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Abstract—In this paper we propose a new concept of prime-

ness in quantales. It is proved that this concept coincide with

classical definition in commutative quantales, but no longer valid

in the noncommutative setting. Also, the notions of strong and

uniform strong primeness are investigated.
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I. INTRODUCTION

As it is known, ideals are the main object in the investiga-
tion of ring theory and provide important information about the
rings because they are structural pieces. The same may occur
in quantales. The definition of prime ideals proposed in [1] is
based on elements of a quantale and we ponder it is geared to
commutative environment. When we move from commutative
to the noncommutative setting, elementwise should be replaced
by an approach based on ideals. Nevertheless, some authors
defined the concept of primeness for commutative and non-
commutative cases without realizing that this concept may not
be suitable for noncommutative setting as it was well shown
by Navarro et. al. in [2]. We state that the concept of prime
ideal of general quantales could be defined as it is done in ring
theory, i.e. based on ideals.

The main aim of this paper is to study the notion of
primeness in the following perspective: we rename prime
ideal defined in [1] to completely prime ideal and define
a new concept of prime ideal for general quantales. Then
we translate an important result in ring theory for quantales
environment (theorem 2) to prove that these two concepts
coincide in the commutative setting, but are no longer valid in
the noncommutative setting (see Proposition 3). Also, based
on the studies of Lawrence and Handelman [3], started in
1975, the notion of strong primeness is investigated for general
quantales.

II. BASIC ON QUANTALES

This section proposes a new concept of prime ideals
suitable for commutative and non-commutative quantales. The
definition of prime ideal used in [4] and [1] will be called
herein completely prime ideals. We drew attention to the
theorem 2 where prime ideals can be characterized in a
certain way via elements. The Proposition 4 shows that in
the commutative case, prime and completely prime concepts
coincide, which are no longer valid in the noncommutative
setting according to Proposition 3. Finally, the concept of
quantale prime is proposed.

Definition 1: [5] A quantale is a complete lattice Q with
an associative binary operation � satisfying:
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2 Q and k 2 K, where K is a index set.

A quantale Q is called commutative whenever a� b = b�a
for a, b 2 Q. In this paper we denote the least and greatest

elements of a quantale by ? and > respectively. If there exists
an element e in Q such that x � e = e � x = x for all x in Q

the quantale is called a quantale with identity. In this paper
we consider quantales with identity.

Definition 2: [4] Let Q be a quantale. A non-empty subset
I ✓ Q is called a right ideal of Q if it satisfies the following
conditions:

i) a, b 2 I implies a _ b 2 I;

ii) for all a, b 2 Q, a 2 I and b  a imply b 2 I ,

iii) for all x 2 Q and a 2 I , we have a � x 2 I .

Similarly we may define left ideal replacing (iii) by: (iii’)
for all x 2 Q and a 2 I , we have x � a 2 I . If I is both right
and left ideal of Q, we call I a two-sided ideal or simply an
ideal of Q.

Clearly by (ii) ? 2 I . Also, the set of all ideals of Q is
closed under arbitrary intersections.

In Q we denote the subset I � J = {i � j 2 Q : i 2
I and j 2 J} and A_B = {a_b : a 2 A and b 2 B}. Since
the operation � is associative, we have (A�B)�C = A�(B�C).
Also, if A is an two-sided ideal, then A�Q, Q�A, Q�A�Q ✓
A.

As usual, _ induces an order relation  on Q by putting
x  y , x _ y = y. Moreover,  is a congruence i.e. for
every x, y, u, v 2 Q if x  y and u  v, then x � u  y � v.
To prove this, we first observe that if w  z then, for any
s 2 Q, s � w  s � z and w � s  z � s because z = w _ z

implies s � z = s � (w _ z) = (s � w) _ (s � z) and z � s =
(w_ z) � s = (w � s)_ (z � s); now suppose x  y and u  v,
then x � u  y � u and y � u  y � v. Hence, x � u  y � v by
transitivity.
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III. PRIMENESS

In what follows we propose a more general definition
of prime ideals which encompasses commutative and non-
commutative quantales.

Definition 3: A prime ideal in a quantale Q is any proper
ideal P such that, whenever I, J are ideals of Q with I�J ✓ P ,
either I ✓ P or J ✓ P .

