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Abstract

As research on autonomous vehicles increases, automotive manufacturers and re-

searchers are developing coordination techniques to enable safe passage of vehicles

through intersections. These techniques are called Autonomous Intersection Manage-

ment (AIM). Even though AIM techniques improve intersection throughput, they do

not e�ectively reduce congestion. Real life urban roads comprise of a networks of

multiple intersections. In such scenarios, communicating tra�c information between

intersections is essential for reducing congestion on the roads.

To achieve this, we propose an adaptive routing algorithm that incorporates a

fusion of vehicle-to-intersection (V2I) communication and intersection-to-intersection

(I2I) communication in order to bring about signi�cant reductions in congestion. To

implement this algorithm, we constructed the Enhanced AIM simulation framework

as an extension of AIM simulator (University of Texas, Austin). We demonstrate with

simulation experiments that our proposed routing algorithm shows reduced congestion

and wait-time, and improved user experience.



Yet only time keeps us apart,

you are in the shadows of my heart

Dearest Mummy
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Chapter 1

Introduction

"Right now the phone is an accessory to the car, but soon the car is

going to be an accessory to the phone." - Mark Andreessen, Co-Founder

(Andreesen Horowitz, Netscape) [2]

1.1 Background

Advances in the �eld of arti�cial intelligence have led to a new era of intelligent,

knowledge-based, mass transportation technology. Speci�cally, Intelligent Trans-

portation Systems (ITS) is the �eld that specializes in integrating information tech-

nology with vehicles and transportation infrastructure, to make transportation safer,

cheaper, and more e�cient [3]. Given the advancements in ITS in the past few years,

it is becoming easier to envision a future in which vehicles are increasingly able to

handle the majority of the driving themselves. The rise in technology surrounding

self driving cars or autonomous vehicles suggests signi�cant reduction in tra�c con-

gestion and minimal wait times at intersections as an alternative reality. As the

number of autonomous vehicles (AVs) on the roads continue to increase, the bene�ts

of smoother, steady tra�c �ow will be realized to their fullest potential.

In 2017, INRIX analysed congestion in 296 cities across the United States. They
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reported that tra�c congestion cost drivers more than $305 billion in direct and

indirect costs in 2017 alone, a $10 billion value increase compared to 2016. The

direct costs include the cost of the time spent in congestion, plus the additional fuel

cost and the social and environmental cost of emissions released by the vehicle. The

indirect costs are borne by households through the increase in the prices of goods

and services due to congestion faced by businesses [4]. In the UK, INRIX analyzed

congestion in 111 cities cost ¿37 billion in 2017, an increase of 28 percent in direct

and indirect costs compared to 2016 [4].

Many reasons contribute to tra�c congestion. Increasing number of personal ve-

hicles is one of the main reasons. Poor driving skills and improper road infrastructure

also contribute to tra�c congestion [5]. Another important reason that contributes to

tra�c congestion is intersections, especially the ones that are coordinated by tra�c

signals.

Tra�c signals are traditionally controlled by centralized timers that schedule the

timing cycles of the signals, based on location and peak-hours of tra�c. Normally,

these timers are updated and adjusted every two years based on the average tra�c

�ow of the city. However, the timing cycles of these tra�c signals are not adjusted

based on the real-time tra�c situation, and this causes unnecessarily long wait times

at intersections [6], [7].

Many attempts have been made to increase the accuracy and real-time respon-

siveness of signalized intersections. Signalized intersections were built with inductive

loops, and motion and vision sensors in order to monitor tra�c, weather conditions,

road conditions, and control signal timing accordingly. On the vehicle side, initiatives

like the Intelligent Car Initiative, spearheaded by the European Union, make exten-

sive use of electronic devices such as sensors, microcontrollers, and actuators in cars

for speed control, real time tra�c control and for sensing dangerous situations and

safely avoiding them [8].

Autonomous vehicles (AV) are predicted to be the future of mobility [9]. This
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reality is coming faster than we think it is. In order to give the context of where the

AV technology stands today, the trends in development of AVs have been classi�ed

into four levels of driving according to [10]. This can be summarized as follows:

1. Level 1 - Function Speci�c Automation: This level focuses on speci�c functions

such as adaptive cruise control, parking assist, and lane guidance, etc. The

human driver is completely responsible for control of the vehicle.

2. Level 2 - Combined Function Automation: This level of technology allows the

driver to partially disengage (hands o� the steering wheel) only under certain

conditions, while most of the time the driver is still in control and is responsible

for monitoring the road. An example would be adaptive cruise control with lane

centering.

3. Level 3 - Limited Self-Driving Automation: This level of technology allows the

driver to hand over control of most of the safety-critical applications, and rely on

the vehicle to monitor changes in those conditions that will require transition of

control back to the driver. There is no necessity for the driver to pay attention

to the environment continuously.

4. Level 4 - Full Self-Driving Automation: In this level, the vehicle can perform

all driving functions, and can monitor tra�c conditions for the entire trip. The

vehicle can then be operated without human intervention.

Currently, only Level 2 automation has been made available for public use. Most

pilot projects put forth by major car manufacturers fall in Level 3, which is the state

of the art now. Technology surrounding AVs needs to develop at a greater pace in

order to attain Level 4 automation. Figure 1.1 gives the overview of the timeline

when AVs will be made available for general public use.

In the following subsection, we will provide a historical account of autonomous

vehicles and the bene�ts and challenges they impose to the society.
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Figure 1.1: Predicted Timeline for Autonomous Vehicles [1]

1.1.1 A Brief History

The �rst attempts to make AVs began in the 1980s in Germany, by Ernst Dick-

manns and his group at Bundeswehr University (UniBW) in Munich. Some of these

UniBW cars would drive as fast as 96 km/h on empty streets. This was followed by

the largest AV project ever: the pan-European Prometheus project worth almost $1

billion. It involved UniBW and many other research groups developing AVs across

Europe between 1987 and 1995 [11]. One of these cars, the "VAmP" (a Mercedes 500

SEL) guided by vision sensors, drove in Paris tra�c in 1994, tracking up to 12 other

cars simultaneously. It drove more than 1000 km on the Paris multi-lane ring, up

to 130 km/h, automatically passing slower cars in the left lane. In 1995, an S-class

car of Dickmanns and UniBW, autonomously drove a round trip of 1678 km on a

public highway from Munich to Denmark, at up to 180 km/h, passing other cars

autonomously [11].

In 2005, in the USA, DARPA started its "Grand Challenge" in the desert. The

course was 211 km long and the fastest team to win was from Stanford University, who

did the whole course in almost 7 hours [12]. This was followed by a similar demon-

stration in Europe in 2006, called ELROB (European Land Robot Trials) which was
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conducted with autonomous o�-road vehicles. In 2007, there was another DARPA

Grand Challenge for an urban tra�c scenario, where the driverless cars would try to

complete missions given to them within a specifed time period. Several teams success-

fully developed a vehicle that has the ability to drive itself and achieve the assigned

mission [12]. Most successful teams employed high-end laser scanners coupled with

radars for perception and high-precision GPS/INS for localization [13], [14].

The Grand Cooperative Driving Challenge (GCDC), 2011 was the �rst interna-

tional competition to implement highway platooning scenarios of cooperating vehicles

connected with communication devices [15]. In July 2013, a team from University

of Parma, Italy [16] performed another impressive autonomous driving experiment in

public. Interesting work that aims for autonomous driving with close-to-production

vehicles is presented in [17]. Already several autonomous vehicles have been demon-

strated by Google [18], and Tesla [19]. Tesla's Autopilot features automated steering

and acceleration in limited conditions [20]. Waymo and Uber announced intentions

to begin testing autonomous taxi services [21], [22]. Despite this progress, signi�cant

technical progress is needed before vehicles can drive themselves under all normal

conditions [23].

1.1.2 Bene�ts and Impacts of Autonomous Vehicles

The bene�ts of autonomous vehicles are manifold [9]. The �rst and the most

important one is safety. Autonomous vehicles have the potential to reduce crashes

dramatically. The number one reason for tra�c accidents worldwide is human er-

ror. Over 40% of these fatal crashes involve distraction, drug in�uence, or fatigue.

Fully autonomous vehicles can guarantee 40% reduction in fatal crashes, assuming

malfunctions in autonomous vehicles are well within the allowable error margin.

In addition to safety, autonomous vehicles open up the possibility for e�cient

autonomous intersection management technologies to be deployed. The result is

lower tra�c delays compared to current technologies such as tra�c lights and stop

signs. Reduced tra�c congestion will invariably reduce fuel consumption as well.
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Autonomous vehicles are also expected to use existing lanes and intersections more

e�ciently through shorter gaps between vehicles, coordinated platoons, and more

e�cient route choices [24]. The improved safety and reduced congestion bene�ts of

autonomous vehicles have the potential to impact travel behavior signi�cantly. Au-

tonomous vehicles will open up opportunities for the young, elderly, and disabled

population to use roadways more e�ectively. Additional fuel savings can be obtained

by allowing the vehicles to communicate with parking infrastructure to enable driver-

less dropo�s and pickups.

1.2 Motivation

In the previous subsection, we saw how advances in ITS and autonomous vehicles

are going to impact the future. In this subsection, we give a brief overview of the

research area that forms the focus of this thesis.

When fully autonomous vehicles become the norm of road transportation in the

future, the bottleneck that causes congestion will shift from ine�cient road infras-

tructure, tra�c lights and human drivers, to intersections. On freeways, there are

usually no pedestrians or cyclists and vehicles travel in the same direction with simi-

lar velocities. There is no need for more than a simple reactive behavior to keep the

vehicle in the same lane and to maintain reasonable distance between vehicles.

Intersections are a completely di�erent story. Vehicles constantly cross paths, in

many di�erent directions inside an intersection. A vehicle approaching an intersection

can quickly �nd itself in a situation where collision is unavoidable, even when it

has acted optimally. Tra�c statistics support the sensitive nature of intersections.

Vehicle collisions at intersections account for anywhere between 25% and 45% of all

collisions [5]. As intersections occupy only a small portion of the roadway, this is a

disproportionate number.

Given the sensitive nature of intersections, it is important then to be able to coor-

dinate tra�c safely and e�ciently at intersections. The techniques or algorithms or
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policies used to do the same are called Autonomous Intersection Management (AIM)

techniques. AIM techniques solely focus on avoiding collisions and coordinating au-

tonomous tra�c e�ectively at intersections. In order for AIM techniques to work

e�ciently, we must assume the autonomous vehicles operate in a connected environ-

ment where each vehicles possesses the capability to communicate with each other

and with the road side infrastructure provided at intersections.

Dresner and Stone [25] proposed an AIM technique based on a reservation system

for reducing tra�c congestion, speci�cally at intersections. The simulation results

showed that their AIM technique outperformed tra�c lights in terms of congestion

and wait-time at an intersection. A similar conclusion was drawn by Fajardo et

al. [26]. Consequently, it is becoming clear that AV technology might have a positive

impact on tra�c congestion. However, there is also a threat that this technology

can induce additional demand, thus adding more pressure to an already congested

network. The impact of the AV technology on tra�c congestion is an area yet to be

explored.

Even though AIM techniques improve throughput at intersections, they do not

guarantee reduced congestion in the overall network. Real life urban roads are com-

prised of a networks of multiple intersections. In such a scenario, communicating

tra�c information between intersections is essential for reducing congestion on the

roads. In this context, we reason that the presence of Intersection to Intersection

(I2I) communication will allow smart intersections or intersection managers (IM) to

communicate real time tra�c density information, as well as emergency/trauma re-

lated information. Each intersection will communicate with its immediate connected

neighbors. This way, we will be aware of the tra�c density status of a local neighbor-

hood at all times. We propose a routing algorithm that uses this local neighborhood

information to route tra�c in an adaptive manner.
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1.3 Research Problem

The goal of this thesis is two-fold. First, we aim to devise an adaptive routing

algorithm for AVs that seeks to minimize congestion in the network. Second, we aim

to study how this adaptive routing algorithm a�ects user experience. Based on the

given description, the primary research question for this thesis is as follows.

How do we develop an adaptive routing algorithm that is capable of routing

autonomous vehicles using I2I communication?

While coordination of tra�c at an intersection represents a local problem, its combina-

tion with other intersections and the topography of a city makes routing autonomous

vehicles - a di�cult challenge to address. The sub research questions are as follows:

� What are the impacts (advantages and disadvantages) of the proposed adaptive

routing algorithm?

� How does this adaptive routing algorithm a�ect congestion and wait times in a

given tra�c scenario?

� What impact does routing have on a user's experience during their journey?

1.3.1 Need for Computer Simulation

Constructing a real system to answer these questions is not feasible. We need a

simulation framework that can help users design various scenarios and measure their

characteristics. Computer simulation generated output can be used to infer answers

for these questions. In this thesis, we attempt to answer the above questions using

Enhanced AIM, an adaptive simulation framework for autonomous vehicles. This

framework was constructed by extending the AIM simulation framework developed

by Peter Stone and Kurt Dresner et al. at the University of Texas, Austin [27].
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1.4 Thesis Contributions

The thesis has three main contributions:

1. Intersection to Intersection Communication Module: We believe I2I messages

will play a central role in a connected and autonomous vehicle scenario. In this

thesis, we add the I2I communication module as an enhancement to the AIM

simulator. We also propose a communication protocol standard for messaging

between neighboring intersections.

2. Messaging Middleware: We use a message-oriented middleware that integrates

simulation and analytic engine. The messaging middleware is responsible for

connecting these components and facilitating message transfers in near real-

time. The middleware is completely reproducible and is built from scratch

using open source o�-the-shelf components.

3. Analytic Engine: We implement a mining repository and a data store that en-

ables storage of all the interactions between various agents within the simulator

and supports o�ine as well as online data analysis.

Simulation experiments were conducted and the results are reported.

