

Mongolian Journal of Chemistry

Institute of Chemistry & Chemical Technology

Mongolian Academy of Sciences

Investigation of dissolved N₂O production processes during wastewater treatment system in Ulaanbaatar

A.Tumendelger^{1,2*}, T.Byambadorj³, C.Bors², A.Lorke²

¹Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Peace Avenue, 13330 Ulaanbaatar, Mongolia

²Institute for Environmental Sciences, University of Koblenz-Landau, Fortstr.7, 76829 Landau, Germany ³School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia

ARTICLE INFO: Received: 28 Sep, 2016; Revised: 7 Nov, 2016; Accepted: 23 Nov, 2016

Abstract: Nitrous oxide (N₂O) is an increasing greenhouse gas in the troposphere and a potential destroyer of stratospheric ozone layer. Wastewater treatment plant (WWTP) is one of the anthropogenic N₂O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO₃, in the case of standard system) or N₂ (in the case of advanced system) by bacterial nitrification and denitrifcation processes in WWTP. These major processes can be distinguished by isotopocule analysis. In order to reveal production mechanisms of N₂O in a standard wastewater treatment, we made water sampling at the central WWTP in Ulaanbaatar. The water samples collected from seven stations including biological reaction tanks were measured for concentration and isotopocule ratios of dissolved N₂O and other inorganic nitrogen. Dissolved N₂O concentration was extremely higher than that expected under atmospheric equilibrium (about 9 nmol/l) at all stations, indicating that this system is a potential source of N₂O. It showed a gradual increase with the progress of biological reaction and the highest concentration (335.7 nmol/l) was observed at station N5-4 of the aeration tank when the DO was 5.7 mg/l. Nitrification by nitrifying bacteria could actively occur by the concentration of NH4+ decreased whereas NO2 and NO3 showed a temporal and monotonic increase, respectively, under high DO concentration. Although the reported values of site preference (SP) of N₂O, the difference in ${}^{15}N/{}^{14}N$ ratio between central (α) and terminal (β) nitrogen, produced via NO₂ reduction (SP(ND)), including both nitrifier and denitrifier denitrification, and NH2OH oxidation (SP(HO)) ranged from -10.7‰ to 0‰ and 31.4‰ to 36.3‰, respectively, the observed SP at aeration tank was close to SP(ND) rather than SP(HO). It was ranged from 0.4‰ to 13.3‰ when N₂O concentration was high, implying that the NO₂⁻ reduction made a greater contribution to N₂O production. Slightly elevated SP (13.3%) only at station N5-1 was derived from the mixing of N₂O produced via NH₂OH oxidation and the maximal contribution of this pathway was estimated to be about 40%. In other words, the contribution of NO₂-reduction was more than 60%.

Keywords: Nitrous oxide; Wastewater; Stable isotope, NO₂⁻ reduction, NH₂OH oxidation

Copyright © 2016 Tumendelger A, et al. This is an open access article distributed under the Creative Commons Attribution 4.0 International License CC BY, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Nitrous oxide (N₂O) plays an important role as a greenhouse gas and catalyst in the destruction of ozone in the stratosphere. Concentrations of N₂O in the atmosphere are increasing at the rate of about 0.3% per year [1]. Atmospheric N₂O is derived from natural and anthropogenic sources, but anthropogenic sources are the only ones that are likely to be reduced through improvements in technology. Several anthropogenic sources of N₂O to the atmosphere have been identified, including wastewater treatment plants and agricultural soils [2, 3]. Biological nitrogen removal processes in wastewater treatment system is leading to produce N₂O because inorganic and organic nitrogen compounds are converted to nitrate or N₂ by bacterial nitrification and denitrifcation processes [4]. Nitrification consists of the aerobic oxidation of ammonia (NH_{4}^{+}) to nitrate (NO_{2}^{-}) via nitrite (NO_{2}^{-}) , carried out in a two-stepped reaction by ammonia-oxidizing bacteria

