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ABSTRACT 

This paper discusses an enthalpy method to compute transient temperatures of logs. The logs may 
be initially frozen. It is assumed that the logs are subjected to radial heating in agitated water. The 
method handles phase change at a distinct temperature, which is an advantage over a previous 
(temperature) method. Calculations for four test logs were performed by a computerized, explicit finite- 
difference scheme called LOGHEAT. Model and experiment closely agreed with each other. Simplified 
"by hand" calculations were also satisfactory. 

Keywords: Heat transfer model, thawing model, phase change model, enthalpy method, finite-dif- 
ference technique, simulation, logheating. 

NOTATION 

c = specific heat (J/kgK) 
H = enthalpy (J/kg) 
k = thermal conductivity (W/mK) 
L = latent heat (J/kg) 

MC = moisture content based on dry mass (percent) 
r = radial coordinate (m) 

SG = specific gravity based on dry mass and green volume (-) 
T = temperature (K, or C) 
t = time (s) 

A = interval (-1 
p = density (kg/m3) 

Subscripts: 

cr = critical 
e = exterior 
i = node 0, 1,  2, . . . . 
o = initial 
s = phase change 

w = water 
co = ambient 

Superscript: 

v = time level 0, 1, 2, . . 
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FIG. 1 .  Typical profile of enthalpy vs. temperature, including a phase change, at any single location 
within the log. 

INTRODUCTION 

In a previous article, Steinhagen (1986) discussed a log thawing and heating 
simulation with potential for process control in veneer and plywood mills. This 
simulation was based on a temperature method after Bonacina et al. (1973) and 
used the computer program HEAT by Beckman (1972). This approach produced 
acceptable results. However, since the method could not handle phase change at 
a distinct temperature, an arbitrary thawing temperature interval had to be spec- 
ified. This was not only cumbersome, but also affected the results. 

In contrast to the temperature method, the enthalpy (heat content) method after 
Voller and Cross (198 la  and 198 1b) is able to handle phase change at a distinct 
temperature (as well as over a temperature range). Using the enthalphy method 
in conjunction with an explicit finite-difference scheme, Steinhagen and Lee (1 986) 
and Steinhagen et al. (1987) developed an IBM-PC computer program titled 
LOGHEAT to determine transient temperatures of frozen and nonfrozen logs 
subjected to radial heating in agitated water. 

This article discusses the mathematical basis of computer program LOGHEAT 
and also gives simplified "by hand" calculations to estimate thawing times in a 
quick way. 

THEORY 

Let us consider the same heating problem as in the previous article (Steinhagen 
1986). We will assume that we have a debarked, cylindrical log of a given radius 
(r,). The log is "long" (log length greater than 8r,, so that only the radial heating 
is important). The log's initial temperature (To) is uniform and is below the 
freezinghhawing point (T,) of 0 C. Immediately after submerging the log in the 
agitated water bath, the log surface temperature (T,) rises to the level of the bath 
temperature (T,), which is constant throughout the heating cycle, and the log 
surface begins to thaw. The phase front then moves towards the log center, and 
the entire log is heated beyond the thawing point. The objective is to compute 
the heating time (t) necessary for a given radial coordinate (r) at the log's mid- 
length to reach target temperature (T). 

Conceptually, the log's thermal conductivity (k), specific heat (c), and density 
(p)  may or may not vary with position and temperature, and may change discon- 
tinuously with the phase. When a coordinate reaches thawing temperature, the 
latent heat (L) will be incorporated in the local enthalpy (H), and the local tem- 
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perature will momentarily be kept constant until all the latent heat needed to 
complete thawing at this coordinate has been absorbed (Fig. 1, where H,,, and 
H,,, are the lower and higher critical enthalpies, respectively, during thawing). 

The enthalpy method keeps track of the local enthalpies (i.e., the sum of the 
sensible and latent heats). Temperatures, then, can be determined from the fol- 
lowing relationships: 

T = T,; cT, 5 H 5 cT, + L (lb) 

For wood thawing, the latent heat is determined by 

where L, is the latent heat of water fusion (334 x lo3 J/kg) and MC is the wood 
moisture content expressed in percent of the dry mass of wood. 

The standard nonlinear equation for radial heat conduction is expressed here 
in terms of temperature and enthalpy: 

T, = T,; r = re; t > O  ( 3 ~ )  

T = To; O < r < r , ;  t = O  (34  

Under the given assumptions, Eq. (3a) cannot be solved. We will, therefore, use 
a finite-difference technique and seek an approximate solution. 

FINITE-DIFFERENCE TECHNIQUE 

As previously described in more detail (Steinhagen 1986), we may assign a 
number ofequidistant nodes to the log radius. Each node is successively considered 
the focal node i; adjacent nodes are denoted here as i + 1 and i - 1. 

Since the log surface temperature is assumed to be specified, finite-difference 
equations are needed only for the interior nodes. The explicit (Euler) form of the 
equations to compute enthalpies (Voller and Cross 198 1b) is 

where At is the time step, Ar is the radial distance step, and T:, Hl; are the 
temperature and enthalpy, respectively, at the time vAt and coordinate iAr. For 
the center node (r = 0) we have i = 0, and the above scheme becomes 
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Thus the enthalpy (H+')  at a time (v + 1)At is calculated as the sum of the 
previous ("old") enthalpy ( H )  and a quantity ( U t  . . . .) signifying the enthalpy 
change (AH) during the last time increment. 

