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House Structure Is Associated with Plasmodium falciparum Infection in a Low-Transmission
Setting in Southern Zambia

Matthew M. Ippolito, ' Kelly M. Searle,? Harry Hamapumbu,® Timothy M. Shields,? Jennifer C. Stevenson,®* Philip E. Thuma,®
and William J. Moss?; for the Southern Africa International Center of Excellence for Malaria Research

"Divisions of Infectious Diseases and Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore,

Maryland; 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; *Macha Research Trust, Macha

Hospital, Choma District, Zambia; “The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria

Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Abstract. House structure may influence the risk of malaria by affecting mosquito entry and indoor resting. Identifi-
cation of construction features associated with protective benefits could inform vector control approaches, even in low-
transmission settings. We examined the association between house structure and malaria prevalence in a cross-sectional
analysis of 2,788 children and adults residing in 866 houses in alow-transmission area of Southern Province, Zambia, over
the period 2008-2012. Houses were categorized according to wall (brick/cement block or mud/grass) and roof (metal or
grass) material. Malaria was assessed by point-of-care rapid diagnostic test (RDT) for Plasmodium falciparum. We
identified 52 RDT-positive individuals residing in 41 houses, indicating an overall prevalence in the sample of 1.9%,
ranging from 1.4% to 8.8% among the different house types. Occupants of higher quality houses had reduced odds of
P. falciparum malaria compared with those in the lowest quality houses after controlling for bed net use, indoor insecticide
spraying, clustering by house, cohabitation with another RDT-positive individual, transmission season, ecologic risk
defined as nearest distance to a Strahler-classified third-order stream, education, age, and gender (adjusted odds ratio
[OR]: 0.26, 95% confidence interval [Cl]: 0.09-0.73, P = 0.01 for houses with brick/cement block walls and metal roof; OR:
0.22,95% CI: 0.09-0.52, P < 0.01 for houses with brick/cement block walls and grass roof). Housing improvements offer a
promising approach to vector control in low-transmission settings that circumvents the threat posed by insecticide

resistance, and may confer a protective benefit of similar magnitude to current vector control strategies.

INTRODUCTION

Malaria remains an important cause of morbidity and mor-
tality in endemic regions worldwide, and vector control strat-
egies are vital to control and elimination efforts.”? The two
predominantly deployed vector control measures are indoor
residual spraying (IRS) of insecticides and insecticide-treated
bed nets (ITNs).2 The emergence of insecticide resistance and
changes in behavior of mosquitoes to avoid contact with in-
secticides may threaten the efficacy of IRS and ITNs, creating
appeal for additional approaches to prevent malaria.*

Malaria is transmitted by female anopheline mosquito
vectors that generally prefer to feed in the late evening and
night and exhibit endophagic (indoor feeding) behavior,
making the house a potentially high-risk transmission envi-
ronment.® Housing features that impede mosquito entry and
indoor mosquito resting are, therefore, likely to diminish oc-
cupants’ risk of malaria.®” Indeed, housing improvements
such as window and door screening played an important role
in malaria control programs during the first half of the twentieth
century in North America and Europe before the widespread
use of insecticides.® The first such experiments were con-
ducted over a century ago by Angelo Celli in ltaly, who rec-
ognized malaria as a disease of poverty and identified poor
housing as a modifiable risk factor.®'® More recently, his re-
sults were recapitulated in a small number of trials done in sub-
Saharan Africa where malaria remains endemic, showing
reduced numbers of indoor anopheline mosquitos and lower
prevalence of childhood anemia in houses that received
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window screening or other entry barriers compared with those
that did not."'"*

However, studies in sub-Saharan Africa that examined as-
sociations of wall and roof construction with malaria have
yielded equivocal results. About half of the studies demon-
strated an association, among which wall material appeared
to be more influential than roof material.'*® Results of
studies that applied adjusted models to account for age,
gender, ITN use, ecologic variables, and socioeconomic in-
dicators were somewhat more conclusive; most demon-
strated a significant protective effect of high-quality walls
ranging from 24% to 63% reduction in the risk or odds of
malaria, and half showed a protective effect of high-quality
roofs ranging from 15% to 62% reduction.2”=3"

Results of a cross-sectional analysis of housing, grouped
by wall and roof type, and malaria in alow-transmission area of
southern Zambia are presented. Survey data and field ob-
servations were analyzed from participants living in various
house types to inform potential approaches to housing inter-
ventions for vector control against malaria in Zambia and
similar low-transmission settings in sub-Saharan Africa.
Higher quality housing was hypothesized to correlate with
reduced prevalence of malaria compared with lower quality
housing.

