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Abstract. We describe a first attempt of wide-area dendrocli-
matic reconstruction, based upon seven spring temperature-
sensitive chronologies from the ring widths of living trees,
in Japan and Korea. Mean March–May temperature derived
from a gridded land air temperature dataset (CRUTEM4)
between 35–40◦ N and 125–140◦ E was reconstructed for
the period of AD 1784–1990. Of the seven, two Japanese
chronologies were eliminated during the calibration trials.
The reconstruction accounted for 19.4 % of the temperature
variance in the calibration period, and is considered to be
skillful for estimating interannual-to-interdecadal variations
and not for long-term change. This reconstruction showed re-
markably similar fluctuations to regional dendroclimatic re-
constructions in Japan and Korea, indicating the past spa-
tial coherency of spring temperatures in the region. The re-
construction was validated against other climate proxies. A
fairly good agreement was found with cold periods as es-
timated from documentary records in southeast China and
Japan. The west Japan temperature series recovered from in-
strumental records also showed a reasonable agreement with
the reconstruction. On the other hand, the reconstruction did
not show clear abrupt depressions after the Laki and the
Tambora eruptions. These comparisons revealed that den-
droclimatic spatial reconstruction in this area offers a good
potential for reconstructing long-term and large-scale past
temperature patterns for northeast Asia.

1 Introduction

The East Asian monsoon (hereafter EAM) is an important
component of the earth’s climate system, and influences the
societal and economic activity of one quarter of the world’s
population. In addition to studies of instrumental data, a
dense network of long-term palaeoclimatic records (e.g. doc-
umentary records and dendroclimatic reconstructions) is cru-
cial in order to better understand the EAM. In East Asia, doc-
umentary reconstructions have demonstrated regional/wide-
area climate conditions (e.g. temperature and pressure pat-
terns) in the late Little Ice Age (e.g.,Maejima and Tagami,
1983; Hirano and Mikami, 2007; Ge et al., 2007). Zaiki et
al. (2006) recovered instrumental temperature records before
official meteorological observations in Japan and extended
these back to 1820 in western Japan.

Dendroclimatic reconstructions using climatically sensi-
tive chronologies, however, are sparse for the mid-latitude
East Asian Pacific rim despite recent efforts to improve their
coverage (Choi et al., 1994; Gostev et al., 1996; Davi et al.,
2002; Jacoby et al., 2004; Yonenobu and Eckstein, 2006; Zhu
et al., 2009). Although those recent studies provide regional
temperature proxies, spatial temperature reconstruction has
never been reported in this region.

The purpose of the present study is to reconstruct the
regional-scale spring temperature for northeast Asia, using
a network of spring temperature-sensitive regional tree-ring
chronologies, including a new tree-ring record from north-
eastern Japan. The potential of this reconstruction is evalu-
ated in comparison to other proxy-based reconstructions for
northeast Asia.
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2 Data and analysis

2.1 Meteorological data

A gridded land air temperature dataset (CRUTEM4) (Jones
et al., 2012) was used. We selected the dataset from 5◦ lat-
itude/longitude grids between 30–45◦ N and 125–145◦ E for
analysis (shown by dotted lines in Fig.1). An average land air
temperature dataset from the grids with blue lines between
35–40◦ N and 125–140◦ E (Fig.1) was finally used to obtain
an optimal reconstruction model after the calibration trials.

2.2 Tree-ring records

We used a total of seven ring-width chronologies to exam-
ine the performance of the calibration models. As shown
in Table 1, six of these were derived from previous stud-
ies (Kojo, 1987; Choi et al., 1994; Yonenobu and Eckstein,
2006). To improve the spatial coverage, we developed a
new ring-width chronology of Japanese cedar (Cryptomeria
japonica) in northeastern Japan for the period of 1784–2003.
The chronology was proven to have sufficient quality and to
be sensitive to spring temperature based on a dendroclimatic
analysis (Table S1, Fig. S1). The six other series are likewise
all sensitive to spring temperature. Because of their unsub-
stantial coherency with the other records, JAPA001 and 007
were eliminated during the calibration trials. Visual compar-
ison of the remaining five chronologies over the calibration
period (1887–1990) is shown in Fig. S2, displaying a tempo-
ral coherency between each other. After calculating the prin-
cipal components (PCs) for the remaining five chronologies
over their common interval (1784–1990), PC1 and PC2 (with
eigenvalues> 1) were used for reconstruction.

