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ABSTRACT

The state of the art among most industry citations of box compression estimation is the equation by
McKee developed in 1963. Because of limitations in computing tools at the time the McKee equation was
developed, the equation is a simplification, with many constraints, of a more general relationship. By
applying the results of sophisticated finite element modeling, in this current study we derive a more
general box compression formula that preserves the underlying theory of the McKee equation but removes
the constraints. This formula is solvable with modern spreadsheet software, and we present an imple-
mentation method and example outputs as we relax or impose the various constraints. We analyze data
obtained from multiple literature sources containing the traditional McKee equation inputs. We quantify
the disparity between the McKee equation and the various sources of data and present an improved model
for single-wall box-compression strength. The model attaches physical meaning to what were previously
only fitting parameters, and it can serve as a tool for additional explorations in box optimization.

Keywords: Box compression, strength, model, bending stiffness, ECT, BCT, buckling.

INTRODUCTION

Corrugated fiberboard is a primary material in
the shipping, distribution, and storage of almost
every product. Boxes made from corrugated
board provide temporary protection from com-
pression forces for products in transit or stacked
in warehouses. In this environment, top-to-
bottom box compression strength is an important

performance criterion that may even be specified
in the negotiation of price.

Ever since the broadening of motor freight
and rail carrier classifications in 1936 to include
corrugated fiberboard shipping containers,
manufacturers have sought predictive strength
models for corrugated boxes. Researchers have
attempted to generate predictive equations that
would reliably estimate box compression
strength without requiring the actual production
and testing of every box. At the USDA Forest
Products Laboratory, Madison, Wisconsin, ini-
tial scientific analysis of boxes predates World
War II. Kellicutt and Landt (1951) summarized
much of this work with basic design principles

1 The Forest Products Laboratory is maintained in coop-
eration with the University of Wisconsin. This article was
written and prepared by U.S. Government employees on
official time, and it is therefore in the public domain and not
subject to copyright.
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in terms of correlations between material com-
pression strength and panel buckling strength. In
this study, we expand upon those same prin-
ciples.

McKee et al. (1963) published what has be-
come the industry’s seminal article in this area,
including detailed citations of the literature that
preceded their analysis. Their work resulted in
an equation to predict single-wall (SW) box-
compression strength P, commonly called sim-
ply the “McKee equation,” of the form

P = aPm
b ��DxDy�1−bZ2b−1 (1)

where Pm is the edge-crush value of the com-
bined board, Dx and Dy are the flexural stiffness
values for the combined board in each direction,
and Z is the perimeter of the box to be modeled.
As we shall discuss, this functional form is a
simplification, with many constraints, of a more
general relationship. Similar functional forms
were found by Buchanan et al. (1964) and Shick
and Chari (1965) to work for double-wall (DW)
containers as well. Wolf (1972), Batelka and
Smith (1993), and Challas et al. (1994) found it
important to include additional terms to account
for the box geometry, though the various ap-
proaches that include geometry explicitly do not
agree.

Using Eq. (1), McKee et al. (1963) reported
the average difference in magnitude between
predicted and actual compression strength of
their data set as 6.1%, with 97% of their data
within ±15% of the estimated value and a maxi-
mum difference of 17.1%. Subsequent literature
reported even better accuracy for specific data
sets with geometry effects included. However,
the goal of developing a predictive model should
not be an equation that describes a limited data
set exceptionally well but rather an equation
with good inter-laboratory precision and accu-
racy—one that can adequately address all the
available data.

The round-robin analysis of compression data
on actual containers by Miles (1966) provides an
objective quantification of how accurate any
model could be expected to be. Eleven labora-

tories tested empty regular slotted containers of
a single material grade and size. The simplest
model of all the data would make P equal to the
overall average strength. Given that model pa-
rameters are generated with real world data, we
cannot expect any model to do better than the
variability in testing of the input parameters.
However, the difference between experimental
variability and modeling variability is a real cost
associated with box production, resulting in
boxes that may be over-designed to compensate
for a lack of model precision. Improving the
accuracy of our models would remove some of
this extra cost from the manufacturing process.

The various studies estimating box compres-
sive strength do not all report the same values
for a or b in their fits to Eq. (1), though they all
typically report their values to three or more
“significant” figures. They also do not report the
statistical range on these values, which is of in-
terest given that all the values were arrived at
through curve fitting. As an example, simply by
reading the articles, we do not know if McKee’s
value b � 0.746 is equivalent to the value 0.75
used by Wolf (1972), 0.724 used by Shick and
Chari (1965), or 0.778 found by Buchanan et al.
(1964). More recent literature might lead us to
conclude that ∼0.75 is a reasonable value for the
exponent b, while 2–3 is a reasonable value for
a, independent of the construction of the corru-
gated container. While in practice these simpli-
fications are often implemented at some loss of
accuracy in estimation quality, it is not clear that
they are legitimate for each data set individually
or for the entire mass of data available in the
literature. Furthermore, increasing a by 50% in a
given equation would lead to a 50% increase in
predicted box compression. Clearly this is not
realistic for a given set of data.

It is also important to note that in many analy-
ses that have followed McKee’s analysis, the
original parameters (a and b) of the McKee
equation are assumed in one form or another.
The data sets themselves are fit only insofar as
changes are made to the initial form, typically by
incorporating the impact of box dimensions.
This approach raises questions about the validity
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of the resulting functional forms, given that all
the parameters were not allowed to change in-
dependently during the minimization of the error
term in the fitting process.

Aside from production variables, at least 17
elastic constants appear to be applicable to cor-
rugated fiberboard. Libove and Hubka (1951)
identified 12 constants, of which three were
checked experimentally, appropriate to general
symmetrical corrugated-core sandwich plates.
Asymmetric plates need an additional five cou-
pling constants. In this report, our theory in-
cludes four of the constants in the form of Dx,
Dy, ĉ, and �, and as we will show, most indi-
vidual data sets can be characterized working
only with Dx and Dy. With broadened data, Kel-
licutt and Landt (1951) and Kawabata (1997)
advocated empirical flute-adjustment factors.
However, with the exception of our parameter �,
we reserve such adjustments and a rationale for
reducing 17 elastic constants to an effective four
constants for future work. We shall also cite a
background nonlinear material theory, but limit
this report to a linear material theory.