1.5 Structure of the thesis

The rest of this thesis is structured as follows. Chapter 2 provides a literature

survey. It includes a background about tra�c simulation of AVs and an overview

of various tra�c simulators used for the study of AVs. It also presents an account

of existing autonomous intersection management approaches, their advantages and

disadvantages. Design and implementation details of the proposed adaptive routing

algorithm using I2I messages is discussed in Chapter 3. Chapter 4 describes the key

features present in the AIM simulator as well as the Enhanced AIM simulator. Chap-

ter 5 describes the experiments conducted in order to evaluate the system. In Chapter
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6, we describe some ethical aspects surrounding autonomous vehicle technology that

needs to be considered. Finally, in Chapter 7, we conclude the thesis and provide

future directions to extend the work carried out in this thesis.
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Chapter 2

Literature Survey

Today's cars are parked 95% of the time.

- Paul Barter, Urban Transport Researcher, National University of Singa-

pore, Murdoch University [28]

This chapter is divided into three sections. In Section 2.1, we discuss how trans-

portation systems can be modeled as a multiagent system. This section also includes

a brief overview of the various modeling and simulation techniques that are used to

model autonomous vehicles. In Section 2.2, we review the various simulation tools

available for autonomous intersection management and the rationale behind choos-

ing AIM simulation framework for this thesis. Section 2.3 provides a review of the

existing AIM techniques present in literature.

2.1 Background

2.1.1 Modeling Road Tra�c

For many decades, modeling and simulation have been extensively used for study-

ing the �ow of road tra�c [29]. Tra�c modeling is one of the core research areas of

ITS and its goal is to develop mathematical tools describing real-world tra�c with
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desired accuracy [30]. Modeling gives us the �exibility to represent individual entities

of the tra�c system either in an abstract or detailed manner. Tra�c can be mod-

eled in various ways depending on the level of detail needed to represent the tra�c

system: from a microscopic level (each car modeled as a separate entity or agent)

to a macroscopic level (tra�c described by relations between aggregated values, e.g.,

speed, �ow, and density). A comprehensive review of the various tra�c models used

in literature is provided in [31].

In this thesis, we use a microscopic model for modeling autonomous vehicles. Mi-

croscopic modeling of autonomous vehicles has been developed alongside autonomous

cars since the 1960s [32]. Modeling involves deciding how to represent the various

interacting entities of the model (driver, vehicles, intersections, crosswalk, pedestri-

ans, etc.). We then have to identify and de�ne characteristics for each entity and

de�ne the simulation environment. Tra�c models that showed the impact of V2X

communication were more prevalent in the early 2000's. Some examples of such mod-

els include lane changing, overtaking and cooperative driving on highways [33], and

synchronized driving through intersections with tra�c lights [7] and without tra�c

lights [34].

2.1.1.1 Modeling Vehicles

In many models, vehicles and drivers are modeled as a single component. However,

this does not represent the real world accurately. A vehicle is modeled with features

like speed, acceleration, heading, deceleration, length etc. During simulation, current

position and direction of the vehicle in the environment are required to keep track of

the current state [35].

2.1.1.2 Modeling Drivers

The authors in [36] suggest that most of the decisions made by the driver can

be classi�ed as a macro goal or a micro goal. Macro goals are decisions that a�ect

the destination and route taken, while micro goals involve localized decisions at each
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point of time in the interest of achieving the macro goal. The macro goal involves

daily planning and route generation; often in�uenced by the origin-destination ma-

trix. Micro goals are decisions that govern the control of the vehicle, such as desired

speed, overtaking and turning. Drivers all have di�erent driving styles, which are

governed by their individual characteristics such as aggressiveness, con�dence and

driving experience [37], [36].

2.1.1.3 Modeling the Environment

In a tra�c system, the environment in which vehicles drive is a road network which

is made up of link segments and nodes. The network of roads is usually modeled as an

undirected graph for simplicity [38]. Nodes form the intersection. Each link can have

one or more lanes, and may operate in one or both directions. Links have properties

such as length, number of lanes, speed limit etc. [25].

2.1.2 Agent-Based Modeling of Road Tra�c

Each vehicle in a microscopic model interacts with others in a certain way. This

means that at every simulation step, each vehicle is considered as an individual agent,

and the parameters associated with that vehicle agent such as position, velocity,

acceleration, heading, etc. are updated [30]. There are several di�erent types of

commonly used tra�c simulation models: vehicle-following (VF) models, Cellular

Automata (CA) models and the multiagent (MA) models.

In the past, single-lane car-following models have been successfully applied to

describe tra�c dynamics [39]. Models that use CA have been studied in the past

decade, but they do not realistically re�ect driver behaviour. With CA models, vehi-

cles are more or less modeled as entities with irregular acceleration and deceleration

rates [40], [41], [42]. The agent metaphor has proven to be a promising choice for com-

plex models such as road networks because it allows abstraction at a conceptual level.

The abstraction approach of multi-agent systems (MAS), consists of representing a

tra�c system by multiple agents that exist in a common environment, and interact

13



in order to achieve speci�c goals [43]. These agents exhibit intelligence, autonomy,

and some social ability. They pursue individual or collective goals, and interact with

one another and the environment, as well [37].

In a tra�c simulation environment, the vehicle agent senses the environment to

know how many vehicles there are on the road and their driving behavior. Each

vehicle agent looks at other vehicles on the road periodically, and moves to reach

its destination safely in the fastest possible way. The adaptability and �exibility of

an agent makes it possible to control various types of vehicles with di�erent driving

styles. This way, the simulated vehicles will behave in a manner close to the real

system, and the interaction between multiple vehicle agents can be studied. The

MA models allow solving problems collaboratively by coordinating the knowledge,

goals and plans of autonomous intelligent agents. It o�ers advantages such as faster

response, increased �exibility, robustness, resource sharing, graceful degradation, and

better adaptability of integrating pre-existing and stand-alone systems [44].

2.1.3 Simulation of Road tra�c

Simulation is used to study the change in behavior of tra�c systems under vari-

ous scenarios with di�erent parameters. Simulation is proven to be an easier, more

�exible, and cheaper alternative to perform cause-e�ect analysis, identify bottlenecks,

and study various factors about a system as compared to a real life system. In recent

years, with computer technology quickly advancing, simulation is being used more

and more for AV research, and to explore ideas of controlling the tra�c of the future.

Over the last few decades, tra�c simulators were widely used as a tool to assist in

making decisions in mobility and infrastructure planning. These tools help in ana-

lyzing congestion issues, and are able to predict the consequences of changes to the

system (or a road network), like adding an extra lane, adding a new road, increasing

the maximum speed limit, etc. [45]. Simulations also allow testing the system with

scenarios that are not possible, or that are too dangerous to involve human drivers.

In this section, we discussed brie�y how modeling and simulation is used for

14



studying tra�c systems. In the next section, we will discuss some of the tra�c

simulators that are used to study autonomous vehicles and future road networks.

2.2 AIM Simulators - A Review

Tra�c simulation software has become increasingly used as a tool for studying

and analyzing road tra�c patterns. In this thesis, we are only concerned with a

urban tra�c system that supports autonomous vehicles. Keeping this requirement

as the primary �lter, a study was done to �nd the simulators that can support the

necessary characteristics of the tra�c system of interest. By applying this �lter, we

�nd the following simulators present in literature that best �t our needs. They are

given below.

2.2.1 VISSIM

VISSIM is a commercial tra�c simulator developed by PTV in Germany [46].

It is a popular microscopic tra�c simulation software used in research and in the

transportation industry for planning and analysis purposes. VISSIM provides sup-

port for modeling various types of transportation modes such as road, rail, cyclists,

pedestrians etc. Various types of vehicles such as cars, trucks, buses, and airplanes

can be modeled with VISSIM. VISSIM uses both a psycho-physical vehicle movement

model and a rule-based model for modeling vehicles. Simulation of vehicle movements

is dependent on the psycho-physical model whereas a rule based model is used for

optimizing lane changes on the road network.

Driver behavior can be con�gured for each simulation. Users are able to con�gure

driver behavior with the help of driver vehicle classes. This gives the user �exibility

to select and apply the most suitable method for their analysis. VISSIM o�ers various

ways of visualizing the route choices done by the vehicles. VISSIM also supports in-

tersections of all types including signalized, uncontrolled intersections with applicable

right-of-way rules, and autonomous intersections. Almost all the simulation results

can be stored as text �les or in a database and can be used for analysis.
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2.2.2 AIMSUN

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non Urban

Networks) is widely used for developing tra�c management and planning decisions

in urban areas [47]. AIMSUM supports various types of tra�c modeling such as

macroscopic, microscopic, and mesoscopic in order to make a wide variety of analysis

possible. The mesoscopic approach is useful for studying scenarios such as adaptive

tra�c control, or how changing bus stops a�ects the tra�c �ow in an urban road

network. The microscopic approach is useful for studying tra�c dynamics in great

detail. For example, the microscopic approach would be extremely useful to study

environmental impacts of congestion at an intersection. However, the major limita-

tion of using the microscopic approach would be the need for accurate calibration and

computational overhead. A hybrid meso-micro model would overcome the individual

limitations of the above models. This is one of the main features to be included in

AIMSUN Next, the upcoming, improved version of this tool. AIMSUN is a com-

prehensive tool that provides the user with a variety of data sets and options for

exporting the output of the analysis in various forms making it an excellent choice

for analysis purposes.

2.2.3 MITSIMLab

MITSIMLab (microscopic tra�c simulation laboratory) is a microscopic tra�c

simulation model that is used for evaluation of advanced tra�c management systems,

public transportation systems, route guidance systems, etc. [48]. It was developed by

MIT's Intelligent Transportation Systems (ITS) Program. MITSIMLab is an open-

source application where its core models have been written in C++ and are fully

available. It has been successfully applied in several tra�c and research studies in

the USA, UK, Sweden, Italy, Switzerland, Japan, Korea, Malaysia and Portugal [46].

MITSIMLab has a repository of tra�c models available to the user. A distinguish-

ing feature in this simulator is that users can view the reaction of driver agents to real
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time tra�c information. To allow maximum �exibility in the system, MITSIMLab is

implemented in three separate modules as given below.

1. Microscopic Tra�c Simulator (MITSIM)

2. Tra�c Management Simulator (TMS)

3. Graphical User Interface (GUI)

Microscopic simulation approach is used for modeling tra�c �ow in the tra�c �ow

simulator (MITSIM). The road network, roads, intersections, and lanes are all repre-

sented at the microscopic level. MITSIM accepts time-dependent origin destination

trip tables as inputs. For each vehicle then, driving behavior such as speed, aggressive-

ness and other general vehicle characteristics are speci�ed. MITSIM moves vehicles

according to car-following and lane-changing models. The car-following model cap-

tures the response of a driver to conditions ahead, as a function of relative speed,

headway and other tra�c measures. The lane changing model distinguishes between

mandatory and discretionary lane changes. Merging, drivers' responses to tra�c sig-

nals, speed limits, incidents, and toll booths are also captured [48].

The TMS is responsible for the tra�c control part of the simulator. The TMS can

be used for evaluating a wide range of features such as ramp control, freeway control,

intersection control, and external route guidance systems such as variable message

signs, and in-vehicle route guidance systems. The input data is given to the TMS,

which is then responsible for choosing the route strategy. The control and routing

strategies generated by the TMS determines the state of tra�c control and route

guidance devices. These settings are transferred to the TS. The simulated drivers

respond to the various tra�c controls and guidance, while interacting with each other.

TMS has a generic structure that can represent di�erent designs of such systems with

logic, at varying levels of sophistication (from pre-timed to responsive). The TMS

is a virtual transportation system operation control center, processing performance

data from the sensor network, and generating a strategy. The TMS also simulates

17



a wide range of transit operations control strategies (e.g., transit signal priority and

holding for service restoration) de�ned by the user. The simulation output can be

obtained as numerical data tables and via the graphical user interface (GUI), which

visualizes tra�c impacts through vehicle animation.

MITSIMLab generates various output reports that may be used to evaluate the

performance of potential ITS strategies. Travel demand is represented by time-

dependent origin-to-destination (OD) trip tables, which show expected conditions

or are de�ned as part of a scenario for evaluation. Based on these tables, individ-

ual vehicles are generated. The generated vehicles are assigned driver characteristics

(e.g. aggressiveness, planning capability, look-ahead distance, level of compliance with

various signs and regulations) and vehicle attributes (e.g. acceleration and speed ca-

pabilities and the impact of grade, on these capabilities) based on pre-determined

distributions. Route choices are based on a probabilistic model that captures the

impact of travel times and biases toward routes that use freeways over urban streets.

The impact of real-time information on routing decisions is captured by a route-

switching model in which informed drivers re-evaluate their pre-trip route choices,

based on the tra�c conditions observed en route. MITSIMLab is a time-based sim-

ulation model with time steps that may di�er for various functions from 0.1 to 1.0

s. It also incorporates event-based approaches for situations such as crash avoidance

and responses to changes in tra�c controls, and information settings.

2.2.4 MATSim

MATSim (Multi-Agent Transport Simulation) is another major tra�c simulator.

Its focus is on the bigger picture of evaluating how people choose di�erent aspects

of their trips �where to go, when to leave, what route to take �rather than simu-

lating detailed tra�c conditions [49]. MATSim can be considered more of a mobility

simulator than that of a tra�c simulator. MATSim supports two tra�c �ow models,

the newer of which uses discrete-event time. Equations give times at which links

will change state (meaning a driver exits or enters a road). E�ects like congestion
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spillback have to be explicitly modeled. MATSim is agent-based in the sense that

each driver updates its trip plan after getting a score from simulation. Modeling new

control policies for intersections for instance, would not be straightforward in MAT-

Sim. As such, further comparison is di�cult. For reference, MATSim 0.5 consists of

140,000 lines of well-organized and documented Java. The tutorials make it quick to

start using, but getting visualization components to run takes more work.

2.2.5 SUMO

Simulation of Urban Mobility (SUMO) is an open source, highly portable, micro-

scopic road tra�c simulation package, designed to handle large road networks [46]. It

is licensed under the GPL. Its features include collision free vehicle movement, multi-

lane streets with lane changing, fast execution speed, dynamic user assignment, and

others.

Parameters for simulation can be set using XML �les for demand data, routes,

turn de�nitions at junctions, the map, tra�c signal timings, and so on. However,

its numerous capabilities come at the cost of a massive code-base of 125,000 lines of

C++. Upon rough inspection, the code is not easy to understand.