2.3 Calibration and verification

Simple correlation analysis was performed between the PCs
and the averaged temperature between 1887 and 1990. Based
on this correlation analysis, principal component regres-
sion (PCR) was performed to derive a transfer function.
All mean temperature subsets (February–May) were exam-
ined as candidate predictants. Finally, we obtained an op-
timal calibration model for estimating March–May mean
land temperature over the 35–40◦ N, 125–140◦ E region (blue
rectangles in Fig.1).

Since some divergence was observed between the ac-
tual and estimated CRUTEM4 data during the calibra-
tion trials, a frequency range higher than approximately
60 yr was removed by subtracting a high-pass filtered curve
from the original data to remove the upward trend in
the actual data series. This filtering enabled the estimated
CRUTEM4 data to pass the verification test described in the
following paragraph..

The model was further examined using a split period cal-
ibration/verification method between 1887–1938 and 1939–
1990. The full 1887–1990 period was used to develop the fi-
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Fig. 1. Map of northeast Asia. Black dots indicate forest sites
used for the final calibration. STR, SPR, BTR (Choi et al., 1994),
and O2127 (Yonenobu and Eckstein, 2006) were previously de-
veloped, while NFI was newly developed in this study. The grids
with dotted and blue lines show the gridded land air temperature
data (CRUTEM4) (Jones et al., 2012) used for the calibration tri-
als and the final calibration, respectively.

nal reconstruction. The statistical methods used in evaluating
the reconstruction were Pearson’s correlation, the reduction
of error (RE), coefficient of efficiency (CE), and the sign test.
A positive RE or CE indicates a valid reconstruction (Cook et
al., 1994). Positive values for the sign test denote the correct
sign for the reconstruction (Fritts, 1976). A residual analysis
was also performed using the Durbin–Watson statistic and
first-order autocorrelation (AR1) for the residuals of the final
reconstruction.

The final calibration model is below:

T MAM
t = 0.12PC1t + 0.26PC2t − 0.06, (1)

where T MAM
t is March–May mean land temperature over

the 35–40◦ N, 125–140◦ E region. The model accounts for
19.4 % of the total variance and passes all the calibration
tests (Table2). A residual analysis demonstrates that the
residuals due to regression show no significant autocorre-
lation (DW= 1.939, AR1 = 0.03). The split models also
passed the statistical tests (p < 0.05 or positive RE/CE ex-
cept for the CE slightly below zero). Intervention analy-
sis was applied to the reconstruction to identify signifi-
cant regime shifts (p < 0.05), in which the mean values
of 15 yr periods were compared on either side of each
year (Rodionov, 2004).

Figure 3a shows the visual comparison between the es-
timated and actual mean March–May gridded temperature
over the 35–40◦ N, 125–140◦ E region. A pronounced up-
ward trend for the unfiltered actual CRUTEM4 data is ob-
served, leading to the divergence between the actual and es-
timated CRUTEM4 data, despite their fairly good agreement
of year-to-year variations. This trend is mostly eliminated
for the filtered CRUTEM4 data. Thus, our reconstruction
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Table 1.List of chronologies.

Region Site ID Location Speciesa Ref. No.b

C. Korea STR 38◦07′ N, 128◦28′ E TACU 1
SPR 38◦07′ N, 128◦28′ E PIKO 1
BTR 36◦57′ N, 128◦29′ E TACU 1

C. Japan O2127 35◦46′ N, 137◦30′ E CHOB 2
W. Japan JAPA001 35◦20′ N, 135◦44′ E CMJA 3

JAPA007 35◦20′ N, 135◦44′ E CMJA 3
NE Japan NFI 40◦23′N, 140◦17′ E CMJA 4

a TACU: Taxus cuspidata; PIKO: Pinus koraiensis; CHOB: Chamaecyparis obtusa;
CMJA: Cryptomeria japonica. b 1: Choi et al.(1994); 2: Yonenobu and Eckstein
(2006); 3: Kojo (1987); 4: this study.

is considered to be skillful in estimating interannual-to-
interdecadal variations and not for long-term change.

