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Abstract. This study presents a visual model for analyzing the vibration modes of piano soundboards by
combining the tools of finite element analysis and computer-aided design. Based on the predicted results
from the model, changes of natural frequency and maximum displacement of the soundboard as a function
of wood properties, structure, and rib size were discussed. Wood grain direction affected the mode shape
of the soundboard. Among the 10 property factors investigated, density presented the greatest impact to
the vibration mode of the soundboard followed by Young’s modulus, shear modulus, and Poisson’s ratio.
Increasing the thickness of the resonance board and the use of ribs had positive impacts on the natural
frequency of the soundboard. However, the amount of natural frequency was decreased for those that were
lower than 100 Hz. Natural frequency increased as the intensity, density, and size of ribs increased. Rib
height had a greater effect on the variation of natural frequency than the intensity, density, and rib width.
In general, increases in rib intensity, density of wood species, and rib width presented negative effects on
the maximum displacement.

Keywords: Modal analysis, piano soundboard, finite element analysis, computer-aided design.

INTRODUCTION large thin wood panel made from glued wood
strips, usually spruce, that are 80-100 mm wide.
The resonance board cannot be too thick, other-
wise it may decrease the sound performance of a
piano. However, a minimum soundboard thick-
ness is essential to provide enough stiffness for
the soundboard structure. To use a thinner reso-
nance board and maintain sufficient stiffness of
* Corresponding author the soundboard structure, reinforcement ribs (a
+ SWST member set of parallel nearly equidistant stiffeners) are

The soundboard is the main radiating compo-
nent of a piano and is made from wood. Sound-
board quality greatly affects the piano’s
acoustical performance. The main element of a
soundboard is the resonance board, which is a
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usually used, which allows the thickness of the
resonance board to be decreased to 6-10 mm.
The ribs are also made out of spruce or other
wood species glued together. The cross-section
of the ribs is usually about 25 mm wide and
10-20 mm (or more) high. The overall shape of
the soundboard depends on the type of piano,
ie. rectangular for upright pianos and a half
round-and-high hat shape for grand pianos
(Ege et al 2013). The width of the soundboard
is about 1.4 m, in agreement with that of the
keyboard. The height or length ranges are from
about 0.6 m for small uprights to more than 2 m
for some concert grand pianos. Two bridges are
glued to the opposite side of the resound board:
1) a short bar, and 2) a long thick bar. The two
bridges are slightly curved with strings attached.

The sound of the piano is enriched by the sound-
board. The vibration properties of the sound-
board are critical to the sound performance of a
piano. Suzuki (1986) studied the vibration and
sound radiation of the soundboard from a
Steinway grand piano. The mode shapes and
frequencies of six resonances below 200 Hz
were shown, and their relations to intensity pat-
terns were discussed. Giordano (1998) illus-
trated that the variation in mass distribution of a
soundboard could affect its vibration properties
and the piano sound quality. Xing et al (2007)
showed that an additional mass block greatly
affected the energy of the low-frequency mode
of a soundboard. Liu et al (2013) measured the
vibration properties of resonance boards of eight
wood species and evaluated the acoustical prop-
erties of the pianos after the resonance boards
were incorporated into the pianos. Using exper-
imental methods to study soundboards may have
limitations because each measurement can only
be made on one specific soundboard. Often, a
full-sized soundboard has to be cut into small
specimens for property measurements, which
can be costly. Many researchers have applied
mathematical modeling and computer simula-
tion to study vibration performance and other
properties of a soundboard (Giordano 1997,
Berthaut et al 2003; Ortiz-Berenguer et al 2008;
Boutillon and Ege 2013). Finite element analy-
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sis (FEA) has proven to be a viable tool in
designing new piano soundboards (Kindel and
Wang 1987; Berthaut et al 2003; Ortiz-Berenguer
et al 2008). However, most of the previous stud-
ies only used two-dimensional models. Also, the
effect of wood grain direction was not consid-
ered. Wood is an anisotropic material. The
mechanical and physical properties, thermal con-
ductivity as well as sound velocity in the longitu-
dinal, tangential, and radial directions can be
significantly different. Sound performance can
be greatly affected by the grain direction of the
wood. A three-dimensional (3-D) FEA model
with respect to the directional effect on the sound
performance can be beneficial to the structural
design of a piano.