Definition 4: A subset P of a quantale Q is called com-

pletely prime ideal if x and y are two elements of Q such
that their product x � y 2 I , then x 2 I or y 2 I .

As we will see the concept of prime and completely prime
ideals are different. But in a commutative quantale this concept
is the same.

Proposition 1: If P is completely prime, then P is prime.

Proof: Suppose that P is completely prime and I�J ✓ P ,
but J 6✓ P , where I, J are ideals of Q. Thus, there exists j 2 J

such that j /2 P . For all i 2 I we have i� j 2 I �J ✓ P , as P

is completely prime and j /2 P , then i 2 P . Therefore I ✓ P .

The Proposition 3 will show that the converse of this
Proposition is not true.

Definition 5: [4] Let Q be a quantale and A ✓ Q. The
least ideal containing A is called the ideal generated by A,
and denoted as hAi.

Clearly, h;i = {?}. If ; 6= A ✓ Q, then we have the
following result.

Proposition 2: [4] Let A be a non-empty subset of
a quantale Q. Then hAi = {x 2 Q : x W

n

i=1 ai, for some positive integer n and a1, . . . , an 2 A [
(A �Q) [ (Q �A) [ (Q �A �Q)}.

We may denote hai = h{a}i and a �Q = {a} �Q.

Lemma 1: hai �Q ✓ hai for all a 2 Q. If there exists an
unit 1 in Q, then hai �Q = hai.

Proof: Let x � q 2 hai � Q, where x 2 hai and q 2 Q.
Hence, x�q 

W
n

i=1(ai�q), where a
i

�q 2 a�Q[Q�a[Q�a�Q.
Thus, x � q 2 hai. On the other hand if there exists unit 1 in
Q, we write z 2 hai as z = z � 1. Thus, z 2 hai �Q and we
have hai �Q = hai.

Theorem 2: For an ideal P in Q the following statements
are equivalent:

(1) P is prime ideal;

(2) hai � hbi ✓ P implies a 2 P or b 2 P ;

(3) a �Q � b ✓ P implies a 2 P or b 2 P .

Proof: For (1) ) (2) note that hai and hbi are ideals
of Q. As P is prime and hai � hbi ✓ P , then hai ✓ P or
hbi ✓ P . Hence, a 2 P or b 2 P . For (2) ) (1), assume that
I �J ✓ P , but J 6✓ P , where I, J are ideals of Q. Thus, there
exists j 2 J such that j /2 P . Given i 2 I we have hii ✓ I .
Hence, hii � hji ✓ I � J ✓ P . By hypothesis i 2 P or j 2 P .
As j /2 P then we have i 2 P . Therefore, I ✓ P .

For (3) ) (1), assume that I � J ✓ P , but J 6✓ P , where
I, J are ideals of Q. Thus, there exists j 2 J such that j /2 P .
Given i 2 I we have i �Q � j ✓ I � J ✓ P . Hence, i 2 P or
j 2 P , as j /2 P then we have i 2 P . Thus, I ✓ P .

For (1) ) (3), suppose a �Q � b ✓ P , we first shall show
that hai �Q � hbi ✓ P . For this, let x � q � y 2 hai �Q � hbi,
where x 2 hai, y 2 hbi and q 2 Q. Hence, by Proposition
2, x  _n

i=1ai and y  _m

j=1bj , where a

i

2 (a � Q) [ (Q �
a) [ (Q � a � Q) and b

i

2 (b � Q) [ (Q � b) [ (Q � b � Q).
Hence x � q � y  (_n

i=1ai) � q �
�
_m

j=1bj

�
= (_n

i=1(ai � q)) ��
_m

j=1bj

�
= _n

i=1(ai�q�_m

j=1bj) = _n

i=1

�
_m

j=1(ai � q � bj)
�
.

Observe that a
i

2 a�Q[Q�a[Q�a�Q and b

j

2 b�Q[Q�
b[Q� b�Q it is no hard to see that a

i

� q � b
j

2 a�Q� b ✓ P

for all i, j. As P is an ideal we have x � q � y 2 P . Thus,
hai � Q � hbi ✓ P . By the Lemma 1 hai � Q = hai. Then,
hai � Q � hbi = hai � hbi ✓ P . By the first proof ((1), (2))
we have a 2 P or b 2 P .

