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ABSTRACT 

A procedure using Monte Carlo simulation was developed to characterize the spatial structure of 
randomlv formed. wood-strand mats. The simulation re~roduces the number ofstrandsin thecentroids 
of imaginary strand columns of finite size. The vertical distances between the adjacent strands and 
the location of the column centroid relative to the constant length of each strand are also simulated. 
A data base was collected on realistic mats produced from strands of constant size and non-planar 
geometries (i.e., random bow, cup, and twist). The procedure can he used in a model for predicting 
the mechanical behavior of random strand mats during consolidation. 

Keywords: Monte Carlo simulation, wood-strand mats, consolidation, hot pressing. 

INTRODUCTION 

During the hot-pressing operation, a loosely 
formed combination of adhesive and wood 
material is consolidated into a contiguous 
composite material. For laminated wood com- 
posites such as plywood, LVL, and glulam, the 
material structure after consolidation is dic- 
tated primarily by the geometry of the con- 
stituent wood elements. However, for mate- 
rials produced with discontinuous wood ele- 
ments such as fibers, particles, and strands, the 
final material structure is governed by not only 
the wood elements themselves, but also the 
forming methods and pressing operation. 

With non-veneer wood composites, void 
space is incorporated into the wood mat as a 
consequence ofthe forming operation. The goal 
ofpressing is actually to remove the void space 
that separates the individual wood elements, 
thereby providing contact between strands and 

promoting adhesion. Heat is used in this op- 
eration to both soften the wood component 
and to accelerate the cure of the adhesive. 
However, the development of material struc- 
ture, which ultimately will play a large role in 
determining engineering performance, is often 
a secondary result of pressing. 

Recently, several publications have dealt 
with a theoretical description of mat forming 
and modeling the wood mat during consoli- 
dation. Steiner and Dai (1994) provided a ra- 
tionale for model development to describe the 
spatial structure of wood composites in rela- 
tion to processing and performance character- 
istics. A model for simulating the horizontal 
density distribution in strandboard was pub- 
lished by Suchsland and Xu (1989). The den- 
sity distribution was related to the internal bond 
and thickness swell properties of the panels. 
Harless et al. (1987) published a model to pre- 
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dict the density profile of particleboard. Their 
model predicted the through-the-thickness 
density gradient of particleboard as a function 
of manufacturing parameters such as platen 
temperature and press closing rate. 

Focusing on the wood component, the non- 
linear compression behavior of wood was 
studied by Wolcott et al. (1989a). The devel- 
oped model for structural collapse was based 
on the theories of cellular materials. To un- 
derstand the influence of heat and moisture, 
polymer viscoelasticity was used to qualita- 
tively describe the density gradient formation 
in strandboard (Wolcott et al. 1990). Experi- 
mental data for various density gradients sup- 
ported the analytical approach presented. 

The number of publications focusing on mat 
consolidation might indicate the importance 
of hot pressing to the manufacture of wood- 
composites. There is a considerable potential 
for managing the final product properties by 
controlling the wood constituents' behavior 
during the manufacture. However, a funda- 
mental understanding and comprehensive 
model are still needed to describe the visco- 
elastic consolidation of wood-based compos- 
ites. 

OBJECTIVES 

While pursuing an overall understanding of 
wood-composite manufacture, a fundamental 
model is being developed to describe the me- 
chanical behavior of wood-strand mats during 
hot pressing. The model is based on theories 
that incorporate structural nonlinearities in the 
mat, the viscoelastic behavior of the wood 
constituents, and time-temperature-moisture 
interaction during hot pressing. To achieve the 
ultimate goal of this project, the following spe- 
cific objectives were pursued in characterizing 
the mat structure: 

1. Develop a conceptual model for mat struc- 
ture characterization. 

2. Experimentally measure relevant parame- 
ters in randomly formed wood mats. 

3. Develop and statistically validate a simu- 

lation procedure to reconstruct the mat 
structure. 

4. Experimentally validate the model. 

BACKGROUND AND CONCEPT OF 
MODEL DEVELOPMENT 

To characterize the structure of a randomly 
formed, wood-strand mat, several parameters 
of the strand size and geometry, their position, 
and orientation can be used. Although many 
ofthese parameters are either fully or partially 
controlled in manufacture, they all remain sto- 
chastic variables with statistical variability. For 
this reason, any modeling effort must incor- 
porate methodologies using statistical princi- 
ples that allow a mat structure to be recreated 
with computer simulation. 