In this study, we present a 3-D visual model for
modal analysis of upright soundboards using the
tools of both FEA and computer-aided design
(CAD) and considering the effects of both wood
grain direction and species. The goal of modal
analysis in structural mechanics is to determine
the natural mode shapes and natural frequencies
of soundboards. CAD technology can provide a
3-D visualization with flexibility in the model
configuration. The natural frequency and maxi-
mum displacement (vibration strength) change
as a function of structure and rib size are pre-
sented and discussed based on the predicted
results from the model.

MODELING AND MODAL ANALYSIS

An upright piano soundboard was used for
modeling with both CAD and FEA for the
modal analysis. Three wood species, spruce,
pine, and beech, were used in the modal analy-
sis. Density of the wood species and elastic
moduli, shear moduli, and Poisson’s ratios in
longitudinal (L), tangential (T), and radial (R)
directions of the three wood species (Table 1)
were used for the model inputs.

Modeling of a Piano Soundboard

Figure 1 depicts the basic approach for modeling
an upright piano soundboard. The soundboard is
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Table 1. Properties of three wood species used as parameter inputs in finite element analysis.”

by Ey, Eg Ex Gur Gir Grr
Species (kg/m”) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) HRT MR MLt
Spruce 371 11,583 896 496 690 758 39 0.43 0.37 0.47
Pine 550 16,272 1103 573 676 1172 66 0.68 0.42 0.51
Beech 750 13,700 2240 1140 1060 1610 460 0.75 0.45 0.51

* E, Young’s modulus; G, shear modulus; pt, Poisson’s ratio, p is density. The soundboard has been considered as orthotropic, longitudinal (L), tangential (T),

and radial (R) (Wang 2007; Liang et al 2009).

_l

937 mm

1
L. 1408 mm i

Figure 1. Model of upright piano soundboard with ribs.

composed of two parts: ribs and resonance
board. For the convenience of modeling, a rect-
angular cross-section was assumed for the rib.
Dimensions of the soundboard used in the
modeling were considered 1.408 m long and
937 mm wide.

Modal Analysis

The structural dynamics approach was used to
analyze the natural frequency and the mode
shape of a structure. For linear constant system
with N degrees of freedom, the vibration equa-
tion can be expressed as (Fu 1990)

d?x(t) dx(t)
O g% k=t ()

where [M] is the mass matrix for the elastic
system; [C] is the damping matrix of the elastic
d’x(t) dx(t)

de 7 dt’
and x(t) are the acceleration vector, the velocity
vector, and the displacement vector; and f(t) is
the excitation force vector. Structural stiffness
matrix [K] and mass matrix [M] are n by n
square matrix, where n is the number of free-
dom degrees. Through solving this equation, n
natural frequencies of the structure and the
amplitude value vector of each node can be

M]

system; [K] is the stiffness matrix;

A

Resonance board

obtained. Commercial FEA software, ANSYS,
was used for the modal analysis of the piano
soundboard.

The critical steps and boundary conditions for
the modeling are

1) Input the soundboard model generated from
the AutoCAD software into the ANSYS
software;

2) Define the element types: the element type
“SOLID186” in ANSYS was selected for
the soundboard simulation;

3) Define the constants of material properties:
the linear orthotropic material properties were
input based on the selected wood species;

4) Mesh the CAD models into the ANSYS soft-
ware to convert the solid model into a finite
element model (FEM);

5) Define the coordinate directions of the model
based on the grain directions for both reso-
nance board and ribs, as shown in Fig 2. The
grain direction of ribs was assumed to be
perpendicular to that of the resonance board,

6) Define the boundary conditions and loads:
constraints were applied to all nodes located
where the soundboard is attached to the back
of the piano;

7) Choose the analysis type and calculation
options in ANSYS: the modal analysis
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Figure 2.

(a) Screen print of a simulated soundboard model. Direction 1 is the longitudinal grain direction of the resonance

board; direction 2 is the longitudinal grain direction of the ribs. (b) Typical contour maps of the modal analysis result.

method “Block Lanczos” was selected, and
then the frequency range and loading steps
were confirmed; and

8) Solve this FEM model: the shapes and
frequencies of the 1st to 15th modes were
generated.

The modal analysis results were expressed in
contour maps. Figure 2 illustrates a screen print
of the simulated soundboard.

