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Abstract 

       Introducing the concepts of both Gibbs’s dividing surface and Rusanov’s dividing line, 

the wettability behaviors of spherical drops inside a smooth and heterogeneous conical cavity 

are studied. A new generalized Cassie-Baxter equation for contact angles including the 

influences of the line tension is derived thermodynamically. Additionally, various 

approximate formulae of this generalized Cassie-Baxter equation are also discussed 

correspondingly under some assumptions. © 2017 Science Front Publishers 
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1. Introduction 

Strong understanding the wetting phenomena of liquid droplets on solid surfaces is very 

important for designing and controlling wettability characteristics in industrial applications and 

daily lives. Extensive interests have been attracted to investigate the wetting cases of solids by 

liquids for about three centuries, particularly in recent twenty years. The most fundamental 

theory about the wetting behaviors is the Young’s equation [1] for contact angle 
Y

θ
 
of liquid 

droplets on smooth and chemically homogeneous solid surfaces given by, 

      cos SG SL

Y

LG

σ σ
θ

σ

−
=                                                                            (1) 

where 
SG

σ , 
SL

σ
 
and 

LG
σ  are the surface tensions of the solid-vapor, solid-liquid, and liquid-

vapor interfaces, separately. 
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Evidently, the Young equation (1) only applies to smooth and homogeneous cases, but real 

solid surfaces are usually rough and heterogeneous. Fortunately, the Wenzel equation was 

developed in the 1930s for the wettability of rough surfaces. Subsequently, in the 1940s, for the 

wetting of smooth and heterogeneous surfaces, the classical Cassie-Baxter equation [2] for 

contact angle θ  was proposed by 

          
1 1 2 2cos cos cosf fθ θ θ= +                                                    (2) 

where 1θ  and 2θ  are the contact angles that liquid droplets make with solid surfaces 1 and 2, 1f  

and 2f  are the area fractions of 1 and 2 surfaces below droplets. 

Despite the theoretical basis for wetting properties of drops is established by the above 

mentioned Young equation, Wenzel equation, and Cassie-Baxter equation, all of them ignore the 

influences of the line tension. A large number of investigations [3-10] show that the line tension 

considerably depends on the curvature radius of the triple phase line. A review of earlier studies 

about the line tension can be obtained in reference [11]. 

In fact, since Gibbs introduces the concept of the line tension primitively, the classical 

Young’s equation is generalized so as to include the effects of the line tension [6, 9]. For 

example, the generalized Young’s equation proposed by Pethica [3] satisfies 

cos cos
Y

LG L

k

R
θ θ

σ
= −                                                     (3) 

where 
L

R  is the radius of the three phase line, and k  is the corresponding line tension. 

In 2004, through the method of Gibbs’s dividing surface, Rusanov [4] also developed a 

generalized Young’s equation 

1
cos cos

Y

LG L LG L

k dk

R dR
θ θ

σ σ

 
= − −  

 
                                        (4) 

where the quantity in square bracket stands for the derivation of the line tension k  by the radius 

L
R  of the triple phase line. 

In terms of the wetting of drops on heterogeneous solid surfaces, many investigators have 

carried out considerable works. Swain [12] developed a new generalized Young equation for 

liquid droplets on a rough and heterogeneous solid by a novel minimization method. Fang [13] 

applied the Neumann-Good parallel strip model to analyze the contact angle hysteresis of drops 

on a heterogeneous surface. Towles [14] analyzed the influences of the contact angle on the 

packing, or thickness mismatch contribution to the line tension. Raj [15] thermodynamically 

studied the effects of the contact line distortion to the wetting of drops on heterogeneous and 

superhydrophobic surfaces. In a recent paper, Kwon [16] investigated the static and dynamic 

characteristics of nano-scale drops on chemically heterogeneous surfaces using the method of 

molecular dynamics simulations. In addition, Zhang [17] discussed the influences of surface 

heterogeneities on the evaporation of drops from solid surfaces also utilizing molecular dynamics 

simulations. 
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However, up to now, the wetting of spherical droplets inside a smooth and heterogeneous 

conical cavity has not been performed. In this paper, based on the theories of both Gibbs’s 

dividing surface and Rusanov’s dividing line, the wetting of spherical droplets within a smooth 

and heterogeneous cone is studied. At the same time, a new generalized Cassie-Baxter equation 

of drops inside a smooth and heterogeneous conical cavity is derived accordingly. This equation 

is applicable to random dividing surface between the liquid and vapor phases. Additionally, we 

yet analyze various simplified expressions of this generalized Cassie-Baxter equation through 

some hypotheses. 

