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Abstract 
To describe the propagation of small amplitude waves in nonlinear dispersive media, it is frequently 

necessary to take account of dissipative mechanisms to perfectly reflect real situations in many branches of 

physics like plasma physics, fluid dynamics and nonlinear optics. In this paper, the ))(exp( ηφ− -expansion 

method is employed to solve the (2+1)-Dimensional couple Broer-Kaup equations as a model for wave 

propagation in nonlinear media with dispersive and dissipative effects. As a result, a number of exact traveling 

wave solutions including solitary wave and periodic wave have been found for the equation. Some 

representative 3D profiles and 2D profiles for different values of variables of the wave solutions are 

graphically displayed and discussed.  ©2016 Science Front Publishers 
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1. Introduction  
The world around us is essentially nonlinear and nonlinear partial differential equations (NPDE) are broadly 

used as models to illuminate the complex physical phenomena. The exact traveling wave solutions of NPDEs 

play a vital role in nonlinear science and engineering. The nonlinear evolution equations (NLEF) are involved in 

many fields such as mathematics, physics, biology, chemistry, mechanics, meteorology, engineering, optical 

fibers etc. The investigation of the exact traveling wave solutions of nonlinear evolutions equations play an 

important role in the study of nonlinear physical phenomena. In the recent decade, many methods were 

developed and proposed for finding the exact solutions of nonlinear evolution equations, such as the modified 

extended Fan sub-equation method [1], the homogeneous balance method [2-3], the tanh method [4-5], the 

Jacobi elliptic function expansion [6], the F-expansion method [7,8], the Backlund transformation method [9], 

the Darboux transformation method [10], the Adomian decomposition method [11-13], the auxiliary equation 

method [14, 15] and the )/( GG′ -expansion method [16-23]. Recently, authors in [24, 25] have obtained the 
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exact traveling wave solutions of some Nonlinear Evolution Equations using the ))(exp( ηφ− -expansion 

method. It will be seen that more traveling wave solutions of many nonlinear evolution equations can be 

obtained by using the ))(exp( ηφ− -expansion method.  

In the present article, we apply the ))(exp( ηφ− -expansion method to find some exact new traveling wave 

solutions of the (2+1)-Dimensional Broer-Kaup equations. 

 

2. Methodology 

In this section, we describe exp ))(( ηφ− - expansion method for finding traveling wave solutions of 

nonlinear evolution equations. Suppose that a nonlinear equation, say in three independent variables yx, and t

is given by 
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where ),,()( tyxuu =η  is an unknown function, F is a polynomial of ),,( tyxu  and its partial derivatives in 

which the highest order derivatives and nonlinear terms are involved. In the following, we give the main steps of 

this method:
 

Step 1: Combining the independent variables yx,  and t into one variable wtyx ±+=η
 

we suppose that, 

)(),,(),(),,( ηη GtyxGHtyxH == , wtyx ±+=η
 
                     (2) 

The travelling wave transformation Eq. (2) permits us to reduce Eq. (1) to the following ordinary differential 

equation (ODE): 

       





=′′′ℵ

=′′′ℜ

0.........),,,,,(

0.........),,,,,(
'''

'''

GHGHGH

GHGHGH
                              (3) 

where ℵℜ,  is a polynomial in )(),( ηη GH  and its derivatives, whereas 
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and so on. 

Step 2: We suppose that Eq.(3) has the formal solution 
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Where )0( niAi ≤≤  and )0( miBi ≤≤ are constants to be determined, such that 0≠nA and 0≠mB and 

)(ηφφ =  satisfies the following ODE: 

ληφµηφηφ ++−=′ ))(exp())(exp()(                              (5) 

Eq. (5) gives the following solutions: 

When 0,042 ≠>− µµλ , 
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When 0,042 ≠<− µµλ , 
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When 0,0,042 ≠=>− λµµλ , 
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When 0,0,042 ≠≠=− λµµλ ,  
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When 0,0,042 ===− λµµλ , 

)ln()( E+= ηηφ                                          (10) 

µλ,,....., wBA mn  are constants to be determined later, 0≠nA
 
and 0≠mB , the positive integer n and m can be 

determined by considering the homogeneous balance between the highest order derivatives and the nonlinear 

terms appearing in Eq. (3). 

Step 3: Inserting Eq. (4) into Eq. (3) and then we account the function ))(exp( ηφ− . As a result of this 

substitution, we get a polynomial of ))(exp( ηφ− . We equate all the coefficients of same power of ))(exp( ηφ−  

to zero. This technique yields a system of algebraic equations whichever can be solved to find µλ,,....., wBA mn

. Substituting the values of µλ,,....., wBA mn  into Eq. (4) along with general solutions of Eq. (5) determine the 

solution of Eq. (1). 

