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Assessment of Genetic Diversity among Barley Cultivars
and Breeding Lines Adapted to the US Pacific Northwest,
and Its Implications in Breeding Barley for
Imidazolinone-Resistance
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Vilcún, Chile, 3 School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America, 4 Centre for Reproductive Biology,

Washington State University, Pullman, Washington, United States of America

Abstract

Extensive application of imidazolinone (IMI) herbicides had a significant impact on barley productivity contributing to a
continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance
from a recently characterized mutation in the ‘Bob’ barley AHAS (acetohydroxy acid synthase) gene to other food, feed and
malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific
Northwest (PNW), since it comprises ,23% (335,000 ha) of the US agricultural land under barley production. To effectively
breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from
the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic
dissimilarity with the ‘Bob’ AHAS mutant. The six selected genotypes were used to make 29–53 crosses with the AHAS
mutant and a range of 358–471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent
genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations
ranging in size from 2158–2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results,
F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A
range of 20%–90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made
to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele.
Results suggested that the mutant can survive up to the 106 field recommended dose of herbicide, and the 86 and 106
herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining
barley productivity in the PNW are discussed.
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Introduction

Barley is a short-season, early maturing annual grain crop with

some degree of tolerance to drought and salinity, which allows its

production in a wide range of climatic zones including both

irrigated and dryland production areas [1]. Barley is the third

major feed grain crop produced in the United States, after corn

and sorghum [2]. Spring barley is a preferred rotational crop in

the US Pacific Northwest (PNW) for two- or three-year rotations

with winter wheat (Triticum aestivum L.), pea (Pisum sativum L.), lentil

(Lens culinaris L.), or fallow [1,3]. A cropping system like spring

wheat-fallow or winter wheat-fallow is generally practiced in the

PNW, which encourages populations of summer and winter

annual-grassy weeds, respectively [4]. These weed cycles can be

broken with a winter wheat-barley-fallow rotation [6]. Depending

upon the management practices followed in an area, this cropping

system results in a buildup of crown and root rot pathogens

including Fusarium, Rhizoctonia and Phythium species, which

frequently result in significant yield losses [5]. Similarly, in an

eight-year dryland no-till cropping systems experiment conducted

near Ritzville, Washington, a significant drop in the incidence of

bare patches caused by Rhizoctonia was observed by adaptation of a

two-year spring wheat rotation with spring barley. A significant

gain in average yield of spring wheat was also documented with

this change [5]. Likewise, in continuous cropping systems, spring
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barley fits well after winter wheat because the time interval

between harvesting the barley crop and planting winter wheat is

usually sufficient to allow soil moisture recharge to support an

optimum winter wheat stand [6,7]. In addition to its agronomical

relevance and commercial value as a feed or malt grain crop,

barley is regaining popularity as human food due to the

antioxidant and b-glucan (dietary fiber) rich grains [8,9]. Despite

its agronomical importance and rising market value, barley

acreage in the US has declined from 8.94 million acres in 1991

to 3.48 million acres in 2013 [10]. In Washington State alone the

acreage has dropped significantly from 500,000 acres planted in

1999 to 180,000 acres in 2013 [10].

The significant drop in barley acreage during the last two

decades can be partly attributed to the wide scale application of

imidazolinone herbicides in combination with the introduction of

imidazolinone (IMI)-resistant crops, and the residual activity of the

herbicides of this family [1]. The decline in acreage can also be

explained by the overlapping distribution of regions under barley

cultivation in the PNW and the regions under extensive

application of Imazamox (Beyond) and/or Imazethapyr (Pursuit)

[11]. Collectively, the major reason for the decline in barley

acreage is its sensitivity to commonly used herbicides. Many of the

widely used herbicides, which impose barley plant-back restric-

tions, belong to the group B herbicides [12]. Thus, identification of

IMI-resistant mutant(s) in barley and its transfer to relevant feed,

food and/or malting barley cultivars adapted to the PNW is of

extreme importance to sustain barley productivity in this region

and elsewhere.

The group of herbicides belonging to the imidazolinone family

targets acetohydroxyacid synthase (AHAS) or acetolactate syn-

thase (ALS), an octameric enzyme with four catalytic and four

regulatory subunits [13]. The enzyme AHAS catalyses two parallel

reactions in the synthesis of branched chain amino acids. The first

reaction is condensation of two pyruvate molecules to yield

acetolactate leading to the production of valine and leucine, and

the other reaction is the condensation of pyruvate and a-

ketobutyrate that give rise to acetohydroxybutyrate, which

subsequently results in the synthesis of isoleucine [14]. The

AHAS-inhibiting herbicides are known to bind at the substrate

access channel, blocking the path of substrate to the active site.

When AHAS is inhibited, deficiency of the amino acids (valine,

leucine and isoleucine) causes a decrease in protein synthesis,

which in turn slows down the rate of cell division. This process

eventually kills the plant, with symptoms observed in meristematic

tissues where biosynthesis of amino acids primarily takes place

[12]. In most cases, resistant plants have a reduced sensitivity to

these herbicides due to amino acid substitution(s) in AHAS that

give rise to catalytically active isoforms of the enzyme. Most AHAS

isoenzymes resistant to the herbicides carry substitutions for the

amino acid residues Ala122, Pro197, Ala205, Asp376, Trp574 or

Ser653 (amino acid numbering refers to the sequence in Arabidopsis

thaliana) [13]. Amino acid substitutions at Ala122 and Ser653

confer high levels of resistance to imidazolinone herbicides,

whereas substitutions at Pro197 endow high level of resistance

against sulfonylureas and provide low-level resistance against

imidazolinone and triazolopyrimidine herbicides. Likewise, sub-

stitutions at Trp574 provide high levels of resistance to

imidazolinones, sulfonylureas and triazolopyrimidines, while

substitutions at Ala205 confer resistance against all AHAS-

inhibiting herbicides [15].

