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Abstract. In Brazil, most reports on the elastic properties of wood include only the elastic modulus in

the longitudinal direction. This is because of the difficulty in determining other properties through static

testing. The purpose of this study was to evaluate the methodology for determining the three Young’s

moduli (EL, ER, ET), the three shear moduli (GLR, GLT, GRT), and the six Poisson ratios (nLR, nLT, nRL,
nRT, nTL, nTR) using ultrasonic technology. For testing, we used specimens in the form of cubic prisms

from the following species: Garapeira (Apuleia leiocarpa), Cupiuba (Goupia glabra), and Sydney Blue

gum (Eucalyptus saligna). The ultrasonic tests were performed with plane transducers of longitudinal and

transverse waves, both with a 1-MHz frequency. For comparison, the same specimens were tested by

static compression. Based on the confidence intervals of the means, the results of the ultrasonic test

produced values of longitudinal elasticity moduli (EL, ER, and ET) and shear moduli (GTR, GTL, and

GLR) statistically equivalent to those obtained with static compression. In the case of the Poisson ratio, the

results, using the confidence intervals, indicated that nRL, nLR, and nLT were not statistically equivalent to
those obtained in static tests for any of the species. Conversely, nTL, nTR, and nRT were statistically

equivalent to those obtained in static tests for all the species. In conclusion, the ultrasonic test for

determining the Young’s and shear moduli of wood was found to be simpler and less expensive than the

static compression test, and the results are equally useful.

Keywords: Young’s modulus, shear modulus, Poisson ratios.

INTRODUCTION

In Brazil, tables of information regarding the
elastic properties of wood commonly show only
values for the longitudinal elastic modulus. This
is partly because this property is the most com-
monly used in determining dimensions, but also
because the determination of the shear modulus
in the three planes of symmetry and the longitu-
dinal elastic modulus in the radial and tangential
directions is more difficult when using standard

static tests. Similarly, almost no information
about the Poisson ratio is available. Neverthe-
less, as structural calculation software has
become increasingly common and available for
use by engineers and architects, the need for
knowledge of properties along all major axes of
wood has become more evident.

Keunecke et al (2007) have reported that the use
of ultrasonic wave propagation in determining
elastic properties is now well accepted and fre-
quently used. These authors suggested that one
positive feature of the method is that it is nonde-
structive, permitting multiple tests to be per-
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formed on the same specimen. Additionally,
they reported that the use of ultrasound permits
the test to be performed on small specimens
such as needed for small-diameter trees, reduc-
ing the influence of growth ring curvature.
Bucur and Archer (1984) have emphasized that
the best way to obtain results that approximate
the orthotropic condition of the wood is by using
small specimens in which the curvature of the
growth rings can be neglected.

Keunecke et al (2007) have also reported that
determining the shear modulus using static test-
ing is complicated and imprecise because it is
difficult to generate a pure shear stress and to
measure the corresponding strains. This same
conclusion was reached by Sinclair and Farshad
(1987), who compared a static method (bending)
and two wave propagation methods (vibration
and ultrasound) to determine the elastic con-
stants of wood (longitudinal and shear moduli).

Bucur (2006) presented the theoretical details of
obtaining the elastic parameters of wood by
ultrasound. Previous work by Bucur and Archer
(1984) showed errors that may arise when deter-
mining the velocity in different directions of
propagation for longitudinal and transverse
waves. According to the authors, the greatest
errors are observed in the determinations of
velocities outside the symmetry axes. These
velocities are used to obtain the off-diagonal
terms of the stiffness matrix, which, in turn, are
used to obtain the six Poisson ratios.

The objective of this study was to determine the
three Young’s moduli (EL, ER, ET), the three shear
moduli (GLR, GLT, GRT), and the six Poisson
ratios (nLR, nLT, nRL, nRT, nTL, nTR) using ultra-
sound and to compare the results with those
obtained using a static compression test.

MATERIALS AND METHODS

Materials

For testing, prismatic specimens of 30 � 30 �
90 mm were taken from boards of three trees,
Garapeira (Apuleia leiocarpa), Cupiuba (Goupia
glabra), and Sydney Blue gum (Eucalyptus

saligna), that were approximately 200 � 200 �
1800 mm. The same specimens were used for
ultrasonic and static compression tests. All spec-
imens were conditioned in a climate-controlled
chamber to about 12% (�1%) MC.