Suchsland (1962) modeled the random 
strand mat as a system of columns having dif- 
ferent numbers of horizontally stacked strands. 
The strand content of the columns was hy- 
pothesized to follow a binomial probability 
distribution. The mat stress response was com- 
puted using the solid wood stress-strain rela- 
tionship in transverse compression. Most re- 
cently Dai and Steiner (1994a, b) developed a 
mathematical model and computer simulation 
for describing the structure of randomly 
formed, single and multilayered strand mats. 
Based partially on this model, the authors have 
shown that the formation ofthe random strand 
mat can be described by the Poisson distri- 
bution of strand centers and strand coverage. 
This structural characterization ofthe mat was 
a basis of a theoretical model to predict the 
static stress-strain response of the mat in com- 
pression (Dai and Steiner 1993). The model 
applies an infinite summation of the modified 
Hooke's law proposed by Wolcott et al. (1989a) 
over the mat area. The number of strands in 
an infinitesimal column of the mat was deter- 
mined by the Poisson process. Experimental 
results, using slender, constant-sized aspen 
strands with uniform shape (i.e., negligible cup, 
bow, or twist), showed good agreement with 
the predicted stress response. However, the 
model slightly underpredicted the stress re- 
sponse in the early stage of consolidation (i.e., 
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FIG. 1. A schematic of the conceptual model for the static stress-strain behavior of random strand mats. a-an 
arbitrarily sized mat divided into blocks; h-experimental block, divided into 64 columns; c-the theoretical structure 
of a column; d-the position of the strands and the interpretation of spatial variables. 

a < 1.5 MPa). This deviation was attributed periments with yellow-poplar strands showed 
to the fact that during the initial stage of com- that the bulk density of the mat can be affected 
pression, stress develops from strand bending by the magnitude of bow, cup, and twist of the 
instead of transverse compression. individual strands-namely, the greater the 

In the research presented here, an attempt strand curvature, the lower the initial bulk 
is made to further improve these models by density ofthe mat. A lower bulk density in the 
structurally characterizing realistic mats. Ex- mat results in a larger amount of void space 
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FIG. 2. A digitized image of one side of a sample mat showing the interpretation of the mat characteristics, 

within each column. This void space must be This resulted in 64 columns within a block. 
removed before the strands can attain contact The following variables characterized the spa- 
for proper adhesion. Mechanically, this lower tial structure of the mat (Fig. 2): 
bulk density places a larger contribution on 1. The number of overlapping strands in a strand bending during the early stage of mat column (Nb,). compression. As consolidation continues, 2. The distance between the adjacent strands overlapping strands form columns of varying measured at the centroid of the column or height that deform in compression, and the as further referred void height (Abj,), This 
stress development can be described using the variable was considered as the maximum modified Hooke's law (Wolcott at al. 1989a; deflection of that particular strand in bend- 
Dai and Steiner 1993). mg. 

For model development, the mat area was 3. The location of the column centroid rela- divided into square sample blocks (152 x 152 
tive to the strand length (Xb,,), 

mm) (Fig. 1). Each block was furthe? divided 4. The average height of the mat o. 
into effective columns. The column width was 
equal to 19 mm (the average strand width). The subscripts b = 1, . . . , 20, j = 1, . . . , 32 
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and k = 1, . . . , Nbj denote the block, column, 
and strand numbers, respectively. According- 
ly, measurements of 640 columns from 20 
sample blocks were used for data base devel- 
opment. Note that although each block was 
divided into 64 columns, only 32 column cen- 
troids could be measured along the perimeter 
of the blocks without disturbing the initial mat 
structure. The average mat height (H) was con- 
sidered as a control variable because the over- 
lapping strands, with constant thickness (h = 

0.8 mm), and the void height between the ad- 
jacent strands within a column control the ini- 
tial height of the mat according to the follow- 
ing: 

The remainder of this paper presents the 
description of the mat structure and the de- 
velopment of the simulation routine to gen- 
erate arrays of the structural mat characteris- 
tics (Nbj, Xbjk and A,,). In general, the simu- 
lation should maintain the marginal distri- 
butions and preserve any correlation structure 
of the multiple random variables. Statistical 
methods used to validate the simulation pro- 
cedure are also presented. 

SIMULATION ROUTINE DEVELOPMENT 

Materials and methods of data 
base assessment 

Twenty sample mats (blocks) were manu- 
factured from uniformly sized (0.8- x 19- x 
70-mm) strands. Mats were prepared in a 305- 
x 305-mm forming box. The central section, 
having a base of 152 x 152 mm, was cut out 
from the mat after formation using a large pa- 
per shear. This technique eliminated the edge 
effect during formation, and the sample blocks 
were considered as a section of randomly 
formed mat. The mat was formed to a target 
density of 600 kg/m3 based on 13-mm final 
panel thickness. From each side of the blocks, 
a scaled video image was acquired with an 
image analysis system. On the images, eight 
column centroids were marked 19 mm apart. 
For each column, the height and the number 

TABLE 1. Descriptive statistics of sample mats' variables. 

