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ABSTRACT

Wood fibers offer excellent specific properties at low cost and are of interest as reinforcement in
composites. This work compares two alternative test methods to determine the stiffness of wood fibers
from simple macroscopic tests on fiber mats. One method is compression of the fiber mat in the thickness
direction, which uses a statistical micromechanical model based on first-order beam theory to describe the
deformation. The other method is tensile testing of fiber mats and back calculation of the fiber stiffness
with a laminate model. Experiments include compression tests and tensile stiffness index tests as well as
determination of fiber content, orientation, and dimensional distribution. For mats with unbleached soft-
wood kraft fibers, an effective value of the Young’s modulus of 20.1 GPa determined by the compression
method can be compared with values of 17.4–19.0 GPa obtained from tensile tests. These are in agree-
ment with values for similar cellulosic fibers found in literature. The compression method is more
appropriate for low-density fiber mats, while the tensile test works better for well-consolidated high-
density fiber mats. The two methods have different ranges of applicability and are complementary to one
another. Limitations of the methods are also discussed. The main advantage of the methods is that they
are quantitative. The potential as stiffening reinforcement of various types of fibers can be systematically
investigated, even if the fiber mat microstructures are different.

Keywords: Wood fiber, stiffness, fiber mat, test methods, composites.

INTRODUCTION

Background

Wood and cellulose-fiber composites are find-
ing increased use in load-carrying applications
since they offer excellent specific properties at a
potentially low cost. Wood fibers come from a
renewable raw material with almost unlimited
availability. They are generally lighter, recy-
clable, and biodegradable, and they have lower
ash content after incineration than, for example,

glass fibers. Drawbacks with cellulose-based fi-
bers are their sensitivity to moisture and large
variability in properties. The moisture sensitivity
derives from the abundance of hydroxyl groups
in the cellulosic material (Uesaka 2002). The
large variability is explained by differences in
fiber structure due to the overall environmental
conditions during growth, cambium age, posi-
tion in tree, and genetic effects (Haygreen and
Bowyer 1982).

The largest market share for composite appli-

Wood and Fiber Science, 38(1), 2006, pp. 95 – 111
© 2006 by the Society of Wood Science and Technology



cations is held by glass fiber-reinforced plastics,
and to some extent carbon fiber composites. The
wood-fiber composites should first be compared
with conventional contending materials like
glass mat thermoplastics (GMT) and various
sheet molding compounds (SMC). The automo-
tive and building industries are two examples
where research and development efforts are be-
ing made to use natural fibers as reinforcement
in plastics. Automotive applications include
door panels, car roofs, package trays, load
floors, spare tire covers, etc. In the building sec-
tor, typical applications are decking, fencing,
railing, windows and doors. Other potential ar-
eas of application of wood-fiber composites are
in e.g. the packaging and furniture industries. To
this end, the mechanical properties and dimen-
sional stability of wood-fiber composites must
be better understood.

The main engineering properties of compos-
ites to consider at the material selection stage are
stiffness, hygroscopic dimensional stability,
strength, and fracture toughness. For structural
applications with cellulose-based composite ma-
terials, the most relevant properties are probably
stiffness and hygroscopic dimensional stability.
To effectively predict the elastic properties of a
composite for a specific application, it is essen-
tial to know the elastic properties of the rein-
forcing fibers. An investigation of the hygroex-
pansional properties of wood fibers has been
presented in a previous paper (Neagu et al.
2005). In this accompanying paper, the stiffness
property of wood fibers for composites is fo-
cused on.

Methods of stiffness characterization

The increasing market competitiveness de-
mands cost-effective use of materials, as well as
more reliable designs. It is therefore enviable, at
an early stage in the product development chain,
to determine which type of wood fibers has the
best potential as reinforcement. The straightfor-
ward way to characterize the elastic properties of
the fibers is by direct testing of individual fibers.
However, single fiber tests are very time-
consuming and show daunting variability, mean-
ing that an enormous number of tests must be

done to acquire reliable statistics. This is antic-
ipated since the fiber properties vary with e.g.
wood species, position in the tree, fiber separa-
tion method, etc. (Haygreen and Bowyer 1982;
Bergander and Salmén 2000). A more efficient
way to determine the elastic properties of the
wood fibers would be from simple and conve-
nient macroscopic test methods in combination
with an appropriate mechanical model. A com-
mon approach is to measure macroscopic com-
posite properties and then use a micromechani-
cal model to back-calculate the fiber properties
(Cichocki Jr. and Thomason 2002; Gamstedt et
al. 2002; Nordin 2004). Since wood fibers are
supplied in the form of sheets, fiber mats, or
preforms, it would be desirable to test these
semi-manufactured components before the com-
posite is produced. Candidate fiber materials
could then be screened at an earlier stage in the
processing chain, and the most suitable type of
fiber for a certain application could be singled
out. Improved cost-effectiveness and a more ra-
tional quality control could then be achieved.
The aim of this work is to compare alternative
test-methods to determine the stiffness of wood
fibers from simple macroscopic tests on fiber
mats. Two candidate methods are illustrated in
the following. Even though these methods have
been employed with the aim to select stiff fibers
for reinforcement in composite applications, the
methods can just as well be used in the context
of pulp, paper, and board.

MICROMECHANICAL STIFFNESS MODELS

Two methods of data reduction are considered
for the wood fiber mats, namely (1) modeling of
the elastic compression in the thickness direction
of a fiber assembly with an in-plane fiber orien-
tation distribution and a distribution in fiber
cross-sectional dimensions, and (2) use of lami-
nate theory to describe the in-plane elastic be-
havior of a fiber mat. These are micromechani-
cal models since they use the fiber properties on
the microscale to link the microscopic deforma-
tion mechanisms to the macroscopic elastic be-
havior of the fiber mat.
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Compression of fiber mats in the
thickness direction

The model draws on the seminal work by Toll
and Månson (1995), who analyzed the elastic
transverse compression of a stochastic planar as-
sembly of fibers, which was subsequently gen-
eralized for fibers with a variable cross-section
by Alkhagen (2002). These methods are adopted
for the specific use in evaluating the wood fiber
stiffness in compression of fiber mats. Their ap-
plicability is subsequently tested on wood fiber
assemblies, where the fiber cross-section shows
considerable variability. For completeness, the
main features of the compression model pro-
posed by Toll and coworkers are presented in
this section with special reference to issues spe-
cific for wood fibers.