In the case of barley, there is no IMI-resistance reported for any

of the varieties cultivated in the PNW. Thus, introduction of a

barley variety with IMI-resistance will provide greater flexibility to

barley as a rotational crop after winter wheat [11]. An IMI-

resistant mutant was earlier isolated by our group from an

extensive screening of two million seeds of ‘Bob’ treated with

sodium azide. Molecular characterization of the mutant revealed

an amino acid substitution in the substrate access channel of the

catalytic subunit of the AHAS enzyme, changing a serine to

asparagine at amino acid location 653 [16]. This mutation in the

substrate access channel does not allow imazamox to block the

path of the substrate to the active site, thus allowing the plant to

survive with no obvious effects on plant fitness even when exposed

to field recommended dose of herbicide used on the IMI-tolerant

winter wheat (i.e., 0.118 L/Acre Beyond with 1% non-ionic

surfactant).

In view of the agronomical importance of this trait and the great

demand for IMI-resistant barley cultivars in the PNW, this study

was undertaken with the following objectives: i) estimation of

genetic diversity among the 13 two-rowed spring barley cultivars/

breeding-lines adapted to the US PNW using 61 microsatellite

markers to select for lines showing sufficient genotypic differences

with the ‘Bob’ AHAS mutant, to be used in the crossing program;

and (ii) transfer the IMI-resistance to selected food, feed and

malting barley cultivars using marker-assisted foreground and

background selections.

Materials and Methods

Plant material
Seeds of the 13 two-rowed spring barley cultivars or breeding

lines were procured from the variety testing program at the

Washington State University (WSU), Pullman. Of the 13

genotypes selected for genetic analysis, eight are feed barleys,

three are food barleys and the remaining two are malting barleys

(Table 1).

Crossing scheme
To transfer IMI-resistance from the ‘Bob’ AHAS mutant, crosses

were made between the mutant and each of the six barley

genotypes, selected on the basis of genetic diversity analysis

performed using microsatellite markers specific to chromosome

6H (see later for details). Twenty nine to fifty three crosses were

made per genotype combination during the summers of 2012 at

the Spillman Agronomy Farm (WSU, Pullman) and a range of 358

to 471 F1 grains were harvested. The F1 plants were propagated in

48-well flats in the glasshouse to obtain F2 seeds. Subsequently, a

range 2158 to 2846 F2 plants per cross combination were

evaluated for herbicide resistance by spraying two-week-old

seedlings with 0.236 L/Acer Beyond (twice the field recom-

mended dose applied to the IMI-tolerant winter wheat) with 1%

methylated seed oil (MSO). A month after herbicide spray, the

survivors (i.e., resistant plants) were evaluated for plant height as

an indicator of early vigor and the 250 top ranking lines per cross

combination were raised to maturity for seeds. Later, one to three

F3 plants each from the six most vigorous F2 lines per cross

combination were evaluated for the genotype at the AHAS locus by

DNA sequencing, and the percent recovery of the recipient parent

genome using chromosome 6H-specific SSR markers.

DNA extraction and PCR amplification
DNA was extracted from the one-month-old seedlings of each of

the 13 barley genotypes, and the two-week-old seedlings of the F3

progeny of selected F2 lines, using the modified CTAB (Cetyl

Trimethyl Ammonium Bromide) method [17]. DNA was treated

by RNAse and purified by phenol extraction (25 phenol: 24

chloroform: 1 isoamyl alcohol, v/v/v) followed by ethanol

precipitation [18]. Concentration of DNA samples was adjusted

Breeding Barley for Imidazolinone-Resistance
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to 50 ng ml21 using Hind III digested l DNA as a marker. DNA

amplification was carried out on a C1000 thermal cycler (Bio-Rad

Laboratories). The PCR reactions were performed in 20 ml

reaction mixtures, each containing 50 ng template DNA,

0.25 mM primers, 200 mM dNTPs, 1.5 mM MgCl2, 16PCR

buffer and 0.5 U Ex Taq DNA polymerase (TAKARA, Bio Inc.)

using the following PCR profile: initial denaturation at 95uC for

3 min followed by 40 cycles at 95uC for 30 sec, 53–61uC
(depending upon the primer pair used) for 30 sec (for primer

details, cf. [19]), 72uC for 45 sec, and a final extension at 72uC for

5 min. The amplification products were resolved on 10%

polyacrylamide denaturing gels followed by silver staining [20].

A hundred base pair ladder was used as a size marker (New

England BioLabs, Inc., Beverly, USA). The amplified product/

allele sizes were determined using Fragment Size Calculator

available at http://www.basic.northwestern.edu/biotools/

SizeCalc.html.

DNA sequencing and sequence analysis
To determine the genotype at the AHAS locus, genomic DNA

extracted from the F3 progeny of selected F2 lines was amplified

using the AHAS gene-specific sequence tagged site (STS) primers

that flank the point mutation responsible for the IMI-resistance

(for primer details, cf. [16]). The amplification product was

resolved on 1% agarose gel. A 100-bp ladder was used as a size

marker (New England BioLabs). The band of expected size was

excised from the gel, and DNA was eluted from the band using the

Geneclean kit following the manufacturer’s instructions (MP

Biomedicals). The eluted DNA was used as a template for the

sequencing reaction using either forward or reverse primers in

separate reactions. The sequencing reactions were carried out at

the DNA Sequence Core, WSU, Pullman. Alignment of the DNA

sequences was performed using the Vector NTI AdvanceTM 9.1

(Invitrogen).

Determination of the polymorphic information content
(PIC) and genetic diversity

For each microsatellite or simple sequence repeat (SSR) locus,

PIC was calculated using the following equation: PIC = 1–S(Pi)2,

where Pi is the proportion of genotypes carrying the ith allele [21].