OBJECTIVE

Working with dimensionless expressions in-
stead of the elastic constants helped Urbanik
and Saliklis (2003) to understand the developed
models, even though such expressions are not
typically encountered among box designers. The
objective of this report is to apply the results
of previous work (Urbanik and Saliklis 2003)
to analyze all known available box compres-
sion strength data. We compile and analyze 19
data sources1 currently available, explain some
discrepancies among estimation formulas found

in the literature, and provide a deeper under-
standing of the factors that influence estima-
tion of box compression. The assumptions made
throughout are that container performance is
fixed by the physics of the boxes tested, and the
purpose of testing and estimation is to arrive at
fundamental physics to best understand and pre-
dict failure mechanisms. With that in mind, we
also uncover several areas for additional re-
search and expansion on current knowledge.
This work is necessary if the corrugated con-
tainer industry hopes to understand its product
well and achieve materials savings and economy
by reducing product variation.

LINEAR MODEL

Advancements in the understanding of paper
material have allowed researchers to investigate
the effects of material properties and geometry
on corrugated fiberboard strength that were not
considered in the McKee formula. In particular,
comparisons by Urbanik and Saliklis (2003) be-
tween finite element predictions of plate buck-
ling strength and fitted formulas enabled re-
searchers to numerically investigate a broad-
based strength response of simulated box panels
economically.

The two-part formula given by Urbanik and
Saliklis (2003) characterizing the postbuckling
strength of box panels can be expressed more
simply as

Pf

Py
= ��Pcr

Py
�u�

(2)

Input u � 1 characterizes elastic buckling ap-
propriate when the slenderness ratio U > 1, or, in
other words, when the total load the plate can
support exceeds the critical buckling load, and
u � 0 characterizes inelastic buckling when
U � 1. Only elastic buckling was considered by
McKee et al. (1963) in the development of
Eq. (1).

Complexities in calculation led McKee et al.
(1963) to simplify the fundamental Eq. (2) to
reach Eq. (1). To remove these limiting assump-
tions, we start with Eq. (2) in its most general-

1 Data analyzed in this study were taken from Angell and
Paslay (1959), Batelka and Smith (1993), Bormett et al.
(1981), Brodeur et al. (1997), Buchanan et al. (1964), Chal-
las et al. (1994), Fahey and Bormett (1982), Gartaganis
(1975), Hahn et al. (1992), Hartikainen (1989), IPC (1967),
Koning and Moody (1969), Koning and Godshall (1975),
Little (1943), McKee et al. (1963), Schrampfer et al. (1987),
and Shick and Chari (1965). We also used unpublished data
from P. McKinlay and B. Frank (Materials Testing Labo-
ratory, Packaging Corporation of America).
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ized form and follow the procedures of Urbanik
and Saliklis (2003).

Pf

Py
= ��0

u��̂a
u� (3)

Equation (3) is applicable to either a linear or
nonlinear material law. Corrugated fiberboard is
inherently a nonlinear material, with curvature
in its load-strain relationship. Furthermore, evi-
dence from sophisticated modeling seems to fa-
vor a nonlinear input. However, to fully under-
stand nonlinear material modeling, we must
thoroughly understand the linear material re-
sponse. Thus, in this study we investigate the
response involving only a linear material law
and incorporate the rule �̂a � CS�� to obtain

Pf

Py
= ��0

u��CS���u� (4)

Another implicit assumption in the McKee
formula is the form of the critical load Pcr ap-
propriate for an infinitely long plate, neglecting
twisting mechanics. By replacing the plate stiff-
ness S in Eq. (4) with equivalent physical prop-
erties, we are able to treat the general case of Pcr

expressed in relation to Pcr

Pf

Py
= ��0

u��C
12�DxDy

�0Pyl2
���u�

= ��3C��

	2 �u��Pcr

Py
�u�

(5)

Equation (5) and input Pcr are written with box
panel dimensions in mind—with either length l
or width w of the box input as the plate size. By
calculating the compression for each panel and
summing appropriately, we are able to avoid the
assumption made by McKee that all boxes are
square and that the perimeter Z should be used.

We also remove the McKee assumption that
boxes must be relatively tall. By introducing pa-
rameter C into Eq. (5), we have accounted for
buckling waviness in the direction of box depth
and can deal with both tall and squatty boxes.
The expression for C is to be evaluated for the
simple support condition at the wave period

given by 
 � m	/2� and at the integer value of
m that yields a minimum C.

C =

2

3�1 − v2�
�� ĉ +

	2

4
2�2

− ĉ2 + 1�
= min

m=1,2,3...

	2

12�1 − v2�
�2ĉ +

�2

m2 +
m2

�2�
(6)

The result of substituting the minimum C into
Eq. (5) leads to

Pf

Py
= ����

2ĉ + M

4�1 − v2�
�u��Pcr

Py
�u�

M�m,�� = min
m=1,2,3...

��2

m2 +
m2

�2� (7)

To obtain a form appearing as a more general
expansion to Eq. (1), we can substitute expres-
sions for Pcr and �, transform constants as � �
a(64	2)b−1 and � � 1 − b, use Py � Pm and
rearrange terms to get the following expressions
for the cases of inelastic and elastic buckling:

For inelastic buckling,

Pl = Pfl = a16b−1�4	2�b−1Pml u=0
(8)

For elastic buckling,

Pl = Pf l = a16b−1Pm
b ��DxDy�1−b

l2b−1��d

l �Dx

Dy
�1�4�� 2ĉ + M

4�1 − v2�
�1−b

u = 1

Inelastic buckling typically occurs in box pan-
els that are geometrically stiff (low l, low w, or
high board thickness) relative to the material
edgewise crush test (ECT) strength. If a box
panel is observed to crush uniformly along its
loading edge without significant bulging, it has
probably failed by inelastic buckling. Con-
versely, if a panel noticeably bulges with crush-
ing emanating from its corners, buckling is prob-
ably elastic. Computing the slenderness U �
√Py/Pcr of the panel is a good predictor of what
mechanism will occur.

Other material property inputs that relate to
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twisting through ĉ and � appear in Eqs. (7) and
(8) but were not included in the McKee formula.
Twisting of a corrugated panel is a difficult pro-
cess to model, and a complete characterization
must include within-plane shear stiffness and
Poisson’s ratios. Luo et al. (1995) suggested a
pair of square-panel twisting tests for obtaining
the requisite data. Angell and Paslay (1959),
Buchanan et al. (1964), and McKinlay (1980)2

reported partial data on the shear modulus. Com-
plete twisting data do not appear to be present in
the literature on box compression beyond the
work of Luo et al. (1995). When twisting stiff-
ness cannot be obtained, the inputs ĉ � 1 and
� � 0 into Eqs. (7) and (8) are recommended.