METHODS

Study site. The study was conducted ina 1,200 km? region
east of Macha Hospital in Choma District, Southern Province,
Zambia. The area lies at an altitude of 1,000 m above sea level
and the local biome is mainly Miombo woodland. The rainy
season is from November to April, followed by a cool, dry
season from April to August and a hot, dry season from August
to November.®® The inhabitants are traditional villagers living
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in homesteads consisting of one or more houses where
members of a family or extended family reside. In general, the
houses in the study area have doors or other makeshift bar-
riers. Windows, when present, rarely have glass or screens but
some windows have curtains. Eaves, a gap between the roof
and top edge of the wall, are open in nearly all houses con-
structed with grass roofs, whereas most houses with metal
roofs have closed eaves.

Transmission intensity in the study area is low. During the
study period, the entomological inoculation rate was < 1 in-
fective bite per person per season.*° The predominant malaria
vector is Anopheles arabiensis.*® Vector control efforts in-
clude distribution of ITNs, with little IRS having been carried
out in the Macha area. Malaria control efforts include case
management with artemisinin-based combination therapy,
introduced in Zambia in 2002 and into the study area in
20044742

Study design. The study was conducted within the context
of an epidemiologic survey of malaria using data collected
from February 2008 to February 2012.*® Homesteads in the
study region were randomly assigned to either a cross-
sectional sample or longitudinal cohort. Cross-sectional
homesteads were visited once during surveys carried out five
times per calendar year to account for temporal differences in
transmission. Homesteads in the longitudinal cohort were
surveyed every other month five times per calendar year on
average. The current analysis is restricted to participants re-
siding in homesteads enrolled in the cross-sectional survey
and to the first study visit of participants in homesteads en-
rolled in the longitudinal cohort (Figure 1). The study was ap-
proved by the Tropical Diseases Research Center Ethics
Review Committee and the Institutional Review Board at the
Johns Hopkins Bloomberg School of Public Health. Approvals
were also obtained from community leaders.

Data collection. Quickbird™ satellite images acquired from
DigitalGlobe Services, Inc. (Denver, CO) were used to construct

a sampling frame for the random selection of homesteads.
Images were imported into ArcGIS 9.2 (Redlands, CA) and
homestead locations were identified, manually enumerated,
and randomly selected from the sampling frame for
assignment to either the cross-sectional survey or the longi-
tudinal cohort. The field team was provided with maps and
Global Positioning System coordinates of the randomly
selected homesteads.

For each study visit, permission was obtained from the head
of household, individual residents of the homestead were
enumerated, and written informed consent was obtained from
each adult participant, or from the participant’s parent or
guardian for children < 18 years. Surveys were administered to
gather individual-level demographic information and ITN use,
and house- and homestead-level information including prior
application of IRS, educational achievement of the head of the
household, and availability of flush toilet and electricity. ITN
use was determined by an affirmative answer to the survey
item, “Do you sleep under a bed net?” Homestead distance to
Strahler-classified third-order water streams (i.e., formed by
the convergence of two second-order streams, which in turn
are formed by two first-order streams arising de novo), which
previous analyses have shown to be predictive of malaria risk
in this region,** was estimated from a digital elevation mode!.
Directly observed house features were recorded, including
wall composition (fired or unfired brick, cement block, mud
brick, grass, mud, and wooden pole), roof material (iron sheet
or corrugated tin, grass, thatch, asbestos sheets), and floor
(cement, dirt, vinyl, other). Each participant was assessed for
Plasmodium falciparum infection by rapid diagnostic test
(RDT) (ICT Diagnostics, Cape Town, South Africa). Individuals
who tested positive were offered treatment with artemether-
lumefantrine (Coartem®) per World Health Organization and
national guidelines.3 Homesteads with multiple contempora-
neous RDT-positive individuals were delineated to account for
clustering of cases at the homestead level.

2,069 participants residing in
658 houses enrolled in cross-
sectional surveys

872 unique participants
residing in 254 houses enrolled
in longitudinal surveys

153 residing in excluded

v

house types

!

0 with positive RDT

v

l

114 residing in 45 houses
with mud or grass walls
and grass roof

1,825 residing in 593
houses with brick or
cement walls and grass roof

849 residing in 228 houses
with brick or cement walls
and metal roof

A4

v

8.8% with positive RDT

1.6% with positive RDT

1.4% with positive RDT

Ficure 1. Study flow diagram of participant recruitment from cross-sectional and longitudinal surveys in Southern Province, Zambia from 2008
to 2012, showing the proportion of participants with a positive P. falciparum rapid diagnostic test (RDT).
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Mud walls and grass roof

Cement walls and metal roof

Fired brick walls and metal roof

Ficure 2. Representative photographs of house types in the study area.