*corresponding author: e-mail: azzaya@icct.mas.ac.mn DOI: http://dx.doi.org/10.5564/mjc.v17i43.742

that oxidize NH_4^+ to NO_2^- , and by nitrite-oxidizing bacteria that oxidize NO2 to NO3. Denitrification is the multi-stepped, anoxic reduction of nitrate (NO₂) to dinitrogen gas (N_2) by heterotrophic microorganisms. In Ulaanbaatar, the capital of Mongolia, about one-third of domestic and commercial wastewater is treated by sewer systems with aerobic treatment. Because, most of the population lives in houses, gers using latrine while the 30% of rest inhabitants are living in apartment connected with central sewer system [5]. National estimates of wastewater N₂O emission rates, however, are poorly constrained by fractions of the housing category and wastewater handling method based on population and housing census. For an assessment of the anthropogenic influence on emission rates and climate change projections of wastewater $N_{\mbox{\tiny o}}O$ emissions, a more process-based understanding of the relevance of varying environmental conditions for N₂O production rates is needed. Furthermore, the production processes of N₂O have been the subject of study for many vears.

Recently, a high-precision analytical technique for determining intramolecular ¹⁵N-site preference in and

asymmetric molecules of N₂O was developed [6]. Since N₂O has two N atoms within the molecule (central and outer N), distribution of a stable isotope, ¹⁵N, results in the distribution of three isotopomers, such as ¹⁵N¹⁵NO, ¹⁵N¹⁴NO, and ¹⁴N¹⁵NO. By using this newly developed innovative technique, the latter two types of molecules, which exist abundantly in the environment, can be individually measured. The difference in $\delta^{15}N$ between $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ is the so-called site preference (SP = $\delta^{15}N^{\alpha}$ - $\delta^{15}N^{\beta}$, where $^{15}N^{\alpha}$ and $^{15}N^{\beta}$ represent the $^{15}N/^{14}N$ ratios at the center and end sites of the nitrogen atoms, respectively). The SP enabled us to identify the source and sinks of N₂O in the environment [6, 7]. Using this technique, Sutka et al. [8-10] found that the SP for N₂O from hydroxylamine oxidation (~33‰) and nitrite reduction (~0‰) differs in a pure culture study and noted that this difference can be used to distinguish the relative contributions of nitrification and denitrification sources to N_aO emissions. There have still been only several reported studies which applied this measurement technique to field N₂O samples [11, 12] or referred to the relative contributions of nitrification and denitrification.

To our knowledge, the present study is the first to (1) apply the stable isotopic analysis to the determination of N_2O sources during the case of WWTS in Mongolia and to (2) understand the actual contributions of nitrification and denitrification to N_2O production.

EXPERIMENTAL

Study site: Municipal wastewater treatment plant (WWTP) located in Ulaanbaatar was studied in this investigation. The plant, which receives wastewater generated by one-third of total inhabitants of 1.3 million, has conventional

activated sludge (CAS) treatment system. The system comprises two settlings and a series of biological reaction tanks. Heavy solids are removed from wastewater in the primary clarifier. Then water enters biological reaction tanks to decompose organic matter by activated sludge under aerobic conditions. Subsequently, the microbe-rich liquid flows into the secondary clarifier where activated sludge is separated from treated wastewater by gravity. Some of the settled sludge is continuously recycled back to the aeration tanks to maintain a proper concentration of microorganisms and, the water is moved to disinfection section. Finally, treated effluent is directly discharged into Tuul river, which flow near to the city (Figure 1).