The ultrasonic tests were performed using a
Panametrics-NDT EPOCH4 (Olympus/Pana-
metrics NDT Inc, San Diego, CA) with longitudi-
nal and transverse flat transducers at a frequency
of 1 MHz. The transducers had an external di-
ameter of 18 mm, permitting them to fit on the
specimen for testing in all directions. Based on
the average velocity values obtained for the
species studied, the wavelength (l) for the lon-
gitudinal transducer was approximately 5.5 mm
longitudinally (L), 2.5 mm radially (R), and
1.5 mm tangentially (T). These values indicate
that, regardless of direction, the path length (l)
was at least 12 times the wavelength (l). Bucur
(2006) indicated the importance of having a value
for l that is a few times greater than l to approach
the hypothesis of infinite mode of propagation.
Bartholomeu et al (2003) concluded, in a survey
conducted using Eucalyptus from several sources,
that for l/l > 5, velocity values become nearly
constant and thus are unaffected by the path
length.

Bucur (1983) and Trinca and Gonçalves (2009)
also highlighted the fact that the specimen must
have sufficient length to avoid the field region
near the transducer. For the transducer used in
this study, the near-field is about 8 mm in L, 17
mm in R, and 28 mm in T directions. Consider-
ing the dimensions of the specimen (30 mm �
30 mm � 90 mm), the transducer near-field
could be effectively avoided only in the L direc-
tion. In other cases, it may have some influence
on the readings.

Based on preliminary studies (Trinca et al
2009), Panametrics shear wave couplant (Olym-
pus NDT Inc, Waltham, MA) was used for the
ultrasonic tests. This couplant had less signal
attenuation than medical gels, starch glucose,
corn glucose, 6% carboxy methylcellulose, and
10% carboxy methylcellulose, especially for the
shear wave.

Gonçalves et al—ELASTIC CONSTANTS BY ULTRASONIC AND STATIC TESTING 65



To apply the load for the static compression test,
a test machine (EMIC DL30000, São José dos
Pinhais, Brazil) with a 300-kN capacity was used,
and for deformation readings, 120-O, 5-mm
KFG-5-120-C1-5 strain gauges were used. Using
an eight-channel data acquisition system (HBM
QuantumX; Hottinger Baldwin Messtechnik,
Darmstadt, Germany), it was possible to follow
the deformations of the strain gauges (Fig 1)
as well as the applied load. Data analysis
was performed using Matlab (MathWorks, Inc,
Natick, MA).

Methods of Obtaining Specimens

For each replication, three specimens were pre-
pared, one taken from each axis of symmetry
(Fig 2), meaning there was a single specimen
having the largest dimension in the R, T, or L
directions. This procedure was not necessary for
ultrasonic testing, because it was possible to
obtain all of the necessary velocities from each
axis of symmetry to determine the diagonal of
the stiffness matrix using a single specimen.
However, for static compression tests, this pro-
cedure is necessary both for bonding of strain

gauges and because it is impossible to ensure
that, even if the test is performed only in
the elastic range, there would be no structural
changes in a specimen with consecutive tests.

Bucur and Archer (1984) and Keunecke et al
(2007) used specimens with dimensions much
smaller than those used in this work. Bucur and
Archer (1984) used cubes with 16-mm sides and
Keunecke et al (2007) used 10-mm cubes.
According to the authors, the use of such small
specimens minimizes the influence of the curva-
ture of growth rings. In our case, the minimum
size was 18 mm so that the transducer could fit
entirely on the specimen. However, our objec-
tive was to compare wave propagation tests with
compression tests performed according to the
Brazilian standard NBR 7190/97 (NBR 1997),
where the proposed specimen size is 50 � 50 �
150 mm. In preliminary testing, these dimen-
sions were not appropriate because of the diffi-
culty in obtaining specimens without excessive
growth ring curvature, which has a significant
influence on the results. The NBR 7190/97 stan-
dard permits specimen reduction as long as the
proportions are maintained (height equal to three
times the width) and the section is not less than
18 mm long. Trinca (2006) demonstrated that
the use of test specimens of 30 � 30 � 90 mm

Figure 1. Position of strain gauges on the specimens.

