannot be referenced from a static con-

text

Are you trying to use a variable declared outside of a method? Or

perhaps you are using a method without trying to apply it to an

object? In both cases, you may be able to fix it by writing ”static”

before the declaration of the variable or method. Also make sure

you are not writing a method inside another method.

31 bad operand type String for unary operator ’+’

The + operator can only be used between two Strings. Most likely

try eliminating the +, otherwise perhaps you forgot a String variable

in the expression.

136

32 error: incompatible types: possible lossy conversion from *type* to

type

Look for a statement such as i = d; where i is an int, and d is a

double. If this is intended, you need to cast the second type to the

first. In this case, the statement that avoids the error is i = (int)d; If

this is a method call, make sure that you use the correct types; For

example, methods that expect an integer will not work if given a

double. If you are trying to look at an element at some index in an

array, make sure your index is an int.

33 reached end of file while parsing

Most likely you have too few closing braces ’}’.

34 has no definition of serialVersionUID

The reason for this error is complex. To avoid it, enter the following

line inside the class where the error is occurring: public static final

long serialVersionUID = 1L;

35 incompatible types: *type* cannot be converted to *type*

Check the datatype of both sides of the expression with ”=” , they

should be of the same datatype. Also, check if you are using ”=”

where there should be ”==” If this is an argument for a method,

check if the method expects an array or a regular variable.

137

36 ’else’ without ’if’

Check the placement of the branches; else-if branches can only go

right after an if branch or another else-if branch. Else branches can

only go right after all of the related if and else-if branches. Check to

make sure the opening and closing braces (the ’{’ and ’}’) of all the

branches are in the right spot. Also check for misplaced semicolons

in all branches, such as ”if(x); {...}”

39 cannot find symbol symbol: class string

If ”string” refers to a datatype, capitalize the ”s”!

40 package system does not exist

Capitalise ”system” so it reads ”System”!

50 duplicate case label

There are two or more case statements in this switch block that have

the same label (e.g. the ”2” in ”case 2:”). Look for the duplicate and

either remove it, rename it, or combine its body with other cases

that have the same label.

9000 no suitable method found for *name*(*types*)

The compiler cannot determine which method you were trying to

use, probably due to an error with the arguments in the parentheses.

Try changing the arguments when you call the method to match one

of the methods shown above.

138

9001 cannot find symbol symbol: method nextint

Are you trying to read an integer with a Scanner? Use nextInt(). If

not, double check your spelling and make sure everything has been

declared.

9002 cannot find symbol symbol: method nextline *OR* method

nextstring *OR* method nextString

Are you trying to read a String with a Scanner? Use nextLine(). If

not, double check your spelling and also make sure everything is

declared.

9003 cannot find symbol symbol: variable nextint *OR* variable nextInt

Are you trying to read an integer with a Scanner? You may be miss-

ing the brackets that tell the compiler that nextInt is a method, try

using nextInt().

9004 cannot find symbol symbol: variable nextline *OR* variable

nextLine *OR* variable nextstring *OR* variable nextString

Are you trying to read a String with a Scanner? You may be missing

the brackets that tell the compiler that nextLine is a method, try

using nextLine().

9005 bad operand types for binary operator ^

Are you trying to apply exponents to numbers? You need to use the

pow method of the Math class. Try ”Math.pow(base, exponent)”

where the base and the exponent are number literals, variables, or

expressions.

139

9006 missing method body, or declare abstract

If there is a semicolon near your method declaration, remove it.

Otherwise check to make sure there are opening and closing braces

after the method header.

9007 ’.class’ expected

If you are trying to call a method while using variables as argu-

ments, do not include the types of the variables in the method call,

as the type should already be defined in the method declaration.

9008 bad operand types for binary operator ’&&’

If you are trying to do AND as part of a condition, double check that

both sides of the && are booleans. Also make sure you are using ==

instead of = when checking for equality.

9009 bad operand types for binary operator ’||’

If you are trying to do OR as part of a condition, double check that

both sides of the || are booleans. Also make sure you are using ==

instead of = when checking for equality.

140

9010A method *name* in class *name* cannot be applied to given types.

required: *types*. found: no arguments

It looks like you are trying to call a method named ”*name*” with

incorrect arguments. This method was expecting the following set

of arguments: *types*. However, nothing was found in the paren-

theses when you called the method. Double check that you are call-

ing the correct method. Then double check that you have all of the

values or variables that the method needs to use. Lastly make sure

that the order of the arguments is in the order that is defined in the

method declaration.

9010B method *name* in class *name* cannot be applied to given types

required: no arguments found: *types*

It looks like you are trying to call a method named ”*name*” with

incorrect arguments. The compiler was expecting to find nothing

in the parentheses when you called the method. However, the com-

piler found the following arguments instead: *types*. Double check

that you are calling the correct method. Then double check that you

have all of the values or variables that the method needs to use.

Lastly make sure that the order of the arguments is in the order that

is defined in the method declaration.

141

9010C method *name* in class *name* cannot be applied to given types

required: *types* found: *types*

It looks like you are trying to call a method named ”*name*” with

incorrect arguments. This method was expecting the following set

of arguments: *types*. However, the compiler found the following

arguments instead: *types*. Double check that you are calling the

correct method. Then double check that you have all of the values

or variables that the method needs to use. Lastly make sure that the

order of the arguments is in the order that is defined in the method

declaration.