SUMO also has a high start up cost. There are tutorials provided but they are

not very user-friendly. SUMO is a much more powerful simulator, but it comes at the

cost of a more complex code-base and is a di�cult user experience for beginners. An

argument may be made for the choice of C++ for speed, but there are doubts.

2.2.6 AIM Simulator

Dresner and Stone have developed an open-source simulator written in Java, which

they call the AIM Simulator [27]. The AIM simulator was mainly built to evaluate

the performance of the AIM protocol. The simulator is small, �exible and built in a

modular fashion. For a single intersection, the simulation area is modeled as a 250 m

x 250 m area, having the intersection at the center of that area.
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During each time step, the following events take place.

� New vehicles are spawned based on a probability distribution

� Provides sensor input through vehicles sensors/actuators to all vehicles

� Allows driver agents controlling the vehicles to act

� Updates vehicle's positions based on a physical model

� Removes vehicles after reaching the end of the simulation area

A driver agent is a computer software that controls and pilots an autonomous

vehicle, taking the role of a human driver. In order for driver agents to take the

wheel, they have to access the vehicle's properties (e.g. VIN, size, and acceleration

capabilities), and state variables (e.g. velocity, heading and acceleration). In addition,

they have access to a set of simulated external sensors. One of those sensors is a

simulated laser range �nder, which determines close-by vehicles, and provides the

distance and angle to a point on the nearby vehicle closest to the sensing vehicle.

This provides the driver agent with the information needed to control the vehicle so

that it does not hit vehicles in front. Vehicles' positions are updated at each time

step, based on a physical model.

The Autonomous Intersection Management (AIM) project introduces an inter-

section control scheme designed for autonomous vehicles. As drivers approach an

intersection, they request their desired movement from an intersection agent. This

intersection manager determines when the driver can safely make the turn and sends

back a reply. The manager predicts potential collisions by dividing the intersection

into a grid and reserving space-time tiles for each vehicle. The bu�er around a vehi-

cle can be adjusted to account for mechanical inaccuracies, in case the autonomous

vehicle cannot exactly follow its intended path.

AIM is not a general tra�c simulator; instead, it focuses on interactions between

vehicles and infrastructure at one intersection. AIM has been extended to cover
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a small network of linked intersections. As a point of comparison, the AIM 1.0.4

simulator consists of 40,000 lines of Java.

2.2.7 AORTA

Approximately Orchestrated Routing and Transportation Analyzer (AORTA) is

a simulation platform exclusively designed for evaluating intersection policies and

testing AV behaviors [50]. One of the key features of using AORTA is that simulations

can be run on OSM maps which are generated from real road data. A map for any

desired city in the world can be downloaded, and then parsed by AORTA to set up a

scale simulation of the real world in a few minutes.

AORTA is an open-source simulator and is easily extensible, making it easy for

users to test out a number of agent behaviors and intersection policies in a short

time span. AORTA is divided into three modular components: the map model,

micro-simulation engine, and user interface (UI). The map model transforms OSM

maps into AORTA graphs, then answers path �nding and geometry queries. The

simulation engine adds a notion of agents, vehicle dynamics, and collisions. Finally,

the UI interactively renders the map and agents. A headless mode also exists to run

experiments without the overhead of visualization.

2.2.8 Discussion

Kokkinogenis et. al. provide a comprehensive survey on the various types of agent

based autonomous vehicle simulators, classifying them by several factors [51]. Two

factors were taken into consideration when deciding the type of simulation framework

that would be suitable for this thesis. Firstly, the software must be open source, and

secondly, it should support modeling vehicles as fully autonomous vehicles. The �rst

two simulators discussed, VISSIM and AIMSUN, are commercial simulators, and

therefore we refrained from using them. The other simulators discussed above are

open source simulators. On applying the second �lter, we were left with two options

that were closest to our objectives in terms of functionality and code complexity:
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AIM simulator and AORTA.

It is possible to implement the adaptive routing algorithm in AIM simulator as

well as AORTA. However, AIM simulator gives us the opportunity to do so with a

relatively simpler and well documented code base. Currently, AIM supports only 25

intersections. The fact that AIM was the inspiration for AORTA, helped us rule out

AORTA. After careful analysis of the available simulators, AIM simulator was selected

to be the base platform for building Enhanced AIM [52]. Because the simulator is

implemented in JAVA, which I was already familiar with, together with the fact that

it is an open source tool, it was a reasonable option. Additionally, its programming is

structured very well, which makes it relatively easy for us to adapt the environment

to our own needs.

2.3 Autonomous Intersection Management Techniques

One of the earliest research works in the area of intersection management for

autonomous vehicles was established by Dresner and Stone at the University of Texas

in 2004 [25]. They created a First Come First Served (FCFS) reservation-based

AIM techniques or FCFS for short, that can be used by autonomous vehicles to pass

through intersections. They also showed that the FCFS technique clearly outperforms

current intersection management technologies such as tra�c lights and stop signs

[27]. The FCFS technique is centralized and vehicles communicate with intersection

managers placed at each intersection.

Vehicles planning to enter the intersection try to reserve a space-time block in

the intersection, by sending information to the intersection manager about their time

of arrival, velocity of arrival, and their capabilities such as their maximum accelera-

tion/deceleration and size. This information is sent as a package, called a proposal.

The intersection manager runs an intersection control policy to compute whether a

reservation should be granted or rejected depending on reservations that were already

granted. This is done on a First Come, First Serve (FCFS) basis; and sends the result
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�accept or reject, back to the requesting vehicle. A vehicle cannot enter the inter-

section unless it receives a con�rmation message about its reservation request. If the

vehicle does not receive a reply from the intersection manager, it stops before entering

the intersection and keeps on sending requests until one of them gets accepted.

The reservation concept was widely accepted across the research community be-

cause it showed signi�cant improvements in terms of throughput, average speed and

average wait time at intersections. The FCFS intersection control policy in AIM

was changed to a look-ahead intersection control policy (LICP) by another research

group [53]. In LICP, the main concept is that if the average intersection delay would

be improved by delaying or canceling a reservation, then this will be done even if a

vehicle had a higher priority than all the other con�icting vehicles. This is usually

done when a vehicle has con�icting trajectories with many other vehicles; so it would

be better for all the other vehicles if this vehicle were denied access to the intersection

for some time. The LICP policy is shown by the authors to make around 25% av-

erage performance improvement on intersection delay compared to the FCFS policy.

The authors also address the issue of fairness in their policy, by allowing vehicles that

have waited for a long time to pass through the intersection even if this will negatively

a�ect the average intersection delay. De La Fortelle [54] also proposes a reservation-

based AIM algorithm, and focuses on accepting reservations in a heuristically e�cient

order.

Many approaches that were claimed to improve on the reservation approach for

intersection management were proposed. The authors in [55] classify these approaches

in two categories.

1. Planning based approaches

2. Hybrid approaches
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2.3.1 Planning Based Approaches

In planning-based approaches, it is the job of an IM to �nd collision-free tra-

jectories for all vehicles. Then the vehicles should follow the trajectories to cross

the intersection. If the vehicles fail to follow the planned trajectories, collisions may

become unavoidable during simulation. The main limitation of this method is the

amount of computation that happens at the IM for generating collision free trajec-

tories for all the cars. Lee and Park argued that trajectory generation is a complex,

non-linear, constrained optimisation problem [56]. This technique computes the en-

tire trajectory of each vehicle through the intersection, and if an unexpected event

(e.g. a mechanical breakdown) occurs, then those trajectories are invalidated. Plan-

ning based approaches do not o�er the �exibility to consider the unique needs of each

vehicle as this will necessarily introduce a large number of parameters, adding more

complexity to an already complex system. To compute optimal trajectories that do

not collide with each other, it is necessary to use optimization tools such as such as

Active Set Method, Interior Point Method, and Genetic Algorithms.

To address this complexity issue, Kamal et al. [57] formulated a model predictive

control (MPC) problem that generates the vehicle trajectories for a given duration

in the future. The MPC problem is solved in a receding horizon fashion to take

into account changes of the environment. The above approaches �rst determine the

trajectories of the vehicles in a centralised entity and then, in a second phase, require

vehicles to follow their assigned trajectories. A slightly di�erent approach, one that

allows partial decentralisation, are proposed in [58�60].

The authors in [61] established an autonomous intersection model where vehicles

entering a cooperative area inform the intersection manager of their arrival. The IM

maintains a queue and adds that vehicle to its waiting queue. Simultaneously, the IM

also maintains a permission list. At every time step, the IM will add vehicles from

the waiting queue to the permissions list. After this the vehicles in the permission

list are permitted to pass through the intersection. Passing through the intersection,
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they will be released from the permission sequence. In addition, by adjusting the

speed, the vehicles can pass through the intersection area without waiting; improving

passing e�ciency.

2.3.2 Hybrid Approaches

Hybrid approaches introduce some level of priority in the order of vehicles access-

ing passage through an intersection. The authors in [58] propose a priority approach

based on navigation functions. When two cars are both in the crossroad area, the

vehicle's navigation function will send their own route information to the intersec-

tion controller. Therefore, the probability of collision between the two cars will be

calculated according to the vehicles' locations, driving directions, and speed. If there

is a possibility of collision, the vehicle nearer the collision point will be assigned

greater priority and be told to accelerate while the other one will slow down to avoid

a crash [55].

A similar approach is found in [59] where a crossing order is decided in advance

for incoming vehicles. Each vehicle is then locally controlled by an MPC scheme

that generates a feasible trajectory in a receding horizon fashion. In [60], incoming

vehicles decide their desired trajectories using optimization techniques, according to a

prede�ned decision order. The authors [62] propose to let vehicles choose any possible

control scheme, unless this would lead the system into an unsafe state. In that case,

the control of one or several vehicles is overridden by a centralized controller, to

prevent entering this state.

2.3.3 Slot Based Approaches

A more recent approach towards autonomous tra�c management is the slot based

approach. This was proposed by the authors Tachet et al. at MIT [63]. Slot based

systems are inspired from air tra�c coordination systems. A common way of coor-

dinating tra�c is to exclusively and, in an alternate fahion, give access to vehicles

traveling in one direction through the intersection. In contrast, slot-based systems
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consider the trajectory of multiple vehicles, and prevent collisions by coordinating the

time slot in which the intersection can be crossed safely (simultaneously for multiple

tra�c directions) [63].

The studies done in [63] shows us that tra�c �ow in Slot Based Systems is more

smooth. Forming platoons of vehicles and serving all vehicles in the platoon before

giving way to a con�icting �ow, is more e�cient from a capacity point of view. Based

on the generalized queue theory, the researchers found that the Slot-Based Systems

capacity can be doubled and the delay can be signi�cantly reduced, compared to the

tra�c-light controls [63]. But the premise of Slot-Based Systems is that the roads are

basically occupied by autonomous cars, thus there may be decades before this can be

tested in real life.

2.4 Summary

Based on what we reviewed in this chapter, it is very clear that research in the

�eld of autonomous vehicles is growing in multiple directions. On one hand, we see

an increase in the number of tra�c simulators that support autonomous vehicles.

There has been a lot of research done in building realistic test beds and simulators

that support autonomous vehicles to evaluate the performance of these vehicles. On

the other hand, many researchers have contributed to researching di�erent types

of autonomous intersection management techniques/policies. A review of relevant

literature indicates that improving tra�c �ow at an intersection should, in modeled

tra�c, have a signi�cant impact on the overall tra�c �ow. In the next chapter, we

will discuss the research related to routing of autonomous vehicles.
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Chapter 3

Adaptive Routing Algorithm using

I2I Messages

In this chapter, we describe the design and development of an adaptive routing algo-

rithm for routing autonomous vehicles.

3.1 System Assumptions

For this thesis, we use a road network consisting of multiple intersections similar to

the road network proposed in [27]. The multiple intersection model that we consider

contains 9 connected intersections with 3 incoming roads and 3 outgoing roads. Each

road is four lanes wide and has two lanes in each direction. We use this con�guration

to retain simplicity and demonstrate proof of concept. The AIM simulator provides

capability to model upto 25 connected intersections in the network. In this respect,

let us look at some assumptions on which the simulation system is based. Figure 3.1

illustrates the intersection and lane model that is used in this thesis.

� Only autonomous vehicles are present in the system.

� All the vehicles passing through the intersection will participate in the intersec-

tion control policy employed by the IM.
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Figure 3.1: Intersection and Lane Model for Enhanced AIM

� Changing lanes are not allowed in the intersection space.

� All vehicles have the ability to detect whether they are entering an intersection

or exiting one. They also have the ability to send a request for crossing message

to an upcoming IM, when they come within a speci�ed communication range

with that IM.

� All the autonomous vehicles are able to communicate with each other and with

the IM using wireless communication.

� Reliable communication between the vehicle and the intersection agents is as-

sumed. We assume that there is no explicit delay in processing and transferring

and receiving the messages.

� Intersection policy employed by the IM will remain constant throughout the

duration of the simulation.

� Finally, we assume that the vehicles have su�ciently powerful brakes to enable

a vehicle traveling at the speed limit to stop as soon as the entrance of an
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intersection is detected, and not stop in the middle of an intersection, and that

the lanes have a su�ciently-wide bu�er zones on either side.

3.1.1 Design Criteria

The design criteria for our system is based on the design criteria presented in [27]

and aims to satisfy the following properties.

1. Autonomy : Each vehicle is an autonomous agent.

2. Low Communication Complexity : The number of messages and amount of in-

formation transmitted within the system is kept to a minimum.

3. Sensor Model Realism: Each agent has access to sensors that are feasible with

current-day technology.

4. Protocol Standardization: The system employs a simple, standardized protocol

for communication between agents.

5. Deadlock/Starvation Avoidance: Every vehicle approaching an intersection should

eventually pass through the intersection.

6. Safety : Vehicles should never collide in the intersection.

7. E�ciency : Vehicles should pass through the intersection in as little time as

possible.