The distance between fiber contact points will
be large in a fiber mat with relatively low den-
sity where the fibers are assumed to be long and
distributed in one plane with an arbitrary orien-
tation. These are prerequisites for the model pro-
posed by Toll and Månson (1995), which is
based on bending of fiber segments between fi-
ber-fiber contact points. The basic idea is that in
an assembly of elastic fibers under static com-
pression, the load will be transferred across sur-
faces of contact between neighboring fibers. A

given fiber is thus subjected to a Herzian distri-
bution of contact stresses over its contact sur-
face. If the contact surfaces are small compared
to the area of the fiber segment span to the ad-
jacent fiber contact, the surface tractions can be
represented as pointwise acting forces. The fiber
mat can then be represented by a finite number
of contact points interconnected by elastically
deformating beams.

In the fiber mat, each fiber makes contact with
a number of other fibers crossing above and be-
low, as shown in Fig. 1a. When an external uni-
axial pressure is applied, the fibers act as beams
supported at the contact points. The segment of
the fiber that deflects between two supporting
fibers under the load of a third is termed a de-
forming unit, (cf. Fig. 1b), and can be regarded
as a stochastic unit cell (Toll and Månson 1995;
Toll 1998). When the network is compressed,
more fiber contact points are created and the
beam segments that provide resistance to com-
pression become shorter and stiffer. The deform-
ing unit defines also the geometry of the fiber
network in a way that resembles the microstruc-
ture of the fiber mat. Based on statistical prob-
ability methods, essential model parameters
such as the number of fiber contacts and the
distribution of contact spacing in the fiber mat

FIG. 1. (a) Structure of a wood fiber mat. (b) Deforming unit, shown with its characteristic measures: height h and length
l which is twice the average contact spacing �.
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can be estimated (Komori and Makishima 1977;
Toll 1993; Lu and Carlsson 1996; Alkhagen
2002).

For uniaxial compression, Toll and Månson
(1995) derived a relationship between the pres-
sure on the fiber network and the volume frac-
tion of fibers in the network. Upon an increase in
the overall external load, it is assumed that the
distribution of the incremental forces among all
deforming units of a certain height is indepen-
dent of the deforming unit height. The applied
pressure P is related to the volume fraction of
the fibers in the fiber mat Vf as

P = �
0

Vf N�h�u
2

Vf�s�u

dVf (1)

where N is the number of deforming units per
unit volume, 〈h〉u is the mean height, and 〈s〉u is
the average of the deforming unit compliances,
where 〈·〉u denotes average over the number of
deforming units. Only elastic reversible defor-
mation is considered. Dissipative mechanisms
such as frictional sliding at the contact points
and fiber breakage are not taken into account.
Strong fiber-fiber bonds imply little or no slip at
the beginning of the compression.

It is obvious that the height of a deformation
unit h will be proportional to the height of the
fibers H. By geometrical considerations under
the assumptions of small deformations and low
fiber volume fractions, i.e. h � H, it can be
shown that a small increment in compressive
displacement can be expressed as dVf/V � −dh/
h. The compliance of a deforming unit can be
calculated by using first-order beam theory. If
the fiber segment constituting a deformation unit
is regarded as a beam loaded at its midsection
and fixed at its ends, the average compliance can
be expressed as

�s�u = � 1

192

l3

ELI
�

u

= � 1

24

�3

ELI
�

u

(2)

where l, the length of the deforming unit, is sub-
stituted with twice the expected contact spacing
�, EL is the longitudinal Young’s modulus of the
fibers, and I is the area moment of inertia of the
fiber cross-section.

To take the appropriate averages of the pa-
rameters in Eqs. (1) and (2), it must be estab-
lished how the density and distribution of the
contact points are related to the fiber volume
fraction and the fiber orientation distribution. It
should be pointed out that there are many meth-
ods that can be used to calculate the number of
contact points. See Alkhagen (2002) and Zhu et
al. (1995) for a brief outline of some of them.
The theory of Toll (1993, 1998) and Alkhagen
(2002) is based on probability arguments that
can be readily extended to the wood fiber as-
semblies in this work. It is assumed that the fiber
orientation distribution p(�) and the fiber height
distribution p(H) are mutually independent. It is
also assumed that fibers are sufficiently long so
that the number of deforming units can be con-
sidered equal to the number of contact points.
Following the derivation of Alkhagen (2002),
the average of any given quantity taken over all
contacts is obtained by summation over all con-
tacts divided by the total number of contacts per
unit volume

���c =
Vf

N�Af�
����n1� (3)

where Af is the fiber cross-sectional area and nl

is the expected number of contacts per unit
length of the a fiber with orientation � and height
H, given by

n1 = Vf�Af�
−1��H + H��|sin�� − ���|�

= Vf�Af�
−1�H + �H���|sin�� − ���|� (4)

Equation (4) is obtained by introducing a so-
called test fiber with an orientation � and height
H. Then if an arbitrary ‘phantom’ fiber with ori-
entation �� and height H� is considered, a unit
length of it will intersect a given unit length of
the test fiber only if its centerline lies within a
volume of size (H + H�)|sin(� − ��)|. Setting up
the number of intersections of the phantom fi-
bers with the test fiber within a certain orienta-
tion-height interval d��dH� and integration over
all possible fiber orientations and heights gives
the expected number of contacts per unit length
of the test fiber nl in Eq. (4). Its reciprocal is the
expected contact spacing per unit fiber length,
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� � nl
−1. The total number of contacts per unit

volume is given in Eq. (5).

