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ABSTRACT 

This paper describes some algorithms and procedures that can be used for determining the optimal 
cutting of lumber or composite boards into dimension or furniture parts. Methodologies are described 
for various production scenarios: 1) cutting when the direction of the grain matters (e.g., lumber), 2) 
cutting composite boards where grain direction does not matter, 3) rip-first cutting, 4) crosscut-first 
cutting, and 5) a combination of rip-first and crosscut-first. An algorithm for optimizing the cutting 
of all lumber types while at the same time satisfying a given order of dimension parts is also described. 
The models can be used interactively for comprehensive optimization of cutting a mix of lumber as 
shown by the two-stage decision model, or the double knapsack algorithms could be used as stand 
alone models for optimizing the cutting of individual lumber. 

Keywords: Dynamic programming, knapsack algorithm, optimal cutting patterns, dimension cutting. 

INTRODUCTION 

Faced with rising raw material costs and a 
dwindling resource base, furniture and dimen- 
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sion plants have become more concerned about 
their efficiency in cutting lumber into furniture 
parts. More than ever, mill managers must now 
deal with the dual problem of determining the 
right mix of lumber input to process and how 
this lumber should be cut to satisfy a cutting 
bill (i.e., customer order for various dimension 
parts or blanks). Mistakes arising from these 
two problems could result in significant 
amounts of waste due to misallocation of lum- 
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ber, and ultimately to loss of profit or increase 
in lumber procurement costs. 

The optimal cutting of lumber into dimen- 
sion parts lends itself well to formal algorithms 
and analytical methods. The cutting oflumber, 
given its dimensions, into smaller parts of var- 
ious sizes or dimensions is a well-defined prob- 
lem which, at least intuitively, has an almost 
exact solution. 

While the problem looks simple, the solu- 
tion is puzzling because of the significant, if 
not infinite, number of ways to cut the lumber. 
The problem is further complicated by the need 
to satisfy the cutting bill and the availability 
of lumber with different sizes and grades. 

The optimal cutting of lumber is too prob- 
lematic and difficult to solve without the use 
of some numerical or analytical tool. It is ob- 
vious, however, that inappropriate cutting 
could result in significant amounts of waste 
because leftover lumber is either too short or 
too narrow. 

Besides lumber, composite boards are also 
used for much furniture. Obviously, cutting 
composite boards is less complicated because 
they are generall~, homogenous or of uniform 
grade. Lumber, on the other hand, is of dif- 
ferent quality or grade. It has defects, and the 
direction of the grain could affect the amount 
of waste as it is cut into smaller pieces. The 
direction of the grain also limits the flexibility 
of cutting. For instance, while a 3-in. x 12-in. 
piece is the same as a 12-in. x 3-in. piece when 
cut from particleboards, they are not the same 
pieces when cut from lumber because of the 
direction of the grain. 

Technological advances in flexible manu- 
facturing systems offer an excellent environ- 
ment in which optimal cutting of lumber could 
be implemented and potentially automated. 
For instance, implementing optimal lumber 
cutting strategies or patterns may require a 
number of machrne setups or adjustments. If 
such adjustments are determined off-line (e.g., 
a priori), it is conceivable that the optimal cut- 
ting strategy could help drive these adjust- 
ments-that is, analytical solutions that were 
determined off-line could be implemented us- 

ing computer-driven control techniques under 
a flexible manufacturing environment. 

The objective of this paper is to describe 
some algorithms and heuristic procedures that 
can be used to determine analytically the op- 
timal cutting of lumber or particleboard into 
dimension parts. The models described, unlike 
other previous models, offer exact solution 
procedures yielding cutting patterns with spe- 
cific dimensions and the exact locations of the 
parts within the lumber or particleboard. 

LUMBER CUTTING MODELS 

Published literature contains a number of 
methods developed over the last decade ad- 
dressing various forms of lumber cutting and 
allocation problems. One of the first methods 
includes the use ofnomograms and yield tables 
indicating the relative amounts (in percent) of 
dimension parts that could be recovered from 
a given grade and species of lumber (Shumann 
1971, 1972; Gilmore et al. 1984). These 
amounts are adjusted manually through a sys- 
tematic trial and error procedure to satisfy the 
demand or cutting bill. 