Outcome and exposure. The primary outcome was malaria
infection in individual house occupants, defined as a positive
RDT result. A house typology scheme was developed accord-
ing to wall and roof construction materials. House types in
which < 3% of the total study population resided were ex-
cluded from the analysis due to insufficient statistical power
to examine associations between those house types and
malaria prevalence (Supplemental Table 1). Houses were
assigned to one of three groups: fired brick or cement block
walls with metal roof (high quality), fired brick or cement block
walls with grass roof (medium quality), or mud or grass walls
with grass roof (low quality).

Statistical analysis. Statistical comparisons of baseline
characteristics across house types and malaria prevalence across
seasons were done using one-way analysis of variance or x? tests.
Generalized estimating equations logistic regression models
clustered by house were fitted to the data, adjusted for age, gen-
der, bed net use, prior indoor residual spraying, transmission
season, distance to a third-order stream, education level of the
household head, and presence of other individuals in the home-
stead with a contemporaneously positive RDT. Collinearity was
determined by evaluation of the variance inflation factor, with val-
ues > 10interpreted as evidence of collinearity. Statistical analyses
were conducted using Stata 14.0 (StataCorp, College Station, TX).

RESULTS

Study participants. The study sample consisted of 2,788
participants residing in 866 houses among 488 homesteads.

Occupants of mud and grass houses were generally younger
in age and their houses were less likely to have received IRS,
have electricity, or have a head of household with greater than
sixth grade education compared with residents of brick or
cement block houses (Table 1, Figure 2). ITN use among those
in low-quality houses was less common, although ITN use was
not significantly associated with malaria in our sample (ad-
justed odds ratio [OR]: 0.60, 95% confidence interval [CI]:
0.30-1.20, P = 0.15). Higher quality houses had a slightly
smaller proportion of male occupants compared with the
lowest quality houses. Distance to third-order streams was
similar among the different house types. IRS coverage was
low, with 6.8% of high-, 2.6% of medium-, and none of
the low-quality houses reporting ever having their house
sprayed.

House construction. Most participants (65%) resided in
houses constructed of brick or cement block walls with grass
roofs. Thirty percent lived in brick or cement block houses with
metal roofs, and 4% lived in houses of mud or grass walls and
grass roofs. Nearly all (96%) houses lacked electricity and
plumbing. All of the low-quality houses and almost all (91 %)
of the medium-quality houses had dirt floors, compared with
48% of high-quality houses. Over the study period 2008-2012,
the proportion of participants residing in high-quality houses
increased from 11% to 39%, and the percentage of those
living in low-quality houses decreased from 6% to 2%.

Malaria prevalence. A total of 52 RDT-positive individuals
(1.9% of the sample) were identified among 41 of the 866
houses in 36 of the 488 homesteads. RDT positivity ranged
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Ficure 3. Prevalence of P. falciparum infection in 2,788 partici-
pants residing among three different house types in the southern
Zambia study site from 2008 to 2012, as determined by rapid di-
agnostic test (RDT). Error bars represent 95% confidence intervals
estimated from the adjusted model.

from 1.4% among participants residing in high-quality houses
to 8.8% among those in low-quality houses. Malaria preva-
lence declined significantly throughout the study period from
7% in 2008 to 4% in 2009, and < 1% each subsequent
transmission season from 2010 to 2012 (P < 0.001).

TaBLE 1

Seven of the 36 homesteads had multiple RDT-positive
residents: one homestead had six positive individuals, another
homestead had five, two homesteads had three, and three
homesteads had two. In the single homestead with six RDT-
positive participants, five of the six resided in the same mud-
and-grass house. Within the other homesteads, 13 of the
18 houses were medium quality (mud or grass walls and metal
roof), and the remaining five houses were high quality (brick or
cement block walls and metal roof).

Association between housing quality and malaria
prevalence. Compared with low-quality houses constructed
of mud or grass walls with grass roofs, residing in a medium- or
high-quality house was associated with significantly re-
duced odds of malaria (OR: 0.26, 95% CI: 0.09-0.73, P =
0.01 for houses with brick/cement block walls with metal
roofs; OR: 0.22, 95% CI: 0.09-0.52, P < 0.01 for houses
with brick/cement block walls with grass roofs) (Table 2,
Figure 3).