Proposition 3: There exists a noncommutative quantale
where a prime ideal is not a completely prime ideal.

Proof:

Consider G the invertible 2 ⇥ 2 matrices under mul-
tiplication over the real interval [0, 1] and the partial or-
der A  B , a

ij

 b

ij

. According to Rosenthal
[5], page 19, example 16, any complete partially ordered group
(written multiplicatively) is a quantale with a � b = a · b.
Thus, G is a noncommutative quantale. Let h0i as an ideal
generated by 0, clearly h0i = {0}. We will show that the
h0i (zero ideal) is prime, but not completely prime by using

the Theorem 2 (3). Thus, suppose that X =

✓
a b

c d

◆
and

Y =

✓
e f

g h

◆
are two matrices such that X �G � Y ✓ h0i.

Hence X � T � Y =

✓
0 0
0 0

◆
for all matrix T 2 G. Then,

in particular,

X �
✓

1 0
0 0

◆
�Y =

✓
a b

c d

◆✓
1 0
0 0

◆✓
e f

g h

◆
=

✓
ae af

ce cf

◆
= 0 , a = c = 0 or e = f = 0,

X

✓
0 1
0 0

◆
Y =

✓
a b

c d

◆✓
0 1
0 0

◆✓
e f

g h

◆
=

✓
ag ah

cg ch

◆
= 0 , a = c = 0 or g = h = 0,

X �
✓

0 0
1 0

◆
�Y =

✓
a b

c d

◆✓
0 0
1 0

◆✓
e f

g h

◆
=

✓
be bf

de df

◆
= 0 , b = d = 0 or e = f = 0,

X �
✓

0 0
0 1

◆
�Y =

✓
a b

c d

◆✓
0 0
0 1

◆✓
e f

g h

◆
=

✓
bg bh

dg dh

◆
= 0 , b = d = 0 or g = h = 0,
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Hence, a solution must verify that X =

✓
0 0
0 0

◆
or

Y =

✓
0 0
0 0

◆
. Therefore X 2 h0i or Y 2 h0i and then h0i

is prime. Nevertheless, h0i is not completely prime, since
✓

0 1
0 0

◆
�
✓

0 1
0 0

◆
=

✓
0 0
0 0

◆
although

✓
0 1
0 0

◆
/2 h0i.

Proposition 4: In a commutative quantale an ideal is com-
pletely prime iff it is prime.

Proof: If P is a completely prime ideal of a quantale
Q, then by the Proposition 1 P is prime. On the other hand,
suppose P is a prime ideal and a � b 2 P for any a, b 2 Q.
Let x � y 2 hai � hbi, where x 2 hai and y 2 hbi. Thus,
x � y 

W
n

i=1 ai �
W

m

j=1 bj =
W

n

i=1

⇣W
m

j=1(ai � bj)
⌘

, where
a

i

2 a�Q[Q�a[Q�a�Q and b

j

2 b�Q[Q�b[Q�b�Q. As Q
is commutative a�Q = Q�a = Q�a�Q and b�Q = Q�b = Q�
b�Q. Thus, a

i

�b
j

2 a�Q�b�Q = a�b�Q for all i = 1, . . . , n
and j = 1, . . . ,m. Hence, a

i

� b

j

= a � b � q 2 P and then
x � y 

W
n

i=1

⇣W
m

j=1(ai � bj)
⌘
2 P . Therefore, hai � hbi ✓ P

and by the Theorem 2 we have a 2 P or b 2 P .

In what follows, we will introduce the notion of quantale
prime. As we know, in ring theory, a quantale is prime iff the
ideal generated by 0 is a prime ideal. Then, the Proposition 5
translates this result into quantale environment.

Definition 6: A quantale Q is called prime if given a, b 2
Q with a 6= ? and b 6= ?, there exists f 2 Q such that
a � f � b 6= ?.

Proposition 5: A quantale Q is prime iff h?i is a prime
ideal.