Though Eqs. (4), (7), and (8) are equivalent,
each form offers an advantage in looking at plate
strength in terms of dimensionless variables or
actual mechanical properties. Except for the in-
troduction of empirical improvement �, no non-
mechanistic assumptions are made. Parameter �
accounts for the apparent predictability depen-
dence on panel aspect ratio and can be under-
stood as an adjustment to overall plate rigidity as
affected by boundary conditions and geometry.
It is interesting to impose the constraints from
McKee et al. (1963) onto Eq. (8) individually
(Table 1). Imposing all these constraints reduces
Eq. (8) to P1 � P/4 with P given by Eq. (1).

The logarithmic transformation of Eq. (7)

log
Pf

Py
= u�� log

2ĉ + M

4�1 − v2�
+ log

Pcr

Py
�

+ u��log� + log� (9)

allows us to fit the available data with linear
techniques. The best fit to the equation requires
a minimization of the differences between the
predicted panel strength ratio Pf/Py and the ex-
perimental panel strength ratio Pf*/Py summed
over all the available data.3

min�� �log
Pfl

Py
− log

P*fl
Py
�2

+

� �log
Pfw

Py
− log

P*fw
Py
�2� (10)

Depending on box geometry, the strength of
the side panel Pfl might differ from the strength
of the end panel Pfw. Experimental (actual)
panel strength is not known directly, but it can
be determined from experimental box compres-
sion strength P*. If the box is square, it follows
that P*fl � P*fw � P*/4l. If the box is rectangu-

2 McKinlay, P. Compression strength—a new insight.
Unpublished. From presentation to the Forest Products
Laboratory, July 1980.

3 Note that ∑[log(Pfl/Py) − log(P*fl/Py)]2 + ∑[log(Pfw/Py)
− log(P*fw/Py)]2� 2 ∑(log P − log P*)2. However, mini-
mizing the left-hand side of the equation gives distinctly
different results than minimizing the right-hand side. Prop-
erly partitioning the load-carrying capacity between the
length and width panels is required to account for the ob-
served impact of the corners on box compression strength,
as described in the text.

TABLE 1. Inputs to model and associated coding to impose or remove various constraints.

With constraint Without constraint

Effect Input Code Effect Input Code

Considers the box as square l � w � Z/4 S Models rectangular geometry l, w R
Neglects effect of box depth; assumes to

be infinitea
M � 2 I Models finite depth M(m, �) F

Considers only elastic buckling u � 1 E Models elastic and inelastic buckling u(U) EI
Neglects plate stiffening associated

with effective aspect ratio
� � 0 — Models aspect ratio stiffening � � 0 —

Assumes that shear modulus associated
with twisting conforms to St. Venant’s
principle

ĉ � 1 — Models known shear modulus ĉ —

Neglects effect of plate twisting on
Poisson’s ratio

� � 0 — Models known Poisson’s ratio � —

a The minimum of the function M(m, �) occurs at real m � �. For an infinite depth plate this yields M � 2.
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lar, it is reasonable to iteratively proportion P*
between the side and end panels according to the
ratios involving predicted box compression
strength P.

P*fl = Pfl

P*

P
=

P*�2l

1 +
w

l

Pfw

Pfl

P*fw = Pfw

P*

P
=

P*�2w

1 +
l

w

Pfl

Pfw

P = 2�Pfll + Pfww�

(11)

We see that the side and end panels do not
necessarily carry a load proportional to their
fraction of the perimeter. In fact, the use of the
perimeter in the original McKee Eq. (1) also
runs counter to the observation in McKee et al.
(1963) that the box corners apparently carry pro-
portionally more load than do the sides. Model-
ing a box simply as four panels of equal impact,
implicit in the use of the perimeter, misses the
interaction between the panels and their failure
modes that gives rise to the strengthening effects
of the corners. For that reason, in solving for the
panel strength of a box, we must link the defor-
mation profiles. This extra boundary condition
identifies the physics behind the extra load-
carrying capacity of the corners by connecting
the mode shape of the sides.

IMPLEMENTATION METHOD

Equation (9) can be expressed with either the
form y � m1x1 + q when � � 0 or the form y �
m1x1 + m2x2 + q when � � 0, and fit to data
using any standard linear equation technique (for
instance, the LINEST function in the Microsoft
Excel spreadsheet software). Inputs y*, x1, and
x2 are to be computed from the expressions

y* = log
P*fl
Py

,

xl = u� log
2ĉ + M

4�1 − v2�
+ log

Pcr

Py
�, and

x2 = ulog� (12)

The minimization of ∑(y − y*)2 for both side
and end panels yields the outputs m1, m2, and q
from which �, �, and � are then computed ac-
cording to

� = 10q, � = m1, and � = m2�m1 (13)

By this technique the best fitting �, �, and � are
calculated iteratively. Initial values of Pf/Py (Eq.
(7)) yield values of P* (Eq. (11)) and are up-
dated iteratively until convergence.

The panel shape at failure is specified by in-
putting a value m that defines the number of
half-waves along the panel depth. The required
value of m for the weakest mode shape of the
side panel is to be computed from the minimum
M and lies between the integer value of � de-
noted as �int and , �int + 1, subject to �int � 0.
M takes on the smallest of the values

�2 +
1

�2 ,
�2

�int
2 +

�int
2

�2 , or
�2

�int
2 + 1

+
�int

2 + 1

�2

(14)

from which the required m becomes the greater
of either the value 1 or the integer value of the
inverse of M(m,�) given by

m =
�2��M + �M2 − 4

2
(15)

It was empirically determined by Urbanik
(1996) that the same value of m found to mini-
mize M for the finite depth side panel and used
to compute Pfl should also be used to compute
Pfw so as to guarantee the same mode shape in
adjoining panels.

RESULTS

Meaning of �

Data with sufficient inputs to Eq. (9) were
found among 17 references previously cited (see
footnote (1)). The first subset of data of interest
is on regular slotted corrugated containers, in-
cluding SW construction from Angell and
Paslay (1959), Bormett et al. (1981), Challas et
al. (1994), Fahey and Bormett (1982), Frank
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(2004),4 Gartaganis (1975), IPC (1967), Koning
and Godshall (1975), McKee et al. (1963), and
Schrampfer et al. (1987) and DW construction
from Challas et al. (1994), Schrampfer et al.
(1987), Shick and Chari (1965), and Frank
(2004) (see also footnote 4). A second subset of
data is of corrugated fiberboard tubes (boxes
without top and bottom flaps) and includes SW
construction from Batelka and Smith (1993),
Brodeur et al. (1997), Buchanan et al. (1964),

and McKinlay (see footnote 2) and DW con-
struction from Buchanan et al. (1964). Data from
tests of individual corrugated fiberboard panels
by Hahn et al. (1992) and strength predictions
via an alternative but not disclosed model by
Hartikainen (1989) were also examined.