3 Results

3.1 Correlations between principal components
and temperature data

PC1 correlates significantly with spring and summer tem-
perature (positive), whereas PC2 correlates significantly with
spring temperature (positive) and previous summer temper-
ature (negative) (Fig.2). According to the loadings of the
correlation matrix in the principal component analysis (data
not shown), PC1 (29.0 % of the variance) represents the Ko-
rean chronologies, while PC2 (25.3 % of the variance) rep-
resents the Japanese chronologies. Therefore, in this study,
the geographic pattern is more significant than the difference
between species. Moreover, the correlation coefficients be-
tween the PCs and mean March–May gridded temperature
over the 35–40◦ N, 125–140◦ E region are 0.423 (p < 0.01)
for PC1 and 0.225 for PC2 (p < 0.05), respectively.

3.2 Reconstructed northeast Asian spring temperature

Figure3b shows the reconstructed mean March–May grid-
ded temperature over the 35–40◦ E, 125–140◦ N region with
an interdecadal variation obtained by a 10-yr Gaussian filter.
The 1887–1990 mean (−0.065◦C) is shown to display cold
and warm periods. The reconstructed northeast Asian spring
temperature (R-NAST) demonstrates abrupt interdecadal
fluctuations including below-average cold times within pe-
riods II (1807–1828), III (1829–1847) and V (1902–1922).
Specifically, the cold periods identified were 1807–1820 (pe-
riod II), 1835–1846 (period II), and 1904–1919 (period V),
respectively. Higher interannual fluctuation can be observed
in periods II and III (1820s–1830s). Period IV shows lower
interdecadal variability, indicating slightly above average
temperature. The intervention analysis generated six regime
shifts at 1807, 1821, 1835, 1847, 1904, and 1919, giving
a consistent result with the above-mentioned cold periods
(Fig. 3b).
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Fig. 2. Correlations between principal components and the mean
March–May land temperature over the 35–40◦ E, 125–140◦ N study
region.

3.3 Comparison between R-NAST and the regional
reconstructions

R-NAST largely corresponds to the regional spring temper-
ature reconstructions in Japan and Korea (Fig.3c–f), de-
spite the differences of estimated months. Figure3c shows a
31-yr interval moving correlation between R-NAST and the
regional reconstructions. The three reconstructions demon-
strate positive significant correlations (p < 0.05) for most
of the common interval (1784–1990), indicating high co-
herency. The four reconstructions display remarkably similar
interdecadal fluctuations in periods II and III, with a cold–
warm–cold pattern in each. Common interdecadal variations
are also observed in periods IV and V; period IV shows lower
interdecadal variations near the average temperature, and pe-
riod V shows cold intervals. On the contrary, a divergence
is observed among the reconstructions in period I; those in
Japan show a cold period, and those in Korea and R-NAST
show a relatively warm period.

4 Comparison with other proxy records

4.1 Documentary records

Documentary reconstructions show good agreements with
our results.Fukaishi and Tagami(1992) reconstructed fre-
quencies of a winter-type pressure pattern across Japan from
old records over the period of 1720–1869, and suggested
that extraordinarily cold conditions occurred during 1808–
1819 (II) and 1826–1841 (III). Frequencies of the winter
monsoon weather patterns across Japan during the 19th cen-
tury were also estimated from old records by a different
method, indicating a period of cool conditions in 1824–1841
(Hirano and Mikami, 2007).

A spring temperature reconstruction from historical docu-
ments for the Pacific coastal region of southern China shows
a cold period from the 1790s to the 1840s, with a short-term

www.clim-past.net/9/261/2013/ Clim. Past, 9, 261–266, 2013
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Table 2. Calibration and verification statistics for the northeast
Asian March–May temperature reconstruction.

Calibration 1887–1990 1887–1938 1939–1990

R 0.458 0.407 0.509
aR2 0.194 0.132 0.229
RE 0.21 0.166 0.259
ST 73+ /31− 36+ /16− 35+ /17−

Verification 1939–1990 1887–1938

R 0.484 0.393
aR2 0.234 0.155
RE 0.184 0.121
CE 0.019 −0.040
ST 38+ /14− 34+ /18−

R: correlation coefficient; aR2: explained variance after adjustment for
degrees of freedom; RE: reduction of error; CE: coefficient of efficiency;
ST: sign test result. Final calibration:T MAM

t = 0.12PC1t + 0.26PC2t − 0.06.

warm period around the 1820s (Wang et al., 1991). This
finding agrees well with our reconstruction (I–III). Annual
temperature reconstruction for eastern China using a 14
document-based series (Ge et al., 2007) also partially sup-
ports our reconstruction, in which the Little Ice Age contin-
ued from the 1770s to the end of the 19th century. Their re-
sult is consistent with our reconstruction in the first half of
the 19th century (I–III), but not in the second half (IV).