3.2 Related Work

As seen in the previous chapter, most of the approaches for autonomous inter-

section management can be categorized into either centralized approaches or de-

centralized approaches. Centralized approaches are very e�cient when considering

a road network consisting only of autonomous vehicles, provided those vehicles follow

the route proposed by the IM to the rule [24]. We will elaborate brie�y.

29



Imagine a future road network, which consists of intersections and roads with

multiple lanes connecting these intersections. We consider only autonomous tra�c in

this environment. At the beginning of a journey, passengers board an AV and specify

a destination. It is the vehicle agents' responsibility to make sure that passengers are

transported safely and e�ciently, with minimal delay from their respective source to

the destination [64]. Each vehicle agent is aware of the map (network), the location of

various intersections, etc. This information is used by the vehicle agent to plan their

trips respectively. Now, in the present simulation scenario, every IM in the network

employs the same intersection control policy. Each IM is responsible for making sure

vehicles can have safe, con�ict free passage through that intersection. Each IM is also

responsible for achieving superior performance by increasing the throughput at that

intersection [52].

Current centralized approaches leave most or all of the decisions with respect to

coordinating tra�c at the intersection to the IM. The IM, however, has limited knowl-

edge about the global tra�c distribution in the network. The IM is only concerned

with collision-free access in the intersection, which is very important, however not

always very e�cient. Also, the IM is not fault-tolerant meaning no other IM will

know if an IM failed. The vehicles will �gure it out eventually, when they send a

request message and do not receive any response. This is done at the expense of

increasing the wait time of the vehicles approaching that intersection, leading to a

bad tra�c jam. This whole scenario plays out quite opposite to the motives and the

vision behind using self driving cars in the �rst place.

We present an argument that the current simulation scenario works e�ciently for

a single intersection but not for a network of intersections. Without any information

about the global tra�c scenario, there is a high possibility that certain roads in the

network will be extremely clogged while others may not su�er heavy tra�c volumes.

We believe that global information about the network would help in distributing the

tra�c volume evenly across the network while maintaining e�ciency.

30



Wuthishuwong et. al. present a similar routing algorithm based on I2I messages

[38]. They divide the control present in the IM into two levels: network level and the

control level. Network level is concerned with density information being transmitted

to local, neighboring intersections through I2I messages periodically. The control

layer was responsible for translating this data into routing messages. The authors

also modeled the tra�c �ow in the network based on the Greenshield model. The

Greenshield model is a popular tra�c model that assumes a linear speed-density

relationship. Each road has a maximum capacity, and the entire network of roads

was routed in such a way that none of the roads reached maximum capacity at any

time. A major limitation of this approach is that each vehicle's velocity is controlled

so that at no point will a particular road reach its capacity. In simpler terms, during

congestion scenarios, vehicles may have to follow the speed limit posted by the IM so

that it will reach the intersection at a time that will not cause a jam in the outgoing

street. The common goal between the work presented in [38] and ours is reduced wait

times and reduced congestion in the network. While there are many ways to achieve

this, driving at erratic speeds is certainly not a realistic approach.

3.3 Proposed Method

In this thesis, we propose an adaptive routing policy that will re-route the vehicles

based on the tra�c density in the connected local neighborhood intersections. For

this, we will use I2I messages to share tra�c density information of the local connected

neighborhood intersections with each intersection manager. The vehicle agents will

send proposals (by calculating shortest possible paths) to the IM. Each vehicle agent

is able to send multiple proposals in a single request. For simplicity, we limit the

number of proposals to a maximum of two.

More information about the request proposal and its structure and the speci�cs of

the I2I communication protocol is given in Appendix A. The enhanced aim simulator

uses A* search algorithm for calculating the shortest path proposals. The simulator

for does not support lanes of di�erent lengths, hence both the shortest paths to the
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same destination are of equal length. This is a limitation in the simulator because we

assume grid network. In future work, we can explore networks that support lanes of

di�erent lengths.

The IM, when evaluating the request, has additional information about the vehicle

(destination and arrival time), and based on the proposals the vehicle provides, it can

send an accurate route acknowledgement to the vehicle. When the IM receives a

request message, the IM will calculate how dense the tra�c will be on the connected

streets if one more vehicle is to be added. The IM will perform this calculation for

both the proposals. In addition, since the IM has density information of all the three

outgoing streets, it has the �exibility to choose the path of least congestion. We wont

face the problem creating loops in the simulator because vehicles do not have the

capability of going in the reverse direction. We demonstrate in our experiments that

this routing model will maintain the tra�c congestion in the network at an e�cient

rate while still allowing the vehicle agents to take the shortest possible routes. In this

simulation, we assume reliable transmission and reception of messages.

We believe our approach is more realistic in the sense that �

1. each vehicle agent has the freedom to calculate multiple proposals based on its

individual goals and

2. each intersection agent has the freedom to choose which proposal to accept

based on its individual goals.

In addition, we focus on the problem of solving tra�c congestion in a fully au-

tonomous system considering the scenario if one of the IMs fails. Most of the tra�c

simulators used for studying autonomous vehicles assumes the system will almost

never fail. This assumption is even stronger when talking about the communication

protocols used in such a system. In this thesis, we assume the alternative, saying

how we can e�ciently route vehicles when an intersection fails. How can an intersec-

tion communicate this information with others in the network and avoid unnecessary
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congestion or bottlenecks?

3.4 Key Steps

The adaptive routing policy presented in this thesis attempts to solve the routing

problem of the IMs in a more e�cient and realistic manner. Two di�erent operations

happen in the IM. At �rst we update the active neighbor list for each IM. Second

we re-route vehicles based on density information. Each IM has a list of its active

neighbors for that update interval. Whenever a vehicle sends a message to the IM,

the IM checks the tra�c density for both routes given by the vehicle in its proposal.

The IM then checks if the destination in the IM speci�ed route is available and, if it

is available, it checks for collisions through the intersection. If there are no collisions,

then the IM replies back to the vehicle with a CONFIRM message. If the destination

IM is not available for both the routes then the IM sends a REJECT message to the

vehicle. The order of priority at the IM is as follows.

� Choose route with lowest density

� Check if destination IM is available

� Check for collisions

3.5 Algorithm

Algorithm 1 presents the order of events that happen when an I2I message is

received by a neighboring IM.

Algorithm 2 presents the schedule of events that takes place when an IM receives

a message from a vehicle agent.
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Algorithm 1: IM-IM modules exchange density message between neighbor-

ing IMs.

1 AN; // List of Active Neighbors

2 Status_AN; // Density Status of Active Neighbors

3 Status_CurrentIM; // Density Status of Current IM

4 Neighbour_Status_Map <AN_Id,Status_AN>; // Map that contain

density status of all the neighbors

5 Receiver_Queue; // holds received messages

6 while true do

7 if (!Empty(Receiver_Queue)) then

8 Neighbor_Status_Map <� AN_Id, Status_AN; // Update density

information in the neighbor map

9 Calculate_Current_Tra�c_Density();

10 Process Status_CurrentIM ();

11 Broadcast Status_CurrentIM; // send current IM density information

12 end

13 Calculate_Current_Tra�c_Density()

1515 List<Roads> roads = GetEntryAndExitRoads();

1717 foreach r:roads do

18 active_vehicles = GetListofActiveVehiclesonRoad();

19 end
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Algorithm 2: IM receives message from V and responds to it using the

reservation policy P .

1 Receiver_Queue; // holds received messages

2 while !Empty(Receiver_Queue) do

3 Dequeue message M ;

4 if (M.type == Request) then

5 if (Tra�c_Density(M.R1) ≤ Tra�c_Density(M.R2)) then

6 if N(R1) ∈ AN & (P(M.R1)) then Send route R1

7 else if (N(R2)∈ AN & P(M.R2)) then Send route R2

8 else Send Reject

9 else

10 if (N(R2)∈ AN & P(M.R2)) then Send route R2

11 else if N(R1)∈ AN & (P(M.R1)) then Send route R1

12 else Send Reject

13 end

14 else if (M.type == Cancel) then

15 Process Cancel;

16 Send Acknowledgement;

17 else if (M.type == Done) then

18 Process Done;

19 Send Acknowledgement;

20 end

21 end
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3.6 Criteria for Evaluation

We would like to evaluate the impact of the adaptive routing algorithm using I2I

messages from two di�erent perspectives. Since recent developments in self driving

cars are centered around the user, let us consider the user perspective �rst. For

the second perspective, we take a more traditional approach by considering how the

proposed routing strategy and increase in the number of messages in the simulation

system is going to a�ect the system. For both these perspectives, we will provide the

advantages and limitations.

3.6.1 User Perspective

Imagine sitting in an AV and choosing your destination. During the course of the

journey, an in-car display will show the passengers' information such as route and

expected time of arrival. It will also show them what the car can see through its

visual system, including its camera and other sensors like LIDAR and RADAR. This

is designed in such a way that it will be comforting and educational �so that "riders

can understand what the vehicle is perceiving and responding to, and be con�dent in

the vehicle's capabilities" [65]. The whole point of opting for self driving cars is that

the car drives itself with little or preferably no human interaction. However, gaining

users trust is going to be a big challenge.

Many researchers have studied the relationship between trust and the level of

automation from various perspectives [66]. After all, no human user would like to be

stuck in a car without any control. In the case of uneasiness or trauma experienced

by a user, Waymo has provided a "pull over" button in their cars for such situations.

The vehicle will then identify the closest safe place to pull over so that riders can

exit. The pull over button is mostly for emergency situations. We believe if we make

the system interactive and educational, users will be able to trust the car better and

make better choices. For this we propose to display the two route proposals decided

by the vehicle, every time it updates its route. We would also display the proposal
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chosen by the IM at each intersection, an Estimated Time of Arrival and the average

congestion rate. Major limitations of this approach are cost and complexity.

3.6.2 System Perspective

From a system perspective, using I2I messages for adaptive routing of vehicles

has two advantages. The �rst advantage is that vehicles can be routed by the IM

for the best case scenario most of the time given the circumstances/road conditions

present at that time. This represents a tra�c system in a realistic manner. In the

real world, when we are faced with a road block, there are not many things we can

do until the road block is cleared. Although using autonomous vehicles promises

shorter wait times and faster travel times, we cannot assume that unexpected delays

or even faulty intersections will never happen. Using I2I messages, an IM is able

to understand the tra�c information within the neighborhood area and is able to

make an informed routing decision. The main limitations, however, would be the

computational overhead. The simulation becomes slower as the number of calculations

done at each IM increases. This makes testing the system with a large number of

vehicles infeasible. In our simulation system, we assume communication is reliable.

The limitation is that we do not study how the system will be impacted when message

loss occurs.

3.7 Summary

In this chapter, we discussed the adaptive routing algorithm and its operation in

detail. In the next chapter, we will discuss the features present in the AIM simulator

and the enhancements done in our proposed Enhanced AIM simulator in greater

detail.
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Chapter 4

Enhanced AIM Simulator

In this chapter, we see the motivation and the need for Enhanced AIM, our proposed

simulation framework. First, we will discuss in detail the AIM simulator and its main

features. Next, we will describe the updates done for Enhanced AIM. Finally, we

describe in detail the architecture and implementation of Enhanced AIM.

4.1 AIM Simulator

The AIM simulator was mainly built to empirically evaluate the AIM communi-

cation protocol as well as the FCFS AIM technique [27]. The AIM protocol de�nes

the message types and the actions involved in establishing a reliable communication

between the vehicle and intersection agents. AIM simulator is a time-based simulator.

The simulator models an area that is 250 m X 250 m. If we assume a single

intersection, then that intersection is located at the center of the simulation canvas

area and its size is determined by the number of lanes traveling in each direction. The

number of lanes is variable and we can have a maximum of 6 lanes running in each

direction. For experiment purposes, we will assume 2 lanes in each direction. We

also assume that vehicles drive on the right side of the road throughout simulation

and that at the intersection, each vehicle is capable of turning right or left or going
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Figure 4.1: A screen shot of the AIM simulator in action

straight depending on which lane they are traveling on respectively. This assumption,

however, is not required for the simulator to work properly [27].

Figure 4.1 shows a screen shot of the simulator's graphical display.

At each time step, the following operations take place within the AIM simulator.

1. Spawn new vehicles in a probabilistic manner at each lane.

2. Initialize vehicles sensors/actuators.

3. Allow driver agents to control the vehicles.

4. Update vehicle positions based on a physical model.

5. Removes vehicles after they reach the end of the simulation area.

There are two main agents in AIM namely the vehicle or driver agent and the

intersection agent. We will discuss these two agents in detail below.
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4.1.1 Vehicle Agent or Driver Agent

A vehicle agent controls the position, location and navigation of the vehicle at

all times. To do this, it has access to the vehicle's properties (e.g. VIN, size, and

acceleration capabilities), and state variables (e.g. velocity, heading and acceleration).

In addition, it also has access to the vehicle's sensors. For example, each vehicle has a

simulated laser range �nder sensor that allows the vehicles to determine its proximity

to other obstacles and vehicles in their surroundings. This sensor is crucial for the

vehicle and it provides information needed for the vehicle agent in order to maintain

a safe following distance with other vehicles on the road.

Vehicle agents in the AIM simulator has the following properties �Vehicle Iden-

ti�cation Number (VIN), Length, Width, Distance from front of vehicle to front axle,

Distance from front of vehicle to rear axle, Maximum velocity, Maximum accelera-

tion, Minimum acceleration, Maximum steering angle, Sensor range and the following

state variables �Position, Velocity, Heading, Acceleration, and Steering angle.

The driver agent assigned for navigation of the vehicle may access each of these

quantities depending on how the simulator is con�gured. The driver agent estimates

the time and velocity at which it will reach the intersection, and requests an appropri-

ate reservation. If granted a reservation by the IM, it attempts to arrive on schedule.

If it determines that it is unable to keep the reservation, it cancels the reservation. If

it believes it will be substantially early, it attempts to change to an earlier reserva-

tion. If it is unable to get a reservation, it decelerates (down to a minimum velocity)

and requests again. It does not enter the intersection without a reservation. On the

open road, the driver agent employs a simple lane-following algorithm, and maintains

a following distance of one second between its vehicle and the vehicle in front of it.

