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abstract

Wood properties in transverse compression are difficult to determine because of such factors as anatom-
ical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, consid-
ered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the
reference coordinate system changes its orientation. In this paper, we used our verified shear modulus
model to estimate compressive modulus of elasticity in the radial direction by means of certain established
tensor transformation rules. The obtained basic engineering constants form a viable set that agrees with re-
liable test data and the anisotropic elasticity theory.
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introduction

Wood is frequently assumed to be an or-
thotropic material with independent mechanical
properties in three mutually perpendicular direc-
tions: longitudinal (L), radial (R), and tangential
(T). In reality, wood is a cylindrically orthotropic
material, and an orthogonal approximation may
introduce bias. The mechanical properties of
wood are known to be greatly influenced by its
anatomical structure. In tangential compression,
for example, Bodig (1965) suggested a spaced
column theory assuming that springwood (early-

wood) and summerwood (latewood) bands func-
tion as parallel columns that transmit the load
from the loading surface to the supporting base.
Most of the load is taken by the stronger late-
wood; the weaker earlywood functions mainly
as a lateral support for the latewood. Bodig
(1965) has successfully used this theory and the
concept of the slenderness ratio of the column to
explain failure mechanisms observed in experi-
mental studies.

A weak band theory was proposed for radial
compression (Bodig 1965; Kennedy 1967). In
the radial direction, earlywood and latewood
bands are arranged in series, perpendicular to
the applied load. Both bands carry the same
load, but the latewood deforms much less than
does the earlywood. The first failure occurs in
the weakest earlywood band, with subsequent
failures occurring in other earlywood bands and
then latewood bands as compression pro-
gresses.
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However, it is generally difficult to generalize
the behavior of softwoods or hardwoods in trans-
verse compression because of the complex inter-
actions of various anatomical influences. For
instance, the earlywood/latewood ratio and den-
sity differences between earlywood and late-
wood are common variables, even within the
same species. For hardwoods, the wide variation
of ray volume introduces yet another variable
(Kennedy 1967; Reiterer et al. 2002).

In most types of loading, specimen size also
influences test results. The contact stress distri-
bution is very complex as a result of frictional
forces at the contact areas between the specimen
and the loading and support plates, due to Pois-
son’s effect (Bodig 1966; Kobayashi 1962;
Norris 1955). The influence of these forces di-
minishes with distance from the contact areas,
making it necessary to increase the height of the
specimen. Studies on the influence of height in
radial compression indicate that various proper-
ties are affected to different degrees. For in-
stance, Bodig (1966) reported that specimen
height affected the following properties, in de-
creasing order: modulus of elasticity, strain at
proportional limit, strain at ultimate stress, unit
work at proportional limit, Poisson’s ratio, pro-
portional limit stress, and ultimate stress.

The present ASTM D143 standard test for
transverse compression of wood (ASTM 1996)
specifies a 50.8- by 50.8- by 152.8-mm clear
specimen with the long dimension in the longitu-
dinal direction resting on a support. Using a
50.8-mm-wide metal bearing plate, the specimen
is loaded over the central third of the wood sur-
face in the tangential direction; hence, this test is
designated the partial-plate compression test
(Bodig 1969; Pellicane et al. 1994). Design val-
ues for perpendicular-to-grain compression are
based on the stress associated with 2.5 mm of
deformation. The test provides no other informa-
tion. The procedure was developed to evaluate
the reaction force supporting capacity of solid
wood joists.

The ASTM partial-plate compression test
gives a higher strength value than does the full
surface compression test because of the added

“edge effect” (Bodig 1969). Following the
ASTM standard (with the exception of specimen
dimension and no special attention given to the
direction of annual rings with respect to load-
ing), Bodig (1969) found the edge effect contri-
bution, based on bearing area, could be as much
as 5 to 9 times that of full surface compression.
The added load-carrying capacity is the result of
the shear effect along the perimeter of the com-
pression plate. These results were verified by the
plane-stress finite element model of Pellicane et
al. (1994), which also showed a complex stress
state in members even when the load is distrib-
uted over the entire specimen surface. In particu-
lar, numerically determined stresses nearly 3.5
times the nominal stress were found for certain
combinations of input parameter—specimen
geometry, loading geometry, and material prop-
erties (Pellicane et al. 1994). All of these results
serve to verify that there is no standard testing
method for regulating the exploration of or-
thotropy in transverse compression (Lang et al.
2002).

The mechanical properties of anisotropic
composites are known to be strongly dependent
on the orientation of the reference coordinate
system. These properties are related by certain
tensor transformation rules when the reference
coordinate system changes from one orientation
to another (Wu et al. 1973).