For dissimilarity analysis, null alleles were scored as zero (0) and

other microsatellite alleles (length variants) were each scored in the

form of single bands of expected sizes, which were later converted

into the number of repeat units as allele codes (all modalities were

given equal weight during the analysis). The numerical data thus

obtained was used to calculate Sokal and Michener dissimilarity

indices (di–j) [22]. The dissimilarity indices between pairs of

accessions using genotypic data were calculated on the basis of the

following equation: di–j = (n11+n00)/(n11+n01+n10+n00), where

n11 is the number of fragments present in both i and j, n01 and

n10 is the number of fragments present in one accession but absent

in the other, and n00 is the number of fragments absent in both i

and j. From the obtained distance matrix, an un-weighted

Neighbor-Joining tree [23] was computed using the Darwin 5.0

software [24] and branch robustness was tested using 1000

bootstraps.

Enzyme extraction
Soluble proteins from ‘Bob’ and ‘Bob’ AHAS mutant were

extracted following Singh et al. [25], with minor modifications.

Briefly, two batches of 500 mg of the fresh leaf tissue were

pulverized each with 5 mL of the protein extraction buffer

[consisting of 100 mM potassium phosphate buffer (pH 7.5),

10 mM sodium pyruvate, 5 mM MgCl2, 5 mM EDTA, 100 mM

flavin adenine dinucleotide (FAD) and 10% Glycerol], using a

polypropylene mesh bag (supplied with the P-PER Plant Protein

Extraction Kit, Thermo Scientific). After adding the extraction

buffer to the leaf tissue, the bag was rubbed from the outside with a

ceramic pestle until a homogeneous mixture of the tissue was

obtained. Later, the lysate was suctioned from the bag using a

pipette and placed into a 15 mL conical tube and centrifuged at

22,0006g for 20 min at 46C. The supernatant was transferred to a

Table 1. List of two-rowed spring barley varieties/breeding lines used in the study.

Genotype Pedigree Class

Baronesse ([(Mentor6Minerva)6mutant of
Vada]6[(Carlsberg6Union)6
(Opavsky6Salle)6Ricardo])
6(Oriol66153 P40)

hulled, feed barley (originally released as malting barley)

Bob (Lewis somaclonal line)/Baronesse hulled, feed barley

Champion Baronesse/Camas hulled, feed barley

Clearwater Baronesse*2/pmut882//HB317
(CDC Dawn sib)

hulless, low phytate, food barley

Lenetah 94Ab12981/Criton hulled, feed barley

Conrad B1215/B88–5336 hulled, malting barley

Radiant ant29–667 (an induced mutant in Harrington)/Baronesse hulled, malting barley, pro-anthocyanidine-free

Spaulding Vanguard/Imber//Zephyr/3/
Heavyweight/4/VD403582

hulled, feed barley

WAS4 01WA-13862.3/Radiant hulless, food barley

05WA-316.99 Baronesse/Spaulding hulled, feed barley

Lyon Baronesse/Spaulding hulled, feed barley

07WA-682.1 WA 10701–99/AC Metcalfe hulled, feed barley

Meresse Merlin/Baronesse hulless, food barley

doi:10.1371/journal.pone.0100998.t001

Breeding Barley for Imidazolinone-Resistance
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new tube and mixed with an equal volume of saturated

(NH4)2SO4. The mixture was incubated on ice for 30 min, and

then centrifuged at 46C for 20 min at 22,0006g. The supernatant

was discarded and the pellet containing protein was re-suspended

in 700 mL of the buffer solution containing 50 mM potassium

phosphate (pH 7.5), 100 mM sodium pyruvate, 10 mM MgCl2,

1 mM EDTA, 10 mM FAD, 100 mM NaCl and 1 mM thiamine

pyrophosphate (TPP).

After extraction, protein concentration was determined using

Bradford colorimetric micro-assay by mixing 80 mL of protein

extract with 20 mL of the Bradford reagent (containing 1 mL of

concentrated Bradford solution in 4 mL of deionized water), and

measuring absorbance at 590 nm wavelength. The presence of the

enzyme in the extract was also confirmed by loading protein

extracts on 10% sodium dodecyl sulfate (SDS) polyacrylamide gel.

For this purpose 15 mL of protein extract was mixed with 3 mL of

the loading buffer, and electrophoresed on polyacrylamide gel for

2 h at 120 volts. After electrophoresis, the gel was stained with

Coomassie brilliant blue reagent (80% Coomassie and 20%

methanol, v/v) for 24 h. A protein band of ,65 kDa was

observed, which corresponds with the size of AHAS enzyme

monomers, confirming its presence in the extract.

Colorimetric enzyme activity assay
Enzyme activity was tested by using five different doses of

Beyond (i.e., 16, 46, 66, 86 and 106 the field recommended

dose applied on IMI-tolerant winter wheat) with 0.25% (v/v)

nonionic surfactant (NIS). Initial reaction was performed in

1.5 mL microfuge tube by adding 52 mL of enzyme (in extraction

buffer containing the substrate and co-factors, see above for the

buffer composition) to equal volume of herbicide and incubating

the mixture at 376C for 1 h to facilitate acetolactate production.

Later, the reaction was stopped by adding 21 mL of 5% H2SO4,

and incubating at 606C for 15 min. After incubation, tubes were

spiked with 175 mL of color change solution containing 0.32 g of

NaOH, 0.12 g of 1-naphtol and 0.01 g of creatine in 4 mL of

deionized water, and the mixture was re-incubated at 606C for

15 min. After incubation, 200 mL sub-samples of the reaction

mixture were added to a 96-well microtiter plate (Falcon

cat#353077) to determine the enzyme activity by studying color

change using a microplate reader spectrophotometer (Spectra

Max, M2, Molecular Devices) at 520 nm wavelength.