Adapted from Mascia (1991).

Figure 2. Scheme for obtaining specimens in and out of

symmetrical axes. Adapted from Mascia (1991).
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permit results that are statistically equivalent to
those obtained using the standard dimensions.

To determine the shear modulus in a simple
compression test, the specimen must be oriented
at an angle to produce distortions, without which
the test cannot be conducted. For ultrasonic
tests, the specimen must be at an angle to obtain
off-diagonal measurements. As such, for repli-
cation, another three specimens were taken at an
angle of 45� in relation to the three planes of
symmetry, LR, LT, and RT (Fig 2). The 45�
angle was adopted because the static tests were
performed according to the method proposed by
Mascia (1991) and Furlani (1995). Results
presented by Bucur and Archer (1984) for the
C13 term of the stiffness matrix obtained at dif-
ferent angles of specimen orientation (15�, 30�,
45�, 105�, 120�, and 135�) showed that the low-
est relative error was obtained for 45� (11.9%).

Thus, for each replication, six specimens were
prepared (one each obtained along the three axes
of symmetry and three obtained at 45� for each
plane of symmetry) or 36 specimens per species
and a total of 108 (Fig 2).

Ultrasonic Tests

Tests on specimens taken along the axes of sym-
metry were performed using longitudinal and
shear transducers. With the longitudinal trans-
ducer positioned in different directions on the
test specimens taken from the axes of symmetry,
it was possible to determine VLL, VRR, and VTT.
Likewise, with the transducer positioned in dif-
ferent horizontal directions on the specimens
taken from the axes of symmetry, it was possible
to obtain VLR and VRL, VLT and VTL, and VRT

and VTR. For those at 45� in the LR, LT, and
RT planes, it was possible to obtain Va for
each plane. For these specimens, measurements
were taken only with the shear transducer
(quasitransverse waves) since Bucur and Archer
(1984) indicated that, although it is theoretically
possible to use the quasilongitudinal velocity for
determining terms outside the diagonal of the
stiffness matrix, this practice, almost without
exception, generates imaginary values for calcu-

lating the off-diagonal terms and therefore has
no practical application. Figure 3 illustrates the
ultrasonic testing in the specimens.

Specimen Preparation for Compression

Testing

After the ultrasonic tests, strain gauges were
attached to the faces of the specimens. In the
case of specimens taken from the axes of sym-
metry, for each direction (L, R, and T), two
strain gauges were positioned on parallel faces,
totaling six gauges per specimen. In the case of
specimens at 45� to the planes, two strain gauges
were bonded at 45� (parallel faces), and another
four were bonded in the directions of the planes,
also on parallel faces. For example, for the LT
plane, two strain gauges were bonded at 45� on
parallel faces, two strain gauges in the L direc-
tion (on parallel faces) and two strain gauges in
the T direction (on parallel faces) (Fig 1).

Determination of the Stiffness Matrix

The diagonal terms of the stiffness matrix [C]
were obtained using Eqs 1-6 from the Christoffel
tensor (Bucur 2006):

CLL ¼ C11 ¼ rVLL
2 ð1Þ

CRR ¼ C22 ¼ rVRR
2 ð2Þ

Figure 3. Example of time measurement of ultrasonic

wave propagation in the specimen.
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CTT ¼ C33 ¼ rVTT
2 ð3Þ

CRT ¼ C44 ¼ rðVRT þ VTRÞ=2Þ2 ð4Þ

CLT ¼ C55 ¼ rðVLT þ VTLÞ=2Þ2 ð5Þ

CLR ¼ C66 ¼ rðVLR þ VRLÞ=2Þ2 ð6Þ

where r is the density of the wood; VLL, VRR,
and VTT are the longitudinal velocities; and
VRT, VTR, VLT, VTL, VLR, and VRL are the trans-
verse velocities obtained according to the details
given previously.