RESULTS AND DISCUSSION
Wood Properties

Figure 3 shows that the mode shape of a sound-
board is affected by the wood grain direction.
When no ribs were added (Fig 3a-b), the long
axis of the mode shape ellipse was in the same
direction as the wood longitudinal grain of the
resonance board. Different wood grain direc-
tions of the resonance board may generate dif-
ferent mode shapes. When ribs were added,
because the longitudinal grain direction of the

ribs was perpendicular to that of the resonance
board, the ellipse long axis parallel to grain
direction of the resonance board was sup-
pressed, and the vibration was distributed across
the soundboard (Fig 3c). Wogram (2000) per-
formed an experimental study and showed that
adding ribs could decrease the difference in
bending stiffness (modulus of elasticity) of the
whole soundboard system among different direc-
tions and thus decrease the variation of the sound
performance in terms of the directions.

To investigate the effect of different property
factors on the natural frequency and the maxi-
mum displacement of mode, simulations were
conducted on the soundboard using the property
values of the spruce species as references. We
isolated the change of the target property factor
(increased by 10%) while keeping the other
properties the same. The natural frequency and
the maximum displacement of the soundboard
were simulated, and the percentage changes of
each property factor were calculated. Table 2
shows the average percentage change values in

(a) e ————— | (D)}

x

ler EXSmta1n

Figure 3.

Effect of wood grain direction on mode shape of a resonance board without ribs (a-b) and with six ribs (c).

Direction 1 is the longitudinal grain direction of the resonance board. Direction 2 is the longitudinal grain direction of ribs.
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Table 2. Percentage changes in natural frequency and maximum displacement of the soundboard affected by the 10
property factors of wood (the values in the table were calculated when the target property factor increased by 10%, whereas
other properties remained the same; the values are the average of the changes for all 15 modes; the negative value means
as the property increases, the frequency or maximum displacement decrease; rib intensity: 6; resonance board thickness:
8 mm; rib cross-section dimension: 25 mm wide and 15 mm high; the species of the resonance board and rib are the same).

Properties p Ey Egr Er Grr Gir G URT HLR HiT
Natural frequency (%) —4.66 1.95 0.61 0.48 0.41 0.21 1.11 0.13 0.07 0.01
Maximum displacement (%) —4.65 —1.95 0.37 0.51 —-0.15 0.48 0.51 —-0.27 0.12 0.02

natural frequency and maximum displacement
of all 15 modes for each property factor. As
shown in Table 2, wood density has the greatest
effect (>4.6%) on both the natural frequency and
the maximum displacement among the 10 prop-
erty factors investigated. Increasing the wood
density of the resonance board and ribs can
decrease the natural frequency and the maxi-
mum displacement of the soundboard. Among
the property factors of Young’s modulus (E),
shear modulus (G), and Poisson’s ratio (p),
Young’s modulus tends to have the greatest
effect on sound performance (0.37-1.95%),
followed by the shear modulus (0.15-1.11%),
and then the Poisson’s ratio (0.02-0.27%). For
the Young’s modulus (£) of a soundboard, the £
in the longitudinal direction had a relatively
higher impact (1.95%) on the vibration modes

minimum

compared with the other two directions (0.37-
0.61%). Increasing Fp increased the natural
frequency and decreased the maximum displace-
ment of the soundboard. For the shear modulus
(G), the modulus from the tangential direction to
the radial direction (Gtg) had a greater effect
(1.11% for the frequency and 0.51% for the dis-
placement) on the vibration modes compared
with that from Gir and Gyt (0.15-0.48%). For
the Poisson’s ratios, the ratio from longitudinal
to tangential (up 1) presented the lowest effect
on the sound performance (only 0.01-0.02%).

Vibration Modes

Figure 4 shows the vibration behaviors of
soundboard for the first 10 modes. From modes
I to 10 and rows a, b, and c in Fig 4, the mode
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Figure 4. Vibration behaviors of soundboards for the first 10 modes: Rows a, b, and ¢ represent vibration modes of
resonance boards, resonance boards with 6 ribs, and resonance boards with 11 ribs, respectively. (Species of resonance
boards and ribs, spruce; resonance board thickness, 8 mm; rib cross-section dimension, 30 mm wide and 10 mm high.) In
mode 1, the arrow in the X direction indicates the longitudinal grain direction of the resonance boards and the arrow in the
Y direction indicates the longitudinal grain direction of the ribs. The other modes have the same grain direction indication
as that shown in mode 1.
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Table 3. Frequencies of soundboards for the first 10
modes.