The time step must not exceed the Euler stability limit, i.e., 

where we must assign the smallest value possible to the ratio pclk. 
Equation (4) assumes that k = kiSi+, = kiXi-,. This condition being somewhat 

unrealistic (particularly when the phase front moves through the region i + 1, 
i - I), we determine k for the average temperature of this region, at time vat. As 
the thermal values are gradually adjusted for the "old" temperatures (T"), com- 
putational errors will accumulate over time. 

Once the enthalpy (H+I)  is known, the temperature (T:+') can be derived using 
Eqs. (la) through (lc). If the specific heat changes with time, the temperature may 
be calculated as the sum of the previous temperature (T:) and the temperature 
change (AT:) during the last time increment, 

where 

AT: = AH/q  (8) 

COMPUTATIONS 

Computer program LOGHEAT (Steinhagen and Lee 1986; Steinhagen et al. 
1987) allows for temperature computations of up to 26 nodes and a maximum 
log radius of 0.3175 m, the spacing between adjacent nodes always being 12.7 
mm. LOGHEAT uses a time step of 0.02 hours. Moisture content and density 
are considered uniform throughout the log and constant throughout the heating 
cycle. Thermal conductivity and specific heat vary with temperature. 

Thermal conductivity (W/mK) in the radial direction is determined by 

(Wood species with much ray volume may have a 10% larger conductivity value 
than suggested by Eqs. 9a, 9b.) 

Specific heat (J/kgK) is calculated as 

In the Eqs. (9a) through (lob), specific gravity (SG) is based on dry mass and 
green volume, moisture content (MC) is expressed in percent of dry mass, and 
temperature (T) is given in C. These equations were developed from data by 
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FIG. 2. Positioning of nodes along the log radius. 

Kanter and Chudinov (Steinhagen 1977b) for a range of -40 to 100 C, 0.3 to 0.7 
in specific gravity, and 30 to 130% moisture content; extrapolations beyond these 
boundaries may produce significant errors. 

Four transient temperature test profiles were generated using LOGHEAT. These 
profiles were compared with the earlier computations via HEAT (Steinhagen 1986) 
and with available experimental data (Steinhagen 1977a). We will focus here on 
a log identified in the above papers as No. 10 (eastern white pine). Input data for 
the computations were as follows: specific gravity (SG) = 0.32, moisture content 
(MC) = 97%, exterior radius (re) = 0.23 m, initial temperature (To) = -22 C ,  
specified surface temperature (T,) = bath temperature (T,) = 54 C, thawing 
temperature (T,) = 0 C. Also simplified "by hand" calculations were performed 
for this log using only three nodes (Fig. 2) positioned at r = 0 (node 0), r = r,/2 
(node I), and r = r, (node 2), employing a time step of 4 hours. These simplified 
calculations were performed to examine the validity of estimating log thawing 
times in a quick way and without a computer. 

When comparing results, it should be borne in mind that the calculations via 
LOGHEAT were performed with an average moisture content for the log, and 
with temperature-dependent thermal properties. The simplified "by hand" cal- 
culations were carried out with constant thermal properties in each phase, based 
on the average temperature of the phase. The previous calculations with HEAT 
were based on position- and temperature-dependent thermal properties and an 
assumed thawing interval of 3 degrees (- 1.5 to 1.5 C). 

RESULTS AND DISCUSSION 

An exemplary temperature history with phase change is given in Fig. 3, showing 
computational and experimental data for the center of log No. 10 (eastern white 
pine). The log center temperature offers the most rigorous condition to evaluate 
the results, because of accumulation of position- and time-dependent (tempera- 
ture-dependent) errors. 

The computations closely agreed with the experimental data. In general, the 
discrepancy between measured and computed time, for a given temperature, was 
within the 10% target. This was also observed in the other test cases (logs No. 1, 
aspen; 4, black cherry; 7, red oak) as shown earlier by Steinhagen et al. (1987). 
From a practical point of view, this result was very satisfactory. 

Overall, the differences among the computed data were minor. However, the 
enthalpy method was much simpler to use than the temperature method as there 
were no problems with arbitrary thawing ranges. 

At long heating times, when the log was completely unfrozen and the log center 
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FIG. 3. Temperature vs. heating time at the center of log No. 10 (eastern white pine). 

temperature approached the ambient temperature, the computational temperature 
increment was clearly smaller than the experimental temperature increment. The 
reason was that the thermal values were adjusted for the "old" temperatures (T") 
in the HEAT and LOGHEAT computations, and for the average temperature in 
the simplified "by hand" calculations; the thermal diffisivity (Wpc) which is 
inversely proportional to the heating time thus did not grow in value as fast as it 
should have. 

CONCLUSIONS 

The enthalpy method appears more practical for simulating log heating with 
phase change than the previously discussed temperature method. This is because 
problems associated with arbitrary thawing temperature intervals do not exist 
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with the enthalpy method. The test temperature profiles generated by the com- 
puterized model LOGHEAT closely agreed with experimental data. The simplified 
"by hand" calculations were also satisfactory. 
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