In the case of tests performed on the faces at an
angle, the off-diagonal terms of the stiffness
matrix were obtained using Eqs 7-9, also from
the Christoffel tensor (Bucur 2006):

C12 þ C66ð Þn1n2 ¼ ½ðC11n1
2 þ C66n2

2

� rVa
2ÞðC66n1

2

þ C22n2
2 � rVa

2Þ1=2 ð7Þ

C23 þ C44ð Þn2n3 ¼ ½ðC22n2
2 þ C44n3

2

� rVa
2ÞðC44n2

2

þ C33n3
2 � rVa

2Þ1=2 ð8Þ

C13 þ C55ð Þn1n3 ¼ ½ðC11n1
2 þ C55n3

2

� rVa
2ÞðC55n1

2

þ C33n3
2 � rVa

2Þ1=2 ð9Þ

where a is the angle of ultrasonic wave propa-
gation (outside the axes of symmetry), which in
this case is 45�; n1 = cos a, n2 = sin a, and n3 = 0
when a is taken in relation to axis 1 (Plane 12);
n1 = cos a, n3 = sin a, and n2 = 0 when a is taken
in relation to axis 1 (Plane 13); and n2 = cos a,
n3 = sin a, and n1 = 0 when a is taken in relation
to axis 2 (Plane 23).

If all terms of [C] are known, the calculation of
the flexibility matrix [S] can be performed using
the inverse matrix [C]–1. With the [S] matrix, it
is possible to determine the three Young’s mod-
uli (EL, ER, ET), the three shear moduli (GLR,

GLT, GRT), and the six Poisson ratios (nLR, nLT,
nRL, nRT, nTL, nTR).

S½ �¼

1

E1

��21
E2

��31
E3

0 0 0

��12
E1

1

E2

��32
E3

0 0 0

��13
E1

��23
E2

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G12

2
66666666666666666664

3
77777777777777777775

Compression Tests

For the compression test (Fig 4), seven channels
of the data acquisition system were used: six for
the strain gauges and one for the load cell. Using
the Matlab program to compile the data from the
seven channels, it was possible to obtain the
stresses (s) and specific strain (e) for each direc-
tion. Eqs 10-18 show the relationships used to
calculate the elasticity modulus and the Poisson
ratio.

EL ¼ sL=eL ð10Þ

Figure 4. Compression test in the testing machine.
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�LT ¼ eT=eL ð11Þ

�LR ¼ eR=eL ð12Þ

ER ¼ sR=eR ð13Þ

�RT ¼ eT=eR ð14Þ

�RL ¼ eL=eR ð15Þ

ET ¼ sT=eT ð16Þ

�TR ¼ eR=eT ð17Þ

�TL ¼ eL=eT ð18Þ
For the determination of transverse modulus G,
Eqs 19, 20, and 21 were used:

e011 ¼ e11 cos2 aþ e33 sin2 a
þ g13 sin a cosa ð19Þ

e022 ¼ e22 cos2 aþ e33 sin2 a
þ g23 sin a cosa ð20Þ

e011 ¼ e11 cos2 aþ e22 sin2 a
þ g12 sin a cosa ð21Þ

where eii□ is the strain toward the inclined plane,
eii is the strain in the direction of the axes that
correspond to the planes in analysis, and gij is the
tangential strain in the plane being considered.

With the strain gauges positioned along the
inclined direction and the principal direction,
e□ii and eii can be determined by a simple com-
pression test so that with a known angle a, the
only unknown variable in the expression, gij, can
be determined. Using gij, the tangential strain in
the specified plane (g□ij) is determined by Eq 22.

g0ij ¼ 2ðejj � eiiÞ sin a cos aþ gijðcos2 a
� sin2 aÞ ð22Þ

The shear stress in the inclined plane is given by
Eq 23 and the shear modulus by Eq 24.

t0ij ¼ 2ðsjj � siiÞ sin a cosaþ tijðcos2 a
� sin2 aÞ ð23Þ

G0
ij ¼

t0ji
gji0

ð24Þ

For a = 45�, and considering gij = 0 for simple
compression, the longitudinal and tangential
strains can be obtained using Eqs 25 and 26,
respectively, and using coordinate transforma-
tions, the stress in the inclined direction is
obtained using Eq 27.

e0ii ¼
eii þ ejj

2
ð25Þ

g0ij ¼ ðejj � eiiÞ ð26Þ

s0
ii ¼

si þ sj

2
þ si � sj

2
cos 2a

þ tij sin 2a ð27Þ
For a = 45�, and considering that tij = 0 and
sj = 0, the stress in the inclined direction can be
simplified (Eq 28), and the shear modulus can
finally be calculated using Eq 29.

s0
ii ¼

si

2
ð28Þ

G0
ji ¼

si

2ðejj � eiiÞ ð29Þ

Calculations of the shear moduli in the three
planes were performed in Matlab using the
terms detailed previously.