In our study of shear modulus variation with
grain slope of wood (Liu and Ross 1997), we de-
rived a formula that shows that, in any principal
material plane, if the values of shear modulus at
two different orientations are known, the value
at any other orientation in the plane is known.
The formula was verified with high accuracy
using the Arcan shear test on Sitka spruce speci-
mens. In the process of deriving this formula, we
identified an expression for elasticity modulus in
the radial direction in terms of other more easily
obtainable parameters. Just as off-axis tension
tests (Tsai 1965) are used to supplement shear to
determine anisotropic moduli, we will show how
the Arcan shear test can be used to supplement
the compression test in the radial direction to
serve the same purpose.
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methods

Derivation of shear modulus and modulus of
elasticity in radial direction

Let the 1-2 coordinate system represent the
principal material axes and the x-y coordinate
system the geometrical axes with angle � from
the x axis to the 1 axis, as shown in Fig. 1. The
transformed engineering constants can be ex-
pressed in terms of the four basic engineering
constants: E1 and E2, elasticity moduli in the 1
and 2 axes; G12, shear modulus in the 1–2 plane;
and �12, Poisson’s ratio, with 1 referring to direc-
tion of applied stress and 2 referring to direction
of strain. In a two-dimensional analysis of Sitka
spruce, we identify the 1 axis with the L axis and
the 2 axis with the R axis.

The transformed shear modulus in the x-y
plane is (Jones 1975)
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which can be reduced to the following form with
Gxy replaced by G(�):
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At � =0° in Eq. (2),

(4)

at � = 45°,

(5)

Substituting Eqs. (4) and (5) into Eq. (2) yields

(6)

or

(7)

Equation (7) indicates that in the range 0° ≤ � ≤
90°, the variation of G(�) is symmetrical with re-
spect to � = 45°. Knowing G°(0) and G(45)°, we
can calculate any G(�). Conversely, when we
know G(�1) and G(�2) with �1 � �2, we can also
calculate G(0°) and G(45°) using the following
relations:
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and

(9)

Equations (8) and (9) permit arbitrary selection
of �1 and �2 in a test program.
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Fig. 1. Positive rotation of principal material axes (1 and
2) from geometric axes (x and y).



which requires that  � G(45°) since �12 � 0. Eq.
(10) can be put in the following form:

(11)

in which E1 and �12 are known to be relatively
stable (Bodig 1966; Bodig and Goodman 1969;
Doyle et al. 1956) and, in addition, any variation
of �12 can only be small compared to 1. There-
fore, the one parameter that is most sensitive to
E2 is G(45°).

Modified Arcan shear test and specimen

The Arcan shear test (Arcan et al. 1978) and
its modified versions (Liu and Ross 1997;
Daniel and Ishai 1994) are based on the fact that
a shear force transmitted through a section be-
tween two edge notches produces nearly uni-
form shear stress along the section. The original
Arcan shear test fixture has two anti-
symmetrical portions forming a circular device,
with a specimen located in the center and
bonded to the fixture by adhesive. In a modified
version reported by Daniel and Ishai (1994), the
specimen is attached to the fixture by a bolted
specimen holder. Liu and Ross (1997) adopted 
a six-sided configuration, which simplified 
the testing procedures without compromising
the stress condition at the critical section of the
specimen.

The geometrical dimensions of the specimen
are shown in Fig. 2. The grain of the specimen is
parallel to the surface, making an angle of � with
the critical section AB. The thickness of the
specimen is parallel to the tangential direction,
such that the specimen can be tightly clamped
between the restraining plates.

A board of Sitka spruce (Picea sitchensis) of
unknown history but of the desired grain and an-
nual ring orientations was selected from storage
at the Forest Products Laboratory. Fifteen speci-
mens in three equal groups, each with a specified
� value 0°, 22.5°, and 45°, were cut from the
board. The specimens were stored in a condi-
tioning room at 20°C and 50% relative humidity
for several weeks before testing. The average
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moisture content was 9.4%, and the average spe-
cific gravity was 0.33.

The shear modulus of each specimen was de-
termined by using two side-by-side shear gauges
(Ifju 1994) on both faces of a specimen. The
strain gauge had a nominal length of 19.35 mm,
which closely matched the critical section length
of the specimen. Tensile loading was applied
with a universal test machine, as shown in Fig.
2. Crosshead speed was 1.27 mm/min. Dis-
placement and load data for shear modulus cal-
culations were recorded electronically.

results and discussion

The results of the Arcan shear test on Sitka
spruce specimens are shown in Table 1. Note
that the data dispersion decreased quickly as the
grain slope increased and the highest coefficient
of variation at the grain slope of 0° was 8.96%,
well below the usual range of about 20% for
wood mechanical properties (Schniewind 1979).
Although the data look impressive, we cannot
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ignore the fact that they were obtained from a
relatively small sample.