A detailed explanation of the lane following algorithm used in the AIM simulator is

given in [27].
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4.1.2 Intersection Agent or Intersection Manager

At each intersection, there is an intersection agent that is responsible for calculat-

ing trajectories for all the vehicles that are going to use the intersection space at that

time. It is also responsible for reserving a space-time block in the intersection for the

corresponding vehicles. The intersection manager acts as a stable communication in-

terface between the driver agents and regardless of how the policy makes its decision,

the intersection manager must present the same interface to the driver agents [67].

The general intersection manager algorithm is shown in Algorithm 2.

The intersection manager treats Cancel messages and Done messages are almost

identically. However, when a Done message is received, the intersection manager

knows that the policy can erase any information about the related reservation be-

cause the vehicle has successfully completed the reservation. The Done message also

may contain information that is useful to the intersection manager and policy. For

example, when a vehicle sends a Done message, it could include the delay it expe-

rienced crossing the intersection, providing the intersection manager with a sort of

reward signal, by which it can judge its performance [67].

Next, we list the main packages in the AIM-Simulator source-code, describing the

functionality of the main classes and methods.

4.1.3 AIM Simulator - Main Packages

A detailed documentation of the various classes present in the AIM simulator is

given in its API documentation that can be accessed [68]. The following list gives an

overview of the main packages within the AIM software.

1. Con�g: This package contains all the con�guration settings required for the

AIM simulator such as time step, cycles per second, vehicle spawn time, vehicle

spawn distribution, vehicle arrival rate, default stop distance before intersection

etc.
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2. Driver: Implements all the driver agent functionality. Navigator, coordinator,

and pilot are three important interfaces that contain the methods needed to

position and navigate a vehicle, with respect to the safety constraints de�ned

in the simulator. The AIM simulator facilitates two types of driver agents, au-

tonomous driver (also known as auto driver) and human driver agents. Each of

these driver agents use functionality implemented in the coordinator, navigator

and pilot interfaces.

Coordinator interface: controls the coordination of an auto vehicle driver agent

with other vehicles and with intersection managers. The coordination pro-

cess includes methods to facilitate sending various messages between vehi-

cles and intersection managers, as well as altering the state of the driver

agent.

Navigator interface: contains methods that are used by the driver agent to

choose which way the vehicle should go.

Pilot interface: contains methods that pilots a driver agent (vehicle) au-

tonomously.

3. GUI: Implements the Graphical User Interface (GUI) of the simulator. It in-

cludes the main visual area or canvas of the simulator on which the �xed and

moving elements, such as roads, intersection and vehicles are drawn. In ad-

dition, the GUI package includes a Viewer class allowing real time user in-

teraction with the simulator. Finally, the package includes two panels, one for

simulation setup and the other for showing statistics and status of the simulator.

4. Intersection Manager(IM): Main classes of this package include.

V2I manager: This class manages access requests sent by vehicles to the IM

and coordinates their movement in the intersection making sure there are

no collisions with other vehicles. It uses an intersection control policy for

its decisions.

Policy: This class implements the intersection management policy.
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Reservation: This class accepts/rejects reservation requests made by vehicles,

after running a calculation to �nd out if the requesting vehicle's trajectory

collides with that of another vehicle present in the intersection at that

time.

5. Intersections: This class deals with properties of the intersection, such as inter-

section area, roads and lanes.

6. Map: This package implements the map of the simulator that is used by the

simulator's GUI.

7. Messages(msg): The msg package creates di�erent types of messages speci�ed

by the AIM protocol; these include messages sent from vehicles to intersection

managers and messages sent from intersection managers to vehicles.

8. Simulator(sim): The simulator package is the entry point for the AIM simulator.

It launches the GUI and allows the user to set up simulation parameters and

runs the simulation. It invokes a sequence of functions in order, during each

time step of the simulator.

9. Vehicle: This package implements the vehicle model in the simulator. The

vehicle model describes the vehicle's current movement (velocity, acceleration,

heading, steering angle) and the vehicle's speci�cations (maximum acceleration,

length, width, maximum steering angle, etc.)

In the next section, we describe the enhancements done in developing Enhanced-

AIM based on the AIM Simulator.

4.2 Enhanced AIM Simulator - Architecture

Among the existing simulation software used for autonomous intersection manage-

ment studies, only some provide a high level of customization. Most of the simulation

software limits its use to only the models and features supported by the tool. The

AIM simulation framework has been designed in a very modular fashion. We decided
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4.2.1 Enhanced AIM Simulator

Since the adaptive routing algorithm requires communication between intersec-

tions, our �rst enhancement to the existing AIM simulator was to add the I2I com-

munication module. We also added the I2I communication protocol to the existing

AIM protocol. Secondly, the focus of our study was to understand how using local

neighborhood information for routing vehicles in the simulator a�ects user experi-

ence. In order to be able to study user experience it became essential for us to log

interactions between various entities within the simulator. We also wanted to be able

to analyze the interactions in detail. The simulator had some built-in support for

animation. We added some support for analysis. We reasoned, however, that the

presence of a messaging middleware and a visualization engine speci�cally for ana-

lytic purposes would help us separate concerns and keep the simulator lightweight

and e�cient. Hence, we implemented the messaging middleware for logging events

and a visualization engine speci�cally for analysis purposes.

Following is a list of packages that we have developed for Enhanced-AIM, and the

modi�cations we did for some AIM-Simulator classes and methods.

� Newly added classes:

� I2I message: Based on the I2I communication protocol speci�cation we

have developed a message class that creates the status messages sent be-

tween intersections.

� I2I manager: Added the adaptive routing algorithm that calculates den-

sity and sends state information from one intersection to its connected

neighbors and other helper classes.

� SenderQueue: Implements the producer interface of the middleware. This

class is responsible for con�guring and establishing a connection between

the producer and the message queue.

� Consumer: This package con�gures and sets up the consumer.
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� Existing classes modi�ed:

� V2I message: Changed the format of the request message, so that it con-

tains the two shortest path proposals.

� V2I manager: Other helper classes needed to support the functionality of

the adaptive routing algorithm.

� Simulator: We have made modi�cations to the simulator package in order

to take into account the adaptive routing algorithm that will be employed

after the reception of I2I messages.

� Intersection Manager: We modi�ed the IM package to be able to receive

I2I messages as well as execute the adaptive routing algorithm, and to make

reservation decisions based on density information as well as availability

of neighboring intersections.

� Util: We had to make additional modi�cations in the util package in order

to support the necessary changes and improvements done in the simulator.

4.2.2 Messaging Middleware

Research on middleware systems has been gaining momentum over the years.

One of the important advantages of a middleware system is its ability to provide

seamless interoperability between various components [69]. The middleware is the

glue that holds various subsystems together. This allows the programmer to focus on

building standardized, adaptable and e�ective solutions rather than worrying about

the �ner details of the underlying layers [70]. A complete list of the advantages and

disadvantages of using a message-oriented middleware is discussed here [71].

There are various standards and protocols for building message- oriented middle-

ware systems. We use Advance Message Queuing Protocol (AMQP). At the time

of writing, AMQP and its various open source implementations are in use in some

of the most critical systems running in the world, especially in the �nance industry.

AMQP was developed by John O'Hara of JP Morgan Chase Inc., and is a binary
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wire transmission protocol. AMQP originated in the �nance industry as a solution

to the problem of seamlessly connecting di�erent processing platforms together. In

order to attain this e�ortless interoperability, AMQP boasts a well-de�ned, struc-

tured set of rules or behaviors for sending and receiving messages. These rules use a

combination of techniques including store and forward, publish and subscribe, peer

to peer, request/response, clustering, transaction management and security among

many. Because of this, AMQP has become valuable for communication across var-

ious operating systems, programming platforms, integration services, and hardware

devices without compromising on performance [72].

We use RabbitMQ as the messaging middleware in Enhanced AIM. In the follow-

ing subsection, we will explain why we made this choice in detail.

4.2.2.1 RabbitMQ

RabbitMQ is an open source implementation of the standard AMQP 0-9-1 and is

programmed in Erlang. It provides support for all major operating systems and is also

available in languages such as Python, Java, Ruby and .Net. RabbitMQ is extensible

and provides a number of plugins to allow communication with other web protocols

such as HTTP, XMPP, SMTP and STOMP [72]. It stores messages in queues and

acts as a broker between two types of processes, producers and consumers. There are

two core units that form RabbitMQ, they are Queues and Exchanges/Router.

In simple terms, every message that is passed through RabbitMQ has to be placed

in a queue. The main function of the router is to route the messages from the

appropriate producer to the appropriate consumer. Each message consists of a simple

header, specifying where it is heading to. The router doesn't read or process the

message, it simply delivers the message to the appropriate queues like a letter carrier.

The producers generate messages, which are then pushed to the exchanges. The

exchanges apply some routing rules on these messages and push each message to

the appropriate queues, thus providing a delivery service. The messages can either be
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directly delivered, or they can be delivered because of an existing subscription system.

The consumers, on the other hand, can either subscribe to a particular message or

keep polling the queue to see if a message is received.

We chose RabbitMQ as our messaging service mainly because of two reasons.

1. It supports a standard messaging protocol (AMQP), so we are not con�ned by

any proprietary, client or industry-speci�c messaging protocol.

2. All the messages are collected by the RabbitMQ. This type of message storage

pattern is very similar to a push-style data �ow. All the messages move from

where they are produced to where they are consumed in a �uid manner, without

having to periodically pull messages at various end points.

In the Enhanced-AIM simulator, we also have a common queue that stores all in-

coming messages to all exchanges in their order of arrival. This common queue is

what the mining repository subscribes to. All operations inside RabbitMQ are done

in memory. All the messages in the simulator are time-stamped and their order is

maintained consistently throughout the simulation.

4.2.3 Mining Repository

A smart tra�c system would greatly bene�t by the presence of a mining repository

that provides ongoing, live support for growing near-real time data. Such repositories

are in practice now. In a nutshell, we envision that simulation and mining repository

connected by an e�cient messaging middleware can play a fundamental role in the

advancement of automation integrated future tra�c systems.

The data store or the database is used to store data generated by each simulation

run. The data store is implemented using a NoSQL (Not Only Structured Query Lan-

guage) database, since the data generated by each simulation run can be di�erent and

there are no complicated relationships among the data generated. Some advantages

of using NoSQL over SQL(Structured Query Language) are:
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� Schema-less: In NoSQL, columns(attributes) can be added in �y. The data

can be structured, semi-structured or unstructured. This helps the simulation

to cope with new attributes added to the model.

� Better query performance: Generally, NoSQL gives better performance over

SQL when no relational queries are performed.

� Object oriented support: NoSQL provides the capacity to store data without

relationship, therefore, the object associated with model can be directly stored

with usage of ORM library (Object-relationship mapping). The NoSQL data

store is a MongoDB instance [73].

We use MongoDB as the database and Elasticsearch as the search anlytics engine

in Enhanced AIM. In the following subsection, we will explain why we made this

choice in detail.

4.2.3.1 Search Analytics

The most important requirement of a search analytic service is the ability to access

big data in near real-time, and support data growth and updates. A near real-time

search engine with standardized API is its main attraction. Most databases that

store large volumes of data require some sorting, �ltering and other capabilities to

segregate and organize that data. That way it is easy to write queries. In this case,

an o�ine analysis is the only solution.

On the contrary, a simulator would greatly bene�t by the presence of a search

analytic service that provides on-going, real time support for data. For example,

Elasticsearch used by organizations worldwide including Net�ix, Facebook, GitHub,

etc. have such characteristics. Elasticsearch can be used to perform near real-time

search, data analytics, and visualization [73]. It is an open source software, and that

makes it easier to integrate with any application.

In our simulator, we use MongoDB as our database storing all the events occur-

ring during the simulation and Elasticsearch to provide support for data analytics.
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MongoDB is a document oriented database, that stores object models as a docu-

ment. A document is a <key,value> pair of the object attributes and its associated

data. MongoDB can store huge volumes of data. We can query without performance

degradation, compared to relational databases. It supports good integration with the

Elasticsearch engine. Each event is time-stamped and is stored on our servers in JSON

(Javascript Object Notation) format. By querying the events using the appropriate

message, we can get real-time analysis. Elasticsearch provides great visualization ca-

pability with the help of Kibana [74]. Kibana provides real-time summarization and

charting of data. Users can create custom graphs and visualization without the need

for programming.

We use Elasticsearch in our proposed framework for the following reasons [74]:

1. Scalability: When it comes to data analytics on a massive scale, elastic search

provides incredible support. Elasticsearch can be run as a single instance or

multiple instances and is transparent to other services using it.

2. Visualization: Elasticsearch provides great visualization capability with the help

of Kibana [74]. Kibana provides real-time summary and charting of data. Users

can create custom graphs and visualization without the need for programming.

3. RESTful API: Since Elasticsearch is a RESTful server, the most widely used

way to communicate with it is through its REST API. A client typically opens

a connection with the Elasticsearch server, posts a JSON Object as a request

and receives a JSON object as a response. This is very useful because there is

no restriction on the type of client and the programming language used. Any

client which can communicate with HTTP requests can communicate with the

Elasticsearch server.
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4.3 Summary

In this chapter, we reviewed the main features of AIM simulator. We also discussed

the need for Enhanced AIM simulation framework, the modi�cations that were made

to the AIM simulator in order to develop Enhanced AIM. In the next chapter, we

will present the experiments done in order to study the e�ectiveness of the adaptive

routing algorithm proposed in this thesis and implemented in the Enhanced AIM

simulation framework.
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Chapter 5

Experimental Evaluation

In this chapter, we study how the adaptive routing algorithm, employed over FCFS

in the Enhanced AIM simulation framework a�ects congestion and wait-time in the

system. FCFS policy is the AIM technique used at the intersections. The experi-

ments are conducted in two scenarios: 1. FCFS policy without adaptive routing and

2. FCFS policy with adaptive routing. Suitable simulation experiments were con-

ducted to study both performance as well as user experience aspects in the given two

scenarios.