RESULTS AND DISCUSSION

Table 1 summarizes the results for the ultrasonic
wave velocities along different propagation and
polarization directions for the three species. For
each specimen, at least six repeated measure-
ments were performed in the same direction,
which allowed for the determination of absolute
(velocity) and relative (percentage) errors in the
measurements. These errors occur from the
method itself and are associated with the influ-
ences of growth ring curvature and fiber incli-
nation, both of which cause wave dispersion.
The variability of results for different specimens
was calculated using the coefficient of variation
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(CV) obtained from the average of six spec-
imens for each species.

The average density for Garapeira was 812 kg/m–3,
with 5.4% CV; for Cupiuba, 850 kg/m–3, with
4.5% CV; and Sydney Blue gum, 850 kg/m–3, with
12.1% CV.

Using the velocities and densities, the coeffi-
cient results for the stiffness matrix were calcu-
lated (Table 2).

Table 3 shows the average results of elastic pa-
rameters obtained by inversion of the stiffness
matrix and of the static compression test for the
three species. To facilitate comparisons, the
results are presented with the range of variabil-
ity (confidence interval).

Bucur (2006) presented results of velocity mea-
surement errors along the axis of symmetry for
the beech and Douglas fir, which ranged from
0.7% (V55) to 0.9% (V11). It appears that the error
values in our study were, in general, slightly
greater than those obtained by Bucur (2006), al-
though always smaller than the variability (CV)
of the material. These higher values of error may
be associated with the larger sizes of the spec-
imens used in this research, making it difficult to
obtain usable specimens without fiber inclination
or growth ring curvature. In the case of Bucur
(2006), tests were performed on 16-mm cubes.

For the variability of velocity (CV), Bucur
(2006) obtained values of 2.81% (V55) and
7.51% (V33), and Keunecke et al (2007)
obtained values of 2.6% (V44) and 9.8% (V33)

Table 1. Average velocity results obtained with ultrasonic tests.

Parameter Symbol Average (ms–1) CV (%)

Error

(m.s–1) (%)

Apuleia leiocarpa
Longitudinal velocities in axes V11 5408 2.85 48.7 0.90

V22 2203 0.46 22.1 1.00

V33 1765 1.57 13.9 0.78

Transverse velocities in axes V44 818 2.97 9.82 1.20

V55 1305 2.32 15.2 1.16

V66 1480 2.60 14.9 1.00

Transverse velocities in principal directions V45 (LT) 1127 6.00 19.1 1.69

V45 (RT) 1167 4.3 15.0 1.29

V45 (LR) 865 2.0 8.0 0.93

Goupia glabra
Longitudinal velocities in axes V11 5152 1.50 45.0 1.00

V22 2223 2.34 23.3 1.05

V33 1638 1.16 11.0 0.67

Transverse velocities in axes V44 887 3.13 9.84 1.11

V55 1094 12.3 12.4 1.13

V66 1551 1.14 10.0 0.69

Transverse velocities in principal directions V45 (LT) 1220 0.67 15.9 1.30

V45 (RT) 1034 3.09 12.0 1.17

V45 (LR) 919 6.5 10.3 1.12

Eucalyptus saligna
Longitudinal velocities in axes V11 5752 1.98 27.0 0.7

V22 3187 1.82 22.0 0.69

V33 1891 1.72 16.1 0.85

Transverse velocities in axes V44 1000 4.00 10.0 1.00

V55 1203 8.5 7.2 0.6

V66 1706 1.00 13.1 0.77

Transverse velocities in principal directions V45 (LT) 1342 1.00 19.5 1.45

V45 (RT) 1140 3.5 14.0 1.23

V45 (LR) 1045 15.7 14.5 1.39

CV, coefficient of variation; L, longitudinal; T, tangential; R, radial.
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for cubic specimens (10-mm sides) of yew and
spruce. Those values are within the same range
as in this study. Similarly, the CVs for stiffness
were within the range obtained by Bucur (2006),
2.81-18.22%, and by Keunecke et al (2007), 9.7-
23.4%.