N = 2Vf
2�Af�

−2��|sin�� − ���|�� (5)

where the double average is defined as

����� = �����p���p����p�H�p�H��d�d��dHdH�
(6)

Substituting Eqs. (4) and (5) into Eq. (3), the
average over the contact points can be rewritten
as

���c =
������H + H��|sin�� − ���|��

2�H�f
(7)

where f is an invariant of the fiber distribution
orientation defined as (Toll 1993)

f = ��|sin�� − ���|�� = ��|sin�� − ���|p���p����d�d��
(8)

The fiber orientation distribution function
p(�) can be represented as a normalized Fourier
series expansion of the probability density func-
tion

p��� =
1

� �
n=0

�

an cos�2n�� (9)

with a0 � 1 and the rest of an arbitrary number
of Fourier cosine coefficients an can be deter-
mined experimentally. The angle � is the direc-
tion for a fiber relative to a predetermined di-
rection, typically the machine direction (MD).
Using Eq. (9) with the definition of f in Eq. (8),
a closed form expression can be obtained as

f =
2

�
− �

n=0

� an
2

4n2 − 1
(10)

which takes values from 0 for a unidirectional to
2/� for a uniform fiber orientation distribution.

Assuming that the contact points along a
given fiber are randomly spaced, the third mo-
ment of the expected contact spacing in Eq. (2)
can be evaluated as �3 � 6�3. Then the contact
spacing in Eq. (2) can be substituted with its
reciprocal, which is the inverse of the expected
number of contacts per unit length of the fiber, nl

in Eq. (4). Finally Eq. (7) is applied to Eqs. (1)

and (2), which after integration with Eq. (5) re-
sults in

P =
2�Af�

−5��H2� + �H�2�2f 4

5�I −1�H + �H��−2�
ELVf

5 (11)

The effects of fiber orientation distribution,
fiber segment loading, boundary conditions, and
variability in fiber cross-sectional dimensions
enter the above relationship as a direct propor-
tionality factor to the fiber stiffness times the
volume fraction of fibers raised to the power of
5, i.e. P � CELVf

5.
The fiber dimensions and their variation are

important model parameters and must be deter-
mined. For a rational characterization of the
cross-sectional dimension of the fibers, image
analysis methods and software are today widely
available. However, the majority of these pro-
grams have been developed for stereological in-
vestigations for application in the field of met-
allurgy, histology, etc. In the pulp and paper
research community, image analysis software is
typically used to determine the fraction of late-
wood (thick-walled boxlike) and earlywood
(collapsed) fibers from micrographs of a paper
sheet cross-section together with their corre-
sponding geometric parameters (Reme et al.
1999). Image analysis software can be used to
determine geometric parameters such as the
cross-sectional areas, perimeter, etc. from mi-
crographs of a fiber mat cross-section as illus-
trated in Fig. 2a. Quantities like the area moment
of inertia are usually not included in these soft-
wares. It is therefore necessary to estimate the
area moment of inertia from the typically quan-
tified values: fiber area Af, maximal fiber height
H, maximal fiber width W, lumen area Alu, maxi-
mal lumen height Hlu, and maximal lumen width
Wlu as shown in Fig. 2b. Treating the cross-
section as boxed shape would significantly over-
estimate the area moment of inertia. It would
therefore be better to use the measured quantities
and fit a superellipse with the general formula
|y/a|r + |z/b|r � 1 to represent the fiber cross-
section. The parameters a and b are given by
half the fiber/lumen width and height, respec-
tively, as indicated in Fig. 2b. The parameter r is
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obtained by fitting the measured fiber/lumen ar-
eas to

A = abrB� r

2
,

r

2� (12)

where B denotes the beta function. The area mo-
ment of inertia can then be calculated with (Jak-
lic and Solina 2003)

I =
1

2
ab3rB�3r

2
,

r

2� (13)

The volume fraction of fibers Vf of the mat
can be determined with respect to the applied
pressure P from load-displacement data of com-
pression tests of fiber mats if fiber mat gram-
mage, initial thickness, and cell-wall density are
known. The fiber orientation distribution and the
fiber cross-sectional dimensions are also neces-
sary input parameters since they determine the
proportionality factor in the power law relation
given by Eq. (11). The fiber stiffness can sub-
sequently be determined from the intercept of
the straight line of slope 5 if the power relation
is represented in double logarithmic scale. If
dealing with large experimental series, it might
be valuable to utilize a statistical data reduction
step as described in the next section. A con-

densed database with geometric distribution pa-
rameters for many fiber types could then be es-
tablished.

Statistical data reduction

For efficient data processing, it is of interest
to use statistical inference to formulate a prob-
ability distribution that describes the variability
of a population as accurately as possible. A log-
normal distribution can be used to represent the
variation in wood fiber cross-sectional dimen-
sions. This distribution has become an important
measurement model in engineering sciences as
an alternative to normal Gaussian distribution,
since its sample space admits only positive val-
ues and its shape more naturally fits many mea-
sured data frequency patterns. The lognormal
distribution is frequently used for strength and
lifetime data. A continuous random variable X
has a lognormal distribution if its probability
density function has the form

fX�x� =
1

x��2�
exp�−

1

2 �ln x − �

� �2�
(14)

where two parameters, the mean logarithm value
�, and the standard deviation �, suffice to de-

FIG. 2. (a) Confocal microscopy image of fiber cross-sections. (b) Fiber geometric parameters used to fit a superellipse
to the fiber cross-section.
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scribe large sample data. The lognormal distri-
bution also shows considerable flexibility of
shape, but is however always skewed to the left
with a longer right tail. Moreover, because of its
close relation to the normal distribution, many of
the exact normal inferential procedures transfer
directly to the lognormal distribution (Bury
1998).