4.2 Recovered instrumental records

Recovered instrumental records (March–May) for west
Japan spring temperature (WJST) (Zaiki et al., 2006) show
cold periods in the 1830s and the 1880s, and a short warm-
ing in the 1850s. These trends show notably good agree-
ment with R-NAST except for the cold period of the 1880s,
which, nevertheless, corresponds well to the Japanese recon-
structions (Fig.3e–f). This cold period is likely to be re-
gionally limited to Japan. Actually, the correlation between
February–April temperature for central Japan (Fig.3e) and
WJST (r = 0.542,p < 0.001) is higher than that between R-
NAST and WJST (r = 0.382, p < 0.001) for the period of
1863–1990.

4.3 Other reconstructions and historical episodes

R-NAST might contribute to describing the past behavior
of the EAM. The reconstruction of the December–February
Siberian High Index (SHI) (1599–1980) (D’Arrigo et al.,
2005a) is generally consistent with R-NAST, particularly in
the late 17th and the early 18th centuries (I–III). This is not
the case in the 1830s, however, when little association is
found between R-NAST and the extended East Asian Win-
ter Monsoon Index (EAWMI) as computed from the SHI and
the North Pacific Index (NPI) (D’Arrigo et al., 2005b); corre-
lation between EAWMI and R-NAST is not significant. This

Fig. 3. (a) Estimated (solid line) and actual (dotted line) Mar–
May (MAM) temperature anomalies for northeast Asia. The actual
record (orange line) is prewhitened to fit the low-frequency vari-
ability to the estimated series (see black dotted line). The left axis is
for filtered actual and estimated records; the right axis for the actual
record.(b) Reconstructed spring (MAM) temperature for northeast
Asia. The horizontal red lines show regime shifts detected using
intervention analysis (Rodionov, 2004). (c) 31-yr running correla-
tions between R-NAST and the regional reconstructions(d–f): (d)
C. Korea, April–May (Choi et al., 1994), (e) C. Japan, February–
April (Yonenobu and Eckstein, 2006), (f) NE Japan, April tempera-
tures (this study).

fact may be attributed to the seasonal difference between R-
NAST (March–May) and EAWMI (December–February).

Our reconstruction and the regional chronologies do not
show any abrupt depression after the Tambora (1816) vol-
canic eruption (Fig.3b, d–f). R-NAST exhibits the lowest
temperature anomaly in 1814 and an increasing trend after
1815 in period III. It is possible that the Tambora eruption did
not influence tree growth of the spring temperature-sensitive
species we investigated. Moreover, the Laki (1783) eruption
is also not detected in R-NAST.

A great famine occurred between 1832 and 1839 in Japan
(Nishimura and Yoshikawa, 1936). Although famines in
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premodern Japan have generally been attributed to lower
summer temperature (which caused bad crops of rice), our
reconstruction shows spring temperatures in Korea and Japan
were also cold in the prolonged famine period (period III).

5 Conclusions

We have reconstructed the mean March–May temperature
over 35–40◦ E, 125–140◦ N for the period of 1784–1990 us-
ing dendroclimatic reconstruction. The reconstruction cap-
tured spring temperatures for this region rather well at in-
terannual to interdecadal (< 60 yr) time scales, and showed
interdecadal fluctuations remarkably similar to the regional
dendroclimatic reconstructions in Japan and Korea, indicat-
ing the past coherent spatial variations of the spring temper-
atures across the region. In spite of the low explained vari-
ance (∼ 20 %) for our reconstruction, we believe the result
is remarkable because corresponding temperature fluctua-
tions have been demonstrated across the region including the
Korean Peninsula and the Japanese archipelago. Our recon-
struction shows fairly good agreement with cold periods esti-
mated from documentary records in eastern China and Japan.
The recovered west Japan temperature series also showed a
reasonable agreement with this reconstruction. Accordingly,
these comparisons revealed that spatial climatic reconstruc-
tion from the tree-ring chronologies in this area offers a good
potential to provide a proxy record for long-term, large-scale
past temperature patterns for northeast Asia. Further studies
for reconstructing broader-scale climate should be conducted
in northeast Asia including northeast China, in which the spa-
tial coverage of chronologies is improved (Zhu et al., 2009).

Supplementary material related to this article is
available online at:http://www.clim-past.net/9/261/2013/
cp-9-261-2013-supplement.pdf.
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