Sample collection: Sampling period was in July 2015 in the CWWTP. For dissolved N₂O (DN₂O) analysis, water samples were collected from seven points in each treatment systems: exit of the primary settling, sections N1-1, N1-4, N5-1, N5-4, secondary settling and return sludge tunnel. The water temperatures during the sampling were ranged in 20.0-23.0°C. Samples for isotopic analyses were transferred into 115 ml glass vials without a headspace, sterilized with 5 ml of saturated HgCl₂, and sealed with butyl rubber stoppers and aluminum caps. They were stored at 4°C until analysis. Those for concentration and isotope analysis of NH⁺ was filtered into 50 ml plastic bottles and kept in a freezer at -35°C until measurement. Analysis of dissolved gases and inorganic N species: Water temperature, DO, pH were measured using a pH-temperature electrode with gel electrolyte (SenTix 21; 0-14 pH; 0-80°C; ±0.2°C) and DO sensor (FDO 925; 0-20 mg/l ± 0.5%; 0-50 ± 0.2°C), connected to a portable two channel multi meter (3430 IDS; WTW

Fig. 1. Aerial view of the Central Wastewater Treatment Plant (CWWTP) in Ulaanbaatar with the different unit processes and sampling points for dissolved N₂O

gas chromatograph equipped with an electron capture detector (ECD). Using a gastight syringe, gas samples were injected to a precolumn (1/8 in. o.d., 1-m long stainless steel tube packed with Porapak Q) maintained at 70°C. The concentrations of dissolved NH_4^+ , NO_3^- and NO_2^- were measured using a portable spectrophotometer (DR 2800TM; Hach company, Colorado, US).

Analysis of isotopocule ratios: For analysis of isotopocule ratios of DN_2O , samples were prepared by injecting 60 ml of ultrapure helium (He) and subsequent equilibrating of liquid and gas phase at constant temperature (20°C). Then, gas was taken from the headspace into 115 ml glass bottles, which had been flushed with N_2 . Analyses were performed using a Delta XP isotope ratio mass spectrophotometer (IRMS, MAT 251, Thermo–Finnigan, Bremen, Germany) allowing simultaneous detection of m/z 30, 31, 44, 45 and 46. The notation of the isotopocule ratios is the following:

$$\delta^{15} N^{i} = \binom{^{15}}{^{8}R^{i}} \binom{^{15}}{^{8}R^{i}} - 1 \times 1000 \ (\%)$$

$$\delta^{18} O = \binom{^{18}R}{^{8}R^{i}} \binom{^{18}R}{^{8}R^{i}} - 1 \times 1000 \ (\%)$$

$$(i = \alpha, \beta \text{ or bulk}) \qquad (4)$$

where ${}^{15}\text{R}^{\alpha}$ and ${}^{15}\text{R}^{\beta}$ represent the ${}^{15}\text{N}/{}^{14}\text{N}$ ratios of α and β N atoms, respectively. ${}^{15}\text{R}^{\text{bulk}}$ and ${}^{18}\text{R}$ denote average isotope ratios for ${}^{15}\text{N}/{}^{14}\text{N}$ and ${}^{18}\text{O}/{}^{16}\text{O}$, respectively. Subscripts "sample" and "std", respectively, signify isotope ratios for the sample and the standard, atmospheric N_2 for N and Vienna Standard Mean Ocean Water (VSMOW) for O. The ${}^{15}\text{N}$ site preference (hereinafter, SP) was also defined as an illustrative parameter of the intramolecular distribution of ${}^{15}\text{N}$ [6, 7]:

$$^{15}N - site preference (SP) = \delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$$
 (5)

Site-specific N isotope analysis in NO was conducted using ion detectors modified for mass analysis of the N_2O fragment ions (NO⁺), which contained N atoms in the a position of the N_2O molecules, whereas bulk (average) N and O isotope ratios were determined from molecular ions (N_2O^+) [5]. Assuming that the N_2O reduction process is to be negligible, the contributions of NO_2^- reduction (x) and NH_2OH

oxidation
$$(1 - x)$$
 to N₂O production can be estimated using the SP value as presented here:

$$SP_{sample} = x SP_{NO2\text{-}reduction} + (1-x) SP_{NH2OH \text{ oxidation}}$$
(6)

There in, SP_{NO2-} reduction and SP_{NH2OH} oxidation, respectively, signify the SP values when N₂O is produced only by NO₂⁻ reduction and when N₂O is produced only by NH₂OH oxidation.