 

3. Application of the method: 
When attempting to describe the propagation of small amplitude waves in nonlinear dispersive media, it is 

frequently necessary to take account of dissipative mechanisms to perfectly reflect real situations. In this 

section, we study the following (2+1)-Dimensional couple Broer-Kaup equations [1] as a model for wave 

propagation in nonlinear media with dispersive and dissipative effects: 
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where ),,( tyxH and ),,( tyxG are functions depending on the spatial variables yx, and temporal variable t . 

This system contains both linear dispersive term xxyH , dissipative terms ytH , xxG , nonlinear dissipative term

yxHH )( and has been widely applied to many branches of physics like plasma physics, fluid dynamics, and 

nonlinear optics and so on. Yomba [1] has obtained new and more general solutions of (11) including a series of 

non-traveling wave and coefficient function solutions using the modified extended Fan sub equation method. 

Let us now solve (1) by the exp ))(( ηφ− - expansion method. We utilize the traveling wave variable

),,()( tyxHH =η , ),,()( tyxGG =η ,
 wtyx −+=η , Eq. (11) is carried into following ODEs: 
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Integrating (12) with respect to η  once yields       

0221 =′+′+′′−′− GHHHHwK                         (13)     

     022 =+′+− HGGwGK                              (14) 

where 1K and 2K  are integration constants. Considering the homogeneous balance between highest order 

derivatives and nonlinear terms in Equations (13), (14) we deduce that  

)))((exp()( 10 ηφη −+= AAH                           (15) 
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210 )))((exp()))((exp()( ηφηφη −+−+= BBBG                  (16) 

Switching Eq. (15) and Eq. (16) into Eq. (13) and then equating the coefficients of ))(exp( ηΦ−  to zero, we get 
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Switching Eq. (15) and Eq. (16) into Eq. (14) and then equating the coefficients of ))(exp( ηφ−  to zero, we get 
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Solving the Eq. (17)-Eq. (18) together yields 

λ−= 02Aw , constA =0 , ,11 =A ,0 µ−=B λ−=1B , 12 −=B , 021 == KK

    where µλ,  are arbitrary constants. 

Now substituting the values of 1,, AAw o  into Eq. (15) yields 

)))((exp()( 0 ηφη −+= AH                             (19) 

Again substituting the values of 21 ,,, BBBw o  into Eq. (16) yields   

2)))((exp())(exp()( ηφηφλµη −−−×−−=G                     (20) 

where tAyx )2( 0 λη −−+=  

Now, inserting Eq. (6) - Eq. (10) into Eq. (19) and Eq. (20) respectively, we get the following ten traveling wave 

solutions of the (2+1)-Dimensional couple Broer-Kaup equations. 
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where tAyx )2( 0 λη −−+=  and EA ,0 are arbitrary constants 

When ,0≠µ  ,042 <− µλ  
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where tAyx )2( 0 λη −−+=  and EA ,0 are arbitrary constants. 

When ,0=µ  ,0≠λ  and ,042 >− µλ  
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where tAyx )2( 0 λη −−+=  and EA ,0 are arbitrary constants. The figures of the solutions )(),( 44 ηη GH

are similar to the figure of the solution )(3 ηH . 

When ,0=µ  ,0=λ  and ,042 =− µλ  
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where tAyx 02−+=η and EA ,0 are arbitrary constants. 
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4. Graphical representation of the solutions 
We study here the interaction of two wave solutions to the (2+1)-Dimensional couple Broer-Kaup equations. 

The graphical illustrations of the solutions are depicted in the figures from fig-1 to fig-5 with the aid of 

commercial software Maple 13, where all the figures are estimated along 0=y and compared with analytical 

solution cases for 25.1,5 == µλ such that 042 >− µλ and 1,00 == EA . Numerical representation 

produces that the same behavior as wave solutions. The solutions persist before and after their interaction.  As 

seen in Fig.1(a) of )(1 ηH is Kink waves that are traveling waves which arise from one asymptotic state to 

another. The kink solutions approach to a constant at infinity. In 2D profile seen in Fig. 1(b), for time evolution 

of )(1 ηH wave for different values of displacement on the domain [0, 1] (see t from 0 to 1 only), we see that 

)(1 ηH wave varies with displacement. It is found that the wave flow oscillates regularly that is periodic over the 

displacement region 90 ≤≤ x . Fig. 1(c) shows the )(1 ηH  wave for different values of time t  for the whole 

region of displacement 33 ≤≤− x and time 8.02.0 ≤≤ t . It is seen that the wave increases gradually as time 

increases.  