Substituting the related data from Table 1 in
Eq. (7) for different values of �, we obtained the
curve in Fig. 3. Note that the predicted shear mod-
ulus at � � 22.5° is 1,179 MPa, very close to the
measured average of 1,194 MPa, which demon-
strates the reliability of the test data in Table 1.

Kubojima et al. (1996) performed torsion tests
on Sitka spruce specimens and obtained an aver-
age value of 884 MPa for G(0°). The G(0°) value
listed in Kollmann and Côté (1968) is 745 MPa,
which was obtained using the method of March et
al. (1942) or ASTM Standard D3044–76. This
method, which is called the plate twist test, was
designed for plywood plates and requires a square
specimen with a ratio of length of edge to thick-
ness to lie between 25:1 and 50:1. Considerable
errors are introduced when the wood grain is
markedly inclined to the specimen faces or edges
in portions of the plate. Since the results in the lit-
erature are not consistent and our data in Table 1
are more complete than any known to us, we will
use the data in Table 1 in the following discussion.

From Kubojima et al. (1996), we find E1 �
11,800 MPa. Kollman and Côté (1968) gave E1 �
11,600 MPa, E2 � 902 MPa, and �12 � 0.37. As
stated earlier, these E1 values are very stable, but
since E2 � 902 MPa is less than G(45°) � 1,670
MPa, it cannot satisfy Eq. (10). The data for E2 in
Kollman and Côté (1968) were obtained using the
compression test by Doyle at al. (1956), which
specifies a 50.8- by 50.8- by 203.2-mm specimen
with the long dimension in the radial direction. To
obtain the required length and to avoid excessive
annual ring curvature, four blocks were glued to-
gether to construct a specimen. The sources of
error in Bodig (1966) and Pellicane et al. (1994)

are seen to converge in this test procedure. With
G(45°) � 1,670 MPa, E1 � 11,800 MPa, and �12
� 0.37, Equation (11) gives E2 � 2,216 MPa,
which is about 2.5 times the value of 902 MPa in
Kollman and Côté (1968). Note that �12 has little
effect on E2 in Eq. (11). When �12 increases by
20% from 0.37 to 0.44, E2 � 2,279 MPa, an in-
crease of less than 3%; when �12 decreases by
20% from 0.37 to 0.30, E2 � 2,159 MPa, a de-
crease of less than 3%. Therefore, based on the
anisotropic elasticity theory, our predicted value
for E2 � 2,216 MPa.

To lend additional support for the reliability of
the four basic engineering constants thus ob-
tained, i.e., E1 � 11,800 MPa, E2 � 2,216 MPa,
G12 � 910 MPa, and �12 � 0.37, all these con-
stants satisfy the equations derived in the analysis
of the off-axis tension test of wood specimens,
where the principal stress components expressed
in terms of the applied tensile stresses, mechani-
cal properties, and grain orientation in anisotropic
theory are the same as those in terms of only the
applied tensile stresses and grain orientation (Liu
2002). This implies that the four basic engineer-
ing constants are correct as a set. If any one of
them should change, the others should change ac-
cordingly (Wu et al. 1973).

conclusions

Based on the tensor transformation rules, we
derived a formula for shear modulus at any ori-

Liu and Ross—COMPREHENSIVE AND SHEAR MODULUS OF WOOD 205

Fig. 3 Variation of shear modulus G with grain slope �

Table 1. Shear modulus test data for Sitka sprucea

Slope of grain Average shear modulus Coefficient of variation
(degree) (MPa) (%)

0 910 8.96
22.5 1,194 5.16
45 1,670 2.72

a Specimens stabilized in conditioning room at 20°C and 50% relative hu-
midity; five tests for each group; 9.4% average moisture content; 0.33 average
specific gravity.



entation in a principal material plane of wood in
terms of the shear modulus values for two speci-
fied orientations at � � 0° and 45° in the same
plane. The formula was verified using a modi-
fied Arcan shear test on Sitka spruce specimens.
In the process of deriving the formula, we also
established a formula for elasticity modulus in
the radial direction as a function of the shear
modulus at � � 45°, the elasticity modulus in the
longitudinal direction, and the Poisson’s ratio as-
sociated with the principal material plane. The
modulus of elasticity in the radial direction
based on this formula can satisfy certain practi-
cal equations of anisotropic elasticity theory
with which wood specimens are supposed to
comply. The current testing methods for wood
properties in radial compression cannot yield re-
liable results because of stress concentrations
caused by anatomical structures, specimen
geometry, and loading conditions. Since the de-
rived formula needs to be satisfied, we find the
determination of elasticity modulus in the radial
direction by means of the proposed shear test a
convenient and reliable approach to solve an oth-
erwise complicated problem.
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