The δ^{15} N value of NH₄⁺ was measured using the diffusion method [13] and analyzed by an EA1110 elemental analyzer (Thermo Fisher Scientific K.K.) coupled with the IRMS.

RESULTS AND DISCUSSION

Concentrations of dissolved inorganic nitrogen (DIN) compounds and DN₂O: The distribution of NH₄⁺, NO₂⁻ and NO, DN O and dissolved oxygen (DO) in the water from different sampling points at CWWTP are presented, respectively, in Figure 2. The concentration of NH₄⁺ at station PS was gradually decreased from 3464.3 to 2314.3 µmol/l at the end of aeration tank (N5-4) which implies $NH_{_{\!\!A}}$ + oxidation was occurred in this system by the effect of ammonia-oxidizing bacteria. However, it is clear that the process of NH⁺ oxidation into NO⁻ was not completely conducted as seen from the fraction of NH_{A}^{+} conversion rate. This problem can be caused by either treatment capacity of the plant or old facilities applying for operation. The NO concentration was highly fluctuated throughout treatment, and the highest concentration (139.3 µmol/l) was at N1-4. We found that total DIN compounds were removed about 30.1% and those removed N fraction probably converted into other gaseous forms based on mass balance estimation (Figure 2a). The DO concentration at primary settling (PS) and beginning of aerobic tank (N1-1) was initially low, however, it increased gradually from station N1-4, indicating that more oxygen was consumed for the oxidation of NH_{4}^{+} and organics (Figure 2b). The highest DN₂O concentration (335.7nmol/l) was observed at station N5-1 following great decline until secondary settling (SS) in biological reaction basin. This high value can be linked to relatively lower DO concentration compared to DO at other stations. Generally, the DN₂O concentration at all stations was always higher than the value expected under

Fig. 2. Concentration profiles of DIN (a), DN2O and DO (b) in conventionalactivated sludge system at CWWTP. Red line in right figure indicates water-atmospheric equilibrium for dissolved N₂O

water-atmosphere equilibrium (about 9 nmol/kg at 20°C, showed by red line in Figure 2b [14]) which means that this treatment process is potential source of N₂O emitted to the atmosphere. An operating parameter believed to play a critical role in influencing emissions is DO [15]. An insufficient supply of oxygen in a nitrifying process can lead to incomplete nitrification, whereby autotrophic ammoniaoxidising bacteria (AOB) reduce NO2⁻ to N2O, instead of oxidation to NO3. While the presence of oxygen can inhibit denitrification enzymes, particularly N₂O reductase, which converts N₂O to dinitrogen gas (N₂) in denitrification process. Therefore, DO may be key in determining the metabolic mechanisms that trigger N₂O production, from either nitrifying or denitrifying microorganisms, depending on whether conditions are aerobic and/or anoxic [16]. High N₂O observed at biological reaction tanks under sufficient DO, therefore, probably due to not favourable environment for denitrifying enzymes locally existed in activated sludge. We found that water in biological tanks was supersaturated with DN₂O between 2144 and 3760% which suggests CAS system of this plant is a potential source of N_oO emitted to the atmosphere.

Source identifying of N_2O deduced from stable isotope ratios: N_2O has a strong greenhouse effect, and its emissions must be mitigated. To devise a strategy for mitigation, it is necessary to understand its sources in detail. Stable isotopic analysis is promising tool to differentiate the main N_2O production processes such as NH_2OH oxidation and bacterial NO_2^- reduction in several environments. In this study, isotope ratios of N_2O ($\delta^{15}N$, $\delta^{18}O$, and SP values) showed slight variations during the treatment process (Figure 3).