 

Fig.1(a): Plot of )(1 ηH for 0,25.1,5,1,40 ===== yEA µλ
 

 

 

Fig.1(b): Plot of )(1 ηH wave against t
 
for different values of  x  
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Fig.1(c): Plot of )(1 ηH wave against x for different values of t
 

 

The figure of the solutions )(1 ηG is similar to the figure of the solution )(1 ηH . 

Periodic solutions are traveling wave solutions that are periodic such as cos(x−t). Solutions )(2 ηG  and )(2 ηH  

represent exact periodic traveling wave solutions of periodic wave and 3D profile of the solution )(2 ηH is 

given by the Fig. 2(a). Here the figure is obtained for cases 1,1 == µλ such that 042 <− µλ and 

1,10 == EA . Numerical representation produces that the same behavior as wave solutions. Time evolution of 

)(2 ηH wave for different values of displacement on the domain [-10, 10] are shown in 2D profile of Fig. 2(b) 

and we see here, )(2 ηH wave varies with displacement. It is found that the wave flow oscillates regularly that is 

periodic over the displacement region 21 ≤≤− x . In Fig. 2(c), we see )(2 ηH  wave for different values of 

time t for the whole region of displacement 33 ≤≤− x and time 30 ≤≤ t . It is seen that the wave increases 

gradually as time increases.
  

 

Fig.2(a): Plot of )(2 ηH for 0,1,1,1,10 ===== yEA µλ
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Fig.2-b: Plot of )(2 ηH wave against t
 
for different values of x  

 

 

Fig.2(c): Plot of )(2 ηH wave against x for different values of t  

 

The figure of the solutions )(2 ηG is similar to the figure of the solution )(2 ηH . 
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Solitons are special kinds of solitary waves. The soliton solution is a specially localized solution. Hence 

0)(),(),(),( →′′′′′′ ηηηη GHGH  as ±∞→η , wtyx −+=η . Solitons have a remarkable property that it 

keeps its identity upon interacting with other solitons. Solutions )(5 ηH  represent singular Kink solution. 3D 

profile of the solution )(5 ηH is given in the Fig. 3(a). Here the figure is obtained for cases 0,0 == µλ such 

that 042 =− µλ and 1,10 == EA . In 2D profile of Fig. 3(b) that gives the time evolution of )(5 ηH wave for 

different values of displacement on the domain [0, 3] (see figure for t from 0 to 3 only), we see that )(5 ηH wave 

varies with displacement. It is found that the wave flow oscillates regularly that is periodic over the 

displacement region 30 ≤≤ x  and wave height also increases with time. Fig. 3(c) shows the  )(5 ηH  wave for 

different values of time t  for the whole region of displacement 1010 ≤≤− x and time 30 ≤≤ t . It is seen that 

the wave increases gradually as time increases and wave height also increases. 

 

Fig. 3(a): Plot of )(5 ηH for 0,0,1,10 ===== yEA µλ
 

 

 

 

 

Fig. 3(b): Plot of )(5 ηH wave against t
 
for different values of x  
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Fig. 3(c): Plot of )(5 ηH wave against x
 
for different values of t  

 

 The figures of the solutions )(),( 33 ηη GH and )(5 ηG  are similar to the figure of the solution )(5 ηH . 

Solutions )(5 ηG  also dark soliton solution and 3D profile of the solution )(5 ηG  are given in the Fig. 4(a). Here 

the figure is obtained cases for 0,0 == µλ such that 042 =− µλ and 1,10 == EA . In 2D profile of Fig.4(b) 

that gives time evolution of )(5 ηG wave for different values of displacement on the domain [0, 10], we see 

)(5 ηG wave varies with displacement. Fig. 4(c) shows the )(5 ηG  wave for different values of time t  for the 

whole region of displacement 88 ≤≤− x and time 30 ≤≤ t . It is seen that the wave decreases gradually as 

time increases and wave height also increases. 

 

Fig 4(a): Plot of )(5 ηG for 0,0,1,10 ===== yEA µλ
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Fig.4(b): Plot of )(5 ηG wave against t

 
for different values of x  

 

 

 

Fig.4(c): Plot of )(5 ηG wave against x
 
for different values of t  

 

 

5. Conclusion 
  In this work, we obtained new and exact solutions of the (2+1)-Dimensional Broer-Kaup equations by using 

the ))(exp( ηφ− -expansion method. Results of the paper indicate that accurate soliton solutions obtained using 

))(exp( ηφ− -expansion method has large numbers of applications. Complicated physical phenomena in 

nonlinear model systems may be studied well in the future by applying the typical interaction solutions we have. 

The method may also be applied to other nonlinear partial differential equations (NPDE). 
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