Number of Resonance Resonance board
modes board (Hz) with six ribs (Hz)

1 31.7 46.3

2 52.4 75.6

3 73.0 109.9

4 77.2 119.7

5 102.9 138.6

6 105.9 172.5

7 129.5 189.0

8 139.3 204.8

9 139.8 229.3

10 163.0 232.2

shapes of resonance boards were distributed
nearly symmetrically along the grain direction
of wood. The vibration distribution of resonance
boards with ribs was nearly symmetric in the
range of modes 1 to 7. However, as the number
of modes increased, the vibration distribution
tended to be irregular, especially at higher natu-
ral frequencies. The addition of ribs increased
the complexity of the soundboard vibration.
Adding stiffeners to the soundboard (ribs)
improved the sound radiation efficiency,
because a stiffer soundboard had less tendency
to be subdivided into small vibrating areas as
shown in al0, b10, and c10 of Fig 4.

Table 3 shows that at a given number of modes,
the natural frequency of resonance boards with
ribs was higher than that with no ribs. Four
natural frequencies were below 100 Hz for res-
onance boards with no ribs, whereas only two
were below 100 Hz for that with six ribs, indi-
cating that the addition of ribs decreased the
resonance capability of soundboards at the
lower frequencies.

Rib Intensity

Figure 5a shows that little difference was found
in natural frequency between 6 ribs and 11 ribs
used in the soundboard. The average natural fre-
quency before mode 5 was improved by about
4 Hz when the number of ribs was increased from
6 to 11. In general, a larger number of ribs may
yield higher natural frequencies for the sound-
board. Figure 5b shows that a larger number of
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Figure 5. Effect of rib intensity on the vibration modes:
(a) natural frequencies; (b) maximum displacement (rib
intensity, 0, 6, and 11; species of resonance board and rib,
spruce; resonance board thickness, 8 mm; rib cross-section
dimension, 30 mm wide and 10 mm high).

ribs had a negative impact on the maximum
displacement of the soundboard, especially when
the mode was below 10. Similar results were
found by Ye (2011). Adding ribs enhances the
stiffness of resonance boards. Therefore, vibra-
tion capability and maximum displacement
were decreased.

Rib Cross-Section Dimension

Figure 6a shows the vibration modes of sound-
boards at three rib widths, 20, 25, and 30 mm.
The numerical results indicated that as rib width
increased, the natural frequency of the sound-
board increased but only 1.5% compared with
4.0% from the effect of rib height (the average
percentage change when width or height was
increased by 5 mm). The average natural fre-
quency before mode 5 could be improved about
2 Hz when the rib width increased from 20 to
25 mm. Figure 6b shows that the maximum dis-
placement increased as rib width increased, indi-
cating that a wider cross-section of the rib made
the resonance board more difficult to vibrate at a
given number of modes.

Figure 7 shows the effect of rib height on the
vibration modes of soundboards with six ribs. It
was seen from Fig 7a that at the given condition,
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Figure 6. Effect of rib width on the vibration modes of
soundboard with 6 ribs: (a) natural frequencies; (b) maxi-
mum displacement (rib width, 20, 25, and 30 mm; rib
height, 10 mm; species of resonance board and rib, spruce;
resonance board thickness, 8 mm).

the natural frequency increased as the rib height
and number of modes increased. The average
natural frequency before mode 5 was improved
by about 8 Hz when rib height increased from 10
to 15 mm. As shown in Fig 7b, as rib height
increased from 10 to 15 mm, maximum dis-
placement of the soundboard decreased when
the mode was less than 8. No specific trend was
found for rib height vs maximum displacement
when the mode was greater than 8. However,

400

N 10mm ="
T 300f o 15mm e
=

> —u—20mm ==
2 ==
€ 200 ==
o A=
z —="

100F(a A
£ 100p (8 o

ol o |

£ 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
£
= 16
c — —10mm
g 14F *—15mm 7[\\ KX
9 —=—20mm
o
,—E, 12k e '&/<
1] — .
210— i Y T Yy
5 (b)
[ | B A A R I S T SO S T P T Sl P T
g'Ui23456?8910111213141576
= Number of Modes

Figure 7. Effect of rib height on the vibration modes of
soundboard with 6 ribs: (a) natural frequencies; (b) maxi-
mum displacement (rib width, 25 mm; rib height, 10, 15,
and 20 mm; species of resonance board and rib, spruce;
resonance board thickness, 8§ mm).
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when rib height was increased to 20 mm, maxi-
mum displacement of the soundboard did not
show a specific trend. This could be because as
rib height increased, the anisotropic nature of
the rib might have a more complex effect on
soundboard vibration (Giordano 1997).