Fig. 3. Isotope ratios of DN₂O in water sampled from CWWTP

In general, the $\delta^{15}N$ value of N_2O was slightly increased from the PS (+16.8‰) to station N5-4 (+26.9‰) except for sudden decline at station N5-1. At the return sludge (RS), it was the lowest around 11.9‰, however, all the values at all stations were higher than that of atmospheric $\delta^{15}N$ value. The $\delta^{18}O$ values were within +70 to +80‰ that is nearly two-fold greater than atmospheric value. Basically, N_2O reduction is accompanied by a simultaneous increase in $\delta^{15}N$ and $\delta^{18}O$ values [17] and a diffusive loss of N_2O from the water to the atmosphere occurs with a marginal

isotope effect [18]. Therefore, the observed decrease in the $\delta^{15}N$ and $\delta^{18}O$ values of N₂O at station N5-1 is interpreted as an isotope effect in microbial N₂O production during the treatment process.

The SP value, which is unique tool for differentiating the microbial processes, was ranged from 0.4‰ at N1-1 to 13.3‰ at N5-1 with high DN₂O concentration. Exceptions were observed at station N5-1 and SS that can be partly produced by NH₂OH oxidation. Production and consumption of N₂O can be revealed using $\bar{\delta}^{15}N^{\text{bulk}}$ -SP mapping approach, in which the $\bar{\delta}^{15}N$ of substrate (NH₄⁺) is used to interpret the relation between SP and $\bar{\delta}^{15}N^{\text{bulk}}$ (Figure 4, Eq.7).

$$\delta^{15} \mathsf{N}_{\mathsf{N2O}} = \delta^{15} \mathsf{N}_{\mathsf{NH4} \to (\mathsf{NO2})}^{+} + \varepsilon (^{15} \mathsf{N})_{\mathsf{substrate} \to \mathsf{N2O}}$$
(7)

The N₂O produced by NO₂⁻ reduction (nitrifierdenitrification) is assumed to have SP of -13.6‰ to +5.0‰ [8-10, 19] and the $\delta^{15}N^{\text{bulk}}$ of +10.7‰ to +38.9‰ according to the measured $\delta^{15}N_{\text{NH4+}}$ and the expected isotopic fractionation during NO₂⁻ reduction to N₂O (-76 to -11‰ [20]). In contrast, N₂O produced by NH₂OH oxidation (nitrification) is supposed to be SP of +27.2‰- +35.6‰ and the expected isotopic fractionation during NO₂⁻ reduction to N₂O (-76 to -11‰ [20]). Note that the $\delta^{15}N$ value of substrate was identical as NO₂⁻ reduction process.

Fig. 4. Schematic diagram portraying N₂O production processes in CWWTP. The range of $\delta^{15}N_{NH4+}$ is shown as horizontal side of colored-dashed box at up and bottom in the graph

Based on this mapping approach, most of data was fallen near to NO₂⁻ reduction suggesting that the nitrifierdenitrification was dominant pathway to N₂O production. This is agreed with previous results that found nitrifierdenitrification was a key process for N₂O production in aerobic tank of CAS system applied in Japanese WWTP [11,12]. The contribution of this pathway is estimated as 87-99% at stations N1-1, N1-4 and N5-4, respectively. At station N5-1 and SS, data were observed at middle of two boxes demonstrated that N₂O produced by two microbial processes. It means that NH₂OH oxidation and NO₂⁻ reduction were partly produced to N₂O. NH₂OH oxidation was contributed to N₂O production about 40 and 53%.

CONCLUSION

Results of this study particularly underscore the usefulness of isotope and isotopocule measurements of N_2O to investigate source of N_2O produced during WWT system in Mongolia. The main findings showed as following:

- Dissolved N₂O concentration at all stations was higher than water-atmospheric equilibrium indicating that WWTP is a potential source of N₂O
- 2. Water in the biological reaction tank was supersaturated with N₂O as about 3760%, and those N₂O were partly emitted to the atmosphere.
- 3. Total nitrogen removal efficiency in the process was about 30%.
- 4. SP value of N₂O implied that the NH₂OH oxidation (nitrification) was partly produced to N₂O with 47-60% contributions at station N5-1 and SS, whereas the NO₂⁻ reduction (nitrifier-denitrification) was major pathway to N₂O production at other stations including PS, N1-1, N1-4 and N5-4.