The advent of computers and faster com- 
puting capabilities in the early 80s paved the 
way for the use of computer-based models. 
These models are developed following the pro- 
cedures and methods of simulation, optimi- 
zation, and mathematical programming tech- 
niques (Brunner 1984; Martens and Nevel 
1985; Giese and McDonald 1982; Giese and 
Danielson 1983). 

The models and procedures described in this 
paper cover a range of production environ- 
ments and scenarios. Some models are for- 
mulated purposely as generic solution algo- 
rithms, which could be adopted and modified 
to suit a specific lumber production scenario. 
Other procedures, particularly heuristic meth- 
ods, are also described as techniques to help 
improve the solution algorithms and their 
computational requirements to make them 
more practical and implementable. These pro- 
cedures are significant because they could fa- 
cilitate the transfer of analytical solutions into 
actual and practicable operations. 
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FORMULATION OF CUTTING PROBLEMS 

The generic lumber cutting problem broadly 
described above can be formulated as a math- 
ematical programming problem. From this ge- 
neric formulation, alternative models will be 
described addressing specific production sce- 
narios commonly faced by furniture and di- 
mension plants. The generic lumber cutting 
problem can be formulated as follows: 

PI - 
Min TC = 2 2 CkXjk 

k J 

s.t. 2 a , j k ~ j k  2 d,; i = 1, . . . , m (2) 
k j 

where: 

TC = total production cost 
Ck = cost associated with lumber type k 

XJk = the number of lumber pieces type k cut 
following cutting pattern j 

d, = amount ordered for dimension part i 
= the number of dimension parts i ob- 

tained from one lumber type k follow- 
ing cutting pattern j 

N, = the amount of lumber type k available 
in stock. 

The objective function in (1) minimizes the 
total cost of the mix of lumber input required 
to satisfy the demand or cutting bill. Con- 
straint (2) is the demand or cutting bill for 
various dimension parts. Constraint (3) de- 
scribes the amount of lumber types with dif- 
ferent sizes and grades, available in stock (i.e., 
inventory). 

Case I: Direction of grain matters 

Most wooden furniture is made of parts cut 
from solid lumber. In general, lumber, partic- 
ularly hardwood, has dominant grain features. 
Hence, the direction of the grain is significant 
in cutting lumber into dimension parts of var- 
ious sizes. Clearly, in this situation, a 2-in. x 

12-in. (i.e., width x length) board is not the 
same as a 12-in. x 2-in. because of the direc- 
tion of the grain. 

The general methodology in solving the 
lumber cutting problem proposed in this study 
follows the two-dimensional knapsack algo- 
rithm first developed by Gilmore and Gomory 
(1965). This technique is used to determine 
the optimal cutting pattern of one piece of lum- 
ber (given its size) into combinations of small- 
er dimension parts. However, there is a cutting 
bill to be met. Hence, the cutting of each piece 
of lumber should not be optimized indepen- 
dently but comprehensively, considering the 
availability of lumber and total economic re- 
turn rather than returns from individual piec- 
es. In other words, the problem really has two 
stages. The first-stage problem optimizes the 
allocation of lumber for cutting following the 
optimal cutting patterns identified by solving 
the second-stage problem. 

The problem in Stage I1 is the generation of 
cutting patterns. Conceivably, there may be a 
significant, if not infinite, number of possible 
cutting patterns. Instead of trying to generate 
all possible cutting patterns, only those "po- 
tentially good" cutting patterns are generated. 
The solution generated from Stage I establishes 
the desirability or suitability of the generated 
cutting patterns considering all lumber types, 
their availability, and the demand for various 
dimension parts. 

An algorithm for solving the two-stage prob- 
lem was also developed by Gilmore and Go- 
mory (1 965). Applications of this procedure 
are described by Mendoza and Bare (1 986) and 
Foronda and Carino (1991). The algorithm 
consists of solving two problems, indepen- 
dently and interactively. The first problem, 
called main problem, corresponds to the first- 
stage decision problem, while the second-stage 
problem corresponds to a subproblem dealing 
with the cutting of lumber type k. 