 

2. Calculating the free energy of the system 

Let us now consider a single component spherical droplet (phase L) located inside a smooth 

and chemically heterogeneous cone (phase S) with its equilibrium vapor (phase G), as illustrated 

in Figure 1. 
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Figure 1. Schematic representation of a spherical droplet in a smooth and chemically 

heterogeneous conical cavity 

For the purpose of simplicity, it can be seen from Figure 1 that the cone is composed of two 

types of different materials A and B. Consequently, there are two kinds of solid/liquid interfaces, 

two sorts of solid/vapor interfaces, as well as two classes of triple phase lines. The Young 
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equation describing contact angles ( )1,2i iθ =  of two heterogeneous solids can be together given 

by, 

          cos SGi SLi

i

LG

σ σ
θ

σ

−
=                                                      (5) 

where σ  is the surface tension, the triple subscripts denote the quantities with respect to the 

corresponding interfaces (such as the subscript SGi  marks the solid-vapor interface, where i  

being the label of solid and having two values of 1 and 2.). 

Via the theories of both Gibbs’s dividing surface and Rusanov’s dividing line, the overall 

solid/liquid/vapor system in Figure 1 includes six parts, i.e., liquid phase, vapor phase, solid-

liquid interface, solid-vapor interface, liquid-vapor interface, together with the three phase line. 

Thus, the Helmholtz free energy F of the entire system is  

 
L G SL SG LG SLG

F F F F F F F= + + + + +   (6) 

where 
L

F , 
G

F , 
SL

F , 
SG

F ,
LG

F  and 
SLG

F  are the Helmholtz free energies of the six parts 

mentioned above. 

The Helmholtz free energies of these six parts can be given respectively by [18], 

L L L L L
F p V Nµ= − +                                                   (7) 

G G G G G
F p V Nµ= − +                                               (8) 

LG LG LG LG LG
F A Nσ µ= +

 
      (9) 

( )1 1 2 2SL SL SL SL SL SLF f f A Nσ σ µ= + +                                  (10) 

( )1 1 2 2SG SG SG SG SG SGF f f A Nσ σ µ= + +                                (11) 

( )1 1 2 2SLG SLG SLG SLGF g k g k L Nµ= + +
 
       (12) 

where p is the pressure, V is the volume, µ
 
is the chemical potential, N

 
is the mole number of 

molecule, A
 
is the surface area, σ

 
is the surface tension, k is the line tension, and L  is the 

length of the three phase line, 1f  and 2f  are the fractional surface areas occupied by two solid-

liquid interfaces or two solid-vapor interfaces such that 1 2 1f f+ = , and 1g  and 2g  are the 

fractional lengths of two three phase lines such that 1 2 1g g+ = . 

In order to highly calculate the geometrical quantities in the above equations, we assume 

that the gravity and other forces or fields are ignored simultaneously. Hence, the equilibrium 

shape of droplets in a conical cavity is the sum of a cone and a segment. 

The volume 
L

V
 
of the liquid phase is 

           
( ) ( )

23 3 3cos
sin 1 cos 2 cos

3 sin 3
LV R R

π α π
β β β

α
= + − +

             
(13)

 
where R  is the radius of the droplet, α  is the half cone angle, and β  is the apparent contact 

angle. 
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The total volume 
t

V  of the system is 

                     
t L G

V V V= +     (14) 

The surface area
LG

A of the liquid-vapor interface is 

 ( )2
2 1 cosLGA Rπ β= −                        (15) 

The surface area
SL

A of the solid-liquid interface is 

     
2

2 sin

sin
SLA R

β
π

α
=    (16) 

The total surface area
t

A of the solid-liquid and solid-vapor interfaces is 

 
t SL SG

A A A= +    (17) 

The length of the triple phase line is 

                                   2 sin
SLG

L Rπ β=
                        

(18) 

Applying the above relations, the free energies of six subsystems can be rewritten by, 

 

( ) ( )
23 3 3cos

sin 1 cos 2 cos
3 sin 3

L L L L
F p R R N

π α π
β β β µ

α

 
= − ⋅ + − + +  

             (19) 

( ) ( )
23 3 3cos

sin 1 cos 2 cos
3 sin 3

G G t G GF p V R R N
π α π

β β β µ
α

  
= − ⋅ − ⋅ + − + +         

(20) 