ACKNOWLEDGEMENT

This work was financially supported by the postdoctoral research grant from the Ministry of Education, Culture and Science, Mongolia (No.:156612ДИ201) and especial thank to the Environmental Physics group at the University of Koblenz-Landau, Germany.

REFERENCES

- 1. IPCC (2013) Climate Change 2013: The Physical Science Basis. Cambridge, UK and New York, NY.
- Czepiel, P., Crill, P.M., Harriss, R. (1995) Nitrous oxide emissions from municipal wastewater treatment. *Environ. Sci. Technol.*, **29**, 2352-2356,
- 3. IPCC (2007) Climate Change 2007: synthesis report. Geneva, Switzerland
- Kampschreur M.J., Temmink H., Kleerebezem R., Jetten M.S.M., van Loosdrecht, M. C. M. (2009) Nitrous oxide emission during wastewater treatment. *Water Res.*, 43, 4093.
- MARCC-2014, Mongolia Second Assessment Report on Climate Change-2014, Ulaanbaatar, Mongolia.
- Toyoda S, Yoshida N. (1999) Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. *Anal. Chem.*, **71**, 4711-4718.
- Yoshida N. and Toyoda S. (2000) Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers. *Nature*, **405**, 330-334.
- Sutka R. L., Östrom N. E., Ostrom P. H., Gandhi H., Breznak J. A. (2003) Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. *Rapid Commun. Mass Spectrom.*, **17**, 738-745.
- Sutka R. L., Ostrom N. E., Ostrom P. H., Gandhi H., Breznak J. A. (2004) Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. *Rapid Commun. Mass Spectrom.*,**18**, 1411-1412.

- Sutka R. L., Ostrom N. E., Ostrom P. H., Breznak J. A., Gandhi H., *et al.* (2006) Distinguishing nitrous oxide production from nitrification and denitrification based on isotopomer abundances. *Appl. Environ. Microbiol.* , **72**, 638-644.
- Tumendelger A., Toyoda S., Yoshida N. (2014) Isotopomer analysis of N₂O produced in a wastewater treatment system operated under standard activated sludge method. *Rapid Commun. Mass Spectrom.*, 28, 1883-1892.
- 12. Toyoda S., Suzuki Y., Hattori S., Yamada K., Fujii A., *et al.* (2011a) Isotopomer analysis of production and consumption mechanisms of N_2O and CH_4 in an advanced wastewater treatment system. *Environ. Sci. Technol.*, **45**, 917–922.
- Holmes R. M., McClell J. W., Sigman D. M., Fry B., Peterson B. J. (1998) Measuring ¹⁵N-NH₄⁺ in marine, estuarine and freshwaters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. *Mar. Chem.*, **60**, 235.
- 14. Weiss R. F., Price B. A. (1980) Nitrous oxide solubility in water and seawater. *Mar. Chem.*, **8**, 347–359.
- Tallec G., Garnier J., Billen G., Gousailles M. (2008) Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. *Bioresource Technology*, 99, 2200-2209.
- Rassamee V., Sattayatewa C., Pagilla K., Chandran K. (2011) Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. *Biotechnology and Bioengineering*, **108** (9), 2036-2045.
- Koba K., Osaka K., Tobari Y., Toyoda S., Ohte N., et al. (2009) Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. *Geochim. Cosmochim. Acta*, **73**, 3115.
- Inoue H. Y., Mook W. G. (1994) Equilibrium and kinetic nitrogen and oxygen isotope fractionations between dissolved and gaseous N₂O. *Chem. Geol.*, **113**, 135.
- 19. Toyoda S., Mutobe H., Yamagishi H., Yoshida N., Tanji Y. (2005) Fractionation of N_2O isotopomers during production by denitrifier. *Soil Biol. Biochem.*, **37**, 1535-1545.
- Toyoda S., Yano M., Nishimura S., Akiyama H., Hayakawa A., *et al.* (2011) Characterization and production and consumption processes of N₂O emitted from temperate agricultural soils determined via isotopomer ratio analysis. *Global Biochem. Cycles.*, **25**, GB 2008.