Proof: Suppose Q prime and assume that I � J ✓ h?i,
but I, J 6✓ h?i, where I, J are ideals of Q. Thus, there exists
i 2 I ,j 2 J such that i, j 6= ?. As Q is prime, there exists
q 2 Q such that i � q � j 6= ?, then we have a contradiction
because i � q � j 2 I � J ✓ h?i. Hence, I ✓ h?i or J ✓ h?i.
On the other hand, suppose h?i is a prime ideal of Q. Given
a, b 6= ? in Q, suppose a � q � b = ? for all q 2 Q. Hence,
a � Q � b ✓ h?i. As h?i is a prime ideal, then a 2 h?i or
b 2 h?i, but a, b 6= ?.

IV. STRONG PRIMENESS IN QUANTALES

Strongly prime rings were introduced in 1973, as a prime
ring with finite condition in the generalization of results on
group rings proved by Lawrence in [3]. In this section we bring
this concept to quantales making specific adaptations for this
environment.

Definition 7: Let A be a subset of a quantale Q. The right

annihilator of A is defined as An

r

(A) = {x 2 Q : Ax =
h?i}. Similarly, we can define the left annihilator An

l

.

Definition 8: [3] A quantale Q is called right strongly

prime if for each x 2 Q� {?} there exists a finite nonempty

subset F
x

of Q such that An

r

(x � F
x

) = h?i. Clearly if Q is
right strongly prime, then Q is prime. The set F

x

is called an
insulator of x in Q.

Proposition 6: If Q is right strongly prime, then every
nonzero ideal I of Q contains a finite subset F which has
right annihilator zero.

Proof: Suppose Q right strongly prime. Let x 2 I and
x 6= ? and F = x � F

x

✓ I . Thus, An
r

(F ) = h?i.

It is clear that every right strongly prime quantale is a prime
quantale. It is also possible to define left strongly prime in a
similar manner for right strong primeness.

Definition 9: A quantale Q is called uniformly strongly

prime (usp) if the same right insulator may be chosen for each
nonbottom element.

Proposition 7: A quantale Q is a right uniformly strongly
prime iff there exists a finite subset F ✓ Q such that for any
two nonbottom elements x and y of Q, there exists f 2 F

such that x � f � y 6= ?.

Proof: Let Q be uniformly right strongly prime quantale.
Hence Q has a uniform right insulator F which is a finite set
such that for any element x 2 Q, x�F has no nonbottom right
annihilators. Thus, if x and y are any two nonbottom elements
in Q, y cannot be in the annihilator of x � F . Hence there is
an f 2 F such that x � f � y 6= ?. For the reverse implication
it is easy to see that if the condition is satisfied then for any
x 6= ? in Q, no nonbottom element annihilates x � F on the
right. Hence Q is uniformly right strongly prime

It is clear that the condition in Proposition 7 is not
one-sided; consequently, this condition is also equivalent to
uniformly left strongly prime, and we have:

Corollary 3: Q is uniformly right strongly prime iff Q is
uniformly left strongly prime.

Corollary 4: A quantale Q is uniformly strongly prime iff
there exists a finite subset F ✓ Q such that a � F � b = ?
implies a = ? or b = ? for all a, b 2 Q.

Proof: Straightforward.

Definition 10: An ideal P 6= h?i of a quantale Q is called
uniformly strongly prime (usp) ideal if there exists a finite
subset F ✓ Q such that a�F �b ✓ P implies a 2 P or b 2 P .

Proposition 8: An ideal I of a quantale Q is a usp ideal
iff there exists a finite subset F ✓ Q such that for any two
elements a, b 2 Q \ I(complement of I in Q), there exists
f 2 F such that x � f � y /2 I .

Proof: Suppose I a usp ideal of Q. If a /2 I and b /2 I

by Definition 10 a � F � b is not a subset of I . Hence, there
exists f 2 F such that a � f � b /2 I . For the converse, note
that by hypothesis it is impossible to have a � F � b ✓ I and
a /2 I and b /2 I .
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V. FINAL REMARKS

Prime ideals have developed an important role in ring
theory and have attracted the attention of some researchers in
the investigation of quantales. As prime ideals are structural
pieces of a ring it is relevant to study its concept in order to
establish a well-founded quantale theory. With this in mind, it
is necessary to investigate primeness over arbitrary quantales,
i.e. commutative and noncommutative setting. Therefore, this
paper invites the reader to think about primeness in quantales
bringing a new perspective for prime ideals.
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