Results and Discussion

Chromosomal assignment of the gene encoding catalytic
subunit of barley AHAS enzyme

The AHAS holoenzyme (,548 kDa) consists of two halves

where one half, known as the large or catalytic subunit, is

comprised of a homotetramer of ,65 kDa polypeptides, and the

second half, known as the small or regulatory subunit, consists of

homo-tetramer/-pentamer of polypeptides of ,52 kDa each

[16,26,27]. The regulatory subunit stimulates enzyme activity

and is required for the feedback regulation of the branched-chain

amino acid biosynthesis, whereas the catalytic subunit is solely

responsible for the enzyme activity and is also the site of point

mutation(s) that confers resistance against IMI-herbicides [16].

Due to the importance of the catalytic subunit in providing IMI-

resistance, the genes encoding it have been studied in common

wheat and assigned to group 6 chromosomes [6A (imi3), 6B (imi2)

and 6D (imi1)], using nulli-tetrasomic lines [28]. Later, the genetic

location of imi1 gene on the long arm of chromosome 6D was

determined using three mapping populations, namely Cashup/cv.

9804, Madsen/cv. 9804 and Opata 85/W7984 [28]. However,

the genetic location of the AHAS gene in barley remains unknown.

Therefore, we used the map location of the AHAS gene in wheat to

decipher its location in barley, which is possible in this particular

case due to the shared ancestry of the two genera, and high levels

of synteny as well as colinearity between them [29]. The

availability of common markers between wheat and barley maps

allowed an approximation of the barley AHAS gene location on

chromosome 6H (Fig. S1). Moreover, we used the complete AHAS

gene sequence we had previously obtained to blast against the

barley genomic DNA sequences available in the public domain

(http://webblast.ipk-gatersleben.de/barley/). The BLASTn

search (score = 2834 and E-value = 0.0) allowed unambiguous

assignment of the gene to genetically anchored ‘Morex’ BAC

contig numbered 40275 on chromosome 6H at 67.917 cM (Fig.

S1). In addition, the initial genotyping of the F3 progeny of

selected F2 lines (carrying the AHAS mutant allele in hetero-/

homozygous state) from all six cross combinations with chromo-

some 6H specific microsatellite markers showed higher recovery

rate (50–72%) of recipient parent alleles for markers mapping to

the non-proximal long arm in comparison with the short arm and

the centromeric region (37–58%) (see next section for details). This

is an indication of suppressed recombination, likely due to

selection for the trait of interest. Collectively, the in silico and

experimental data strongly indicate that the gene encoding the

catalytic subunit of the AHAS enzyme maps to the sub-

centromeric region of the barley chromosome arm 6HL.

Polymorphism survey using chromosome 6H-specific
microsatellite markers

The level of genetic diversity among 13 two-rowed spring barley

cultivars/breeding lines adapted to the PNW was assessed using

microsatellite or simple-sequence repeat (SSR) markers specific to

the barley chromosome 6H. Out of the 13 genotypes selected for

the analysis, eight are feed barleys, three are food barleys and two

are malting barleys (Table 1). The 61 SSR markers selected for the

analysis are evenly distributed along the entire length of

chromosome 6H (Table 2) [19]. The major reason behind

selecting markers from chromosome 6H lies in the fact that this

chromosome carries the gene encoding for the catalytic subunit of

acetohydroxyacid synthase (AHAS) enzyme and the mutation

providing IMI-resistance (see above). It is known through trait-

introgression studies that due to linkage-drag, it always takes

longer (several backcrossing and selfing generations) to recover the

recipient parent genotype for the carrier chromosome in

comparison with non-carrier chromosomes, which assort inde-

pendently [30]. Thus, to identify the rare recombinant(s) carrying

the precise gene introgression in the early generation, it is

important to screen large segregating populations with the markers

derived from the carrier chromosome.

Of the 61 markers used for analysis, two markers (HvWaxy4 and

GBM1319) were non-functional (no amplification observed in any

of the genotypes), three markers (HVM22, GBM1215 and GMS6)

were monomorphic, and 56 markers were polymorphic. These

polymorphic markers allowed us to detect 62 loci. Of the 56

polymorphic markers, one marker detected three loci, another

marker detected two loci, while the remaining 52 markers each

detected a single locus. (Fig. S2). These 56 markers amplified 1 to

12 alleles from the 13 barley genotypes (Table 2). The number of

alleles detected by each marker and their frequencies were used to

calculate the polymorphic information content (PIC) of the

marker. The PIC value, which depends on the number of

detectable alleles and the distribution of their frequency, indicates

the marker’s utility in detecting polymorphism within a population

Breeding Barley for Imidazolinone-Resistance
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Table 2. List of chromosome 6H specific microsatellite markers used for the genetic diversity analysis and marker-assisted
background selection, their repeat elements, respective locations in the genetic-linkage map [17], number of alleles detected and
their polymorphic information content (PIC).