( )2
2 1 cosLG LG LG LGF R Nσ π β µ= ⋅ − +                                         (21) 

( )
2

2

1 1 2 2

sin

sin
SL SL SL SL SLF f f R N

β
σ σ π µ

α
= + ⋅ +                                    (22) 

( )
2

2

1 1 2 2

sin

sin
SG SG SG t SG SG

F f f A R N
β

σ σ π µ
α

 
= + ⋅ − + 

 
                           (23) 

( )1 1 2 2 2 sinSLG SLG SLGF g k g k R Nπ β µ= + ⋅ +                                     (24) 

 

By putting the above Eqs. (19-24) into Eq. (6), the free energy F of the overall system has the 

form, 

 

 

( ) ( ) ( )

( )

( ) ( )

( ) ( )

23 3 3

2

2
2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

cos
sin 1 cos 2 cos

3 sin 3

2 1 cos

sin

sin

2 sin

L G

G t LG L L G G LG LG

SL SL SG SG

SG SG t

SL SL SG SG SLG SLG

F p p R R

p V R N N N

f f f f R

f f A g k g k R

N N N

π α π
β β β

α

σ π β µ µ µ

β
σ σ σ σ π

α

σ σ π β

µ µ µ

 
= − − ⋅ ⋅ + − +  

− ⋅ + ⋅ − + + +

+ + − + ⋅  

+ + ⋅ + + ⋅ +

+ + +

 (25) 
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3. Derivation of a new generalized Cassie-Baxter equation 

The grand potential Ω of a system composed of liquid droplets in contact with solid and 

vapor phases may be expressed as 

 
i i

i

F NµΩ = −∑   (26) 

where the subscript i  stands for the sum of both phases and interfaces of the system. 

Substituting Eq. (25) into Eq. (26), the grand potential Ω  can be rewritten as, 

 

( ) ( ) ( )

( )

( ) ( )

( ) ( )

23 3 3

2

2
2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

cos
sin 1 cos 2 cos

3 sin 3

2 1 cos

sin

sin

2 sin

L G

G t LG

SL SL SG SG

SG SG t

p p R R

p V R

f f f f R

f f A g k g k R

π α π
β β β

α

σ π β

β
σ σ σ σ π

α

σ σ π β

 
Ω = − − ⋅ ⋅ + − +  

− ⋅ + ⋅ −

+ + − + ⋅  

+ + ⋅ + + ⋅

 (27) 

Minimizing the grand potential Ω  with respect to the radius R , we have 

                       0
d

dR

Ω 
=                                               (28) 

Because four surface tensions 1SL
σ , 2SL

σ , 1SG
σ , and 2SG

σ  don’t depend  on the choice of the 

dividing surface [6], one obtains 

1 2 0SL SLd d

dR dR

σ σ   
= =      

                                  
(29) 

1 2 0SG SGd d

dR dR

σ σ   
= =      

                                 
(30) 

By utilizing equations (27-30), we have 

  

( )

( ) ( )

( )
( )

1 2
2

3
1 1 2 2 1 1 2 2

1 1 2 2 4
4 1 1 2 2 0

LG
L G LG

SL SL SG SG

ddx dx
p p x

dR dR dR

dx
f f f f

dR

d g k g k dx
x g k g k

dR dR

σ
σ

σ σ σ σ

    
− − ⋅ + ⋅ + ⋅        

 
+ + − + ⋅     

+   
+ ⋅ + + ⋅ =     

               (31) 

where, 

( ) ( )
23 3 3

1

cos
sin 1 cos 2 cos

3 sin 3
x R R

π α π
β β β

α
= + − +

                
(32) 

( )2

2 2 1 cosx Rπ β= −
                                         

(33) 

2
2

3

sin

sin
x R

β
π

α
=

                                              
(34) 

4 2 sinx Rπ β=
                                               

(35) 



Long Zhou et al                     Journal for Foundations and Applications of Physics, vol. 4, No. 2 (2017) 

37 
 

From Figure 1 we can obtain the following expressions 

sin sin
L

R R Lβ α= =
                                              (36) 

cos cosL R OM constα β− = =                                       (37) 

2

γ β α

π
θ γ

= −



= +                                                       

(38) 

In Eqs. (36-37), the derivation with respect to the radius R leads to 

( )
( )

sin

cos

d

dR R

β αβ

β α

−
= −

−
                                              

(39) 