No difference was observed between houses with the same
wall type (brick/cement block) but different roof type (metal
or grass), despite the presumed presence of open eaves in
houses with grass roofs (OR: 1.2,95% CI: 0.58-2.61, P=0.58).
There was a paucity of houses with mud or grass walls and
metal roofs in the sample (< 1% of the total), precluding sta-
tistical testing for effect measure modification between wall
and roof type. Adjusted models with wall and roof type as
separate variables showed a significant reduction in the odds
of malaria prevalence between wall types (OR: 0.22, 95% Cl:
0.09-0.52, P < 0.01 for cement/brick versus mud) but not roof
types (OR: 1.21,95% CI: 0.57-2.55, P = 0.62). Floor type was
not significantly associated with RDT positivity and displayed
collinearity with house type, hence it was omitted from the
adjusted model.

Sociodemographic and household characteristics of the study sample

House type

Brick or cement walls and metal roof

Brick or cement walls and grass roof

Mud or grass walls and grass roof

Characteristic n=228 n =593 n=45 P value

No. participants (%) 849 (30.5) 1,825 (65.5) 114 (4.1) -

Positive RDT, n (%) 12 (1.4) 30(1.6) 10 (8.8) <0.01*

Age, years, mean (SD) 23.0 (21.5) 21.0 (19.5) 17.0(14.1) <0.01*

Children <5 years old, n (%) 153 (18.0) 392 (21.5) 26 (22.8) 0.10*

Male gender, n (%) 375 (44.2) 899 (49.3) 56 (49.1) 0.05*

ITN use, n (%)t 255 (30.0) 622 (34.0) 30 (26.3) 0.04*

Transmission season, n (%) <0.01%
February 2008 to July 2008 22 (11.3) 161 (82.6) 12 (6.2) -
August 2008 to July 2009 166 (27.4) 393 (65.0) 46 (7.6) -
August 2009 to Jul 2010 267 (31.6) 548 (64.9) 29 (3.4) -
August 2010 to July 2011 254 (32.4) 512 (65.3) 18 (2.3) -
August 2011 to February 2012 140 (38.9) 211 (58.6) 9(2.5) -

Head of household with > sixth grade 582 (68.6) 1,221 (66.9) 65 (57.0) 0.05*
education, n (%)

Distance to category 3 stream, meters, 4,595 (2,550) 4,560 (2,270) 4,960 (2,100) 0.20*
mean (SD)

Floor type, n (%) <0.01%
Cement 444 (52.3) 159 (8.7) 0(0.0) -
Dirt 405 (47.7) 1,665 (91.3) 114 (100.0) -

House with prior IRS, n (%) 58 (6.8) 47 (2.6) 0(0.0) <0.01*

House with electricity, n (%) 32 (3.8) 1(0.1) 0(0.0) <0.01*

House with flush toilet, n (%) 1(0.1) 0(0.0) 0(0.0) 0.32¢

IRS = indoor residual spraying; ITN = insecticide-treated bed net; RDT = rapid diagnostic test for P. falciparum; SD = standard deviation. The number below each house type refers to the number of
houses among the 488 homesteads within the southern Zambia study site, surveyed between 2008 and 2012.

* P value was computed by one-way analysis of variance.
T Determined by affirmative answer to the survey item, “Do you sleep under a bed net?”
$P value was computed by x? test.
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TABLE 2
Adjusted associations between house construction and malaria prevalence by rapid diagnostic test in the southern Zambia study site from 2008
to 2012
Wall material Roof material No. of participants (% total) Malaria prevalence, % (n) Adjusted OR 95% Cl P value
Fired brick/cement Iron sheet/corrugated tin 849 (30) 1.4(12) 0.26 0.09-0.73 0.01
Fired brick/cement Grass 1,825 (65) 1.6 (30) 0.22 0.09-0.52 <0.01
Mud/grass Grass 114 (4) 8.8 (10) REF

Cl = confidence interval; OR = odds ratio. Generalized estimating equations logistic regression model adjusted for transmission season, clustering by house, distance to third-order stream,
participant age, participant gender, participant bed net use, prior indoor residual spraying, head of household level of education, and homestead with > 1 contemporaneous case.

DISCUSSION

This observational study of the association between malaria
prevalence and house structure showed that in a low-
transmission area of Southern Province, Zambia, better hous-
ing was associated with reduced odds of P. falcjparum infection
(defined as a positive RDT). Housing improvements may offer an
effective addition to current vector control approaches.