Twenty-nine data sets, as numbered in Table
2, were grouped and organized from the refer-
ences. All references provide data on Pm, Dx,
Dy, Z, and P*. For lack of Poisson’s ratio data,
the assumption � � 0 was applied to all data
sets. Assumption ĉ � 1 was also applied except
to references from Angell and Paslay (1959),

4 Frank, B., includes unpublished data from the Materials
Testing Laboratory, Packaging Corporation of America.

TABLE 2. Results of original McKee formula applied to 29 sets of data from 17 references.

Data set or grouping No. samples

McKeea

Avg
|%| error

Fitted Eq. (1)

|%|
Improvement

S I Eb

a b
Avg

|%| error � �

SW boxes
1 Angell 3 16.6 5.29 0.66 1.91 14.7 0.572 0.345
2 Bormett, Fahey, Koning 21 11.4 0.40 0.98 5.20 8.6 0.364 0.016
3 Challas 24 19.1 2.23 0.72 11.3 7.7 0.361 0.282
4 Frank waxed 78 13.2 3.74 0.65 8.42 4.7 0.400 0.347
5 Frank clamped 78 12.3 4.04 0.64 7.74 4.6 0.405 0.357
6 Gartaganis 4 16.6 0.01 1.49 6.57 10.0 0.291 −0.489
7 IPC 50 8.82 1.61 0.77 7.14 1.7 0.360 0.232
8 McKee 61 6.09 2.06 0.74 6.11 0.0 0.396 0.256
9 Schrampfer waxed 45 9.69 2.27 0.72 7.82 1.9 0.378 0.278

10 Schrampfer clamped 45 10.7 2.15 0.73 7.63 3.1 0.371 0.273
11 All SW boxes 409 11.1 2.19 0.73 9.04 2.2 0.376 0.273
12 All with lwd 319 11.3 2.22 0.73 9.40 2.1 0.378 0.275

DW boxes
13 Challas 6 56.0 5.28 0.54 13.9 42.1 0.276 0.458
14 Frank waxed 4 14.5 7.36 0.58 9.4 5.1 0.475 0.425
15 Frank clamped 4 14.2 6.26 0.60 10.0 4.2 0.466 0.403
16 Schrampfer waxed 8 17.8 1.90 0.73 8.43 9.4 0.337 0.268
17 Schrampfer clamped 8 16.1 1.34 0.79 5.29 10.8 0.336 0.214
18 Shick 12 37.7 3.68 0.73 6.08 31.6 0.637 0.272
19 All DW boxes 42 31.2 3.50 0.67 28.4 2.7 0.414 0.331

SW tubes
20 Batelka 108 41.1 3.07 0.76 11.5 29.6 0.671 0.236
21 Brodeur 15 26.7 0.42 1.02 9.35 17.3 0.479 −0.020
22 Buchanan SW 58 33.2 3.24 0.74 5.46 27.7 0.590 0.264
23 McKinlay da 8 43.4 4.81 0.71 4.94 38.5 0.721 0.294
24 McKinlay 1a 22 45.9 2.42 0.81 5.86 40.0 0.723 0.187
25 McKinlay 3c 39 44.3 1.68 0.86 10.7 33.6 0.693 0.138
26 All SW tubes 250 39.4 2.13 0.81 11.9 27.5 0.647 0.185

Other
27 Buchanan DW 10 34.1 1.20 0.92 5.79 28.3 0.711 0.081
28 Hahn 5 22.6 6.57 0.63 7.94 14.6 0.592 0.373
29 Hartikainen 16 12.4 1.99 0.76 16.1 −3.7 0.436 0.236

a a � 2.028, b � 0.746.
b Using Eq. (9), with constraints identical to those implicitly applied by McKee: � � 0, � � 0, ĉ � 1, u �1, l � w � Z/4, and M � 2.
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Buchanan et al. (1964), and McKinlay (see foot-
note 2) containing data on Dxy, from which a
more accurate ĉ is computable. For references
by Schrampfer et al. (1987) and Shick and Chari
(1965) without separate l and w data and without d
data, it was assumed that l � w � Z/4 and M � 2.

Data were collected by a variety of test meth-
ods; in some cases the specific method was not
reported. The data from Schrampfer et al. (1987)
and Frank (2004; footnote 4) are each included
among “waxed” and “clamped” subsets, respec-
tively, corresponding to the test method used to
obtain Pm. For these studies, the waxed data
were acquired following TAPPI T 811 (TAPPI
2002a) and the clamped data were acquired us-
ing an edge-clamping test fixture described in
TAPPI T 839 (TAPPI 2002b).

The original McKee formula with constants
a � 2.028 and b � 0.746 in Eq. (1) was first
applied to each data set (Table 2). Little evi-
dence exists consistent with statistical proce-
dures for the analysis of inter-laboratory data
from which it could be inferred that a and b are
actually constant. Nevertheless, Batelka and
Smith (1993), Brodeur et al. (1997), Challas et
al. (1994), IPC (1967), and Schrampfer et al.
(1987) advocated applying the “McKee con-
stants” to their data.

The average absolute values of the difference
between actual and predicted results from fitting
each of the 29 data groupings independently to
the form of Eq. (1) with the standard McKee
constants are given in Table 2. We found much
higher average differences in many of the data
sets than those reported in McKee et al. (1963).
By letting a and b vary independently for each
data set, we could improve the individual fits.
The typical improvement in the average magni-
tude of the percent error of a data set is 5.7% for
SW box data sets 1–10, 17.2% for DW box data
sets 13–18, and 31.1% for SW tube data sets
20–25. However, the resulting a and b values
then differ significantly, both from those pre-
sented by McKee and across the range of differ-
ent data sets. The average error magnitudes of
the predictions using the McKee values would
necessitate an impractical safety factor, and the
individually fitted values for a and b vary

widely; therefore, there appears to be little jus-
tification for assuming that a and b are truly
constant.