5.1 Simulator Background

In Enhanced AIM, every simulation step increments 0.02 simulation seconds that

is displayed at the left top corner of the animation screen during simulation. This

means that the simulation takes 50 steps per simulation second. Enhanced AIM uses

rectangular grids as the road network. Vehicles are introduced at special locations

called spawn points in the boundary that intersects with the roads in the network.

In each direction, vehicles are randomly spawned with a prede�ned probability.

Once a vehicle is spawned, it is placed uniformly at random in one of the lanes

traveling in that direction. If placing the vehicle in that lane and direction would
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cause the vehicle to be following another vehicle too closely (within 1 second or 1

meter), the vehicle is not spawned. Our simulator spawns all vehicles traveling at

the speed limit and never spawns a vehicle where it would be in danger of colliding

with another vehicle. We retain the assumptions made in AIM for vehicle mobility

constraints and simulation setup screen controls.

While running a simulation, the user can cause an intersection failure by clicking

the mouse pointer at that intersection and pressing the Break Intersection button for

a given time period, and then make it function again by clicking the mouse pointer

and pressing the Resume Intersection button.

For animation purposes, simulation speed is de�ned as the number of simulation

seconds per real second. Simulation speed can be controlled using a simulation speed

slider. When a simulation second is set to a real second, the animation is expected

to show vehicles moving in real time. The simulation can be paused at any moment

by clicking the Pause button to take a snapshot of the simulation. The simulation

can be observed step by step using Step button. It can be resumed to run normally

using Resume button. The accuracy of the animation is controlled by the frame rate

slider. Since updating the simulation screen can consume lots of CPU cycles, the

simulation speed and screen frame rates can be adjusted depending on the necessity

(faster simulation or realistic animation).

5.2 Experimental Setup

The parameters selection and their value are partially based on the experimental

setup described in [27]. Each simulation experiment is run for 3600 simulation sec-

onds resulting in 180,000 simulation steps, considering 500 ss as the warm-up period.

We set simulation seconds (ss) equal to real time second (s), which approximately

corresponds to 1 hour of simulation time for each experiment including the warm-up

period.

The maximum velocity of the vehicle at spawn point is set at 55 m/ss. The
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maximum vehicle velocity that is considered here is not re�ective of realistic road

simulation. We chose this velocity mainly because, in future road transport systems,

fully autonomous vehicles will be able to travel at faster speeds safely. We also

decided the above settings because if the vehicles in the simulation moves fast, more

vehicles will be introduced in the simulation that allows us to test the e�ciency of

the adaptive routing algorithm. The Enhanced AIM simulator provides capability to

vary the average velocity of the vehicles and perform experiments accordingly.

We use 9 intersections (3× 3 rectangular grid). With 9 intersections, we have 12

spawn points from which the input tra�c can �ow. The tra�c �ow level is �xed at a

corresponding �ow rate of 1500 vehicles/hr/lane. As soon as each vehicle is spawned,

it will pick a destination road uniformly and at random from the given map. The

traveling routes between the spawn points and the destination roads are calculated

by the vehicle agent periodically.

The simulation parameters are summarized in TABLE 5.1.

Table 5.1: Simulation Parameters

Parameter Value

Total Simulation Duration 3600 ss

Warm-up Period 500 ss

Maximum Vehicle Velocity 55 m/ss

Tra�c Flow 2 vehicles/lane/ss

Number of Intersections 9

Number of Lanes 2

Failure Period 500 ss if an intersection fails

We kept the input simulation parameters constant and performed the experiments

multiple times. The results shown here are an average of 5 simulation runs which is

then used to calculate 95% con�dence interval using T value distribution.
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5.3 Performance Metrics

We study the adaptive routing algorithm from two perspectives: performance and

user experience.

For performance study, we study the average delay (i.e., average wait time) expe-

rienced by the vehicles at the intersections. We also compute the number of vehicles

that completed their trips at any moment during the simulation and the number of

vehicles in the system at any moment. The latter metric illustrates the tra�c present

in the system at any given time.

It is di�cult to quantitatively measure user experience. As a preliminary ap-

proach, we use two basic metrics: the total number of stops that the vehicle encoun-

ters and the speed �uctuation during its trip. These two parameters, we believe,

could hugely impact user experience. Experiencing more stops during a trip is cer-

tainly not a positive aspect of a travel. Similarly, speed �uctuation of the vehicle is

not a comfortable travel experience. It is stated in [75] that car passengers start expe-

riencing discomfort at lower rates of acceleration than car drivers. This discomforting

experience can also be attributed equally to passengers traveling in an autonomous

vehicles, if not more.

5.4 Experiments for Performance Comparison

To compare the performance of the FCFS without adaptive routing and FCFS with

adaptive routing, we conducted the following experiments. All the experiments were

conducted under two conditions; without intersection failure and with intersection

failure. Following, we describe these experiments with results and observations one

by one.
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5.4.1 Wait Time Analysis

The objective of this experiment is to show how adaptive routing algorithm reduces

the wait time at the intersections compared to that of FCFS without adaptive routing.

In this experiment, the average wait time per vehicle at intersections is computed at

di�erent simulation time instances assuming no intersection failure condition. We

calculate the wait time as the delay between receiving a con�rmation of access to the

intersection, and the time the vehicle actually passes through the intersection and

sends a Done message. The average wait time per vehicle is shown in Fig.5.1.

Figure 5.1: Wait Time Analysis

Observation

It is clear from the graph given in Fig. 5.1 that the average wait time per vehicle

incurred in the FCFS with adaptive routing at any moment is lower than that of the

FCFS without adaptive routing because of I2I messages. Also, as the time progresses

the di�erence in average wait time per vehicle increases. Table 5.2 shows the slopes

of the graphs for this experiment.

Table 5.3 shows con�dence interval for this experiment.
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Table 5.2: Wait Time Analysis Normal Scenario - Slopes

Normal Scenario Slope Value

FCFS without adaptive routing 0.299

FCFS with adaptive routing 0.174

Table 5.3: Wait Time Analysis Normal Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 1080 633

Variance 7056 3364

Standard Deviation 84 58

95% Con�dence Interval [975 - 1184] [560 - 705]

5.4.2 Wait Time Analysis with Intersection Failure

The objective of this experiment is to show, in addition to the di�erence of wait

time, how FCFS with adaptive routing algorithm handles the tra�c by suitably di-

verting it to the neighboring intersections, compared to that of FCFS without adap-

tive routing algorithm. For this experiment also we compute the average wait time per

vehicle at the intersections for intersection failure condition and the result is shown

in Fig. 5.2.
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Figure 5.2: Wait Time Analysis with Intersection Failure

Observation

When an intersection fails, the average wait time per vehicle shoots up suddenly

in case of FCFS without adaptive routing algorithm. In case of FCFS with adaptive

routing algorithm the increase in the average wait time per vehicle is gradual and

almost unnoticeable. From the graph, we can notice that there is a sudden increase

in wait time at 2000ss for FCFS with adaptive routing policy. This is because at

this point of time in simulation, the vehicles that are stopped in front of the broken

intersections will not be allowed to pass through and only future vehicles will be

re-routed. This is very important from a tra�c management perspective. Since the

adaptive routing algorithm diverts the tra�c away from the failed intersection, the

possibility of eventual tra�c jam at the failed intersection is avoided. This in turn

alleviates the impact in the overall system throughput. Table 5.4 shows the slopes of

the graphs for this experiment.

Table 5.5 shows the con�dence interval for this experiment.
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Table 5.4: Wait Time Analysis Failure Scenario - Slopes

Failure Scenario Slope Value

FCFS without adaptive routing 0.406

FCFS with adaptive routing 0.195

Table 5.5: Wait Time Analysis Failure Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 1393 696

Variance 6241 3969

Standard Deviation 79 63

95% Con�dence Interval [1294 - 1491] [617 - 774]

5.4.3 Trip Completion Analysis

The objective of this experiment is to show how FCFS with adaptive routing

algorithm increases the system throughput compared to that of FCFS without adap-

tive routing algorithm. This experiment is performed under no intersection failure

scenario. We de�ne throughput as the number of vehicles reached their destination

or trip. In this experiment, throughput is computed at di�erent simulation time

instances and the result is shown in Fig. 5.3.
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Figure 5.3: Trip Completion Analysis

Observation

It is clear from the performance graph given in Fig. 5.3 that the number of vehicles

that completed the trip using FCFS with adaptive routing algorithm at any moment

is higher than FCFS without adaptive routing algorithm. Also, as the time progresses

the di�erence in system throughput increases.

Table 5.6 shows the slopes of the graphs for this experiment.

Table 5.6: Trip Completion Analysis Normal Scenario - Slopes

Normal Scenario Slope Value

FCFS without adaptive routing 3.474

FCFS with adaptive routing 4.690

Table 5.7 shows the con�dence interval for this experiment.
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Table 5.7: Trip Completion Analysis Normal Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 11841 15985

Variance 55225 33856

Standard Deviation 235 184

95% Con�dence Interval [11549 - 12132] [15756 - 16213]

5.4.4 Trip Completion Analysis with Intersection Failure

The objective of this experiment is to show, how FCFS with adaptive routing

algorithm handles throughput compared to that of FCFS without adaptive routing

algorithm under intersection failure scenario. In this experiment, we also compute

the number of vehicles that reached their destination. The results are shown in Fig.

5.4.

Figure 5.4: Trip Completion Analysis with Intersection Failure
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Observation

When an intersection fails, the system throughput (i.e., the number of trips com-

pleted) drops suddenly in case of FCFS without adaptive routing algorithm. In case of

FCFS with adaptive routing algorithm, decrease in throughput is gradual and almost

unnoticeable.

Table 5.8 shows the slopes of the graphs for this experiment.

Table 5.8: Trip Completion Analysis Failure Scenario - Slopes

Failure Scenario Slope Value

FCFS without adaptive routing 2.571

FCFS with adaptive routing 4.409

Table 5.9 shows the con�dence interval for this experiment.

Table 5.9: Trip Completion Analysis Failure Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 8940 15106

Variance 53361 35721

Standard Deviation 231 189

95% Con�dence Interval [8652 - 9225] [14871 - 15340]

5.4.5 Tra�c Analysis

The objective of this experiment is to show how the FCFS with adaptive routing

algorithm manages the tra�c (the number of vehicles) in the system compared to

that of FCFS without adaptive routing algorithm. In this experiment, the number

of vehicles in the system is computed at di�erent simulation time instances for no

intersection failure scenario and the result is shown in Fig. 5.5.
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Figure 5.5: Tra�c Analysis

5.4.5.1 Observation

Fig. 5.5 clearly demonstrates that the number of vehicles in simulation in case of

FCFS with adaptive routing algorithm at any moment is lower than that of the FCFS

without adaptive routing algorithm. Note, the slight increase at 500ss for FCFS with

adaptive routing shows that the routing algorithm consistently outperforms FCFS

without adaptive routing algorithm in terms of tra�c in the system. Again, as the

time progresses this di�erence in system tra�c increases.

Table 5.10 shows the slopes of the graphs for this experiment.

Table 5.10: Tra�c Analysis Normal Scenario - Slopes

Normal Scenario Slope Value

FCFS without adaptive routing 1.104

FCFS with adaptive routing 0.625

Table 5.11 shows the con�dence interval for this experiment.
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Table 5.11: Tra�c Analysis Normal Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 3950 2100

Variance 7569 2209

Standard Deviation 87 47

95% Con�dence Interval [3841 - 4058] [2041 - 2158]

5.4.6 Tra�c Analysis with Intersection Failure

The objective of this experiment is to show how FCFS with adaptive routing al-

gorithm manages the tra�c (the number of vehicles) in the system, compared to that

of FCFS without adaptive routing algorithm. In this experiment, the number of vehi-

cles in the system is computed at di�erent simulation time instances for intersection

failure scenario and the result is shown in Fig. 5.6.

Figure 5.6: Tra�c Analysis with Intersection Failure

5.4.6.1 Observation

Fig. 5.6 clearly demonstrates that the tra�c in case of FCFS with adaptive routing

algorithm at any moment is lower than that of the FCFS without adaptive routing
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algorithm. Here, the sudden slight increase in tra�c around 500 ss and 2000ss for

FCFS without adaptive routing is a result of more vehicles waiting in front of the failed

intersection for the failure period. Overall, FCFS with adaptive routing algorithm

consistently outperforms FCFS without adaptive routing algorithm in terms of tra�c

in the system. Again, as the time progresses this di�erence in system tra�c increases.

Table 5.12 shows the slopes of the graphs for this experiment.

Table 5.12: Tra�c Analysis Failure Scenario - Slopes

Failure Scenario Slope Value

FCFS without adaptive routing 3.571

FCFS with adaptive routing 1

Table 5.13 shows the con�dence interval for this experiment.

Table 5.13: Tra�c Analysis Failure Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 12072 3800

Variance 63001 6889

Standard Deviation 251 83

95% Con�dence Interval [11760 - 12383] [3696 - 3903]

5.5 Experiments for User Experience Comparison

To compare the user experience for the two scenarios, FCFS with adaptive routing

algorithm and FCFS without adaptive routing algorithm, we conducted the following

experiments under two conditions: 1. no intersection failure and 2. intersection

failure.
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5.5.1 Trip Interruption Analysis

The objective of this experiment is to show how the number of stops experienced

by a vehicle during a trip is reduced for FCFS with adaptive routing algorithm sce-

nario compared to that of FCFS without adaptive routing algorithm scenario. This

experiment is done under no intersection failure condition. Every time a vehicle's

speed is 0, we count it as a stop. We compute the total number of stops. The result

is shown in Fig. 5.7.

Figure 5.7: Trip Interruption Analysis

5.5.1.1 Observation

Fig. 5.7 shows that the number of stops for FCFS with adaptive routing algorithm

at any moment is signi�cantly lower than that of the FCFS without adaptive routing

algorithm. At the beginning of the simulation, the intersections near the spawn point

gets lots of tra�c and the tra�c is not equally distributed throughout the network.

This might be a probable reason for the jitters observed till 500ss. As time progresses

the di�erence in the number of stops encountered by the two scenarios increases.

Table 5.14 shows the slopes of the graphs for this experiment.

