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Abstract 
We thermodynamically investigate the wetting characteristics of a spherical droplet in a 

smooth and homogeneous cone rotated by the quadratic parabola 2 ( 0, 0)y ax a x= > ≥

through the mechanisms of both Gibbs’s dividing surfaces and Rusanov’s dividing line. 
For the triple phase system including the solid, liquid and vapor phases, the derivation of a 
generalized Young equation containing the influences of the line tension is successfully 
carried out. Additionally, we as well analyze various approximate forms for this 
generalized Young equation by using the corresponding assumptions. 
©2016 Science Front Publishers 
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 1. Introduction 
Wetting phenomena of liquids on solid surfaces have attracted considerable attention of many 

researchers in past two centuries [1-12], because of their extensive usefulness not only in our daily 
lives but also in numerous industrial applications, such as coating processes, lubricants, microfluidic 
devices, and boiling heat transfer. In terms of a closed equilibrium system, it is common to establish 
the relation between the contact angle and physical properties of the solid/liquid/vapor system by 
the principle of the force balance at the triple line. A more typical example with an equilibrium 
contact angle 

Y
θ  is the Young’s equation [1], which can be given by 

          cos ,SG SL

Y

LG

σ σ
θ

σ

−
=                                            (1) 

Where 
SG

σ , 
SL

σ  and 
LG

σ  are the solid/vapor, solid/liquid and liquid/vapor surface tensions, 

respectively. The Young’s equation could be used under several limitative conditions, where the 
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solid surfaces are smooth and homogeneous, and the gravity force and the line tension are also 
neglected. Due to these shortcomings, the Young’s equation for the equilibrium contact angle 
cannot be readily employed for practical applications, especially in this work about the cone rotated 
by the quadratic parabola around y axis. 

 Indeed, the line tension at the triple phase line, where the solid, liquid and vapor contact each 
other, has considerable impacts for contact angles that are formed by liquid drops on top of solid 
surfaces. The generalized Young equation depicts the dependence of the contact angle on the radius 
of the triple line. In 1977, Pethica [13] developed a generalized Young’s equation describing liquid 
drops on smooth and homogeneous solid surfaces, 

 

cos cos
Y

LG L

k

R
θ θ

σ
= −                                        (2) 

 
where θ  is the contact angle, 

L
R  and k are the radius of the contact line and the line tension, 

separately. In addition, Rusanov yet proposed a generalized Young’s equation [14] considering the 
derivative term of the line tension by the radius of the triple line, 
 

1
cos cos

Y

LG L LG L

k dk

R dR
θ θ

σ σ

 
= − −  

 
                            (3) 

 
where the quantity in square bracket stands for the derivative of the line tension with respect to the 
radius of the contact line. 

The concept of the line tension was first introduced thermodynamically by Gibbs in his theory 
about capillarity, but the more comprehensive study of this amount merely started a century later 
and is fully investigated in past decade. Rafael [15] studied the relationship between the drop size, 
the line tension along with the advancing and receding contact angles. Hie [16] established a 
theoretical model to estimate the contact angle of liquid droplets on rough solid substrates and 
compared both the theoretical and experimental results. Peng [17] calculated the effects of the line 
tension for the cylindrical and spherical droplets using the method of molecular dynamics 
simulation. More recently, Masao [18] performed the effects of the line tension on the 
heterogeneous nucleation of the convex and concave spheres. 

Existing literatures give a large number of theoretical and experimental investigations [19-25] 
related to the generalized Young equation for contact angles of spherical drops on regular solid 
surfaces which provide information helpful to clearly understand the wetting properties of liquid 
droplets. However, to the best of our knowledge, the generalized Young’s equation for a spherical 
droplet within a smooth and homogeneous cone revolved by the quadratic parabola has not been 
addressed until now. In this paper, on the basis of the principles of dividing surfaces mentioned by 
Gibbs and the dividing line proposed by Rusanov, we investigate the wetting characteristics of a 
spherical droplet in a smooth and homogeneous revolved cone. We successfully derive a 
generalized Young equation for spherical drops in a smooth and homogeneous cone, and this 
equation is suitable for arbitrary dividing surface between the liquid drop and solid substrate. 
Moreover, several simplified expressions of this generalized Young’s equation are yet discussed 
under some assumptions. 
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2. Computing the entire free energy of the system 

x

y

O1

O

α

β
θ

β

LiquidSolid

Vapor

H

R

RL

y=ax2

 
Figure 1. Representation of a spherical droplet within a smooth and homogeneous cone rotated by 

the quadratic parabola ( )2 0, 0y ax a x= > ≥
 
around y axis. 

For the purpose of simplicity, we suppose that the quadratic parabola ( )2 0, 0y ax a x= > ≥  is 

used to generate the cone around y axis in Figure 1, whereas the case of the coefficient a  smaller 
than zero is similar to this. As a result, in this work we will consider a single component spherical 
droplet (phase L) with its equilibrium vapor (phase G), placed within a smooth and homogeneous 
cone solid (phase S), as indicated in Figure 1. 

 On account of the principle of Gibbs’s dividing surface, the triple phase system in this study is 
divided into six subsystems, namely, liquid phase, vapor phase, solid-liquid interface, solid-vapor 
interface, liquid-vapor interface, and the triple phase contact line. In this way, the Helmholtz free 
energy F of the system may be obtained 
 

L G SL SG LG SLG
F F F F F F F= + + + + +  (4) 

where 
L

F , 
G

F , 
SL

F , 
SG

F ,
LG

F  and 
SLG

F  are the free energies of various subsystems, respectively; 

subscripts are the symbols representing the corresponding phases, interfaces as well as the contact 
line (e.g., the indexes L and SLG stand for the liquid phase and the triple contact line, separately), 
respectively. 
Various free energies of six subsystems are expressed as follows [2] 

                                           L L L L L
F p V Nµ= − +                           (5) 

G G G G G
F p V Nµ= − +                          (6) 

                                           SL SL SL SL SL
F A Nσ µ= +                       (7) 

                                           SG SG SG SG SG
F A Nσ µ= +                     (8) 

                                                   LG LG LG LG LG
F A Nσ µ= +                    (9) 

                                                   SLG SLG SLG SLG
F kL Nµ= +                    (10) 
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where p  the pressure, V  the volume, µ  the chemical potential, N  the mole number of molecule, 

σ  the surface tension, A  the surface area, k  the line tension, and L  the length of the triple phase 
contact line. 

To simplify the calculating of geometry quantities in the above equations, we neglect the 
gravity and other forces or fields. And then, the balance shape of a spherical droplet within the 
revolved cone is the combination of both a cone and a segment. 
The volume 

L
V  of the liquid phase is given by 

           

( ) ( )

( ) ( )

23

0

22 3

1 cos 2 cos
3

= 1 cos 2 cos
2 3

H

L

y
V dy R

a

H R
a

π
π β β

π π
β β

= + − +

+ − +

∫
                        

(11)
 

Where H  and R  are the height and radius of the spherical droplet respectively and β  is the 
apparent contact angle. 
The whole volume 

t
V  of the liquid-vapor system is given as 

                                       
t L G

V V V= +                           (12) 

The surface area
LG

A of the liquid-vapor interface yields 

                          ( )22 1 cosLGA Rπ β= −                       (13) 

The surface area
SL

A of the solid-liquid interface is given in form 

 

( )

0

3

2
2

1 4

1 4 1
6

H

SL
A aydy

a

aH
a

π

π

= +

 
= + −  

∫
 (14) 

The entire surface area
t

A of the solid-liquid and solid-vapor interfaces is written as 

 
t SL SG

A A A= +  (15) 

The length of the three phase contact line may be obtained by 
                                                 2 sin

SLG
L Rπ β=

                        
(16) 

Based on the foregoing determined geometry amounts, a variety of free energies above have 
the following forms 

     
( ) ( )

22 3 1 cos 2 cos
2 3L L L L

F p H R N
a

π π
β β µ

 
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                     (17) 
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a

π π
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(18)                                                                
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2
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6SL SL SL SLF aH N
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π
σ µ
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                                           (19) 

( )
3

2
2

1 4 1
6SG SG t SG SGF A aH N

a

π
σ µ

  
= ⋅ − + − +    

                          (20) 

( )22 1 cosLG LG LG LGF R Nσ π β µ= ⋅ − +                                            (21) 

2 sin
SLG SLG SLG

F kR Nπ β µ= +                                                         (22) 

Put the preceding Eqs. (17-22) into Eq. (4) to get 
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3. Derivation of generalized Young equation 
The grand potential Ω of the system which is composed of a solid, a single component 

spherical drop along with its vapor is defined to be 
 

i i

i

F NµΩ = −∑  (24) 

where the index i  is the amount of subsystems of the system. 
Substitute Eq. (23) into Eq. (24) to obtain, 
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 (25) 

Since the grand potential Ω , the surface tensions
SL

σ  and 
SG

σ  are independent of the radius R, 

we then have, 

                                
0

d

dR

Ω 
=                             (26) 

                                0, 0SL SGd d

dR dR

σ σ   
= =      

                (27) 

Let us put Eq. (25) into Eq. (26) and take Eq. (27) into account, we get 
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LG SL
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σ
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  
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   
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  
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                                (28) 

Note that we can obtain the following expressions from Figure 1 
sin

L
R R β=                                                      (29) 

1cosH R OO constβ− = =                                                                                   (30) 
2 2sinH aR β=        

                                            
(31) 

Differentiating the variables β  and 
L

R  with respect to the radius R , we can write 

 ( )

2cos 2 sin
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d aR

dR R aR

β β β

β β

−
=

+
                                                

(32) 
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 ( )
1

sin 1 2 cos
L

dR

dR aRβ β
=

+
                                         

(33) 

Applying Eqs. (11, 13, 14, 16) together with Eq. (32), we have 
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R a RdA
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β
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2
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SLGdL

dR aR

π
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 
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(37) 

The Laplace’s equation [6] of a free spherical drop yields 

 

2 LG LG
L G

d
p p

R dR

σ σ 
− = +                                                

(38) 

We can also obtain the following relations from Figure 1 

2 2 2

2 2 2

2 sin
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1 4 sin

1
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Now we put Eqs. (34-38) into Eq. (28) and utilize Eq. (39) to get 

( )
2 2 2

2 2 2

sin 1 2 cos
cos

1 4 sin

sin 1 4 sin

SG SL

LG LG
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dRa R

k
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β βσ σ
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+−  
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−
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 Further, we substitute the Young’s equation (1) into Eq. (40) to obtain 
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2 2 2

2 2 2
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cos cos

1 4 sin

sin 1 4 sin

Y
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dRa R
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β β
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By using Eqs. (29, 33), Eq. (41) becomes 

2 2 2 2

1
cos cos

1 4 1 4
Y

LLG L L LG L

dk k

dRa R R a R
θ θ

σ σ

 
= − ⋅ − 

⋅ + ⋅ ⋅ +                
(42) 

Therefore, in terms of the spherical droplet inside a smooth and homogeneous cone revolved 

by the quadratic parabola 2 ( 0, 0)y ax a x= > ≥ , Eq. (42) is the generalized Young’s equation 
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suitable for random dividing surfaces between the liquid and vapor phases. 

If we initially suppose that the limiting case 2

0 0
lim lim 0
a a

y ax
→ →

= = , then the quadratic parabola 

2 ( 0, 0)y ax a x= > ≥  changes to x axis, i.e., the rotated cone surfaces reduce to planar surfaces, Eq. 

(42) correspondingly becomes the generalized Young’s equation (3) established by Rusanov. Go a 
step further, if we assume that the line tension is hold constant, Eq.(42) further reduces to the 
equation (2) proposed by Pethica. Finally, without considering the effects of the line tension, Eq. 
(42) decreases to the classical Young equation (1). 

 

4. Conclusions 
Based on the theorems of Gibbs’s dividing surfaces and Rusanov’s dividing line, by using the 

method of thermodynamics we research the wetting properties of a spherical droplet within a 

smooth and homogeneous cone spun by a quadratic parabola 2 ( 0, 0)y ax a x= > ≥ . Considering the 

impacts of the line tension, we successfully derive a generalized Young equation depicting the 
contact angle between a spherical drop and the inner wall surface of a rotated smooth cone on the 
basis of the principle of Gibbs’s dividing surfaces. In addition, this generalized Young equation can 
simplify as the Rusanov’s equation, the Pethica’s equation as well as the usually used Young’s 
equation under some hypotheses. 
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