Marker/loci Repeat element Position (cM) PIC Allele#

Af166121 (A)10 0.00 0.38 3

84c21j33 (T)10 0.00 0.14 2

Bmac0316 (AC)19 7.16 0.80 7

scssr09398 (CTT)9 7.16 0.43 2

Bmag0500 (AG)6CG(AG)29(AGAGGG)3(AG)6 31.65 0.72 6

GBM1270 (GCC)8 36.52 0.56 4

GBM1355 (GCA)7 40.43 0.14 2

GBM1212 (AGG)5 55.10 0.14 2

Bmag0807 (TC)18 56.11 0.39 4

Bmag0173 (CT)29 57.79 0.86 9

GBM1423 (CGGCTC)5 58.46 0.36 2

HVM31 (AC)9 60.90 0.57 3

Bmac0040 (AC)20 61.07 0.77 7

Bmag0174 (AG)9 61.40 0.72 6

EBmac0560 (AC)7 61.70 0.77 5

GBM1267 (TTG)9 61.70 0.69 4

Bmac0018 (AC)11 61.79 0.77 7

Bmac0144 (AT)4(AC)20 61.79 0.91 12

Bmac0175 (AC)12 61.79 0.57 3

GBM5012 (ACG)7 61.95 0.49 2

Ebmac0674 (TG)18(AG)9 61.96 0.46 3

EBmac0874.1 (CA)8AA(CA)4CG(CA)8AA(CA)7AA(CA)9(TA)8 61.96 0.67 4

EBmac0874.2 (CA)8AA(CA)4CG(CA)8AA(CA)7AA(CA)9(TA)8 61.96 0.80 7

HVM65 (GA)10 62.11 0.71 6

Bmag0009 (AG)13 62.21 0.57 3

Ebmac0639 (TG)5(TG)8 62.21 0.57 4

EBmatc0028.1 (ATC)3N3(ATC)6 62.21 0.50 2

EBmatc0028.2 (ATC)3N3(ATC)6 62.21 0.58 4

EBmatc0028.3 (ATC)3N3(ATC)6 62.21 0.67 5

Bmac0297.1 (AC)9(AC)10 62.23 0.58 4

Bmac0297.2 (AC)9(AC)10 62.23 0.77 5

Bmac0297.3 (AC)9(AC)10 62.23 0.46 3

Bmac0047 (AC)16 62.27 0.47 2

Bmac0127 (AC)26 62.27 0.47 2

GBM1389 (GCCT)5 62.27 0.26 2

HVM14 (CA)11 62.28 0.50 2

Bmag210 (AG)7T(AG)13 62.28 0.57 3

HVM34 (GA)10 62.43 0.36 2

HVM74 (GA)13 62.66 0.56 3

Bmag0003.1 (AG)28 63.49 0.78 6

Bmag0003.2 (AG)28 63.49 0.59 6

Bmag0004 (AG)14 64.71 0.91 12

BMG001 (G)10 64.71 0.52 3

Bmgt0001 (GTTTTT)5 64.71 0.27 3

scssr02093 (GA)18 67.20 0.49 2

Bmag0344 (CT)10GT(CT)16 67.80 0.66 6

GBM1400 (CACG)5 67.80 0.27 3

Bmac0251 (AC)12A(AC)13 69.25 0.38 3
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[21]. The PIC values ranged from 0.14 (84c21j33, GBM1355,

GBM1212) to 0.91 (Bmac0144, Bmag0004) (Table 2). When the PIC

value for each marker was plotted against its location on the

genetic-linkage map, it showed a multimodal distribution, with low

levels of PIC values observed at the sub-telomeric and centromeric

regions of the chromosome (Fig. 1). This distribution shows the

level of nucleotide diversity along the entire length of the

chromosome and suggests the possibility of identifying a polymor-

phic marker from a specific region of the chromosome. The type

of repeat element, chromosomal location, number of repeat units,

and sequence of repeat element can influence the level of

nucleotide diversity. Thus, we classified the SSR markers

according to the type of repeat element into simple and compound

repeats. Whenever two or more repeat runs were present adjacent

to each other or microsatellite array of same repeat was

interrupted by non-repeat base(s) the repeat was classified as

compound repeat. We further classified simple repeats into mono-,

di-, tri-, tetra-, penta- and hexa-nucleotide repeats and reported

their mean PIC values. Compound repeats in general showed

higher PIC values in comparison with simple repeats, whereas,

among simple repeats the di-nucleotide repeats showed highest

PIC values (Table 3). To distinguish the effect of chromosomal

location from the microsatellite element type, the PIC values

obtained for different microsatellite types (i.e, mono-, di-, tri, tetra-

, hexa-nucleotide repeats and compound repeats) were individu-

ally plotted against their respective location on the genetic-linkage

map. The analysis revealed reduced levels of nucleotide diversity

in the peri-centromeric region for di-nucleotide repeats and in sub-

telomeric regions for the tri-nucleotide repeats (Fig. S3). However,

it was apparent from the analysis that the number of repeat units

does not have any influence on the number of alleles detected per

locus.

Preferential association of different SSR elements of variable

sequences and lengths (i.e., total number of repeat units) with

physical chromosome landmarks like the centromere, telomere,

heterochromatin and euchromatin, and their relevance in

determining chromosome function, has been extensively docu-

mented in literature [31–33]. Thus, the influence of the genomic

locations of these markers on their evolvability and/or divergence

is plausible. For instance, a low level of nucleotide diversity was

observed in the proximal chromosomal regions of both Triticum

aestivum and wild emmer (Triticum turgidum ssp. dicoccoides) [34].

Moreover, the effect of direct or indirect selection on genomic

diversity is also a likely cause of observed fluctuations in genetic

diversity along the chromosome length. Similar regions of low

diversity associated with sites of domestication loci and genomic

regions under selection in later breeding efforts were reported in

maize [35]. Since barley genotypes selected in this study were bred

in the PNW, they share some common ancestry. Thus, the regions

of low diversity observed in the present study are likely to represent

the genomic regions providing adaptive advantage to these

genotypes. However, this aspect needs further investigation.

Assessment of genetic diversity among barley genotypes
The genetic relationships among the barley genotypes were

evaluated based on the combined profiles of 62 SSR loci. The

genetic dissimilarity coefficient (GD) values were calculated for all

possible 78 pairs of genotypes, and ranged from 0.339 (between

Bob and Baronesse) to 0.806 (between WAS4 and Conrad) with a

mean of 0.601 (Fig. S4). All 13 genotypes were grouped into three

clusters (Fig. 2). Two clusters were further subdivided into two sub-

clusters each. As expected on the basis of pedigree information

(Table 1), Bob, Baronesse, Meresse, 05WA-316.99 and Clearwater

formed a single cluster (middle), where the first three genotypes

grouped into one sub-cluster and the latter two genotypes grouped

into the other sub-cluster. Clustering of these genotypes in a single

group can be explained by the presence of Baronesse in their

lineages. The cultivars Radiant, Champion, Lenetah, 07WA-

682.1, WAS4 and Conrad formed another cluster (top), where the

first five genotypes formed a sub-cluster and Conrad alone formed

a sub-cluster. The first sub-cluster was further divided into two

sub-sub clusters, the former containing Radiant, Champion and

Lenetah, and the later containing 07WA-682.1 and WAS4. The

remaining two genotypes Spaulding and Lyon formed a separate

cluster (bottom), which is well justified due to the Spaulding

lineage of Lyon. The above diversity analysis proved useful in

selecting lines to cross with the Bob AHAS mutant to transfer IMI-

resistance, and will also prove useful in future breeding efforts

where these lines will be used. Nevertheless, Baronesse has been

extensively used in barley breeding programs in the PNW; the

Table 2. Cont.