The interface between the main problem and 
the subproblems is the key to solving the op- 
timal lumber cutting problem comprehensive- 
ly. This link provides the simultaneous opti- 
mization of cutting individual pieces of lumber, 
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F~rst Stage Matn Problem 

(Lumber Allocat~on) 

Second Stage / subproblem 1 1 I subproblem k I 

optimal cuttlng L+rL 1-1 I pattern 1 
FIG. 1. The two-stage decision process 

and the allocation of lumber into optimal cut- 
ting patterns. The interface is made through 
Shadow Prices as described in Fig. 1. The 
Shadow Prices (TI,) are the Lagrange or Sim- 
plex Multipliers associated with the con- 
straints in Eq. (2). Hence, during the interac- 
tive solution procedure (Mendoza and Bare 
1986), the II,'s are generated after solving PI 
in the main problem, which then becomes the 
input to the subproblems in P2. The solution 
of each subproblem yields the optimal cutting 
of each lumber type, which then becomes the 
input to the main problem in PI. 

Each subproblem is solved as a two-dimen- 
sional or double knapsack problem. Intuitive- 
ly, this corresponds to cutting the lumber in 
two steps: first lengthwise (along the length), 
and then crosswise (across the length). The first 
knapsack problem optimizes cutting based on 
the length of the dimension parts. The second 
knapsack problem optimizes the cutting based 
on the width of the dimension parts. 

The first knapsack problem can be described 
as follows: For all widths w,, calculate II,*, the 
optimum value obtainable by fitting rectangles 
w, x 1, (where w, 5 w,), end to end, into a strip 
of width w, and length L,. This problem is 
formally formulated as: 

a, 2 0,  integer 

where: 

ll, = shadow price associated to the jth con- 
straint in Eq. (2); j = 1, 2, . . . , i 

a, = number of rectangles type j that appear 
in strip i. 

The above formulation requires that the 
blanks are indexed and arranged such that wi 
S w , + , ; i = l ,  . . . ,  m -  1. 

The second knapsack problem, which op- 
timizes the cutting along the length, can be 
described as follows; 

P3 - 
Max M, = II,*b, + . . . + II,*b, (6) 

b, 5 0; integer 

where: 

M, = the "best" value for lumber type k 
II,* = value obtained from the first knap- 

sack problem corresponding to vari- 
ous widths 

b, = number of strips of width wi 
W, = width of lumber type k. 

M, is the information needed for compari- 
son among all lumber types to determine which 
cutting pattern will be included in PI. The 
comparison is made by choosing the lumber 
type with the minimum (C, - M,). 

Solving for M, is necessary only when cut- 
ting a mix of lumber of different sizes. This is 
necessary to determine the optimal cutting 
pattern for each lumber type given the respec- 
tive dimensions or sizes. If cutting of individ- 
ual lumber pieces is to be optimized indepen- 
dently, then P2 and P3 are solved only once 
yielding one cutting pattern. Moreover, the Hi's 
are simply the price or value of each dimension 
part, not the Shadow Price or Simplex Mul- 
tiplier associated to the constraint in Eq. (2). 
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Hence, the II,'s and M, are relevant only when 
the cutting scenario to be optimized involves 
a mix of lumber with different sizes. 

For each subproblem corresponding to lum- 
ber type k, the two knapsack problems are 
solved using Dynamic Programming and the 
recursive calculation described below; 

Max F,(x) = 

= MaxiII, + F,(x - I,), F,-,(x)} 
for s > 1 (8) 

Following conventional Dynamic Program- 
ming, F,(x) is the value of the best combination 
that can be fitted into a board (i.e., lumber or 
particleboard) of length (or width) x using only 
the first s variables. The variable s is the index 
variable traditionally used in multistage Dy- 
namic Programming. 

Gilmore and Gomory (1965) have shown 
that the recursive Dynamic Programming 
problem described above has significant com- 
putational advantages compared to other 
knapsack solution algorithms. These compu- 
tational advantages stem from the a priori or- 
dering of the sizes, and the fact that all the IIi's 
need to be calculated only once. The n knap- 
sack problems are solved using only one "look- 
up table" generated by solving Eq. (8). 

First cut: Rip or crosscut 

The double knapsack model described in P2 
and P3 corresponds to a production scenario 
in which the first cut is made along the length 
(i.e., rip-first) followed by a crosscut. However, 
it is conceivable that efficiency could be im- 
proved if the first cut is a crosscut followed by 
a cut along the length. It may also be possible 
to have some lumber cut following the rip-first 
then crosscut, while others are crosscut first. 

The solution procedure for the crosscut-first 
problem is the same as the rip-first procedure 
described previously. Conceptually, the pro- 
cedure starts by rotating the lumber and di- 
mension parts (i.e., the widths and lengths of 
all the lumber and dimension parts are 
swapped). Then, a two-dimensional or double 
knapsack algorithm like P2 and P3 is solved. 

If the production setup allows for either 

method to be used for some lumber, then the 
solution procedure that determines which is 
the best first cut will simply involve compar- 
ison between the results of the two solutions 
(i.e., rip-first or crosscut-first). The numerical 
example presented in the succeeding section 
demonstrates a situation in which the crosscut- 
first yielded higher value recovery than the rip- 
first strategy. 

Currently, rip-first seems to be the most con- 
venient considering sizes of lumber and the 
layout of most dimension plants. It is, how- 
ever, conceivable that as scarcity of raw ma- 
terials become even more acute, making con- 
version efficiency even more significant, and 
as flexible manufacturing systems find their 
way to dimension and furniture manufactur- 
ing, the problems of rip-first or crosscut-first 
(or a combination of both) will become more 
relevant. 

Case II. Direction of grain 
does not matter 

Some wooden furniture or cabinets are made 
from various types of composite or particle- 
boards. Unlike lumber, particleboards are gen- 
erally homogeneous and do not have any dom- 
inant grain. Hence, a 3-in. x 12-in. board could 
be cut lengthwise or crosswise. In other words, 
a 3-in. x 12-in. board is the same as a 12-in. 
x 3-in. board. 

In this case, a blank or dimension part can 
be turned and cut from the board if this is a 
better alternative. Hence, for the blank i in this 
position, the width is li and the length is w,. 
The aijck) in the model as described in P1 is the 
number of all blanks that are cut using cutting 
pattern j, both in the original position and after 
it is turned. In other words, the formulation 
expands into 2m variables in the knapsack 
problems. The main problem P1 remains to 
have m constraints corresponding to the order 
of dimension parts. 

Model modijcations. -Each ordered di- 
mension part will now have two variables in 
the knapsack problem corresponding to 2 
widths and 2 lengths. The 2m widths are again 
ordered and indexed such that w, 5 w,, , . P1 
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TABLE 1. Ordered bkznks and their prices. 

Blanks n 

stays the same, except the for a cutting 
pattern j and a blank i now represents the sum 
of the number of times the blank ordered i 
appears in the position wi x  li and the number 
of times it appears in the position li x  wi. The 
knapsack formulations need three slight mod- 
ifications: 1) the Shadow Price IIi from P1 is 
now associated with both w, x  li and 1, x wi; 
2) the formulation in P2 stays the same, but 
now there are 2n1 problems to solve; and 3) 

TABLE 2. Optimal values of F,(x) for P2. 

8 10 14' 15? 17, 195 24h 
8.5 10 14' 153 174 195 24" 

11 15 19' 203 244 265 31' 

1 5 1 9  20 2 2 6 2  - - 
n , *  nz* n 3 *  n,* n,* n,* 

I 
These are the only "useful states" in the system that need to be exam~ned. 

Not all of the states between 2.5 and 11 need to be generated and evaluated. 
Carnieri et al. (1991) describes a procedure for determin~ng the set of useful 
numbers or states for the type of dynamic programming problcm addressed 
In this paper. 

the formulation in h 3  also has 2m variables, Since only one lumber type is to be cut, the 
where a variable b, represents the number of Hi's correspond to the actual prices or values 
times a strip of width w, appears in the cutting of the blanks. Again, if this lumber is one in 
pattern (i.e., w, is chosen from the ordered w, a mix of lumber types, the Hi's could be the 
5 wi+ , , including the position based on width associated Shadow Price obtained in Stage I. 
and the original position based on length). Following the model modifications when 

NUMERICAL EXAMPLE 

A numerical example is presented in this 
section to demonstrate the algorithms de- 
scribed in the previous sections. The more gen- 
eral case in which grain does not matter is 
illustrated with both rip-first and crosscut-first 
scenarios. To simplify the sample problem, 
only the cutting of one lumber type (i.e., Stage 
I1 problem) is described. An application is also 

grain does not matter, the blanks are turned, 
generating six instead of three blanks, as fol- 
lows: 

Blanks n 
3 x 4  7 
2.5 x 3 5  original position 
4 x 5  12 
4 x 3  7 
3  x 2.5 5  rotated position 
5 x 4  12 

described later to demonstrate results from an 
actual implementation of the algorithms. Before solving P2, the blanks are rearranged 

The problem involves cutting an individual in increasing order as described in Table 1. 

piece of lumber whose width and length are Solving P2 using Dynamic Programming and 

9.7 and 11 (units are disregarded without any the recursive relationship described in Eq. (8), 

loss of generality), respectively. Three types of Table 2  is generated. 

blanks must be cut with the following dimen- Table 2  completes the solution of P2. The 
second knapsack problem in P3 can now be 

sions and values. 
solved. Again, the recursive relationship in Eq. - 

Blank 3  x  4  2.5 x  3  4 x  5  (8) is used given the optimal values of H,*. The 
II 7 5 12 result is summarized in Table 3. 
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TABLE 3. Optlrnal values ~of'F,(.x)* for P3. 

7 

X I 2 3 4 

2.5 15 15l 15l 15' 
2.7 15 15' 15' 15l 
3 15 20' 20' 20' 
3.2 15 20' 20' 20' 
3.7 15 20' 20' 20' 
4 15 20' 26' 26' 
4.2 15 20' 26' 262 
4.7 15 20' 26' 26' 
5 30 30' 30' 3 1" 
5.7 30 35' 35' 35' 
6.7 30 40' 41' 41' 
7.2 30 40' 46' 46' 
9.7 4 5 60' 61' 61' 

* Thc supcrscrlpts are ~ncluded and are used for backtracking purposes. 

The optimal solution can now be obtained 
from Table 3. The maximum total value of all 
blanks cut is 6 1. Following the rip-first cutting 
scenario, the first strip cut is a strip whose 
width is the 3rd2 width (i.e., 61') in Table 1 
(width is 4). After the first strip, the remaining 
width is 5.7 (i.e., 9.7 - 4). From Table 3, the 
optimal solution is 352; hence the next strip 
has a width equal to the 2nd width in Table 1 
(i.e., width is 3). This brings the remaining 
width to 2.7 (i.e., 5.7 - 3). From Table 3, the 
optimal solution along x = 2.7 is 15'. Hence, 
the last strip has a width of 2.5, which is the 
first width in Table 1. 

The optimal length of the blanks can now 

TABLE 4. Optimal values of 'F,( ,~)  .for P2 (crosscut:first). 

FIG. 2. Optimal cutting pattern (rip-first). 

be determined. Along the first strip cut with a 
width of 4, we can refer to Table 2. Since the 
width is 4 inches (which corresponds to the 
5th position in Table I), we can look at Table 
2 for s = 5. The optimal solution is 265. Hence 
the length corresponds to the 5th blank with 
length equal to 3. This brings the remaining 
length to 8. Examining Table 2, x = 8, s = 5, 
the solution is again to have the blank whose 
length is 3. This backtracking can be continued 
to get the optimal solution, which is shown in 
Fig. 2. 

Consider now the case when the first cut is 
a crosscut. In this situation, the parent stock 
is turned so that the length becomes the width 
and vice versa. Using the same data, and fol- 
lowing the same procedure as in the rip-first 
scenario, the results obtained for P2 and P3 
are summarized in Tables 4 and 5. 

TABLE 5. Optimal values of F,(x) for P3 (crosscut-first). 



138 WOOD AND FIBER SCIENCE, JANUARY 1994, V. 26(1) 

9.7 AN APPLICATION 

A software system has been developed for rF the algorithms described in this paper and has 
also been applied in actual cutting operations 
in Brazil. One particular application involves 

11 the cutting of parent stock with dimensions 
2,000 x 2,000 (millimeters). In this applica- 
tion, the grain does not matter (e.g., particle- 
boards were cut). Five sizes of blanks were 
ordered. The sizes of the blanks and the quan- 

3 
2.5 2 tity ordered are described below: 

Blank Size (mm) Demand (order) 
FIG. 3. Optimal c.utting pattern (crosscut-first). 1 460 x 363 150 

2 363 x 135 150 
3 1,170 x 400 

The optimal cutting pattern is described in 
5 0 

425 x 345 150 
Fig. 3. The optimal cutting pattern for the 

5 460 x 345 5 5 
crosscut-first cutting, scenario yielded a max- - 
imum total value of 64, which is higher than For this problem, four optimal cutting pat- 
the value recovely of the rip-first scenario, terns were generated as shown in Figs. 4-7. 
which is equal to 6 1. (Figures are not drawn according to scale). The 

FIG. 4. Cutting pattern 1 (96% recovery) 



Carnieri et al. -OPTIMIZING CUTTING OF DIMENSION PARTS 139 

FIG. 5 .  Cutting pattern 2 (98.5% recovery). 

solution generated also indicates that a total 
of 22 particleboards must be cut to satisfy the 
order of blanks. The number of boards to be 
cut following cutting patterns 1, 2, 3, and 4,  
are 3, 10, 6, and 3, respectively. The actual 
production schedule showing the number of 
boards cut for each of the four cutting patterns 
and the total number of parts obtained are 
shown in Table 6. The fact that grain does not 
matter is highlighted in cutting pattern 2 where 
the blanks 363 x 460 were cut both lengthwise 
and crosswise. 

SUMMARY AND CONCLUSIONS 

Faced with the dwindling source of quality 
raw materials, dimension plants will now have 
to address more carefully the issue of optimal 
cutting, not only to maximize recovery, but 
more importantly, to get the most economic 
return from their lumber while consistently 
satisfying orders from their customers. This 
problem has received little attention in the past; 
but as competition for raw materials intensi- 
fies, and as advances in flexible manufacturing 

TABLE 6 .  Production schedule in terms of the number of blanks or parts obtained from using the four cuttingpatterns. 

Cuttlng patterns 

l(3)' 2( 10) 3(6) 4(3) 

Per Per Per Per 
Blanks S I X  hoard Total board Total hoard Total board Total Total 

The numbers w~thtn the parenthesec are the number of hoards cut. 



FIG. 6 .  Cutting pattern 3 (96.3% recovery). 

460 

FIG. 7. Cutting pattern 4 (96.8% recovery). 
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technology take their place in the furniture in- 
dustry, dimension plants will need to position 
themselves competitively through the adop- 
tion of more efficient processing techniques. 
The procedures and algorithms described in 
this paper could provide the building blocks 
that can enhance the capability of dimension 
plants to achieve better efficiency in cutting 
furniture or tlimension parts. 

The models described in this paper offer ex- 
act-dimension cutting solutions. Hence, they 
can perform well in cutting particleboards with 
fixed or uniform sizes. For cutting lumber, ob- 
viously the algorithms will work best if the 
lumber is sorted into groups that are of ap- 
proximately uniform sizes. From a practical 
standpoint, the results obtained from the al- 
gorithms can be most beneficial in situations 
in which lumber is sawn by batches so that 
sawing can be set up following the cutting pat- 
terns recommended by the algorithm. It should 
be noted, however, that the double knapsack 
algorithm can be used to optimally cut indi- 
vidual lumber. Hence, if lumber is cut at ran- 
dom, the double knapsack algorithm can be 
used to determine the optimal cutting pattern 
of each piece. 

The algorithms described in this paper are 
somewhat generic. However, some heuristic 
procedures are also described showing modi- 
fications from the generic models to suit var- 
ious production scenarios. Various algorithms 
are described for different cutting strategies, 
namely: 1) rip-first, 2) crosscut-first, or 3) a 
combination of both. Two algorithms are also 

developed for: 1) cutting lumber, and 2) cutting 
composite boards. 
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