For the three species, V11> V22 > V33> V66 >
V55 > V44, as expected, which coincided with
the results presented by Bucur (1983), Bucur
and Archer (1984), Bucur (2006), and Keunecke
et al (2007). This order is the result of anisot-
ropy and the orthotropic acoustic and mechan-
ical characteristics of wood described by Bucur
(2006) and Keunecke et al (2007). In the lon-
gitudinal direction, the wave meets fibers or
tracheids, structures which have large length-
to-diameter ratios and that behave like tubes. In
the radial direction, the wave meets the rings,
which still guide the direction of the wave. In
the tangential direction, there is not a conductive
structure for the wave. Bucur (2006) presented a
series of references to analogies in the use of
ultrasound to determine the elastic constants of
wood and highlighted some theories that explain
the numerical differences in the results of static
tests. Static tests represent an isothermal proc-
ess, while dynamic tests involve adiabatic proc-
esses. In an isothermal process, the internal
energy of the material neither increases nor
decreases, while in an adiabatic process, there is
an increase in the internal energy of the material.

Sinclair and Farshad (1987) highlighted that, for
all tests (static, ultrasonic, and vibration), the
same amount of difficulty exists in applying the
methodology to specimens but that ultrasound
produced more accurate measurements. The
results provided by these authors demonstrated
that the ultrasonic test produced values 73%
higher for the longitudinal elasticity modulus
than the static test. The authors attributed these
differences to the fact that EL was calculated
directly by Eq 1 (CLL) and not by the complete
expression that would involve Poisson ratios.
Initially, the authors assumed that the influence
of the Poisson ratio would be small, but discus-
sions since then have indicated that this hypoth-
esis is not correct.

Bucur (2006) presented results for Douglas fir
(same species used by Sinclair and Farshad
1987) in which CLL was 22% higher than EL

obtained by the static testing. The same author
presented results for sitka spruce in which EL

was obtained through the complete stiffness
matrix, and in this case, the EL value was only
5% higher than that obtained by the static test.
Considering that only the mean values were
presented, it is not possible to analyze whether
the results could be considered statistically
equivalent. In the case of our research, the
values for the stiffness constants (CLL) were
even greater than those for the static modulus
(EL). However, when the values were corrected
by the Poisson ratios, the differences were re-
duced, and considering the mean, the elastic pa-
rameters obtained by ultrasound showed values
only slightly higher than those obtained statically.

Considering the confidence intervals, the values
of the Young’s moduli (EL, ER, and ET) and
shear moduli (GTR, GTL, and GLR) obtained by
ultrasound and compression are statistically
equal. Taking averages as the reference, the
numerical differences for Young’s moduli were
11.3% for Garapeira, 11.3% for Cupiuba, and
7.7% for Sydney blue gum, and for shear moduli
2% for Garapeira, 8% for Cupiuba, and 4.3% for
Sydney blue gum. The greatest differences were
always in the T or R directions, because of the
influence of the growth ring curvature.

In the case of the Poisson ratio, the comparison
results, using the confidence intervals, indicated
that nRL, nLR, and nLT were not statistically
equivalent to those obtained in the static test for
any of the species. On the other hand, nTL, nTR,
and nRT are statistically equivalent to those
obtained in the static test for all species. The
results of static tests (using the confidence inter-
val) were consistent with the average Poisson’s
ratios proposed by Bodig and Jayne (1982) only
for nRL, nTR, and nRT.

Values greater than 1.00 were not expected for
isotropic solids but for crystals, some compos-
ites, and materials with honeycomb structure,
Poisson’s ratios can be nij > 1 and nji < 1. Bucur
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and Archer (1984) and Bucur (2006) also
presented values of Poisson’s ratio greater than
1.00 in the LR, LT, and RT planes. Bucur
(2006), quoting various authors, presented a the-
oretical reasoning that explains why the Poisson
ratio can have a value greater than 1.0 for aniso-
tropic solids. The author emphasized the possi-
bility that wood, although idealized as
orthotropic, may have a real condition that is
far from the ideal when there are other varia-
tion-causing parameters involved, such as the
curvature of growth rings or fiber inclination. In
such cases, Poisson ratios greater than 1.0 are
not impossible.