Marker/loci Repeat element Position (cM) PIC Allele#

Bmag0613 (GA)17 69.82 0.66 6

Bmac0218 (AC)14 71.99 0.79 6

Bmac602 (AC)9AT(AC)7(AG)9 75.42 0.49 4

GBM1256 (GA)8 75.46 0.52 3

HVM11 (GGA)3(GGA)(GAA)2 88.47 0.56 3

scssr05599 (AAG)4 96.34 0.63 4

GBM1140 (ATC)5 97.31 0.52 3

GBM1356 (GTG)7 98.38 0.57 3

scssr00103 (GT)10 105.26 0.59 3

GBM1274 (TCG)7 123.45 0.27 3

GBM1275 (TGC)7 124.29 0.15 2

GBM1276 (TGC)7 124.29 0.46 3

GBM1087 (AGG)5 127.70 0.54 3

GBM1404 (TATG)5 129.76 0.46 3

doi:10.1371/journal.pone.0100998.t002
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results clearly demonstrated high level of genetic diversity among

studied genotypes, which is very important for the success of any

breeding program. Thus, this study uniquely provides information

about the genetic makeup of cultivars/breeding lines developed in

the US PNW.

In summary, the polymorphism survey and diversity analysis i)

allowed determination of genetic relationships of barley genotypes

adapted to the US PNW; ii) provided data to make informed

selection of barley genotypes used for crossing with the Bob AHAS

mutant; iii) allowed identification of the most divergent pair of

genotypes with the Bob mutant to be used for the genetic mapping

of the AHAS gene; iv) allowed identification of the polymorphic

markers for each pair of genotypes with Bob mutant to uniquely

track and reconstitute the genetic-background of the recipient

genotype; and v) allowed determination of the level of nucleotide

diversity along the entire length of the barley chromosome 6H.

This information not only proved useful during the present study

but will also prove useful in later studies.

Determination of the critical dose of herbicide
From previous experience we know that the 0.118 L/acre dose

of Beyond is sufficient to distinguish the susceptible barley

genotypes from the resistant ones [16]. However, a critical

herbicide dose, which could discriminate between the heterozy-

gous and homozygous states of the AHAS mutation, remains

unknown. Thus, in the present study, an attempt was made to

determine the critical herbicide dose by spraying 0.118, 0.236 and

0.295 L/acre doses of Beyond on the segregating F2 population

derived from WAS46Bob mutant cross. A non-significant

deviation from the 2:1 segregation ratio (at p,0.05) of surviving

vs dead plants was observed at each herbicide dose, which

indicates the semi-dominant nature or dominant transmission of

this mutation with incomplete penetrance (see next section for

details). Subsequently, an effort was made to determine the

maximum dose of herbicide, which can be tolerated by the IMI-

resistant AHAS isoform. In order to achieve this objective, crude

enzyme extracted from the leaf tissues of the Bob AHAS mutant

was fed with the substrate (pyruvate) in presence of the increasing

concentrations of the herbicide (see Materials and Methods). The

assay suggested that the mutant enzyme can survive up to 1.18 L/

acre Beyond that is 10 times field recommended dose applied on

the IMI-tolerant winter wheat (Fig. 3). The assay also allowed

discrimination of homozygotes from heterozygotes at 86and 106
field recommended doses of the herbicide, displayed in the test by

the intensity of red color as determined by the spectrophotometer.

The heterozygotes took longer to produce same intensity of color

that homozygotes produced in shorter duration of time (data not

shown). However, these high doses of herbicide are impractical for

use in glasshouse and field trials. In actual field conditions, the

plant only receives a maximum of 0.236 L/acre dose, especially in

the overlapping areas. Thus, for rest of the analyses, we used

0.236 L/acre herbicide dose.

Collectively these results suggested that the mutant AHAS

enzyme can survive up to 106 field recommended dose of

herbicide, which makes it unlikely to find a critical herbicide dose

that can discriminate homozygotes from heterozygotes at the

AHAS locus.

Figure 1. Genetic linkage map of chromosome 6H showing the
respective locations of 61 microsatellite markers used in the
present study (left). Various alleles detected from six barley
genotypes used for crossing with the Bob AHAS mutant are indicated
by colored boxes (middle), where each color represents a unique allele
and the white color represents the ‘Bob’-type allele. The total number of
polymorphic markers identified per genotype pair with the Bob mutant

is shown below. The PIC value calculated for each marker was plotted
against its location on the genetic linkage map (right) to indicate the
level of nucleotide diversity observed using 13 barley genotypes, and its
distribution along the entire length of chromosome 6H.
doi:10.1371/journal.pone.0100998.g001
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Transfer of the IMI-resistance to other barley cultivars
A large collection of recombinants was screened in order to