When we apply the same constraints to Eq.
(9) as applied in McKee et al. (1963) and dis-
cussed previously, the � and � values are simply
transformations of the a and b values (Table 2).
The predicted panel strength ratio Pf/Py deter-
mined for data set 3 from Challas et al. (1994) is
compared with the respective experimental
panel strength ratio Pf*/Py as the strength ratios
vary with slenderness U in Fig. 1. In this first
analysis, the critical load given by Pcr is used to
compute U. The physical significance of � and �
is identified on the plot. These first results are
coded S I E to designate square (S), infinite
depth (I), and elastic (E) buckling constraints.
Later we will examine modifications to these
constraints, including rectangular (R) and finite
depth (F) boxes with a combination elastic–
inelastic (EI) buckling constraint.

The differences between evaluations in terms
of a or � are noteworthy. Except for data set 1
from Angell and Paslay (1959) with only three
samples, the �-levels determined for SW boxes
are consistently lower than those determined for
SW tubes (Table 2). Examining the confidence

FIG. 1. Plot of Eq. (9) with u � 1 for all panels fit to
data set 3 from Challas et al. (1994) (Table II), characterized
by Eq. (11) and shown in relation to universal slenderness U
of box panels. Fit is determined for model S I E, as ex-
plained in text.
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intervals (Fig. 2), we see that nearly all the
�−values for the SW boxes are similar and gen-
erally do not overlap with those for the tubes
(with the exception of the small data set of tubes
from Broduer et al. (1997)). A similar contrast in
terms of a-levels is not apparent.

The prefactor (� or a) gives the function its
scale. We now see one of the advantages of writ-
ing the equation in terms of � and �, as in Eq.
(7), instead of a and b, as in Eq. (8). As noted in
the introduction, reported values for a vary
broadly in the literature, effectively changing the
estimate for box compression significantly. If
we examine only the SW box data sets with
more than 20 samples, the best fitting a still
spans an order of magnitude ranging from 0.4 to
4.0. The overall range in a is even larger. That
appears to imply a significant spread in the es-
timate of box compression strength, though in
actuality the corresponding adjustments to b
tighten the range. Essentially, the use of a-values
removes any physical meaning from the prefac-
tor beyond simply being a fitted parameter. By
contrast, the �-values for the same SW box data
sets have confidence intervals (Fig. 2) that
nearly all overlap and are distinctly different
from the values for tubes.

Tube compression strength is higher than box
compression strength for similar materials cut to

the same size and shape. We find an explanation
for increased strength in � that is missing when
we look only at a values. From a compression
perspective, the difference between tubes and
boxes lies only in the presence of a score-line
and flap at the loading point. Thus, the drop in
the fitted �-level from tubes to boxes is a physi-
cal quantification of the strength around the
horizontal loading edge as it is impacted by the
scoring. This strength is relative to the experi-
mental edgewise crush strength, with the differ-
ent �-levels (the scale factor in the box estima-
tion) reflecting the fact that boxes are inherently
weaker than tubes because of flap scores.

We believe our results in Fig. 2 are the first
identification of a parameter relating score-line
mechanics to box compressive strength. In early
experiments, Carlson (1941) examined the shape
of the box load–compression curve in relation to
scoring depth and found that deeper scoring
yielded greater compression at a given load.
Work through the Fourdrinier Kraft Board Insti-
tute (1953) explored the loss of compression
strength that occurs with scoring. Urbanik
(1990) quantified the spring rate of scored edges
in relation to the vibration response of stacked
containers and determined that scored edges
stiffen with increasing load. Collectively, pa-
rameter � appears to be a complicated function
of fabrication, geometry, experimental methods,
and modeling assumptions.

With both a and � values, the prefactor for
DW boxes ranges widely (Fig. 2). In some data
sets the DW model appears similar to SW boxes,
whereas in others it appears similar to tubes. In
nearly all the individual data sets, the number of
data points is small and the data are unevenly
distributed across the design space. In roughly
half the data, we also must make assumptions
about box dimensions. Despite these limitations,
the �-values are essentially bounded by the val-
ues for tubes and those for boxes. Understanding
the tube values to describe the limiting case
when the score profile does not impact the box
compression strength and box values to describe
the range of impact from typical scoring, we
might expect this breadth in results. Scoring can
affect DW boxes in a variety of ways, given the

FIG. 2. Approximate 95% confidence intervals deter-
mined for � calculated from exact confidence intervals de-
termined for log � in Eq. (9) using S E I constraints. Data
sets 11, 12, 19, and 26 are data groupings as described in the
text and are not independent of other sets in their groups.
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larger range of score depth and profile possible
on a DW box. This impact may account for why
some DW data sets significantly outperform the
typical (McKee) estimation for compression
strength while others significantly underper-
form the same estimation. Unfortunately, since
the data are limited and the scoring method and
type are not reported for any of the data sets in
the literature, this hypothesis cannot be pursued
further.

Removing constraints

The preceding analysis examined fitting Eq.
(9) while maintaining the constraints applied by
McKee et al. (1963). In general, we want to find
the model where the prediction error between P
and P* is minimized, in practice by finding the
� and � values that minimize Eq. (10). Sixteen
models of Eq. (9), with each combination of the
four constraints retained or removed as dis-
cussed in the previous text, were fit to each data

set as appropriate. The average error magnitudes
for the best fitting model in comparison with
model S I E are given in Fig. 3 for each SW box
data set and in Fig. 4 for the remaining data sets.
As noted, these models are coded for assump-
tions/constraints of square (S) or rectangular (R)
geometry, infinite (I) or finite (F) depth, and
elastic (E) or combined elastic– inelastic (EI)
buckling, as well as whether or not they incor-
porate the empirical factor �.

As mentioned previously, all these models are
totally consistent with the underlying theory of
McKee et al. (1963) but have different con-
straints. Results of applying models with � � 0
are shown in Figs. 3 and 4 as well. Not all data
sets can be modeled with all the constraints re-
moved. The Angell and Paslay (1959) data, with
only three points, becomes under-constrained
when we add � to the model. Since the Shick and
Chari (1965) and Schrampfer et al. (1987) data
sets do not include explicit box dimensions, we
assume square, infinitely deep boxes for these

FIG. 3. Average error magnitudes between P and P* determined for best (Best) of 16 models applied to SW box data
sets in Table 2 compared with average error magnitude for model S I E (SIE). SW, single-wall; c, clamped; w, waxed; lwd,
length, width, depth.
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data sets in the initial analysis and do not ana-
lyze them with other models.

The improvement in the accuracy of our mod-
els as we relax various constraints is clear for
most of the data sets (Figs. 3, 4), though the
specific model that fits each data set best de-
pends on the data set itself. Experiments by
Challas et al. (1994) and Frank (2004; footnote
4) were in whole or in part explicitly designed to
test the effects of box geometry beyond the
McKee constraints, whereas experiments in IPC
(1967) specifically avoided one or more con-
straints.

An example plot of predicted and experimen-
tal strength ratios from model R F EI applied to
data set 3 from Challas et al. (1994) is shown in

Fig. 5. For this case and for all EI models, slen-
derness, the square root of the ratio of the yield
strength to the critical load, is to be calculated
from the critical load given by

Pcr = ��
2ĉ + M

4�1 − v2�
Pcr (16)

Then if U of a panel is computed to be greater
than 1, u in Eq. (9) is assigned a value of 1.
Otherwise, u is assigned a value of 0. In contrast
with Fig. 1, Fig. 5 differentiates between elastic
and inelastic modes of failure and reveals a dif-
ference between side panel and end panel per-
formance. The calculated level of � (Fig. 5) is
the maximum strength per loading edge deter-
mined for the scoring geometry applied.

FIG. 4. Average error magnitudes between P and P* determined for best (Best) of 16 models applied to DW box, tube,
and other data sets in Table 2 compared with average error magnitude for model S I E (SIE). Legends explained in text.
DW, double-wall.
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In model S I E and model R F EI, for example,
it was assumed that � � 0. An implicit law in
the simplified calculation of Pcr is that the buck-
led wave shape is symmetric and the stress dis-
tribution up to buckling remains uniform. How-
ever, more sophisticated calculations in Urbanik
and Saliklis (2003) led to weaker nonsymmetri-
cal patterns. Parameter � empirically corrects the
determination of � for input to Pcr. Results of
applying models with � � 0 are considered in
generating Figs. 3 and 4. In some cases the best
fit model does not incorporate �, and results with
� � 0 are considered as well.

The significance of including parameter � in
Eq. (9) was quantified by applying the statistical
F-distribution to the sum of errors squared from
Eq. (9) with � � 0, and the sum of errors
squared with � � 0. Consistent with Urbanik and
Saliklis (2003), including � as a third parameter
along with � and � was determined to be statis-
tically significant for many of the individual
models. A global model including � was thus
sought. Other evidence in an analysis by Ur-
banik (1996) of some tube literature suggests
that a nonlinear material law further increases
model accuracy. Since � is a correction made in

part to account for nonsymmetrical failure, it
may not be possible to totally determine the
physical significance of � using only a linear
material law. The results of this work based on a
linear material law can provide the input to other
models based on a nonlinear material law.

Toward a global SW model

The various � values (Fig. 2) and the previous
discussion clearly indicate that it is not appro-
priate to try to model box compression results
using data from structures that are not boxes.
Further, the range in values for the fitting pa-
rameters for DW boxes and considerations of
asymmetry evident in Libove and Hubka (1951)
indicate that variation across data sets and per-
haps a variable associated with the scoring pro-
file are not accounted for in the available data.
Thus, our focus for further analysis must shift to
the available data on SW boxes.

Since our goal in developing a predictive
model is not to form a large subset of models
each describing individual data sets under vari-
ous constraints but rather to generate a single
model that can be applied broadly, we need to
examine different approaches to unifying the
data. One method is to group all the data sets
together and analyze them statistically using
blocking techniques, where each data set forms
its own block. This statistical technique assumes
that each data set might have its own offset due
to differences in measurement method, equip-
ment, and other variables. It then calculates and
removes these potential sources of variation
from the analysis before the effects of the inde-
pendent variables of interest are tested for sig-
nificance against the noise. When we do this for
a given set of constraints, we generate a “uni-
versal” � and � along with a set of offsets for
each data set. However, without incorporating
those offsets into the calculation explicitly, the
standard error of the resulting model applied to
each data set individually and the resulting un-
certainty and error in a given prediction are
higher than that for a general model without
blocking. In general, it would not be practical,
even if possible, to calculate an offset value for

FIG. 5. Plot of Eq. (9) fit to data set 3 from Challas et al.
(1994) (Table 2), characterized by Eq. (11) and shown in
relation to universal slenderness U of box panels. Fit is
determined for model R F EI as explained in text. In contrast
with Fig. 1, u in Eq. (9) is assigned a value of 0 or 1
depending on level of U computed for each panel.
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every laboratory before performing an estima-
tion of box compression strength. Thus, the
blocking approach, while mathematically robust,
does not enhance our ability to estimate general
box performance.

We would hope that the offsets calculated in
the blocking process would at least reveal addi-
tional information about differences in param-
eter testing method. For instance, if one ECT
method consistently led to stronger or more ro-
bust estimations of box performance, we would
believe that it was a better measure of the inher-
ent strength of the combined board. However,
the results are not uniform across the available
data sets; while � and � values are higher for the
Frank (2004; footnote 4) data when comparing
the clamp to the waxed ECT, the converse is true
for the Schrampfer et al. (1987) data. (Trends are
more consistent for the DW results, but the data
are too sparse to draw robust conclusions.) Ad-
ditional work in this area may help clarify which
of the various ECT methods in use in the field
best models box performance and may similarly
shed light on other differences in testing technique.

Analyzing all the SW data as a single unified
group without blocking allows us to generate
a model encompassing all the data. The advan-
tage of this approach is that our model becomes
general, explicitly incorporating between-lab
sources of testing variability. Thus, it should ap-
ply equally well to any additional (future, or
existing and unpublished) data sets from other
sources. However, it is important to keep in
mind the constraints on each individual data set
since not all sources include all the parameters
for a full fit to the model. We can use all the SW
data sets when applying the S I E model, as
discussed earlier. However, when we switch to
rectangular (R) or finite (F) constraints, we must
leave out the data points from Schrampfer et al.
(1987) since that reference does not explicitly
include dimensional information on the boxes
tested, and we would have to assume the boxes
were square and infinite even in a fitting routine
with R or F constraints. This would be expected
to inappropriately bias the fitting results. By in-
cluding all the available data independent of the
method used to measure Pm, we lose any ability

to further explore the impact of different mea-
surement methods.