( )
1

cos

dL

dR β α
=

−
                                                 

(40) 

( )
sin

cos

L
dR

dR

α

β α
=

−
                                                

(41) 

Using Eqs. (32-35) and Eqs. (39-40), we have 

( )
( ) ( )

( ) ( )
2

22 3 2 21
sin sin cos

sin 1 cos 2 cos
cos cos

dx
R R R

dR

β α β α
π β π π β β

β α β α

− 
= − ⋅ + ⋅ + − +  − − 

 

   
(42) 

( )
( )
( )

2
sin

4 1 cos 2 sin
cos

dx
R R

dR

β α
π β π β

β α

− 
= − − ⋅  −                               

(43) 

( )
3 2 sin

cos

dx R

dR

π β

β α

 
=  −                                                     

(44) 

( )
4 2 sin

cos

dx

dR

π α

β α

 
=  −                                                     

(45) 

The Laplace’s equation [18] of a free spherical liquid drop yields 

2 LG LG
L G

d
p p

R dR

σ σ 
− = +                                             

(46) 

By introducing Eqs. (42-46) into Eq. (31), we get 

( )
( )

( )

1 1 2 21 1 2 2
1 2

1 2
1 2

sin
sin

sin

cos

SG SL SG SL

LG LG LG

LG

g k g k
f f

R

dk dk
g g

dR dR

ασ σ σ σ
β α

σ σ β σ

β α

σ

+− −
− = − − +

⋅

−     
+ ⋅ +        

               
(47)

 

 Putting Eq. (38) into Eq. (47) arrives at 

( )1 1 2 21 1 2 2
1 2

1 2
1 2

sin
cos

sin

sin

SG SL SG SL

LG LG LG

LG

g k g k
f f

R

dk dk
g g

dR dR

ασ σ σ σ
θ

σ σ σ β

θ

σ

+− −
= + −

    
− +        

    
                 (48) 
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Substituting Eq. (5) into Eq. (48), we have 

( )1 1 2 2

1 1 2 2

1 2
1 2

sin
cos cos cos

sin

sin

LG

LG

g k g k
f f

R

dk dk
g g

dR dR

α
θ θ θ

σ β

θ

σ

+
= + −

    
− +        

                              

(49) 

 

Utilizing Eqs. (36, 38, 41), Eq. (49) may be rewritten as 

( )1 1 2 2

1 1 2 2

1 2
1 2

sin
cos cos cos

sin

LG L

LG L L

g k g k
f f

R

dk dk
g g

dR dR

α
θ θ θ

σ

α

σ

+
= + −

     
− +    

     

                             

(50) 

 

Hence, for the spherical droplet in a smooth and heterogeneous conical cavity, Eq. (50) is 

the new generalized Cassie-Baxter equation applicable to arbitrary dividing surface between the 

liquid and vapor phases. 

If we suppose that
2

π
α = , then sin 1α = , the conical surfaces convert into flat surfaces, Eq. 

(50) is the generalized Cassie-Baxter equation suitable for the wetting of droplets on flat 

surfaces. Then, if we assume that the cone only contains a kind of solid, namely 

1 2SL SL
σ σ= , 1 2SG SG

σ σ= , 1 2k k=                                      (51) 

Then Eq. (50) decreases to the generalized Young equation (4) established by Rusanov. 

Subsequently, when we assume that the line tension is constant, Eq. (50) changes to the equation 

(3) developed by Pethica. Finally, if the influences of the line tension are not considered, Eq. (50) 

reduces to the familiar Young’s equation (1). 

Moreover, if we neglect the effects of the line tension directly in Eq. (50), then Eq. (50) is 

simplified as the classical Cassie-Baxter equation (2). 

 

4. Conclusion 

On the basis of the theories of Gibbs’s dividing surface and Rusanov’s dividing line, we 

investigated the wetting characteristics of spherical droplets in a smooth and heterogeneous 

conical cavity by means of thermodynamics. Taking the influences of the line tension into 

account, a generalized Cassie-Baxter equation for the contact angle between spherical droplets 

and the inner surface of a cone, has been derived in terms of the concept of Gibbs’s dividing 

surface. Based on some hypotheses, this generalized Cassie-Baxter equation decreases to the 

Cassie-Baxter equation suitable for planar surfaces, the Rusanov’s equation, the Pethica’s 

equation, the Young’s equation along with the classical Cassie-Baxter equation. 
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