Table 5.15 shows the con�dence interval for this experiment.
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Table 5.14: Trip Interruption Analysis Normal Scenario - Slopes

Normal Scenario Slope Value

FCFS without adaptive routing 3.688

FCFS with adaptive routing 1.670

Table 5.15: Trip Interruption Analysis Normal Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 12500 6040

Variance 34969 11664

Standard Deviation 187 108

95% Con�dence Interval [12267 - 12732] [5905 - 6174]

The average number of stops per vehicle for FCFS without adaptive routing policy

was 0.791 and for FCFS with adaptive routing policy was 0.333.

5.5.2 Trip Interruption Analysis with Intersection Failure

The objective of this experiment is to show, in addition to the reduction in the

number of stops encountered, how FCFS with adaptive routing algorithm gracefully

handles the tra�c by suitably diverting at the neighboring intersections compared

to that of FCFS without adaptive routing algorithm. For this experiment also we

compute the number of stops encountered intersection failure scenario and the result

is shown in Fig. 5.8.
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Figure 5.8: Trip Interruption Analysis with Intersection Failure

5.5.2.1 Observation

When an intersection fails, the number of stops increases signi�cantly in case of

FCFS without adaptive routing algorithm. In case of FCFS with adaptive routing

algorithm, the increase in the number of stops is gradual and almost unnoticeable.

Table 5.16 shows the slopes of the graphs for this experiment.

Table 5.16: Trip Interruption Analysis Failure Scenario - Slopes

Failure Scenario Slope Value

FCFS without adaptive routing 8.741

FCFS with adaptive routing 2.013

Table 5.17 shows the con�dence interval for this experiment.

The average number of stops per vehicle for FCFS without adaptive routing policy

was 1.426 and for FCFS with adaptive routing policy was 0.431.
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Table 5.17: Trip Interruption Analysis Failure Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 29980 8153

Variance 280900 24649

Standard Deviation 530 157

95% Con�dence Interval [29321 - 30638] [7958 - 8347]

5.5.3 Speed Fluctuation Analysis

The objective of this experiment is to show how FCFS with adaptive routing

algorithm encounters speed �uctuation compared to that of FCFS without adaptive

routing algorithm. In this experiment, we measure the average speed of the vehicles

currently in simulation at di�erent simulation time instances for no intersection failure

scenario, and the result is shown in Fig. 5.9.

Figure 5.9: Speed Fluctuation Analysis

5.5.3.1 Observation

From Figure 5.9, it is very obvious that the average speed of the vehicles �uctuates

greatly for FCFS without adaptive routing algorithm as compared to the FCFS with

adaptive routing algorithm. The adaptive routing algorithm ensures all the vehicles
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in the simulation are evenly distributed. This results in lower delay and therefore a

stable speed pro�le.

Table 5.18 shows the con�dence interval for this experiment.

Table 5.18: Speed Fluctuation Analysis Normal Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 24.8 46.8

Variance 61.62 26.01

Standard Deviation 7.85 5.1

95% Con�dence Interval [34.54 - 15.06] [53.13 - 40.47]

5.5.4 Speed Fluctuation Analysis with Intersection Failure

The objective of this experiment is to show how FCFS with adaptive routing

algorithm encounters speed �uctuation compared to that of FCFS without adaptive

routing algorithm. This experiment is performed under intersection failure condition.

We measure the average speed of the vehicles currently in simulation at di�erent

simulation time instances, and the result is shown in Fig. 5.10.

Figure 5.10: Speed Fluctuation Analysis with Intersection Failure
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5.5.4.1 Observation

Figure 5.10 shows the average speed of the vehicles currently in simulation under

failure scenario. We can see that during failure period, the average speed of vehi-

cles drastically reduces to a minimum for FCFS without adaptive routing algorithm,

whereas for FCFS with adaptive routing algorithm, there is a slight dip, but the speed

stabilizes very quickly.

Table 5.19 shows the con�dence interval for this experiment.

Table 5.19: Speed Fluctuation Analysis Failure Scenario using T Value

FCFS without adaptive routing FCFS with adaptive routing

Mean 17.5 42.5

Variance 66.3 57.7

Standard Deviation 8.14 7.6

95% Con�dence Interval [27.60 - 7.40] [51.93 - 33.07]

In the next chapter, we will discuss some ethical dilemmas that needs to be ad-

dressed for furthering the research in this �eld.
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Chapter 6

Future Outlook - Ethics

As mentioned in the introduction chapter, autonomous vehicles are more of a boon

than a bane. Vehicle manufacturers are gradually adding autonomous features to

present day vehicles such as assisted parking, lane following, adaptive cruise control,

and even automatic overtaking. When self-driving cars become an everyday reality,

they should be able to drive with a sense of responsibility. By this, I mean they

are expected to replicate how human beings make decisions, or even perform better

than humans in this area. Most of the decisions performed inside the brain of a self-

driving car are done at an algorithmic level. Some decisions need to be quick and

they can have fatal consequences. Such decisions seem to require a sense of ethics and

it can be incredibly di�cult to translate this into algorithms that the car can simply

follow [76]. In this chapter, we explain why ethics matter for autonomous vehicles.

In the following sections, we identify di�erent ethical aspects related to autonomous

vehicles.
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6.1 Ethics related to Autonomous Vehicles

6.1.1 Safety

The �rst and the foremost issue to consider is safety. Safety of a self-driving vehicle

is closely associated with how the car is programmed. More speci�cally, how should

the car be programmed to act in the event of an unavoidable accident? Should it focus

on protecting the life of pedestrians and other road users or should it just sel�shly

protect its passengers? The answers to these questions are important because they

will have an impact on how this technology is going to be accepted in the world [77].

If people are not convinced to trust their lives to an autonomous vehicle, they would

not subscribe to use them.

Let us consider a scenario. A little boy and a grandfather are crossing an inter-

section, a few feet apart from each other on a red light. The autonomous vehicle now

is put in a sticky situation. If it swerves left, it will hit the boy. If it swerves right, it

will hit the grandfather. How should the vehicle respond to this situation?

One could consider the grandfather's life less valuable compared to the little boy

as he has lived a life �lled with many experiences. The little boy, on the contrary,

has a whole life ahead of him to live. If the car was to choose either one to kill, it

would be an unethical choice. Among its many pledges, the Institute of Electrical and

Electronics Engineers (IEEE), for instance, commits itself and its 430,000+ members

"to treat fairly all persons and to not engage in acts of discrimination based on race,

religion, gender, disability, age, national origin, sexual orientation, gender identity,

or gender expression" [78]. Therefore, to treat individuals di�erently on the basis of

their age, when age is not a relevant factor, is a discriminatory action by the car [77].

Now let us add another dimension to this scenario. What if the choice to hit was

between a child and another car. This time, it would make sense then to hit the other

car in such a way that impact could be minimized. This decision only makes sense

if the autonomous vehicle was programmed to protect its occupants over anybody
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at any cost. Now, if the choice was between two vehicles, then the car should be

programmed to collide with the vehicle that su�ers the lowest impact [77]. This

knowledge could be acquired if we have V2V communication and V2I communication

in place. This strategy may be both legally and ethically better than the previous one

of jealously protecting the car's own occupants. It could minimize lawsuits because

any injury to others would be less severe than fatal accidents. Techniques that decide

how vehicles will crash in a scenario are called crash optimization techniques.

We could possibly imagine a wide variety of scenarios similar to the ones men-

tioned above and then design crash optimization techniques to reduce impact and

minimize loss of lives. However, it is important to note that the reaction time avail-

able for a human or a vehicle to make a decision in such a situation is very short

time, a few seconds at the most. Humans in such situations operate instinctively.

Autonomous vehicles are not able to operate with instinct and would be required to

activate algorithms that calculate the cost of various crash options and then make a

decision that would lead to minimal loss of life as well as reduced impact. This is a

core ethical issue and it demands more attention than what is currently o�ered.

6.1.2 Security

Security is another ethical aspect that is of utmost importance for autonomous

cars. One of the biggest threats that we as a society will face in the future is vehicle

cyber-security. A malicious cyber attack on an autonomous vehicle has not yet hap-

pened. But the possibility of such an attack was demonstrated in 2015 when hackers

took control of a Jeep Cherokee and cut its transmission on the highway [79]. This

incident resulted in Chrysler recalling 1.4 million vehicles in order to update security

features on these vehicles [79].

Cars today have advanced electronic control units (ECU) that are connected to

an internal network. If a hacker manages to take control of an ECU, they might

easily be able to take control of other safety-critical ECUs as well. A further compli-

cation is that these ECUs are programmed by third party vendors and not the auto
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manufacturers themselves. That means too many people have access to safety-critical

code. Car hacking is a real threat at the present time. In 2014, more than half of the

vehicles sold in the United States were connected, meaning that they are vulnerable

to cyber attacks [79]. Most of the vehicles with advanced sensor features are prone

to hacking. The threat will loom larger as our society transitions to autonomous

vehicles.

To avoid this, vehicle cyber-security must be addressed at multiple layers similar

to network security. At the lowermost layer, ECUs must be protected especially

those ECUs in charge of safety critical applications such as braking, transmission,

etc. Above that, security software that can protect the vehicle's internal network as a

whole must be installed. In addition, we need software that will encrypt any network

communication that arises from the vehicle and vice versa. Next, it is very critical to

secure solutions that deal particularly with in-car entertainment, such as Apple Car

Play or Android Auto as these applications connect the car network to the internet.

Finally, cloud security services can detect and correct threats before they reach the

vehicle. They can also send the vehicle over-the-air updates and intelligence in real

time.

In addition to software protection, auto manufacturers must pay attention to

secure hardware components and make sure they only purchase ECUs from trusted

vendors. Society is often reactive rather than proactive with security issues, adopting

serious preventive measures only after a major incident has occurred. A number of

OEMs are currently undertaking proactive measures including Tesla, Fiat Chrysler

and GM. These manufacturers have recently established "bug bounty" programs to

reward individuals that �nd and report security �aws in their cars' software, an e�ort

to further fortify their systems against vulnerabilities [80].

6.1.3 Privacy

Self-driving cars collect and transmit lots of data. They are periodically storing

information related to the environment they are in, they communicate with other
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cars and roadside infrastructure. As the autonomous vehicle collects more data, more

concerns are raised regarding its protection [81]. Even data from a single sensor in

the car could invade privacy of an individual if it is collected without consent. The

broader questions that need to be answered by auto manufacturers surrounding this

issue include but are not limited to the following:

� How much data is the car supposed to collect for learning purposes? How much

data is too much data?

� Who owns this data?

� Who has access to this data?

� Where is this data stored? Is it encrypted before storage? Does it reveal

personal identity information?

� When will this data be destroyed?

� How much data is actually used for evaluation? Is it anonymous?

� Does it contain more data than "just" the position and travel details of the

autonomous vehicle?

� Can it be connected to other types of data like a phone number, a bank account,

credit cards, personal details, or health data?

� If distributing data to other external services such as tra�c information or

navigation data, which are used in the calculation of the route, how trustworthy

are those data sources (e.g., GPS, map data, external devices, other vehicles)?

Research on data privacy related to autonomous vehicles is in its early stage.

It is important to accelerate research in this area at the development stage of this

technology. This way, we can regulate industry as well as guide research practices

before any intentional or unintentional privacy invasion becomes a part of the deployed

76



technology. Data collected solely for safety and navigation purposes must be well

regulated. Passengers must be able to opt out of atleaset some parts of the data

that is being collected to enhance their travel experience if they feel they are being

tracked [82].

6.1.4 Social and Economic Challenges

Driverless vehicles will totally change the traditional car ownership model. At the

beginning of Chapter 2, we note that cars presently in the world remain parked almost

95% of the time. Driver-less cars may come in the form of cost-e�ective transport

models or taxi services. This will motivate people to use taxi services rather than

owning personal vehicles. This will, in turn, a�ect land usage in a positive way.

Driverless cars can be summoned from anywhere and need not be parked in close

proximity to the users. The need for parking garages will rise but the land that is

being used for parking lots now could be transformed into a green belt a�ecting the

environment in a positive way. Beyond economic bene�ts, driverless cars also a�ect

society in a broad way making access to cars very inclusive. People would not need

to own driving licenses in order to get around from one place to another.

6.2 Ethics related to Intersection Infrastructure

In this section, we will discuss the ethical questions that need to be considered

before deploying road side infrastructure for autonomous vehicles, especially at inter-

sections. Inside the intersection, vehicles move at high speeds in all di�erent direc-

tions. Therefore, we need to address safety-critical questions such as, "What happens

when a driver agent realizes that it will not make its reservation exactly on time but

is close enough to the intersection that it is not possible to stop before entering the

intersection?

In such a case, it is imperative to have some sort of a safety bu�er. In a simulation

setting, two types of bu�ers are most natural: static bu�ers and time bu�ers. Static

bu�ers have constant sizes for safety purposes. Before approving a reservation, the

77



IM makes sure no two vehicles' static bu�ers intersect with each other. It is very

important to make sure the size of the static bu�er around the vehicles is not too

large, otherwise, two vehicles that potentially would not have resulted in a collision

will not be granted access to their reservation, simply because their large static bu�ers

intersect [27].

Time bu�ers, on the other hand, do take into account the motion of the vehicles.

If the intersection manager assumes that the vehicle might be early or late, the actual

area restricted by this bu�er will shrink or grow with the vehicle's velocity. Thus, if

two vehicles are traveling along parallel lines, the time bu�ers for those vehicles should

not interfere unless those vehicles could potentially collide (they are in the same lane

or the lanes are too close together for the vehicles' width) [27]. Time bu�ers alone do

not su�ciently guarantee safety. A small error in the direction of the motion of the

vehicles may still cause a collision.

A more practical and a safe solution would be a hybrid bu�er. A hybrid bu�er

consists of a time bu�er that scales with velocity, as well as a small static bu�er that

protects against lateral positioning errors. It also serves as a minimum bu�er for

slow-moving vehicles or heavy vehicles. Detailed explanation of the implementation

details of these bu�ers in the AIM simulator is given in [27].