Consistency of our data (dynamical and static
tests) requires that

(1 – nij nji) > 0 and if (1 – nLR nRL – nRT nTR –
nLT nTL – 2 nTR nRL nTL) > 0. In all cases these
relationships were confirmed. It is important
also to verify that C matrix and the inverse S
matrix are positive, and the elastic constants E
and G are positive, which is true for our data.

The terms of the stiffness matrix for the static
test were calculated directly. Thus, if the behav-
ior of the wood is effectively orthotropic, the
flexibility matrix condition –nrq/Er = –nqr/Eq

will be satisfied. Table 4 presents these relations
for the three species using both methods and an
average of 11 species presented by Bodig and

Jayne (1982). The results in this table indicate
that there are many deviations from orthotropic
theory.

In the case of our research, these deviations may
be related to the growth ring curvature, as the
dimensions of the specimens were not so small
as to completely avoid such conditions. For the
Bodig and Jayne (1982) values, information
regarding the density and size of the specimens
or how the test was conducted is not provided.
Keunecke et al (2007) also discussed this issue
and stated that only the ratios –nRT.ER

–1 and
–nTR.ET

–1 are really comparable.

In the case of ultrasonic testing, orthotropy is
assumed, meaning C12 = C21, C13 = C31, and
C23 = C32, so when taking the inversion, the
theoretical condition of the matrix [S] will be
induced. Table 4 shows the obtained ratios for
the symmetric terms.

Results of Poisson ratios obtained by ultrasound,
presented by Bucur and Archer (1984), François
(1995), and Bucur (2006), indicated values of
the same order of magnitude as those obtained
in this research. The highest values (sometimes
up to 1.0) were obtained for nLR and nLT. The
nTL and nRL values in static testing are the
smallest; however, in the ultrasonic test, they
do not always behave in the same way both for
the results of other authors and in our work.

Table 4. Relationship of the flexibility matrix terms (10�5) obtained by the compression and ultrasonic test.

Compression test

Species
#RL

ER

#LR

EL

#TL

ET

#LT

EL

#TR

ET

#RT

ER

Apuleia Leiocarpa 1.72 1.25 5.37 1.74 22.73 34.01

Difference (%) 37.6 209 49.6

Goupia glabra 2.13 1.63 4.14 2.06 17.65 39.28

Difference (%) 30.7 100 123

Eucalyptus saligna 1.03 2.44 2.75 5.72 13.76 11.41

Difference (%) 137 108 21

Ultrasonic test

Apuleia Leiocarta 7.67 7.67 6.08 6.08 12.50 12.50

Goupia glabra 9.80 9.80 3.44 3.44 12.10 12.10

Eucalyptus saligna 8.73 8.73 2.00 2.00 12.60 12.60

Bodig and Jayne (1982)

Range for 11 species 1.34-7.95 1.59-6.48 17.2-128.0

Difference average for 11 species (%) 0-75 2-38 2-157
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Bodig and Jayne (1982) commented that the
measurement of very small Poisson ratios is
complicated, because it requires high-precision
equipment to measure deformations. As an alter-
native, researchers could use large specimens,
but the impossibility of obtaining well-directed
and straight growth rings would be even more
unfavorable.

Bodig and Jayne (1982) also presented some
relations between the longitudinal and shear
elasticity moduli. According to these authors,
the relationships vary greatly across species, but
overall, the magnitudes of these relationships
are approximately EL:ER:ET � 20:1.6:1.0, GLR:
GLT:GRT � 10:9.4:1.0, and EL:GLR � 14:1.0.