The distribution parameters that describe the
variability of the fiber height H, area Af, and area
moment of inertia I are easily obtained as the
maximum likelihood estimates. Then the total
sample averages that enter Eq. (11) can be re-
placed with the expectation of the function that
describes the random variable. Thus, once the
distribution parameters are known, Eq. (11) can
be rewritten in terms of the expectations, de-
noted E[·], and variance, denoted Var[·], as

P =
E�Af	

−5�2E�H	2 + Var�H	�2

�E�I −1	E��H + E�H	�−2	
+ Cov�I −1,�H + E�H	�−2	)

2

5
f 4ELVf

5 (15)

where Cov[I −1,(H + E[H])−2] is the covariance
given by the interdependence between I −1 and
(H + E[H])−2, which must be determined nu-
merically directly from the sample data. Mo-
ments of a random variable give useful measures
that characterize the chosen statistical model.
The nth moment about the origin of a random
variable X with a lognormal distribution is

��n�X� = exp�n� +
n2�2

2 � (16)

For n � 1 the expected value of X results:
E[X] � ��1 gives the average value of all pos-
sible measurements on X. The mean of the in-
verse of X, E[X−1], is obtained by substituting
n � −1 in Eq. (16). Hence closed form algebraic
expressions can be obtained for expected values
of powers of H, Af, and I−1 as functions of their
respective distribution parameters. The variance
of X given in Eq. (17) is defined as the second
moment of X about the mean E[X]:

Var�X	 = exp�2� + �2��exp��2� − 1� (17)

The variance is a measure of the spread and its
square root gives the standard deviation as the
spread in the units of measurements. To evaluate
the term E[(H + E[H])−2] in the denominator of
Eq. (15), the definition of the expectation results
in an improper integral that cannot be expressed
explicitly in a closed form. An improved ap-
proach to compute the integral is to rewrite the
expected value and replace the infinite limit with
a finite value. This will certainly also facilitate
the numerical integration procedure. For this
reason, the sought-expected value E[(H +
E[H])−2] can be computed from the distribution
of a continuous random variable Y defined as

Y =
1

�H + ��1�H��2 (18)

where H � exp(Z) and Z is a continuous random
variable normally distributed with expected
value � and standard deviation �. Since H takes
values from zero to infinity, the possible values
of Y are given by the interval 0 to 1/(��1(H))2.
For t on the interval, the cumulative distribution
function of Y is readily obtained using the vari-
able substitution in Eq. (18) as

FY�t� = 1 − FZ� log� 1

�t
− ��1�H��� (19)

where FZ(·) is the normal cumulative distribu-
tion function. The density function of Y can be
obtained in terms of fZ(·) by taking the derivate
of Eq. (19) with respect to t. The expected value
of Y can then be calculated from the integral

E�Y	 = E� 1

�H + ��1�H��2�
= �

0

1
���1�H��
2 1

2�1 − ��1�H��t�

fz� log� 1

�t
− ��1�H���dt (20)

Now Eqs. (16), (17), and Eq. (20) can be in-
serted into Eq. (15) to give a direct proportion-
ality factor to 2fELVf

5/5 expressed in terms of
the distribution parameters of the fiber cross-
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sectional dimensions. The advantage of using
this statistical data reduction step is that the large
amount of data obtained from the image analysis
of the fiber mat cross-section can be condensed
to merely a few parameters that describe the
dimensional variability. Once the proportional-
ity factor has been determined for a specific fi-
ber type, the experimental evaluation procedure
is facilitated in analysis of mats with the same
kind of fiber but with different density and fiber
orientation.

Tensile stiffness index of fiber mats

The model outlined above is applicable on
fiber mats with low density and long fibers. For
fiber mats of fairly high density with strong
bonds and long fibers, laminate theory can be
used to model their in-plane elastic behavior.
The fiber mat can be considered as a homoge-
neous lamina where an orthotropic constitutive
relation describes its in-plane properties (Schul-
gasser and Page 1988; Neagu et al. 2005). The
principal directions of the laminate coincide
with the direction of manufacture (MD) and the
perpendicular cross direction (CD). The elastic
properties of wood fibers are highly anisotropic,
and the stiffness parameters depend primarily on
the fibril angle in the S2 layer of the cell wall
(Page et al. 1971; Page et al. 1977). The helical
structure of the fiber implies that axial deforma-
tion is coupled with torsion. Taking this cou-
pling into account would require a very detailed
analysis, which is not pertinent to the present
investigation. Instead, the fibers are assumed to
be transversely isotropic and uniform, which
overlooks the extension-twist interaction and the
presence of lumen. For high-density sheets, the
lumen is generally collapsed, even for most late-
wood fibers, due to high nip pressure at the con-
solidation state.

The elastic behavior of an individual fiber em-
bedded in the fiber mat is based on the assump-
tions outlined by Schulgasser and Page (1988).
It is reasonable to assume that (1) the fibers lie
in the plane of the fiber mat and are constrained
from rotating out of the plane, (2) there are few

if any unbonded fiber segments whose lengths
are comparable with or larger than the fiber
width, (3) each fiber is sufficiently bonded so
that the influence of the ineffective length of
shear load transfer at the fiber end is negligible,
and (4) uniform in-plane strain throughout all
material and absence of any out-of-plane
stresses are assumed. The laminate model
should apply to well-bonded fiber mats while
network models (Cox 1952) can be used to pre-
dict the elastic response of lightly bonded low-
density mats. These two models represent
bounds of fiber mat behavior, with the actual
response lying between the two extremes since
in reality there are variations in the local strain in
fiber mat under load. As a consequence for me-
dium-density fiber mats, a mosaic model that
accounts for differences in stiffness in bonded
and unbonded regions would provide a more ac-
curate description (Lu et al. 1995; Lu et al.
1996).

The components of the fiber stiffness matrix
are related to the engineering constants as
Q11 � EL/(1 − �LT�TL), Q22 � ET/(1 − �LT�TL),
Q12 � �LTET/(1 − �LT�TL) and Q66 � GLT. To
account for the inherent porosity of the fibers
and of the fiber mat, the stiffness matrix of fiber
should be multiplied with the volume fraction of
fibers in the fiber mat.