Xbjk Ahjk H 
Statistics Ah Nu fmml lmml (mml 

Mean (rr)  24.42 24.17 12.69 3.22 73.91 
SD (0)  1.82 3.89 7.86 2.37 3.56 
Size (n) 20 640 100 100 20 
Min. 21.62 10 2.65 0.71 67.06 
Max. 28.38 42 38.72 14.56 80.52 
Skewness 0.28 0.12 1.65 2.48 -0.25 

Ah-~vewe ~~erlapping nrand numbcn in 32 eolumnr of a samplc block. 

of overlapping strands were manually mea- 
sured and counted (Fig. 2). In addition, one 
hundred concomitant void height (A,,) and 
location (Xbjk) values were measured from the 
80 images. Note that these measurements could 
only be performed at strands whose lengths 
were aligned parallel with the image plane. Ta- 
ble 1 summarizes the descriptive statistics of 
these mat variables. The average height (H) of 
the sample block was calculated from the 32 
measurements, and based on H, the bulk den- 
sity of the sample mat block was calculated. 
The average overlapping strand number in the 
64 columns ofa sample mat was approximated 
by computing the mean ofthe 32 counts at the 
column centroids along the perimeter of the 
mat. 

The correlation structure and probability 
distributions of the original data set 

The overlapping strand numbers (N,) were 
tested for both lag-l and lag-2 type serial cor- 
relation. The maximum deflection (A,,) and 
location (Xbjk) values are not consecutive mea- 
surements; therefore, no serial correlation tests 
were performed on these data sets. The serial 
correlation analyses were done for each block 
having an equal sample size of observation. 
Of the twenty sample mats, six showed only 
slight positive lag-1 type serial correlation, 
while only one lag-2 type correlation was ob- 
served. This result seemingly contradicts the 
fact that Dai and Steiner (1 994b) observed spa- 
tial correlation between adjacent overlapping 
strand numbers in randomly formed aspen 
strand mats. However, the distance between 
the adjacent count in their study was approx- 
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Number of Overlapping Flakes. N,, 

FIG. 3. Frequency histogram of 640 observed overlap- 
ping strand numbers. The fitted Poisson (A) probability 
mass function, with the parameters of the ohsewation, is 
overlaid. 

imately %,of their strand width (i.e., 9.3 1 mm). 
Such a high resolution must have serial cor- 
relation because a particular strand can be 
present in ten adjacent imaginary columns. In 
this study the overlapping strands were count- 
ed 19 mm (a strand width) apart from each 
other, showing no significant serial correla- 
tions. The lack of serial correlation simplifies 
the simulation procedure and indicates that all 
of the observations in the sample are indepen- 
dent of each other. 

In the next step, the correlation between void 
height (A,,) and location (X,,) data was in- 
vestigated. The correlation coefficient of the 
population was estimated to be p ,  = -0.03 16, 
indicating no significant correlation between 
these variables. 

Finally, theoretical distribution functions 
were fit to the data to determine the marginal 
distribution of the variables. The parameters 
of the probability distributions were estimated 
using the least-squares method. Visual ap- 
praisal and formal goodness-of-fit tests, such 
as Chi-square (x2) and Kolmogorov-Smimov 
(KS) tests, helped to assess the probability den- 
sity functions. 

Void Height, A ,, (rnrn) 

FIG. 4. Frequency histogram of 100 observed void 
height values. The two.parameter lognormal density func- 
tion, with the oaramelen of the natural logarithms listed, 
is overlaid. 

For both location (X,,) and void height 
(Abjk), the formal tests failed to reject the hy- 
pothesized lognormal (LN(p, a2)) probability 
distributions. Figures 3,4, and 5 show the his- 
tograms and the overlaid probability mass and 
density functions for overlapping strand num- 
bers (Nbj), void height (Abjbj3, and location (XtiJ 
data, respectively. Table 2 summarizes the es- 
timated parameters and the results ofthe good- 
ness-of-fit tests. Based on the work of Dai and 
Steiner (1993, 1994a, b), it was hypothesized 
that the strand deposition in randomly formed 
mats follows the Poisson (A) distribution. 
However, the formal tests rejected the hy- 
pothesis that the overlapping strand numbers 
(N,), in a finite number of columns, came from 
a Poisson (A) distribution where A is both the 
mean (M) and the variance (aZ) of the data. 
Notice that the 640 observations of Nbj values 
had a higher mean than variance (Fig. 3, Table 
1). Truncated normal and several discrete 
probability distributions including binomial, 
discrete uniform distributions were fitted to 
the Nbj data without success. This failure to 
specify the probahility distribution ofthe over- 
lapping strand numbers might be attributed to 
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TABLE 2. Summafy ofthe Goodness-of-Fit test results. AN tests were performed with 95% conmence level, u = 0.05. 