Among rib intensity, rib height, and rib width,
rib height presented the most significant effect
on natural frequency. The same conclusion was
also presented in Wogram (2000).

Rib Species

Figure 8 shows the effect of rib species on
vibration modes of soundboards with six ribs.
As shown in Fig 8a, at a given number of
modes, the natural frequency of simulated reso-
nance boards was the greatest for beech ribs
compared with the other two species, pine and
spruce. Table 1 shows that beech presents the
greatest density and mechanical properties
(except Er) among the three species used in
the study. A higher natural frequency of the
soundboard was obtained when beech ribs were
used compared with the other two species. As
shown in Fig 8b, spruce ribs presented the
greatest maximum displacement for the simu-
lated resonance boards, whereas beech showed
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Figure 8. Effect of rib species on the vibration modes of

soundboard with 6 ribs: (a) natural frequencies; (b) maxi-
mum displacement (rib width, 25 mm; rib height, 10 mm;
species of resonance board, spruce; rib species, spruce, pine,
and beech, respectively; resonance board thickness, 8 mm).
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Figure 9. Effect of resonance board thickness on the natu-

ral frequency of soundboards: (a) soundboard with no rib;

(b) soundboard with 6 ribs (resonance board thickness, 6, 8,

and 10 mm; rib cross-section size, 25 mm wide and 10 mm

high; species of resonance board and rib, spruce).

the lowest, especially when the mode was less
than 8.

Resonance Board Thickness

Figure 9 depicts the effect of resonance board
thickness on natural frequency of the sound-
board. Both Fig 9a and 9b show that the natural
frequency of the soundboards increased as the
resonance board thickness and number of modes
increased. However, increasing the thickness of
the resonance board decreased the amount of the
natural frequency that was below 100 Hz. As
shown in Fig 9b, greater thickness of the reso-
nance board led to higher natural frequencies.
The increase in natural frequency as the mode
for the soundboard with six ribs was much
quicker than that with no ribs. Increasing the
thickness of resonance boards and using ribs
enhance soundboard stiffness. Therefore, the
frequency increase rate was accelerated. These
results agree with previous experimental mea-
surements (Ye 2011).

CONCLUSIONS

1. CAD and FEA tools were successfully com-
bined to analyze modal characteristics of
piano soundboards. These methods provide a
more visual and convenient approach com-
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pared with other modeling and simulation
methods. The results from our visual and
numerical simulation were in general agree-
ment with the experimental results from prior
work in the literature.

2. The grain direction of wood affected the
mode shape of soundboards. Adding ribs
with the grain direction perpendicular to that
of the resonance board decreased the effect
of wood grain directions on the mode shape of
the soundboard. Among the 10 property
factors investigated, density presented the
greatest impact to the vibration mode of the
soundboard, followed by Young’s modulus,
shear modulus, and Poisson’s ratio. E; was
the most important factor among the three
Young’s moduli (E, Eg, and Et), whereas
Grtr was the most important among the three
shear moduli (Gtr, GLr, GL1). The Poisson’s
ratio from longitudinal to tangential (i)
presented the least effect to the vibration
mode of the soundboard.

3. Both increasing the thickness of the reso-
nance board and using ribs had a positive
impact on the natural frequency of the sound-
board. However, increasing the thickness of
the resonance board and using ribs decreased
the amount of natural frequencies that was
below 100 Hz.

4. The natural frequency of the soundboard
increased as rib intensity, density, and cross-
section dimension of ribs increased. The
numerical results showed that rib height had
a greater effect on the natural frequency than
that of intensity, density, and width of ribs.

5. In general, the increase of rib intensity from 0
to 11, density of wood (among spruce, pine,
and beech), and width of ribs from 20 to
30 mm decreased maximum displacement.
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