The effective stiffness matrix of a fiber mat
with a non-uniform fiber orientation distribution
p(�) given by Eq. (9) can be obtained through a
laminate analogy. Using invariant properties and
lamination parameters (Tsai and Hahn 1980), a
closed-form formulation can be developed for
the Young’s moduli of the orthotropic fiber mat,
EMD and ECD, as a function of the unknown
engineering elastic constants of the fibers, viz.
EL, ET,�LT and GLT. To reduce the number of
unknowns, one can impose certain reasonable
relations between these values by comparing dif-
ferent reported data in the literature. Let RA �
EL/ ET and RS � GLT/EL denote the anisotropy
ratio and the ratio of shear to the longitudinal
elastic modulus, respectively. If the major Pois-
son ratio is known, then EL can be determined
by minimizing the least square sum of the ex-
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perimentally measured values which gives the
following expression

E =
	f�RA − vLT

2 ��EMD
exp


EMD


EL
+ ECD

exp

ECD


EL
�

	�f11 f22 − f12
2 ��f 22

−1

EMD


EL
+ f 11

−1

ECD


EL
�
(21)

where E exp
MD and E exp

CD are the measured Young’s
moduli of the fiber mat in MD and CD, respec-
tively, 	 is the density of the fiber mat, and 	f the
density of the fibers, and f11, f22 and f12 are
functions that include the effect of anisotropy
and fiber orientation and can be expressed

f11 =
1

4
a1�RA − 1� + �1 −

a2

2 �
�vLT

4
+

RS

2
�RA − vLT

2 �� +
1 + RA

8 �3 +
a2

2 �
f22 =

1

4
a1�1 − RA� + �1 −

a2

2 �
�vLT

4
+

RS

2
�RA − vLT

2 �� +
1 + RA

8 �3 +
a2

2 �
f12 =

vLT

4 �3 +
a2

2 � + �1 −
a2

2 �
�1 + RA

8
−

RS

2
�RA − vLT

2 �� (22)

where a1 and a2 are Fourier cosine coefficients
of the distribution function given in Eq. (9). Ex-
pressions for the Young’s moduli of the fiber
mat EMD and ECD, obtained from the inverse of
the fiber mat stiffness matrix, are differentiated
with respect to EL. The derivate of EMD can be
evaluated as


EMD


EL
=

	

	f�RA − vLT
2 �
��1 −

RA

RA − vLT
2 �� f11 −

f 12
2

f22
�

+ EL�
f11


EL
−

f12

f22
�2


f12


EL
−

f12

f22


f22


EL
��� (23)

of ECD as


ECD


EL
=

	

	f�RA − vLT
2 �
��1 −

RA

RA − vLT
2 �� f22 −

f 12
2

f11
�

+ EL�
f22


EL
−

f12

f11
�2


f12


EL
−

f12

f11


f11


EL
��� (24)

The partial derivates of the f11, f12, and f22

functions can be obtained by derivation of the
expressions given in Eq. (22). The longitudinal
fiber elastic modulus in Eq. (21) can now be
solved using Eqs. (22)–(24). The fiber anisotro-
py ratio, shear to longitudinal elastic modulus
ratio, fiber major Poisson ratio, and of course the
measured fiber mat elastic moduli must be
known.

EXPERIMENTAL PROCEDURES

Materials and specimen manufacture

Unbleached softwood kraft fibers were used.
Hand-chipped and screened Norway spruce was
cooked and processed according to conventional
procedures to a kappa number of 46. Fiber mats
with a random in-plane fiber orientation distri-
bution were prepared in form of handsheets
manufactured according to standard ISO 5269–
1:1998. Oriented fiber mats were also prepared
from the same pulp batch using a dynamic sheet
former. Detailed process procedures are given in
Neagu et al. (2005). Different orientation distri-
butions were used to illustrate the generality of
the methods with respect to fiber orientation.
Four quadratic specimens with a side length of
50 mm were cut out from the isotopic fiber mat
for compressive testing. One specimen was sub-
sequently used to confirm that the orientation
distribution of the handsheet was indeed uni-
form. From the oriented fiber mats, specimens
were made for tensile testing with dimensions
of 100 mm × 15 mm cut both along the MD and
the CD.
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Determination of fiber content, orientation,
and cross-section

The grammage was determined according to
standard ISO 536:1995. To define the density,
the structural thickness of the fiber mats was
measured with two surface profilometers on
opposite sides of a nip through which the
specimens were pulled (Fellers et al. 1986). The
apparatus was carefully calibrated with a refer-
ence thickness, from which a deviation is mea-
sured.

The fiber orientation distribution was deter-
mined by a tape-splitting technique (Neagu et al.
2005). Two individual layers, the topside and the
wireside, were analyzed. The successive split-
ting procedure was pursued until the sublayers
contained an appropriate grammage for image
analysis. Image analysis software, which uses
gradient analysis by edge detection, was em-
ployed to determine the fiber orientation distri-
bution. The results are classified in histograms
with relative number of fibers in each angle in-
terval with respect to the MD.

To determine the cross-section geometry of
the fibers, confocal laser scanning microscopy
was used. The principles for and examples of
several applications of this technique to pulp and
paper research are given by Moss et al. (1993).
Micrographs, illustrated in Fig. 2a, were taken
representatively and uniformly over the cross-
section. A total number of 40 pictures were
taken on each sample. The micrographs were
analyzed with the commercial image analysis
program Optimate 6.2 (Media Cybernetics). A
suitable threshold was empirically determined so
that the thresholded images would have the best
resemblance with the observed contours of the
fibers in the original images. Manual manipula-
tion of every image was done in order to sepa-
rate fibers of interest from artefacts. When the
images had been edited, the program calculated
the fiber dimensions. Only fibers lying almost
perpendicularly to the plane of the specimens
were analyzed. Cross-sectional parameters were
obtained as the maximum and minimum fiber
height and width, maximum and minimum lu-
men height and width, fiber cell-wall area and

thickness, lumen area, fiber and lumen perim-
eters.

Compressive and tensile testing of the
fiber mats

An MTS testing machine with a load cell of
40 kN in load control was used for compressive
testing. Two parallel plates were pressed to-
gether with the fiber-mat specimen in between
them while the load and displacement were re-
corded, as shown in Fig. 3. The specimens were
compressed to a load of 1 kN in 0.5 s and un-
loaded at the same rate. The distance between
the press platens was measured as the mean
value of the signals from two eddy current trans-
ducers (Kaman Multi-Vit) at a sampling rate of
100 Hz. The fiber volume fraction Vf could be
determined directly from the distance between
the press platens since the grammage and cell-
wall density were known. For each specimen,
the relationship between the pressure and the
fiber volume fraction during the on-loading part
was used to describe the compaction behavior of
the isotropic fiber mat.