Table 5 summarizes the ratios obtained for the
three species using the two test methods. It is
noted that the EL/ET ratios are much smaller
than the values suggested by Bodig and Jayne
(1982) for all species and types of tests (static or
ultrasonic). Similar results were obtained by
Keunecke et al (2007) in comparison with ratios
obtained from Halász and Scheer (1986).
Keunecke et al (2007) observed ratios of EL/ET =
7.26 and 11.8 for the spruce and yew species.
These authors argued that the lower the microfi-
bril angle in the S2 cell wall layer, the larger the
longitudinal stiffness, and in the case of radial
and tangential stiffness, the higher the density,
the higher these values will be. Consequently,
denser species tend to produce larger tangential
and radial stiffness and, therefore, smaller dif-
ferences in the longitudinal direction. Cupiuba
and Sydney blue gum had equal densities, which
were greater than those of Garapeira. Those
species also had lower EL/ET ratios. In the case
of ER/ET, both our results and results from
Keunecke et al (2007) were similar to values

suggested by Bodig and Jayne (1982). For rela-
tions between Young’s moduli in longitudinal
and transverse directions, the ratios were also
much lower than those suggested by Bodig and
Jayne (1982). This result suggests that the
orthotropy of the tested species in the present
study was smaller than that expected by Bodig
and Jayne (1982), who reported that an EL/ET

ratio near 20 would make the wood the most
orthotropic material known. In general, the
values of the ratios obtained in the static test
were similar to those obtained ultrasonically.

Mascia (1991) obtained, from static compres-
sion testing, GLR/GRT and GLT/GRT ratios
close to 8.0. Likewise, Bucur (2006) presented
results for 11 species whose GLR/GRT ratios
ranged from 3.3 to 20.8, GLT/GRT between
1.9 and 21.4, and EL/GLR between 4.1 and
21.2. Bucur and Archer (1984) presented results
for six species and showed GLR/GRT ratios
between 2.89 and 16.9, GLT/GRT between 2.6
and 13.1, and EL/GLR between 5.6 and 8.8.
Keunecke et al (2007) obtained GLR/GRT =
4.7 for yew and 11.6 for spruce, GLT/GRT = 4.5
for yew and 11.1 for spruce, and EL/GLR = 9.6
for yew and 22.4 for spruce. These values dem-
onstrate the great variability of results for these
wood parameters.

CONCLUSIONS

The values of longitudinal and shear moduli
obtained by ultrasound were statistically equiv-
alent to those obtained by static compression.
The determination of the shear modulus by ul-
trasound was much simpler. The Poisson ratios
obtained by ultrasound show results that conflict
with those expected, mainly for the LT and LR

Table 5. Relationship between elastic parameters in different axis or planes.

Species Test EL/ET ER/ET GLR/GRT GLT/GRT EL/GLR

Apuleia Leiocarpa Ultrasonic 8.0 1.4 3.4 2.6 7.9

Static 9.9 1.6 3.5 2.8 7.7

Goupia glabra Ultrasonic 6.8 1.2 3.1 1.5 6.8

Static 7.5 1.2 3.0 1.4 7.0

Eucalyptus saligna Ultrasonic 5.9 1.6 2.9 1.5 5.7

Static 6.2 1.7 2.8 1.4 5.8
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planes, including values greater than 1.0 for the
LR plane. The compression tests showed values
close to those proposed by Bodig and Jayne
(1982) for hardwoods only for nRL, nTR, and nRT.

The size of the specimens may have affected the
results both in the static test and ultrasonic tests,
because it was not possible to guarantee, for all
cases, that the growth rings lacked curvature.
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na madeira. PhD Thesis, Escola de Engenharia de São

Carlos, São Carlos, SP, Brazil. 295 pp.

NBR (1997) 7190/97. Projeto de estruturas de madeira.

Associação Brasileira de Normas Técnicas, Rio de

Janeiro, Brazil.

Sinclair NA, Farshad M (1987) A comparison of three

methods for determining elastic constants of wood. J Test

Eval 15(2):77-86.

Trinca AJ (2006) Influência da dimensão do corpo de

prova, no ensaio destrutivo, compressão paralela às
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Gonçalves et al—ELASTIC CONSTANTS BY ULTRASONIC AND STATIC TESTING 75


	COMPARISON OF ELASTIC CONSTANTS OF WOOD DETERMINED BY ULTRASONIC WAVE PROPAGATION AND STATIC COMPRESSION TESTING
	INTRODUCTION
	MATERIALS AND METHODS
	Materials
	Methods of Obtaining Specimens
	Ultrasonic Tests
	Specimen Preparation for Compression Testing
	Determination of the Stiffness Matrix
	Compression Tests

	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES


