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Abstract.

Bending moment capacity and moment rotation characteristics of mortise and tenon joints as a

function of tenon geometry, grain orientation, length, and shoulder fit were examined. Bending moment
capacity of all joints in which tenons were fully inserted in mortises was 54% greater than for joints in which
tenons were not fully inserted. Joints with 25.4-mm-long diamond-shaped tenons had greater moment capacity
than either rectangular or round tenon joints, whereas joints with 38- or 51-mm-long rectangular tenons had
greater capacities than joints with diamond or round tenons. Similarly, for joints in which tenons were not fully
inserted, rectangular tenons had the greatest moment capacity regardless of grain orientation or length.

Keywords:

INTRODUCTION

Much of the furniture manufactured in Turkey,
particularly that produced by smaller manufac-
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turers, is constructed with mortise and tenon
joints from softwood species, yet there is little
information available concerning the bending
moment capacity of joints constructed of soft-
woods of this and similar species. Also, infor-
mation concerning stiffness characteristics of
joints fabricated from such softwoods is lacking
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Figure 1. Mortise and tenon joint configuration of fully
inserted (tight) and not fully inserted (loose) shoulder
tenons: (a) rectangular, (b) round, and (c) diamond cross-
sectional geometry.

(Eckelman et al 2001, 2003; Erdil 2002;
Eckelman and Haviarova 2006). Furthermore,
information concerning capacity of various
tenon geometries is also lacking, ie information
that would allow designers to select the tenon
configuration best suited to their specific design.
For example, tenons with rectangular configura-
tions are probably best suited for structural
members, such as seat rails, in chairs that have
substantial width-to-thickness ratios, and round
or square tenons may be better suited for smaller
square members such as stretchers (Eckelman
et al 2001, 2003; Erdil 2002; Eckelman and
Haviarova 2006). Likewise, diamond-shaped
tenons may be best suited for chairs subjected

to frequent use (including tilting) to increase the
shear area of the neutral plane of the tenon, as
well as for aesthetic reasons when the ends are
exposed (Fig 1). Another factor to consider is if
grain orientation affects bending moment capac-
ity. Finally, information is also lacking with
respect to capacity of loose-shoulder “tenons,”
which do not have a shoulder that bears against
the wall of the member in which they are
inserted (Fig 1).

Given the need for such information, a study
was undertaken to obtain information concerning
performance characteristics of furniture joints
constructed from structural-grade softwood com-
parable with those used in furniture construc-
tion in Turkey. The major objective of the study
was to obtain information concerning bending
moment capacity of joints of three cross-sectional
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Figure 2. Actual joint specimen configurations of three
cross-sectional geometries with tight vs loose tenon shoul-
der configuration.



464

geometries. Specific objectives were to deter-
mine the effect of the cross-sectional geometry
of tenons, the effect of tight vs loose tenon
shoulders (Fig 2), grain orientation effect, and
tenon length effect on bending moment capacity
of the joints. The final objective was to deter-
mine moment rotation characteristics of the
joints as a function of tenon geometry and the
contact geometry characteristics of the tenon
shoulders (Fig 2).

PLAN OF STUDY

Four variables were considered, namely tenon
length, tenon cross-section, grain orientation,
and tight shoulders (fully inserted tenons) vs
loose shoulders (nonfully inserted tenons). Five
specimens were constructed for each combina-
tion of variables. Therefore, there were 5 replica-
tions X 3 tenon lengths X 3 tenon cross-sections X
3 grain orientations X 2 shoulder positions for a
total of 270 specimens.

MATERIALS AND METHODS
Specimen Preparation

General configurations of the specimens
included in this study are shown in Fig 2. All
specimens were constructed of nominal 38- x
152-mm Loblolly pine (Pinus teada), which was
conditioned to and maintained at 8% MC. Mod-

38 mm
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ulus of rupture of the wood species used in this
study was 110.4 MPa, and modulus of elasticity
was 9.05 GPa. Average specific gravity was
0.56 g/cm”.

Dimensions of the tenon cross-sections are
shown in Fig 3. The rectangular tenon was 12 mm
wide x 30 mm deep, the diameter of the round
tenon was 19 mm, and the diagonal tenon was
19 mm square. Tenon lengths were 25.4, 38.1,
and 50.8 mm.

Specimens were constructed with three tenon
grain orientations: radial (0°), tangential (90°),
and rift (45°). For each grain orientation, half the
tenons were fully inserted into their respective
mortises (tight shoulders) (Fig 2), whereas the
remaining half were not. Specifically, a 12.7-mm
space was left between the tenon shoulder and the
face of the post (loose shoulders).