transfer IMI-resistance to selected genotypes in a single genera-

tion, and to identify rare recombinants carrying a small

chromosomal segment with the gene of interest introgressed in

the desired genetic background (Table 4). This will alleviate the

need of backcrossing and avoid overriding the ‘Breeder’s Code of

Ethics’. As mentioned in the Materials and Methods, the F1s were

grown to obtain F2 seeds and a range of 2158 to 2846 F2 lines per

cross combination were evaluated for the presence of the mutant

allele. This has been achieved by spraying the F2 populations with

26 equivalent to the field recommended dose of Beyond used on

the IMI-tolerant winter wheat (i.e., 0.236 L/Acre Beyond with 1%

methylated seed oil), and by phenotyping the resistant plants for

early vigor a month after spraying with the herbicide. The

expected 3:1 ratio of resistant vs susceptible plants, an indicative of

the dominant nature of the mutation was not observed with any of

the six segregating populations. Instead, the crosses between

WAS4, Radiant, and Clearwater with the Bob mutant showed a

2:1 segregation ratio of resistant vs susceptible plants (.0.05

probability). Collectively, the observed segregation ratios obtained

from the greenhouse herbicide tests of the six segregating

populations, at the best suggested a semi-dominant nature of the

mutation or incomplete penetrance of the trait (Table 4). This low

trait penetrance could be explained due to the cumulative effect of

a number of factors like genetic differences for leaf and/or culm

wax coating in the parental genotypes of a population, though this

possibility needs further investigation.

The semidominant nature of the mutant prompted us to

determine the genotype at the AHAS locus (the foreground

selection) by DNA sequencing of the AHAS gene fragment from 1

to 3 F3 lines each from the six most vigorous F2 plants selected per

cross combination (Figs. 4 and 5). Although, an allele-specific

agarose based assay exists for genotyping of segregating popula-

tions for the AHAS mutant allele, it is unsuitable for use in this

situation due to its dominant nature (i.e., incapability of

distinguishing between a heterozygote and a mutant type

homozygote) [16]. Later, the six F3 plants showing the AHAS

mutant allele in homo- or heterozygous state were selected to

Table 3. Microsatellite markers classified according to repeat element type.

Repeat type SSR markers used Mean PIC Number of repeats

Simple 45 0.41 -

Mononucleotide 3 0.35 10

Dinucleotide 24 0.63 7 to 29

Trinucleotide 13 0.43 4 to 9

Trtranucleotide 3 0.33 5

Hexanucleotide 2 0.31 5

Compound 17 0.61 -

Number of simple sequence repeats (SSRs) or microsatellites falling in each category is listed and the range of alleles detected by SSRs in these categories and their
average PIC (polymorphic information content) values are shown.
doi:10.1371/journal.pone.0100998.t003

Figure 2. A dendrogram showing the clustering pattern of the 13 barley genotypes (see Table 1 for genotype details). Genetic
distances for the dendrogram were estimated using SSR (simple sequence repeat) polymorphism data. Bootstrap values are indicated at each node.
The genotypes selected for crossing with the Bob AHAS mutant are marked with asterisk.
doi:10.1371/journal.pone.0100998.g002
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check for carrier chromosome recovery using 10–12 SSR markers

specific to barley chromosome 6H. A range of 20 to 90% recovery

of the recipient parent genome for the carrier chromosome was

observed in the different cross combinations (Fig. 5). Collectively,

this pilot study clearly demonstrates the feasibility of transferring

IMI-resistance to desired barley genotypes in a single generation

with the possibility of finding lines showing good recovery of the

recipient parent genome.

Conclusion

Results of the study are of high significance not only to growers

in the Pacific Northwest but also to growers in other parts of the

US and the world, wherever IMI-herbicides are applied and IMI-

resistant crops are cultivated. In this study we determined the

genetic diversity among 13 barley cultivars/breeding lines, which

benefitted the present study and is expected to prove useful in

future breeding efforts. Chromosomal localization of the gene

encoding the catalytic subunit of the barley AHAS enzyme will

Figure 3. Results of the in vitro colorimetric enzyme activity assay performed for AHAS enzyme in the presence of inhibiting
concentrations of an imidazolinone herbicide Beyond. Upper left, the crude enzyme was extracted from the leaves of ‘Bob’ and ‘Bob’ AHAS
mutant and loaded on 10% SDS-polyacrylamide gel to check for the presence of the AHAS enzyme in the extracts. The presence of the enzyme in the
extract was confirmed by a ,65 kDa protein band on the gel. Lower left, the enzyme activity assay further confirms the presence of enzyme in the
extracts from wild type and mutant. In the assay, the enzyme was fed with pyruvate (substrate) in presence of increasing concentrations of Beyond.
The assay clearly showed that the mutant AHAS enzyme can survive up to 1.18 L/acre dose of herbicide and show equal activity if measured 15 min
after addition of the color change solution (for more details, see Materials and Methods). The assay was performed as summarized in the line-diagram
on the right.
doi:10.1371/journal.pone.0100998.g003

Table 4. List of the number of crosses made, the F1 seeds obtained per cross combination and the F2 lines screened for
imidazolinone (IMI)-resistance.

Female Male Crosses F1 harvested F2 sampled F2 screened against herbicide

Susceptible Resistant

Feed

05WA-316.99 Bob mutant 53 471 2815 856 1959

07WA-682.1 Bob mutant 29 394 2251 813 1438

Malting

Radiant* Bob mutant 37 358 2130 669 1461

Conrad Bob mutant 35 445 2671 806 1865

Food

Clearwater* Bob mutant 38 394 2336 790 1546

WAS4* Bob mutant 38 403 2342 736 1606

Total 230 2465 14545 4670 9875

*Fitted in 2:1 (resistant vs susceptible) segregation ratio at 0.05 significance level.
doi:10.1371/journal.pone.0100998.t004
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also prove useful in future gene-transfer studies leading to the

development of herbicide-resistant cultivars with other agronom-

ically important traits. Determination of the working dose of

herbicide used for phenotypic screening of this trait will be used in

future breeding efforts to transfer IMI-resistance. This pilot study

with a limited number of selected F2 lines shows that it is possible

to identify genotypes showing good recovery of the recipient

parent genome by screening large F2:3 populations and following a

strategic selection scheme (Fig. 5).