The tensile stiffness index, equivalent to the
Young’s modulus divided by the fiber mat den-
sity, was measured according to standard
SCAN-P 67:93, using a paper tensile tester from
Lorentzen & Wettre AB. All experiments were
performed at room temperature 23°C and rela-
tive humidity of 50%.

FIG. 3. Experimental set-up for compressive testing of
the fiber mats.
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RESULTS AND DISCUSSION

The results of the microstructural character-
ization are presented before the models are em-
ployed to estimate the effective Young’s modu-
lus of the fibers. Finally the two methods are
compared and advantages and disadvantages are
outlined.

For the isotropic and oriented fiber mats, the
grammage was determined to 185 g/m2 and 187
g/m2, respectively. The thickness measurements
resulted in an initial thickness of 0.616 mm for
the isotropic fiber mat and a thickness of 0.557
mm for the oriented fiber mat. This implies that
the isotropic fiber mat had an initial density of
300 kg/m3, which is slightly lower than the den-
sity of the oriented fiber mat of 336 kg/m3.

Fiber orientation measurements on the isotro-
pic fiber mat confirmed that the fiber orientation
distribution was virtually uniform. Results ob-
tained for the wireside and topside of the fiber
mat shown in Fig. 4a demonstrate a near-
uniform distribution. The Fourier cosine coeffi-
cients of the distribution function of the fiber
orientation distribution a1 and a2 can be as-
sumed to be zero for isotropic fiber mats.

The through-thickness variation of the orien-
tation distribution of the oriented fiber mat has
been presented by Neagu et al. (2005). It was
concluded that fiber mats manufactured with the
dynamic sheet former have a fiber orientation
distribution that is symmetric with respect to the
MD throughout the thickness of the sheet and
has a thickness gradient, which is evidence of a
non-negligible two-sidedness. In Fig. 4b the
measured orientation distribution histogram
with a corresponding fit to the orientation dis-
tribution function given by Eq. (9) is shown for
the wire and topside of the oriented fiber mat.
For the purpose of this work, average values for
the orientation parameters, a1 � 1.26 and a2 �
0.62, suffice to account for the influence of the
fiber orientation. The fact that the fiber mat has
a thickness gradient of fiber orientation can be
exploited to estimate the hygroexpansion coef-
ficient of the fibers (Neagu et al. 2005).

To obtain the necessary geometric parameters
of the fiber cross-section, a total of 215 fibers

were analyzed. This number should be represen-
tative for the whole fiber population in the fiber
mat. A lognormal distribution was used to rep-
resent the distribution of wood fiber cross-
sectional dimensions. The results are summa-
rized in Table 1 as estimated lognormal distri-
bution parameters, � (mean of logarithm value)
and � (corresponding standard deviation) of the
geometric parameters: fiber height H, fiber
width W (see Fig. 2b), cross-sectional fiber area

FIG. 4. Fiber orientation distribution of the wireside and
topside of (a) the isotropic fiber mat and (b) the oriented
fiber mat.

TABLE 1. Lognormal distribution parameters of fiber
geometries.

Parameter H (�m) W (�m) Af (�m2) I (103�m4)

Mean value � 2.44 3.84 5.93 8.46
Standard deviation � 0.74 0.39 0.50 1.95
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Af and the calculated area moment of inertia I.
Kolmogorov-Smirnov goodness-of-fit tests were
performed to verify that the cross-section dimen-
sions follow a lognormal distribution at a sig-
nificance level of 5%. The Kolmogorov-
Smirnov statistic also showed that the lognormal
distribution is generally a better candidate than
the two-parameter Weibull distribution for the
measured dimensions.

Compression test results

Compression test results for one of the speci-
mens are shown in Fig. 5. The density of the
fiber wall 	f can be assumed to be 1500 kg/m3

(Kajanto et al. 1998). The density of the fibers
was estimated as 	f times a correction factor to
include the lumen with unchanged volume, since
the deformation mechanism is assumed to be
beam bending where no transverse compression
of the cell-wall is allowed. A correction factor of
0.77 was calculated as the average of the ratios
of fiber wall area to total fiber area including the
lumen in cross-section images.

An effective value of the longitudinal
Young’s modulus of the fibers can be obtained
by fitting the power law expression given in Eq.

(11) to the experimental data in Fig. 5. Fitting of
an arbitrary power law function (dashed-dotted
gray line in Fig. 5) resulted in an exponent
higher than the expected exponent of five. The
fix exponent value is a consequence of the cho-
sen deformation mechanism of elastic bending
of fiber segments between fiber-fiber contact
points. Madsen and Lilholt (2002) performed
several successive compaction cycles on isotro-
pic hemp, jute, and flax fiber assemblies and
showed that the exponent almost doubled at the
second compaction cycle reaching values larger
than five. Further compression cycles made the
exponent increase even further. It should be
noted that the fiber mats used in this study are
pressed before dried, as is common practice in
manufacture of handsheets. Another contribu-
tion to a high exponent is fiber slippage. For
lubricated mats where fibers can slip against
each other, the slope in the log P-log Vf plot has
been shown to become higher (Toll 1998).

In case Eq. (11) is fitted to all data points, the
predicted fiber moduli become unreasonably
high. This could be explained by the rather high
density of the tested fiber mat, which gave an
initial Vf as high as 0.26. An assumption is that
the distance between the fiber-fiber contact
points is large. When Vf increases the distance
between the fiber-fiber contact points decreases.
A key assumption of the model that the surface
traction can be represented as pointwise acting
forces might not be valid. Fiber length does not
enter the analysis but might be important be-
cause presence of free fiber ends affects the av-
erage compliance of the deformation units, es-
pecially for low aspect ratio fibers (Toll 1998).
The fibers used in this study have an aspect ratio
of about 100 so that the fiber mat under self-load
should form a large enough number of contact
points per fiber to behave as if the fibers were
infinitely long. Moreover, first-order beam
theory might not be able to describe the defor-
mation mechanism, and other theories that in-
corporate shear deformation should perhaps be
considered. Other deformation mechanisms such
as compression of the fiber wall are more likely
to step in, which could also be an explanation to
the stiffer behavior of the model (Jones 1963;

FIG. 5. Double logarithmic plot of pressure vs. volume
fraction from a compression test. Gray squares represent all
experimental data to which an arbitrary power law function
is fitted, i.e. the dashed line. The black continuous line is a
linear regression of Eq. (11) to truncated experimental data
only, given by the black circles.
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Provatas and Uesaka 2003; Lundquist et al.
2004). It is also probable that local deformation
becomes inelastic, which ultimately leads to fi-
ber breakage or crushing.