The 16 resultant models with different com-
binations of constraints applied to our large SW
box data set appear in Table 3. We find that on
average and neglecting interactions, relaxing the
constraint that all the boxes are square improves
our typical absolute value of the error by 0.07%;
relaxing the constraint on the depth of the box
improves our estimate by 0.18% on average; in-
cluding inelastic failure as a possibility in the
model improves our estimate by 0.34% on av-
erage; and including � improves the estimate by
0.12% on average. The model with the lowest
average error in estimated box strength is the
one where all these terms are included. We also
see that models that relax more than one con-
straint typically improve the average error by
more than the sum of the individual improve-
ments. This is a clear indication of interaction
terms in the factorial analysis. We would expect
these interactions given that (for example) re-
moving the constraint that all boxes are infi-
nitely deep allows additional data points to fall
into the elastic– inelastic regime. The best fitting
model is the one in which all the constraints are
removed (R F EI�).

SW model variability

A measure of the economic practicality of our
SW model is given in Table 4 and Fig. 6. Table
4 presents the mean and standard deviation, as-
suming a normal distribution, of the percent pre-
diction errors P − P* for some selected models.
Analysis of the round-robin data in Miles
(1966), following procedures in ASTM E 691
(ASTM 1999), yields a between-laboratory re-
producibility standard deviation of 7.74%.
Analysis for ASTM D 642 (ASTM 2003) rec-
ommends a between-laboratory reproducibility
of 11.3%,5 with subsequent retesting and analy-

5 The reproducibility standard deviation can be deter-
mined from 11.3%/1.96√2 � 4.08% (ASTM E 691). Thus,
no model based on historical data can be expected to have
a standard deviation less than 4.08% (as distinct from any
systematic bias), even after extensive testing and retesting.
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sis reducing the inter-laboratory variation to
4.08%.5 But such intense retesting is too costly
to advocate for typical production control. The
Miles (1966) variation provides an objective
measure of how good any model can be ex-
pected to be. Current inter-laboratory round-
robin studies from Collaborative Testing Ser-
vices (2004) show similar levels of variability
when a uniform method of sealing boxes
is considered. Figure 6 shows the normal-
ized frequency distribution fit to the prediction
errors.

Variation statistics of various model and data
combinations are also given in Table 4. The

means of the prediction errors of the fitted mod-
els are not exactly zero because Eq. (10) is being
minimized in the fit instead of the absolute value
of the error, ∑(P − P*)2. Interestingly, the varia-
tion of the original McKee formula fit to the
McKee et al. (1963) data is almost identical to
the Miles (1966) variation (Table 4). However,
when the McKee formula is fit to other available
SW data, variation increases to 11.9% (Table 4).
When we model all the data with McKee, we
also find that the mean of the prediction errors is
greater than zero (Fig. 6). This implies that
McKee consistently overpredicts the measured
box strength in the larger data set by nearly

TABLE 3. Results from fitting all SW box data as a uniform data set for 16 different models incorporating different
constraints.a

Data
Model with
constraints � � �

Avg.
|%| error r2

All SW data S I E 0.376 0.273 0 9.04 0.911
S I E � 0.377 0.274 −0.007 9.04 0.911
S I EI 0.387 0.295 0 8.87 0.914
S I EI � 0.389 0.297 −0.020 8.86 0.914

All SW data with lwd dimensions S I E 0.378 0.275 0 9.40 0.912
S F E 0.376 0.282 0 9.14 0.911
R I E 0.378 0.271 0 9.25 0.914
R F E 0.365 0.262 0 9.44 0.904
S I E � 0.376 0.272 0.091 9.35 0.913
S F E � 0.372 0.277 0.289 8.96 0.921
R I E � 0.377 0.269 0.065 9.22 0.915
R F E � 0.362 0.257 0.202 9.30 0.911
S I EI 0.387 0.293 0 9.18 0.916
S F EI 0.386 0.302 0 8.94 0.915
R I EI 0.395 0.300 0 8.95 0.918
R F EI 0.390 0.310 0 8.87 0.914
S I EI � 0.387 0.292 0.035 9.17 0.916
S F EI� 0.384 0.300 0.262 8.83 0.925
R I EI � 0.394 0.298 0.080 8.90 0.920
R F EI� 0.391 0.312 0.359 8.47 0.930

a Data from Schrampfer et al. (1987) are only included among S and I models.

TABLE 4. Mean and standard deviation of prediction errors between P and P* determined for selected models.a

Model and data
Avg.

|%| error
Mean
(%)

Standard
deviation (%)

Miles inter-laboratory data reproducibility — 0.00 7.74
McKee formula with McKee data 6.09 0.29 7.75
McKee formula with all SW data 11.1 7.64 11.9
S I E model with all SW data 8.99 0.62 11.1
R F EI � model with all SW data with lwd dimensions 8.48 0.56 10.6

a Average error includes both the accuracy of fit to specific data set and any systematic bias in data. Mean error is a measure of systematic bias in fit. The
mean of Miles data is taken to be zero by definition because it is simply the mean of all identical boxes measured in this study. Standard deviation indicates
variability of data set about the mean. For a perfect distribution, average error should occur at 0.675 times the standard deviation. In all cases, our average
error is higher, indicating a higher fraction of the population in the “wings” of the distribution than would be expected in a truly “normal” distribution.
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7.5%, on top of the large variation (standard
deviation) in the prediction.

The available SW data are most accurately
quantified (mean closest to zero and lowest per-
centage of error magnitude) (Table 4) with the R
F EI � model (Fig. 6) with all constraints re-
moved. The difference in standard deviation be-
tween the R F EI � model and the Miles (1966)
data is a measure of further improvements to
expect from including twisting mechanical prop-
erties, score-line properties, and explicit nonlin-
ear behavior in the model.

We can most easily quantify the advantage of
the improvement in model precision using a
model box. The accuracy of each model ex-
plored is defined by the average magnitude of
the % error (|%| error), listed in Tables 3 and 4
for each of the models explored. If we assume a
box with a “true” compression strength of 1000
lbs (453 kg), the Miles data indicate that in test-
ing we might find values from 923 to 1077 lbs
(418 to 488 kg) at 1-sigma. The McKee estimate
would fall in the range of 968 to 1195 lbs, (439
to 542 kg) with an average estimate of 1076 lbs
(488 kg). On average, the McKee estimate
would be 7.64% high, and as we can see, even
within a 1-sigma range of uncertainty, it might
be as much as 19% high. This uncertainty in the
accuracy of the estimate leads to high “safety
factors” on box design out of necessity, as dis-

cussed in the above. By contrast, the R F EI �
model would fall in the range of 922 to 1091 lbs
(418 to 494 kg), with an average estimate of
1006 lbs (456 kg). Thus, the improved model
prediction is much closer to the average range
we would find in testing the actual box at a
variety of testing labs.