Malaria prevalence among occupants of mud-and-grass
houses was 8.8% compared with 1.4-1.6% among those
living in houses with brick or cement block walls and metal or
grass roofs. Controlling for clustering by house, transmission
season, and individual- and house-level variables of age,
gender, ITN use, proximity to third-order streams, prior IRS
application, level of education, and cohabitation with an RDT-
positive person, residing in a house of cement or brick walls
and metal or grass roof was associated with a significant re-
duction in the odds of malaria by approximately 75% com-
pared with residing in a house with mud or grass walls and a
grass roof. These results are similar to previous reports of
housing and malaria in sub-Saharan Africa, which ranged
from 15% to 63% risk or odds reduction for high-quality wall
and roof types.??~*® The magnitude of the association ap-
pears comparable to IRS, for which a Cochrane review es-
timated a 74% reduction in parasite prevalence, and ITNs,
estimated by a Cochrane review to confer a protective effi-
cacy of 13%.4%46

The observed reduction in odds of malaria infection may be
attributable to fewer gaps in houses constructed of brick or
cement blocks and absence of eaves in houses with metal
roofs, leading to reduced mosquito entry.*”~*°® Previous
studies in similar settings have shown higher quality walls and
roofs to be associated with lower indoor mosquito numbers
compared with houses with gaps in the walls and grass
roofs.'5®? Grass roofs have also been associated with longer
mosquito survival compared with other roof types,51 and may
promote indoor resting and parasite development in the
mosquito, perhaps due to lower temperatures inside houses
with grass roofs compared with metal roofs.>2 Different house
types may encourage or discourage ITN use by promoting or
impeding ventilation throughout the house via windows and
open eaves,>® although the current analysis showed ITN use
to be lowest in houses expected to have greater ventilation
(i.e., low-quality houses).

These results suggest that wall construction may have a
greater influence on malaria risk than roof construction, al-
though the low number of house types consisting of low-
quality walls and high-quality roofs limited the analysis. Some
but not all previous studies of housing in sub-Saharan Africa
have similarly found a protective effect of brick walls com-
pared with mud walls, but not of metal roofs compared with
grass or thatch roofs.'%19:30:35 Ty studies showed a trend

toward significance, but appeared underpowered to con-
clusively examine roof type due to low numbers of grass or
thatch roofs among the sample (4% and 12% of sampled
houses).'®® Grass roofs on houses in Macha tend to be
densely packed and hence may pose an effective barrier to
entry, whereas walls made of mud or grass may have gaps
permitting mosquito ingress. It may therefore be that gaps in
walls associated with mud and grass construction are a
greater determinant of mosquito vector entry than grass roofs
in the study site.

The strengths of the study include its large sample size,
random selection from a satellite-imaged sampling frame,
adjustments for several confounders, and generalizability to
similar low-transmission areas in sub-Saharan Africa. There
are also limitations. This was an observational study, limiting
causal inferences between housing and malaria. The study
site did not have a sufficient number of houses with the
combination of mud or grass walls and metal roof, limiting
the ability to isolate the effect of roof type. Interpretation of
the model for wall and roof type as distinct variables was limited
by collinearity because nearly all houses with high-quality roofs
had high-quality walls (Supplemental Table 1). Wealth indi-
cators were measured but the overall level of poverty in the
sample precluded additional analyses of household wealth,
house structure, and malaria. There were no data on eaves,
although houses in the study area with grass roofs typically
have open eaves while most houses with metal roofs have
closed or partially blocked eaves. Nor were there data on other
potentially influential house features such as windows, num-
ber of rooms, or ceiling.

Atthe end of the nineteenth century, the Italian malariologist
Angelo Celli recognized malaria as a disease of rural poverty
and conducted the first interventional trial against malaria,®
demonstrating the effectiveness of house modifications that
reduced mosquito entry. With the advent of chemical insec-
ticides in the first half of the last century, interest in the basic
outfitting of houses with screens and structural improvements
waned.>* Today, insecticide resistance threatens malaria
control and elimination.* Interventions not reliant on insecti-
cides, such as housing improvements, could aid in sustaining
progress toward malaria control and elimination.® 1336 Al
though governments and aid organizations cannot wholesale
raise the socioeconomic status of people living in malarious
areas, they can nonetheless opt to direct resources toward
combatting malaria in a manner that also elevates standards
of living, offering the downstream health, social, and eco-
nomic benefits accompanying that rise. The findings of this
study support housing improvements as a worthwhile con-
sideration for malaria control efforts, particularly in the face of
emerging insecticide resistance, and corroborate prior stud-
ies’ findings of a protective benefit of comparable magnitude
to current vector control strategies.
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