To exclude higher-order elastic effects from
transverse fiber compression and shear stresses,
the experimental data were truncated. Equation
(4) was used to calculate the average of the ex-
pected number of contact points per unit length
of a fiber and its inverse gave the average length
of a deforming unit l (see Fig. 1b) as functions of
Vf. The ratio between the mean width of the
fibers E[W] and the average segment length l
could be used as an average measure of the ‘rela-
tive bonded area’ per deforming unit, denoted
RBA (Sampson 2003). An approximately linear
relationship between Vf and RBA was obtained.
In Fig. 6 the effective Young’s modulus of the
fibers EL is shown. It can be seen that the fiber
stiffness is almost constant up to a critical RBA
value (marked by the dashed line at the knee
point in Fig. 6) where the stiffness rises drasti-
cally. The critical RBA value and the corre-
sponding Vf value were used to truncate the ex-
perimental data. In Fig. 5, the data points
marked with black squares are used to fit to Eq.
(11), i.e. the black line of slope 5 in a double-
logarithmic plot. The experimental data show a
notably steeper slope than expected. This strain
hardening effect could be attributed to straight-

ening of curled fibers. The results from the other
specimens were treated in the same way, and the
resulting average of all tests for Young’s modu-
lus of the fibers was 20.1 GPa with a standard
deviation of 1.9 GPa. It should be emphasized
that this average value is merely an effective
measure of the modulus since the exponent is
higher than the expected value of five for pure
beam bending. However, for fiber mats exhibit-
ing the same deformation mechanism and same
exponents, these effective values can be used as
a measure of the fiber stiffness for comparison
and quantification of the fiber qualities.

In a similar way the statistical data reduction
steps in Eqs. (15)–(20) were applied, together
with the distribution parameters of the fiber
cross-sectional dimensions given in Table 1, to
calculate the effective Young’s modulus of the
fibers. The predicted average effective modulus
was 30% lower than the one estimated by brute
force using Eq. (11) and the raw data from fiber
cross-section measurements. The chosen lognor-
mal distribution is limited to two parameters, �
and �. It can be seen in Fig. 7 that even though
the estimated distribution captures the main fea-
tures of the empirical distribution, there is a dif-
ference in particular for the higher tail. The
maximum-likelihood estimated distribution
function, overestimates the occurrence probabil-
ity for high values of H. This skewness mani-
fests itself in an overestimation of E[H2] �

FIG. 6. The Young’s modulus of the fibers, EL vs. rela-
tive bonded area, RBA. Gray squares represent all data
points, while black circles give the data up to the critical
RBA value marked by the dashed line.

FIG. 7. Empirical and estimated lognormal cumulative
distribution function for the fiber height H.
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E[H] 2 + Var[H]. This is the reason for the lower
effective Young’s modulus after data reduction
to distribution parameters as compared with the
modulus value calculated directly from the en-
tire set of sample data. Density plots revealed a
tendency of a bimodal distribution of the fiber
height, which indicated that the fibers are prob-
ably better categorized into two distinct early-
wood and latewood fractions. There is always a
trade-off between the number of distribution pa-
rameters and precision. Given the relatively
large scatter of fiber dimensions, a two-
parameter distribution was considered appropri-
ate for the present data.

Tensile test results

The tensile stiffness index was determined to
9.71 (0.60) MNm/kg in the MD of the fiber mat
and to 1.03 (0.16) MNm/kg in the CD. These are
average values and standard deviations (given in
parentheses). The volume fraction of the fibers
in the fiber mat was 0.22. Before using the lami-
nate micromechanics model, Eqs. (21)–(23), to
estimate the stiffness of the fibers from the mea-
sured tensile stiffness indices, plausible values
of RA � EL/ET, and RS � GLT/EL must be
established. Based on the review of literature
data on the anisotropic elastic properties of
wood fibers in Neagu et al. (2005) a suitable
range of stiffness ratios is selected. The ratio,
EL/ET, ranges from 2 to 10 and GLT/EL is chosen
to 0.1. The major Poisson ratio is set to �LT �
0.3 (Bergander and Salmén 2000). The variation
of the longitudinal Young’s modulus of the fi-
bers with the anisotropy ratio, shown in Fig. 8, is
not exceedingly large—from 17.4 GPa to 19.0
GPa.

The value of the longitudinal Young’s modu-
lus obtained in this study, 17.4–20.1 GPa for
unbleached softwood kraft fibers, can be com-
pared with values for similar cellulosic fibers
found in literature. For fibers from Norway
spruce, Scotch pine, and Douglas fir, various
Young’s moduli in the dry state ranging from 13
to 25 GPa have been reported, with delignified
fibers and thermomechanical pulp generally

having the lower values (Leopold 1966; Ehrn-
rooth and Kolseth 1984).

Comparison of methods

The effective Young’s modulus of the fibers
of 20.1 GPa determined with the micromechani-
cal compression model compares relatively well
with the values of 17.4–19.0 GPa obtained by
means of back calculation from the macroscopic
elastic properties of the fiber mat. Although the
methods are fundamentally different with differ-
ent applicability, they provide quantitative re-
sults since the fiber volume fraction, orientation
distribution, and fiber dimensional variability
are taken into account. This is the main advan-
tage with using these types of methods as the
potential of various types of fibers can be inves-
tigated, even if the microstructures are different.
The two methods are complementary, since the
compression method is appropriate for low-
density fiber mats and while the laminate model
works better for high-density fiber mats.