6.3 Compatibility With Human Drivers

While AIM techniques for autonomous vehicles will someday be a reality, it is more

practical to assume there will always be people who enjoy driving for the foreseeable

future. The transition period from human drivers to fully autonomous vehicles will

include a few years where self-driving cars would have to share the road with human

drivers, pedestrians, and cyclists. This can be employed by having dedicated lanes

for self driving cars or restricting the time or hours of the day when self driving cars

should be on the road. Either way, we need to be able to support AIM policies that

are able to accommodate human drivers or pedestrians/cyclists.
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An extended work of the AIM simulator focuses on this. The authors in [83]

proposed an AIM protocol that works with human drivers. In order to accommodate

human drivers, the AIM policy in e�ect must be able to direct both human and

autonomous vehicles, while coordinating them, despite having much less control and

information about where and when the human drivers will be.

The simplest and best solution is to use something human drivers already know

and understand �tra�c lights. There are protocols like FCFS-Light that demon-

strate how AIM policy works in conjunction with human drivers. The human drivers

can be simulated in ALL the lanes or in a single lane based on what we want to

measure.

6.3.1 Emergency Vehicles

In order to accommodate emergency vehicles, the intersection manager must �rst

be able to detect their presence. The easiest way to accomplish this is to add a new

�eld to all request messages. This indicates to the intersection manager that the

requesting vehicle is an emergency vehicle in an emergency situation (lights �ashing

and siren blaring). Implementing emergency vehicles is out of the scope for this thesis.

Now that the intersection manager can detect emergency vehicles, it can process

reservation requests while giving priority to the emergency vehicles. To do this the

IM keeps track of which lanes currently contain approaching emergency vehicles. As

long as at least one emergency vehicle is approaching the intersection, the policy only

grants reservations to vehicles in those lanes. This ensures that vehicles in front of

the emergency vehicles will also receive priority. Due to this increase in priority, lanes

with emergency vehicles tend to empty very rapidly, allowing emergency vehicles to

proceed relatively unhindered.

6.3.2 Remote to Urban Scenario Transition

Finally, we discuss the factors that need to be considered when autonomous ve-

hicles travel over long distances and switch between remote and urban scenarios.
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When dealing with rural scenarios, we do not have networked intersections for very

long stretches. Therefore for most of a rural setting, we are dealing with highway

driving. Highway driving, platooning, and ramp metering of autonomous vehicles is

more or less a solved problem. AVs on the highway need to make sure they have

safe following distances from other vehicles. They also need to overtake carefully. An

urban setup, however, is a more complex environment with many opportunities for

distraction.

With current highway infrastructure in place, AVs may face a problem in establish-

ing communication with intersections in small towns that occur in the bypass. There

is not enough research available to address this scenario in a satisfactory manner.

The safety and security aspects of this transition from a remote to urban scenario

and vice versa of AVs is a potential research problem for the future.

6.4 Summary

No complex technology we have created has been infallible. And just about every

computing device we have created has been hacked before or can be hacked in the

future, including neural implants and military systems [81]. When it comes to self

driving cars, software errors, malfunctioned sensors, cyber attacks, and bad weather

can contribute to collisions. If ethics are ignored and the car behaves badly, a powerful

case could be made that auto manufacturers were negligent in the design of their

product, and that opens them up to tremendous legal liability, should such an event

occur.

In my opinion, there are two sides to this challenge. On the one hand, the gov-

ernment, transportation agencies, regulatory bodies, safety boards and automotive

manufacturers need to work together in creating and maintaining an ethical frame-

work where decisions made by autonomous vehicles can be evaluated. It is important,

therefore, to think through ethical dilemmas along with every innovative outburst in

this �eld. On the other side, auto manufacturers need to prepare the future road
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users before they �nd themselves surprised in bad ways by autonomous cars. Auto

manufacturers should not just be focused on technology penetration rate and mar-

ket acceptance rate of the vehicles but also communicate to the general public how

this might positively or negatively impact their life. Whatever answer to an ethical

dilemma that industry might lean towards will not be satisfying to everyone. Ethics

and expectations are challenges common to all automotive manufacturers and tier-

one suppliers who want to play in this emerging �eld, not just particular popular

companies.

Automated cars promise great bene�ts and unintended e�ects that are di�cult

to predict, and the technology is coming either way. Change is inescapable and

not necessarily a bad thing in itself. But major disruptions and new harms should

be anticipated and avoided where possible. That is the role of ethics in innovation

policy: it can pave the way for a better future while enabling bene�cial technologies.

Without looking at ethics, we are driving with one eye closed [76].
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Chapter 7

Conclusion And Future Work

With the recent advances in arti�cial intelligence and Internet of Things, road trans-

portation going forward has a greater expectation to include autonomous vehicles. An

important component of urban road transportation infrastructure is intersections. A

lot of work has been done towards development of coordination techniques to enable

safe and collision-free passage of vehicles through intersections both in industry as

well as the research community. This is called Autonomous Intersection Management

(AIM). Current AIM techniques proposed in the literature will work e�ciently for

a single intersection. In real life, however, urban roads are comprised of a network

of multiple intersections. The intersections are not connected with each other and

have no information about how congested the rest of the road network is. In such a

case, achieving optimal throughput of vehicles inside an intersection alone does not

guarantee an overall reduced congestion outcome in the network.

In this thesis, we focus on how to e�ectively and adaptively route autonomous

vehicles in a road network based on local neighborhood information. To achieve this,

we designed and developed an adaptive routing algorithm that uses intersection-to-

intersection (I2I) communications. I2I communication allow intersections to com-

municate with their connected, neighboring intersections, and route tra�c based on

the density information. To implement and study this algorithm, we constructed the
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Enhanced AIM simulation framework with an added I2I communication module by

extending the AIM simulator. We also added a messaging middleware and a user-

friendly visualization engine for message logging and data analysis as a part of the

framework. By adding the I2I communication module and the routing algorithm to

the Enhanced AIM simulator, we are able route tra�c in an adaptive manner regu-

larly as well as in emergency scenarios such as intersection failure. We also conducted

simulation experiments that demonstrate a reduction in congestion and wait-time.

The experiments also show a better user experience achieved when adaptive routing

is enabled in the system compared to a scenario without adaptive routing invoked.

Future Work

There are multiple ways in which the research done for this thesis can be extended.

Some important ones are listed below:

1. Currently, Enhanced AIM simulation framework does not take into account the

presence of V2V messages. With V2V messages present, we can disperse density

information from the intersection to the vehicles periodically so that they can

adjust their own goals based on the congestion condition in the network. The

current state of the simulator has vehicles that have no knowledge about how

congested the road network is.

2. Adaptive routing algorithm has only been tested over FCFS policy for au-

tonomous intersection management. We could test and study the e�ectiveness

of the adaptive routing algorithm with other policies like priority based, auction

based etc.

3. The middleware currently serves as an interface between the simulator and the

analytic engine. The middleware can be rewritten to act as an interface between

the various agents in the simulator. This enhancement to the middleware would

also allow testing the simulation system with a real autonomous car, where a

self-driving car's movements can be monitored and controlled from within the
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simulation environment in real time.
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Appendix



A.1 Communication Protocol Speci�cation

This section is divided into two parts: The �rst part explains some of the auxiliary

actions taken up by by both vehicle and intersection agent. The second part explains

the various types of messages used by both vehicle and intersection agent.

A.1.1 Protocol Actions

Both vehicle and intersection agent must follow a set of rules. We call these set

of rules as protocol actions [27].

A.1.1.1 Vehicle Actions

These are the rules that the vehicles are expected to follow in order to allow the

intersection to function e�ciently.

� A vehicle is not supposed to enter the intersection if it does not have a reserva-

tion.

� When a vehicle receives a Con�rm message, it is considered to have a reserva-

tion.

� If a vehicle is passing through the intersection, it must follow the parameters

included in the most recent Con�rm message received from the intersection.

� If another Request message is sent by the vehicle before the intersection manager

has sent a response to the previous one, the intersection manager may choose

to ignore it.

� If a vehicle has not yet entered the intersection and does not have a reservation,

it may send a Request message. If it has not yet entered the intersection and

does have a reservation, it may send either a Change-Request or a Cancel

message.
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� When a vehicle has successfully passed through the intersection, it sends a Done

message.

A.1.1.2 Intersection Actions

These are the rules that the intersection manager has to follow [52].

� When an intersection manager receives a Request message, it must respond with

either a Con�rm or a Reject message. If it responds with a Con�rm message,

the intersection manager should make sure that the requesting vehicle has no

con�icting trajectories with the other vehicles occupying the intersection space

at that time.

� When an intersection manager receives a Change-Request message, it must re-

spond with either a Con�rm or a Reject message.

� When an intersection manager receives a Cancel message, it must respond with

an Acknowledge message.

A.1.2 Types of Messages

The vehicles and intersection manager are each restricted to a few types of mes-

sages with which they must coordinate.

A.1.2.1 Vehicle to Intersection

There are four types of messages that can be sent from a vehicle to the intersection

manager.

1. Request : The Request message contains an array of proposals with the following

�elds:

Proposal id: a unique identi�er for each route proposal.

vehicle id: a unique identi�er for the vehicle.
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arrival time: the time at which the vehicle will arrive at the intersection.

arrival lane: an id for the lane in which the vehicle will be when it arrives at

the intersection.

turn: the vehicle's turn when it reaches the intersection.

arrival velocity: the velocity at which the vehicle is traveling when it arrives

at the intersection.

maximum velocity: the maximum velocity at which the vehicle can travel.

maximum acceleration: the maximum rate at which the vehicle can accel-

erate.

minimum acceleration: the minimum rate at which the vehicle can accel-

erate (i.e. negative number representing maximum deceleration).

vehicle length: the length of the vehicle.

vehicle width : the width of the vehicle.

front wheel displacement: the distance between the front of the vehicle and

the front axle.

rear wheel displacement: the distance between the front of the vehicle and

the rear axle.

max steering angle: the maximum steering angle of the front wheels.

max turn per second: the rate at which the vehicle can turn its front wheels.

emergency: whether or not this is an emergency vehicle in an emergency

situation.

2. Change-Request : This is the message a vehicle sends when it has a reservation,

but would like to switch to a di�erent set of parameters. If the new parameters

are not acceptable to the intersection, the vehicle may keep its old reservation. It

is identical to the Request message, except that it includes a unique reservation

ID for the reservation the vehicle currently has. This message is identical to the

Request message, except for one added �eld:
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reservation id: an identi�er for the reservation to be changed.

3. Cancel : This is the message a vehicle sends when it no longer desires its current

reservation. It has 2 �elds:

vehicle id: a unique identi�er for the vehicle.

reservation id: an identi�er for the reservation to be canceled.

4. Done: This message is sent after a vehicle passed through an intersection space.

This message is mainly for analysis purposes. It has 2 �elds:

vehicle id : a unique identi�er for the vehicle.

reservation id : an identi�er for the reservation that was just completed.

A.1.2.2 Intersection to Vehicle

There are three types of messages that can be sent by the intersection manager

to a vehicle.

1. Con�rm: This message is a response to a vehicle's Request (or Change-Request)

message. This message has 7 �elds [27]:

reservation id: a unique identi�er for the reservation just created.

arrival time: the time at which the vehicle is expected to arrive at the inter-

section.

early error: the tolerable error if the vehicle arrives earlier than the estimated

arrival.

late error: the tolerable error if the vehicle arrives later than the estimated

arrival time.

arrival lane: an id for the lane in which the vehicle will be when it arrives at

the intersection.

arrival velocity: the traveling velocity of the vehicle at arrival.
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accelerations: the expected acceleration of the vehicle as it travels through

the intersection.

2. Reject : By sending this message, an intersection can inform a vehicle that the

parameters sent in the latest Request (or Change-Request) were not acceptable.

This message also indicates whether or not the rejection was because the reser-

vation manager requires the vehicle to stop at the intersection before entering.

This lets the driver agent know that it should not attempt any more reservations

until it reaches the intersection. This message has one �eld:

stop required: a boolean value indicating whether the vehicle must �rst come

to a full stop before entering the intersection.

3. Acknowledge: This message acknowledges the receipt of a Cancel or Done mes-

sage. It has one �eld:

reservation id: a unique identi�er for the reservation just canceled or com-

pleted.

Emergency-Stop: This message is only sent when the intersection manager has

determined that a collision or similar problem has occurred in the intersection.

This message informs the receiving driver agent that no further reservation

requests will be granted, and if possible, the vehicle should attempt to stop

instead of entering the intersection, even if it has a reservation. The speci�cs of

how this message is used are out of scope of this thesis.

A.1.2.3 Intersection to Intersection

We implemented the Intersection to Intersection (I2I) messages in order to make

local neighborhood knowledge available. At each update interval, the current inter-

section manager receives the tra�c density information from each of the neighbor

intersection managers. We can consider this as an exchange of state information from

one intersection manager to its neighbors at each interval. The intersection manager

now has the capability to make a knowledge based routing decision in real time with
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the state information from the neighboring intersection managers. The communica-

tion of each intersection agent is limited only within its connected neighborhood. The

broadcast communication with the User Datagram Protocol (UDP) is applied for I2I.

The information will transmit and receive asynchronously every update interval. We

set the update interval as 0.1 s for our experiments. The following message is sent

from one intersection to another intersection. They are:

1. Status : This message contains the state of an intersection. This message has 3

�elds:

IM_Id: ID of the sending intersection manager

incoming street density: this is the amount of vehicles present on the

incoming street.

outgoing street density: this is the amount of vehicles present on the

outgoing street.

A.1.3 Message Corruption and Loss

The AIM protocol assumes that messages are digitally signed. In such case, the

possibility of message corruption is very small. AIM protocol is speci�cally designed

to be robust to message loss [25]. In this thesis, we have built the I2I module and

the communication protocol using AIM protocol's standards. If a message is sent

but not received, the worst possible event then to happen would be additional delay.

No collisions can occur due to lost messages. When a vehicle makes a reservation

request, it does not assume the space is reserved until it receives a con�rmation from

the intersection manager. If a Request message is dropped, no Con�rm message will

follow. If a Con�rm or Reject message is dropped, the vehicle will simply try again

�it won't assume that it has a valid reservation.

Results of Experiment 2
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