Mat 
- ~ C D  

Filled 
Test ststirtics and &tical valved 

variable d i m  P n2 D.0.F.c x2 CI- KS C ' I " ~  

Nbj Poisson (A) 24.17 15.13 17 4 1.46 27.587 - - 
Ab N(P, a2) 24.42 3.32 9 4.00 16.919 0.320 0.895 
Abjk LN(P, a2) 0.96' 0.63b 17 12.40 27.587 0.545 0.895 
Xbjk LN(P, a2) 2.3Sa 0.56b 17 21.60 27.587 0.812 0.895 

W a n  of natural logarithms. 
Variance ofnatural logmthms. 
Degxes of freedom. 
Test su t i~ t i c l  and critical values wen  campuled according o tbc relevant litcnture. 
' C"ical value of KS tcxt when the panmcfen am unknom. 

the low resolution of the strand counts andfor 
to the fact that the sample blocks were inde- 
pendently formed instead of being sections of 
a continuous mat. 

Thus, a new variable, the mean overlapping 
strand number (A,), was introduced into the 
simulation procedure. Because A, is an average 
of 32 Nj observations of a sample block, it 
tends to be normally distributed according to 
the Central Limit Theorem. The parameters 
of this normal distribution are as follows: 

where n is the sample size. Figure 6 shows the 
frequency histogram of mean strand numbers 
with the normal probability density function 
overlaid. Because the Poisson (A) was still the 
best estimate of the distribution of Nbj data, 
two key assumptions were made. First, the 
means of the overlapping strand numbers in 
the blocks can be generated from a normal 
probability distribution. Second, using these 
mean values as different As for each block to 
generate Poisson (A,) variates, the simulation 
will better approximate the parameters of the 
overall N,, observation than generating vari- 
ates from direct Poisson (A) using only one 
mean and variance. 

Location, X (mm) Mean of Overlapping Flake Numben, A, 

FIG. 5. Frequency histogram of 100 observed location FIG. 6. Frequency histogram of 20 observed average 
values. The two-parameter lognormal density function, overlapping strand numbers in 64 columns of a sample 
with the parameters of the natural logarithms listed, is mat. The normal probability density functions, with pa- 
overlaid. rameters listed, is overlaid. 
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TABLE 3. Descriptive statist ic~forfi~e replications of mnt characteristics simulation. 

Ah Nb~ A4r (mm) xur (mm) H (mm) 
RIIIEBIIOII P o n  r r n q  # r  n p e n  P r n  

1 24.12 1.62 20 23.91 4.29 64 1174 3.18 2.16 1174 12.61 7.41 1174 73.4 6.1 64 
2 24.95 2.30 20 24.35 5.09 64 1274 3.46 2.49 1274 12.96 8.07 1274 74.2 6.3 64 
3 24.98 2.07 20 25.31 4.46 64 1649 3.27 2.21 1649 13.08 8.15 1649 75.0 6.2 64 
4 23.52 1.85 20 23.09 4.93 64 1425 3.31 2.40 1425 12.79 8.23 1425 73.9 5.9 64 
5 24.31 1.53 20 24.79 5.16 64 1210 3.27 2.31 1210 12.58 7.46 1210 74.3 6.2 64 

Average 24.38 1.87 - 24.29 4.79 - - 3.32 2.36 - 12.84 8.21 - 74 7 6 l - - -. .- - - 
Orienal 2 4 4 2  1.82 20 24.17 3.89 640 - 3.22 2.37 100 12.69 7.86 LOO 73.9 3.6 20 
A,-a~cragcnvmbnoru~rrlapp~ngrlrpndr n 64 solurnnr 8 "  vrnplr b lak  b. h. , -numk ofo~~dapp~~gsrnndrmcolvmnj  ol b l a k  b. ~ ~ . - m u # m u m  

acflccllnn o f ~ h c  kth strand I" ~ h c  jth column or block b XI.-locallon o f  rhr jth mlvmn m m t d  nlaltvr lo !ha klh .rand's length mn b l a k  b and H- 
hrlehl *fa  column 

The simulation routine 
Based on these principles, a simulation pm- 

cedure was developed. The routine included 
the following main steps. 