There are some matters of concern regarding
the applicability of the two methods. The com-
pression method assumes point loads of
Bernoulli-Euler beams. At high volume frac-
tions, shear deformation and transverse fiber
compression need to be taken into account.
Since the fibers are elastically unbalanced due to
their helical microstructure and they are fre-

FIG. 8. The longitudinal Young’s modulus of the fibers
as function of the fiber anisotropy ratio for GLT/EL� 0.1.
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quently kinked, twisting of fibers is also a likely
deformation mechanism which is not modeled at
this stage (Page et al. 1971). As for the tensile
test of fiber mats, the laminate model assumes a
dense packing of fibers and efficient stress trans-
fer along the entire fiber lengths. The assump-
tion of uniform strain leads to upper bounds on
the elastic constants and to an overprediction of
the fiber mat stiffness, thus an underestimation
of the fiber Young’s modulus back-calculated
from fiber mat properties (Lu et al. 1995). An-
other source of difference between predictions
and experiments can be less than perfect bond-
ing between fibers and unbonded parts of the
fibers, which are free from adjacent constraints
and likely to buckle and twist on loading (Page
et al. 1971; Page and Seth 1980).

The two tests are suitable at mutually exclu-
sive microstructures. The aim of the present
study was to investigate the applicability of the
test methods to determine the fiber stiffness.
Since fiber mats of approximately the same den-
sity were used for the two tests, it is noteworthy
to see that the estimated Young’s moduli of the
fibers were relatively close, despite the differ-
ence in model assumptions, although the effec-
tive value from the compression test should be
regarded as relatively coarse. It is probable that
the investigated fiber mats have a microstructure
somewhere between the two extremes, and that
the estimated fiber stiffness should fall in the
range between the two estimations.

Further development

It has been shown that the two alternative test-
methods investigated could be adopted for the
specific use in evaluation of the wood fiber stiff-
ness. Advantages, disadvantages, and some mat-
ters of concerns regarding the present microme-
chanical treatment have been outlined. Some un-
resolved issues that remain to be addressed are
discussed in this section.

To make the compression method more useful
for a larger variety of wood fiber mats, further
model refinements need to be done to describe
the deformation mechanisms relevant for these
fiber mats. A first step would be to experimen-

tally identify and quantify the deformation
mechanisms. This is not an easy task for the bulk
of the fiber mat. A possible way would be to use
X-ray microtomography for in situ characteriza-
tion to study the change of the internal micro-
structure during compressive loading. This
method has proven useful for static conditions in
wood fiber mats (Antoine et al. 2002), as well as
for tensile loading of individual wood fibers
(Keckes et al. 2003). This would provide insight
into fiber orientation, fiber contact density, spa-
tial distribution of fibers, fiber bending vs. fiber
compression, contact point distribution etc. In
addition to fiber beam bending, the inclusion of
shear deformation in the fibers and transverse
fiber compression should probably also be in-
corporated in the model to account for the active
mechanisms. This would however mean that the
simplicity of the analytical formation in Eq. (11)
would be lost, and a numerical approach should
be necessary. A better correspondence with ex-
perimental pressure-fiber content data in Fig. 5
is anticipated in a more comprehensive model,
and the estimated elastic properties of the fiber
would become more trustworthy.

Another reason for studying the compressive
behavior of wood fiber mats is improved under-
standing of manufacturing of composites. The
compaction of fibrous reinforcement is common
in a number of composite processing techniques.
This occurs in resin transfer molding (RTM),
vacuum infusion, and flow of a suspension of
fibers in a viscous thermoplastic resin, e.g. hot-
press molding of GMTs (Servais et al. 2001).
For RTM, the degree of fiber packing controls
the permeability of the fiber bed as well as nec-
essary clamping forces to close the mold. This
set the limits for achievable fiber content (Toll
1998). Since wood fibers are gaining increased
use as a composite reinforcement, manufactur-
ing issues are becoming more important.

Comparison with numerical results could also
be useful. For a more precise prediction of the
fiber contact density and spacing for fibers with
wide distributions of cross-section dimensions,
Monte Carlo simulation is an alternative. In this
way, the fibers could be placed in spaces not
already occupied by other fibers (Lu and Carls-
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son 1996). Drawbacks are of course that many
simulations must be carried out for each new
material, and that the results are therefore not
readily integrated into a constitutive analytical
model (Alkhagen 2002). The statistical model
employed here works well for dilute concentra-
tion of long fibers. For fibers with sufficiently
low aspect ratios, the free fiber ends should have
a significant effect on the contact density and the
mean compliance of a deformation unit (Toll
1998). Finally, the assumption that distribution
of incremental forces in a deformation unit is
uncorrelated with its height might break down if
the fibers are very different in size and stiffness.

As for the in-plane tensile test of fiber mats, it
works well for high-density mats with well-
bonded fibers. It would be interesting to see how
it works for fiber mats with lower densities
where network and hybrid or mosaic models
could be more appropriate. Boundaries of the
applicability of different models should be de-
lineated. Based on a more fundamental under-
standing, it should be possible to develop more
straightforward engineering models or rules of
thumb for selection of prospective fibers for
composite applications by simple testing of
forms prior to composite manufacture.

CONCLUSIONS

The effective longitudinal Young’s modulus
of wood fibers has been determined from com-
paction and tensile tests of unimpregnated
wood-fiber mats. A micromechanical approach
was used to account for the volume fraction,
orientation distribution, and dimensional vari-
ability of the fibers. In this way quantitative re-
sults can be obtained and used to evaluate the
potential stiffness contribution of different types
of wood fibers for reinforcement in composites.
The range of applicability for the compression
model is limited to low-density fiber mats of
fibers with high aspect ratio. For high-density
fiber mats with strong bonds and long fibers, an
in-plane tensile test and a laminate model are
more appropriate. The macroscopic stiffness
properties of the fiber mat are then needed as
input parameters. Results from the two methods

compare well despite the difference in assump-
tions of the two models, although the values
from the compression model should be regarded
as a relatively crude effective measures at this
stage. Obtained values for the longitudinal
Young’s modulus ranged from 17.4–19 GPa
(laminate model) to 20.1 GPa, (compression
model) for unbleached softwood kraft fibers and
are in agreement with values for similar cellu-
losic fibers found in literature.
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