Table A.30: Comparison of javac ’s and Decaf ’s Error

Messages

142

Error Decaf

2 Your program has unmatched braces (there is/are *number* more

opening braces ’{’ than closing braces ’}’). This may or may not be

related to the current error. Add matching braces where necessary. If

the braces are appropriately matched, check for other errors such as

unclosed double-quotes (”). There may be a missing ’(’ on line *num-

ber* Alternatively check for missing ” or mis-spellings on this line.

3 Your program has unmatched braces (there is/are *number* less

opening braces ’{’ than closing braces ’}’). This may or may not be

related to the current error. Add matching braces where necessary. If

the braces are appropriately matched, check for other errors such as

unclosed double-quotes (”). There may be a missing ’)’ on line *num-

ber* Alternatively check for missing ” or mis-spellings on this line.

37 Your program has unmatched parentheses (there is/are *number*

less opening parentheses ’(’ than closing parentheses ’)’). This may

or may not be related to the current error. Add matching parentheses

where necessary. If the parentheses are appropriately matched, check

for other errors such as unclosed double-quotes (”).

38 Your program has unmatched parentheses (there is/are *number*

more opening parentheses ’(’ than closing parentheses ’)’). This may

or may not be related to the current error. Add matching parentheses

where necessary. If the parentheses are appropriately matched, check

for other errors such as unclosed double-quotes (”).

143

41 The program has an odd number (*number*) of ”double-quotations”.

This means that one of them may be unclosed and this could be caus-

ing the error.

500 While not technically an error, something unusual was detected. The

while loop on line *number* has a semicolon immediately after it and

it is not part of a do-while loop. Is this intended?

501 While not technically an error, something unusual was detected. The

for loop on line *number* has a semicolon immediately after it. Is this

intended?

Table A.31: Decaf Exclusive Error Messages

144

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Alternatives To Compiler Error Messages
	Investigating Student Learning and Errors
	Enhanced Compilers
	Non-Compiler Tools

	Problem Statement
	What Problem Needs Solving?
	Why Is This Worth Investigating?
	Definition of Productivity

	Research Methodology
	Participant Selection and Grouping
	Laboratory Computer Setup
	Programming Pre-assessment and Anonymous Identifiers
	Consent Form and Information Letter
	Withdrawal Form
	Weekly Assignments
	Questionnaire 1
	Questionnaire 2
	Laboratory Quiz
	Questionnaire 3
	Anonymous Identifier Corrections
	Participant Grade Scaling
	Database Preparation
	Laboratory Quiz Snapshot Examination
	Statistical Analysis
	Choice of
	When Is An Error Considered To Be Successfully Fixed?
	Which Responses To Error Were Productive and Which Were Unproductive?

	What Are The Phases Of Compilation?
	Why Is Timing Data Only Available For The Laboratory Quiz?
	Q1 — Time and Compilations Per Program
	Q2 — Productivity
	Q3 — Phases of Compilation
	Q4 — Frustration When Fixing Errors
	Q5 — Confidence in Programming Ability
	Q6 — Compiler Appreciation
	Q7 — Self-assessed Versus Measured PPE
	Q8 — Participant Performance
	Research Question Which Was Considered But Not Used

	Statistical Analysis and Results
	Questionnaires and Programming Pre-assessment
	Notes On Collected Data
	Statistical Test Results

	Decaf Snapshot Analysis
	Compilation Error Distribution Analysis
	Assignments
	Laboratory Quiz

	Timing Data Analysis
	Performance Analysis

	Discussion
	Q1 — Time and Compilations Per Program
	Analysis of Compilations
	Analysis of Time
	Conclusion

	Q2 — Productivity
	Analysis of Compilations
	Comparison of Proportions
	Comparison of Averages

	Analysis of Time
	Total Time Per Response Category
	Time Per Compilation For Each Response Category

	Conclusion

	Q3 — Phases of Compilation
	Assignments — Analysis of Compilations
	Comparison of Proportions
	Comparison of Averages

	Laboratory Quiz
	Analysis of Compilations
	Analysis of Time

	Conclusion

	Q4 — Frustration When Fixing Errors
	Conclusion

	Q5 — Confidence in Programming Ability
	Confidence Change Over Time
	Comparison of Control And Enhanced Groups
	Conclusion

	Q6 — Compiler Appreciation
	Conclusion

	Q7 — Self-assessed Versus Measured PPE
	Conclusion

	Q8 — Participant Performance
	Conclusion

	Top Ten Most Common Errors
	Comparison of Assignments and Laboratory Quiz
	Comparison of Assignments and Similar Research
	McCall and Kölling
	Becker
	Rountree
	Jadud
	Jackson et al.

	Conclusion On Error Types

	Conclusions
	Summary of Conducted Study
	Conclusions and Recommendations

	Bibliography
	Tables and Forms
	Tables
	Diagrams
	Information Letter
	Withdraw Form
	Programming Experience Pre-assessment
	Questionnaires
	Questionnaire 1
	Questionnaire 2
	Questionnaire 3

	Laboratory Quiz
	Enhanced Error Messages Used In Study