1. The mean values of overlapping strands of 
64 columns in a sample block were gener- 
ated from normal probability distribution 
(Ab E N(p, oZ)). The polar method was used 
to generate normally distributed variates 
(Law and Kelton 1991). 

2. In the next step, using the A, values, 64 Nbj 
data for each sample block were generated 
from the Poisson (b) distribution. The al- 
gorithm utilizes the relationship between 
Poisson (A) and expo(l/A) distributions. A 
FORTRAN routine was written to produce 
the desired number of deviates from the 
Poisson distributions. The routine com- 
putes the sum of Nbj data by b = 1, . . . , 
20. 

3. For the simulated blocks according to the 
results of Z: Nbj values, the other two mat 
characteristics, such as location (Xbjr) and 
void heights between adjacent strands (Abjk), 
were generated from the LN(p, 02) proba- 
bility distributions. This algorithm is based 
on the fact that if Y E N(p, 02) then eY c 
LN@, 8) .  Note, that the means and vari- 
ances are different for the normal and log- 
normal distributions. 

The details and justification of generating ran- 
dom variates from N(p, 02), Poisson (A) and 
LN(p, 02) probability distributions are given 

by Law and Kelton (1991). The routines for 
generating discrete and continuous random 
variates included a subroutine for generating 
standard uniform U(0, 1) random numbers. 
This FORTRAN subroutine was published by 
Etter (1987). Tests, recommended by the 
ASTM D 5 124-9 1 (199 1) standard, were per- 
formed to confirm the feasibility of this ran- 
dom number generator. 

RESULTS AND DISCUSSION 

The simulation procedure described above 
was repeated five times to generate the mat 
characteristics of Nbj, Xbj,, and Abjk Table 3 
contains the summary statistics of the simu- 
lation results. The parameters of the replica- 
tions and their averages can he compared to 
the original data. Data from one replication 
for each variable were used to graphically de- 
pict the simulation results. Except for the Nbj 
data, KS goodness-of-fit test was used to test 
the hypothesis that the simulated data could 
have come from the previously specified mar- 
ginal distributions. Each test confirmed the ac- 
ceptability of the simulation. 

Figure 7 shows the frequency histogram of 
20 mean overlapping strand numbers. The A, 
values from this replicate were used to generate 
1,280 Nbj data to confirm the applicability of 
the Central Limit Theorem for this simulation 
procedure. Figure 8 shows the frequency his- 
togram of the simulated data and the overlaid 
Poisson (A) probability mass function. The two- 
step simulation produced similar distribution 
of Nbj data to that observed on the twenty real 
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Mean of Overlapping Flake Numbers, h, 

FIG. 7. Frequency histogram of 20 simulated average 
overlapping strand numbers in 64 columns of a sample 
mat. The original normal probability density function, 
with parameters of the simulated data listed, is overlaid. 

mats. The means and variances of the simu- 
lated and real data are comparable (Figs. 3 and 
8). The other two simulated variables were 
checked visually. The simulation adequately 
preserved the marginal distributions and re- 
sulted in a noncomelated structure of the data 
similar to that observed. 

From the Nbj and the assigned A,, data, the 
average height of 64 columns in a sample block 
was computed for each replication using Eq. 1 
(Table 3). Notice that the means of 64 column 
heights are similar to the measured value, but 
the standard deviations were almost double 
that of the experimental data. This phenom- 
enon resulted because the original H data were 
measured from platen to platen. The simula- 
tion assigns one A value to each strand. How- 
ever, the number of cavities in a column vary 
between Nbj i 1 depending upon the shapes 
of the fint and last strands (i.e. convex or con- 
cave). Sensitivity analysis of the static stress- 
strain model revealed that the variability of 
void height data had no significant effect on 
the stress prediction. Therefore, this problem 
was neglected during the simulation routine 
development. 

Number of Overlapping Flakes, N,, 

FIG. 8. Frequency histogram of 1,280 simulated over- 
lapping strand numbers. The original Poisson (A) proba- 
bility mass function, with the parameter of the simulated 
data listed, is overlaid. 

CONCLUSIONS 

The developed Monte Carlo simulation pro- 
cedure appears to adequately reproduce the 
marginal distributions of mat spatial charac- 
teristics. The simplicity and flexibility of this 
method present several advantages. With 
modifications, the described procedure can be 
used to simulate other wood strand/particle 
mat structures. Spatial characteristics gov- 
erned by stochastic variables such as strand 
orientation, size, and shape of the strands can 
also be incorporated. 
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