Our future objective is to take the recently developed IMI-

resistant food, feed and malting barley genotypes from the

glasshouse to the field by i) screening large numbers of F3 families,

representing the 250 top ranking F2 lines selected per cross

combination, based on their vigor a month after herbicide spray,

for their genetic backgrounds using DNA markers; ii) fixing

heterozygosity (which confounds phenotypic evaluations) in

selected lines by doubled haploid (DH) production; iii) field

evaluation of the DH lines for their performance on herbicide

residue and under spray trials. This will allow identification of

barley lines showing more genetic proximity to their respective

recipient parents.

For the first objective, F3 seeds belonging to the 250 F2 lines

which survived the herbicide spray (at the rate of 0.236 L/acre

Beyond with methylated seed oil) and showed early vigor a month

after spray are currently being propagated in herbicide treated soil

in the glasshouse. Cultivating plants on herbicide treated soil will

allow elimination of susceptible individuals, which are expected in

a segregating population at a proportion of one in four individuals.

Genotype of the survivors will be determined at the AHAS locus

by DNA sequencing following the procedure described above. It is

of considerable importance to differentiate homozygotes from

heterozygotes at the AHAS locus, as the two genotypic states at

this locus are undistinguishable from each other using herbicide

treatment alone. This is due to the semi-dominant nature of the

AHAS mutation. The lines possessing the mutant allele(s) at the

AHAS locus either in homo- or heterozygous state will be

evaluated for their genetic background in a stepwise fashion first

using 10 carrier chromosome (6H) specific microsatellite markers

followed by 4 DNA markers per non-carrier chromosomes (2

markers per arm). The second step of background selection will be

performed on the F3 plants showing good carrier chromosome

recovery in the first step. The lines showing good recovery of

recipient parent genome will be converted to doubled haploids via

Figure 4. A part of the DNA sequence of the AHAS gene showing the point mutation responsible for IMI-resistance (highlighted in
blue). The DNA sequencing results clearly demonstrated the transfer of IMI-resistance to two feed barleys, 05WA-316.99 and 07WA-682.1, two food
barleys, Clearwater and WAS4, and two malting barleys, Radiant and Conrad.
doi:10.1371/journal.pone.0100998.g004

Breeding Barley for Imidazolinone-Resistance

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e100998



Figure 5. Diagrammatic representation of the results of the marker assisted background selection on the F3 progeny of the
selected F2 lines. After foreground selection, the six F3 lines per cross combination were evaluated for the recovery of recipient parent background
by genotyping each line with 10 to 12 chromosome 6H-specific microsatellite markers. The markers were selected on the basis of polymorphism data
obtained earlier during diversity analysis and their respective location on chromosome 6H. Map locations of selected markers are shown on the left.
Each column in the picture represents a F3 line and each row represents a DNA marker, whereas each cell represents the marker genotype in an
individual. The marker genotype is represented by a color code: a) light green color denotes heterozygotes carrying marker alleles from both parents;
b) dark green color denotes a marker allele similar to the recipient parent; and c) red color denotes the marker allele of the donor parent. Thus, a
column with more dark and light green cells represent a genotype showing high percentage of the recipient parent genome, as observed for the 6th

F3 individual in the Conrad6Bob mutant cross, which had 90% recovery of the Conrad alleles. In contrast, a column showing more red cells represents
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a microspore culture based method following Kasha et al. [36].

The resultant doubled haploids will be evaluated for their

performance in the field on herbicide residue and herbicide spray

trials.

The major outcome of this project will be the development of

IMI-resistant barley varieties and germplasm with a combination

of beneficial traits including resistance for various biotic and

abiotic stresses, higher grain yield and better quality. Moreover,

adding imidazolinone resistance to barley cultivars adapted to the

PNW will certainly improve the sustainability of barley, which is

one of the best rotational crops for this region.

Supporting Information

Figure S1 Comparative mapping of wheat chromosome
6D and barley chromosome 6H to determine approxi-
mate location of the AHAS gene on chromosome 6H. (a)

Genetic linkage map of wheat chromosome 6D. (b) Physical map

of wheat chromosome 6D. Short arm is at the top, and the black

circle indicates the centromere. Deletion-line breakpoints and

fraction lengths (FLs) are indicated by the horizontal line to the

left. Breakpoint positions are drawn approximately to scale.

Darkened areas within chromosome arms are C-bands (cf. Endo

and Gill. 1996. Journal of Heredity 87:295). (c) Microsatellite

consensus map of barley chromosome 6H (modified from

Varshney et al. 2007. Theoretical and Applied Genetics

114:1091). (d) Genetic location of the AHAS gene determined on

the basis of in silico analysis. The gene was assigned to the ‘Morex’

BAC-contig #40275 anchored to the consensus genetic linkage

map at 67.917 cM (cf. Close et al. 2009. BMC Genomics 10:582).

(TIFF)

Figure S2 Consensus map of barley chromosome 6H
(left; Varshney et al. 2007 Theoretical and Applied
Genetics 114:1091) used to select simple sequence

repeat (SSR)-markers for diversity analysis of two-
rowed spring barley genotypes. Amplification profile of a

few SSR markers used for analysis of barley genotypes are shown

on left, and their locations on the genetic-linkage map are

highlighted by red rectangles. Different SSR alleles are coded by

different numbers and shown on the bottom of each SSR profile.

(TIFF)

Figure S3 Polymorphic information content (PIC) val-
ues for different SSRs (classified according to repeat
element type) are plotted against their respective
location (in cM) on the genetic linkage map, showing
variation in nucleotide diversity observed along the
entire length of chromosome 6H.

(TIFF)

Figure S4 The dissimilarity coefficient (GD) values
calculated for 78 pairs of genotypes. High to low

dissimilarity coefficient values with ‘Bob’ are shown on a red to

white scale, with the highest value (0.726) shaded with the darkest

red color, and the lowest value (0.435) in white.

(TIFF)
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