It would be interesting to compare our model
to an independent data set to quantify the im-
provement gained by the model. However, all
the available robust sets where data are suffi-
ciently described to be able to apply the model
were included in generating model parameters.
As observed for most cases in Figs. 3 and 4, the
average estimation error is reduced for each of
these data sets when one or more of the con-
straints assumed by McKee et al. (1963) are re-
moved. Thus, to quantify the fit we must choose
other independent data sets that may have prob-
lems with input parameters. The joint confi-
dence region for fitted parameters � and � in our
R F EI � model is shown in Fig. 7 as well as joint
confidence regions for two other data sets. The
joint confidence region for the R F EI � model fit
to data from Little (1943)6 is significantly dif-
ferent than that of our SW model.

The edge-crush data in Little (1943) were af-
fected by stress concentrations in a notched test
specimen, which consequently inflates the fitted
�. Data in Koning and Moody (1969) include
intentionally defective edge-crush specimens
tested by TAPPI T811 (TAPPI 2002a). Our SW
fit matches the Koning and Moody (1969) box
strength data with an average error magnitude of
4.8%. But, more significantly, the joint confi-
dence region for the R F EI � model fit to the
Koning and Moody (1969) data is sweepingly
large. As shown in Fig. 7, differences in the joint
confidence regions representing our model and
other data sets can reveal poor test methods, al-
beit with low variability, or high parameter vari-
ability resulting from high material variability
sensed by a correct test method.

6 Dx data are not given in Little (1943) and Dx/Dy � 2
was assumed to apply.

FIG. 6. Frequency distribution, normalized to have areas
equal to 1, for three model and data combinations from
Table 4. Legends refer to Miles inter-laboratory data repro-
ducibility, McKee formula with all SW data, and R F EI �
model with all SW data with lwd dimensions (Table 4).
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CONCLUSIONS

Until recently, the state of the art of box com-
pression estimation was the equation by McKee
et al. (1963) or various modifications, with the
assumption that Eq. (1) provided an estimation
that was accurate to within about 6% on average
and 15% for the majority of single-wall boxes.
In reality, we see that for a broader data set of
single-wall boxes, the McKee equation system-
atically overestimates compression strength. It
provides an estimate within about 11% of the
true box compression value on average, and the
strength estimates of many boxes are off by
more than 20%. The estimated strength of
double-wall boxes and tube constructions can be
off by even more.

By applying the results and approach of
Urbanik and Saliklis (2003) to the available
data sets in the literature, we gained a deeper un-
derstanding of the differences in performance
among box structures, as well as refined the pre-
cision of our estimations. By removing the con-
straints and assumptions in the McKee equation,
which were necessary in 1963 because of limi-
tations in computing tools, we improved our es-
timation for single-wall boxes to ±8.5% on av-

erage. The resulting 10.6% standard deviation
among the prediction errors compares with
about 7.7% attainable through inter-laboratory
testing and is a measure of modeling variation
given available data. Our model allows for ad-
ditional inputs related to combined board twist-
ing mechanics and to score-line properties if
such broadened data can be obtained.

Further, we can now attach physical meaning
to what were previously only fitting parameters.
We see that not only does the prefactor � give
the function its scale, it also relates to the
strength around the score of the box. This ex-
plains why single-wall, double-wall, and tube
constructions are not modeled with equal accu-
racy by Eq. (1) and highlights some additional
information that would be necessary to create
such models. The exponent � explicitly relates
the relative impact of the contributions from
bending stiffness, panel size, and inherent mate-
rial compressive strength. While this is the same
function as that of the exponent in Eq. (1), writ-
ing the expression in terms of � and � instead of
a and b disentangles the function scale factor
from the relative proportioning of the contribu-
tions from the box material parameters. Finally,
parameter � helps us correct for the assumption
that the box is failing symmetrically. This as-
sumption is obviously violated in most real-
world box failures, but it is required in the ap-
plication of a closed form calculation of Pcr.

Overall, this approach allows the improve-
ment of package construction to better meet cus-
tomer requirements and provides more objective
criteria to establish safety factors. It also pro-
vides a tool for additional explorations in box
optimization, from score profile optimization to
the selection of the ECT method that best cor-
relates to actual box performance. Further work
exploring the application of a nonlinear material
law to box failure may shed additional light on
these and other issues.

NOMENCLATURE

a, b � McKee formula constants
C � Linear material law parameter

derived in Johnson and Urbanik
(1987)

FIG. 7. 95% joint confidence regions for parameters �
and � determined for R F EI � model with � � 0.36 and fit
to all SW data with lwd dimensions, data from Little (1943),
and data from Koning and Moody. (1969). Only a section of
the Koning and Moody (1969) confidence region is shown
plotted.
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ĉ � Normalized in-plane shear modu-
lus of elasticity derived in Ur-
banik (1992) and computable by
ĉ � v + 2(1 − v2)(Dxy/Dx)√Dy/Dx

for corrugated fiberboard
Dx, Dy, Dxy � Flexural stiffness per unit width

in transverse, axial, and twisting
directions

d � Plate length equal to box depth
l, w � Plate width equal to box length,

box width. As subscripts, box
side panel, end panel

M � Mode shape function
m � Number of buckled half-waves

m1, m2, q � Spreadsheet constants
P, P* � Box compression strength (pre-

dicted, experimental)
Pcr � Plate critical load per unit width
Pcr � Value of Pcr for infinite length

plate when v � 0 and ĉ � 1 and
given by Pcr � (4	2√DxDy/l2)

P1 � Plate strength
Pm � Edgewise crush strength per

unit width
Py � Plate yield strength per unit

width. For corrugated fiber-
board Py � Pm

Pf, Pf* � Plate strength per unit width
(predicted, experimental)

S � Dimensionless plate stiffness
given by S � (12√DxDy/�0Pyl2)

U � Universal slenderness given by
U � √Py/Pcr

u � Elastic–inelastic criterion
x1, x2, y, y* � Spreadsheet variables

Z � Box perimeter
�, � � Postbuckling constants

� � Effective plate aspect ratio
given by � � (d/l)(Dx/Dy)1/4

�int � Integer component of �
�0 � Stress–strain curvature
�̂a � Apparent dimensionless buck-

ling stress
� � Empirical improvement
v � Geometric mean Poisson’s ratio

 � Wave length
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