All rails were 38 x 38 mm in cross-section. Posts
were constructed of the same material as the rails
and were 38 x 38 mm for 25.4- and 38.1-mm-
long tenons and 38 x 50.8 mm for 50.8-mm-long
tenons. Mortises were machined with standard
mortising chisels on a drill press. Rectangular-
and diamond-shaped tenons were cut with appro-
priate jigs on a band saw, and round tenons were
cut with a deep hole saw. Prior to assembly,
tenons and mortise walls were liberally coated
with a polyvinyl acetate adhesive (40% solids
content). All specimens were conditioned to

38 mm

38 mm

30 mm

C=19mm
6‘&

Figure 3.

Cross-sectional geometry configurations and dimensions.
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8% MC and were maintained at that moisture
content throughout testing.

Test Method

All tests were conducted on a 133.4-kN capacity
screw-powered Riehle universal testing machine.
Specimens were attached to the testing jig with
two bolts (Fig 4). Loads were applied to the rail
at a point 254 mm from the front face of the
specimen post. Joint rotations were measured
by means of two dial gauges that were attached
to the rail (Fig 4). Distance between dial gauges
was 165 mm. Dial gauges were read at 22.2-N
load intervals. Loading was continued until a
nonrecoverable drop-off in load occurred.

RESULTS AND DISCUSSION
Bending Moment Capacity

Grain orientation. The effects of grain orien-
tation are shown in Figs 5 and 6. In the case of
joints with tight shoulders, joints with 45° grain
orientation had 8.0 and 11% greater capacity
than joints with radial and tangential grain ori-
entation, respectively. Likewise, joints with
loose shoulders and 45° grain orientation had
8.2 and 4.5% greater moment capacity than
joints with radial and tangential grain orienta-
tion. Thus, in joints with both tight and loose
shoulders, joints with tenons that had a 45° grain
orientation had greater moment capacity than
joints with either 0 or 90° grain orientations. In
practice, however, these results were presum-
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Figure 4. Testing jig for joint specimens and attachment
of two dial gauges for joint rotation measurement.
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Figure 5. Bending moment capacity vs tenon length.

ably too small to justify sorting wood members
for grain orientation.

Shoulder effect. The effects of tenon shoul-
ders on bending moment capacities of the joints
are shown in Figs 5 and 6. Joints with shoul-
ders had substantially greater moment capacity
(1.58 times) than joints without shoulders. This
result clearly illustrates the contribution of shoul-
ders to the bending moment capacities of the
joints and also indicates the loss in capacity
incurred if glue joints loosen in service.

Cross-sectional geometry. The effects of
tenon cross-sectional geometry on moment
capacity are shown in Figs 5 and 6. Statistically,
direct comparisons between capacities of cross-
sections are not justified because of differences
in cross-sectional area of the sections; however,
the low value obtained for the 25.4-mm-long
rectangular tenons probably indicates adhesive
failure in the joint, whereas the increased value
for the 38.1-mm-long tenons probably indicates
a combination of adhesive failure and tenon
fracture. Finally, the value for 50.8-mm-long
tenons probably indicates primarily tenon frac-
ture (Eckelman 1978).

Effect of tenon length. The effects of tenon
length are shown in Figs 5 and 6. If capacities
for each tenon length were averaged, bending
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Figure 6. Bending moment capacity vs cross-sectional geometry, tenon length, grain orientation, and moment rotation

characteristics (Z values).

moment capacities of the joints were 124.4,
132.7, and 178.8 N-m for 25.4-, 38.1-, and 50.8-
mm tenons with tight shoulders and 90.0, 95.9,
and 97.4 N-m for 25.4-, 38.1-, and 50.8-mm
tenons with loose shoulders, respectively. In the
case of specimens with tight shoulders, spec-
imens with 50.8-mm tenons had 34.7 and 43.7%
greater moment capacity than 38.1- and 25.4-mm
tenons, respectively. Thus, as expected, tenon
length had a substantial effect on joints with tight
shoulders. In the case of joints with loose shoul-
ders, however, tenon length had a much less pro-
nounced effect.

Semirigid rotation factors. Semirigid connec-
tion factors were estimated through measure-

ment of individual member rotations as shown
in Fig 4. For this procedure,

_ Uil + 1))

Y (1)

where y; and y, refer to the deflections of
the top and bottom gauges, respectively, mm; x
refers to the distance between gauges, mm; and
M is applied moment, N-m (Lothers 1960;
Eckelman 1968).

Semirigid rotation coefficients computed as
shown are given in Fig 6. The average semirigid
rotation factor for all specimens with shoulders
was 9.2 x 1074 rad/N-m vs 12.8 x 107 rad/N-m
for those without shoulders.
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Table 1. Multiple variance analysis (ANOVA) results.
Source df F Significance
Corrected model 53 13.055 0.000
Intercept 1 6229.984 0.000
Shoulder 1 261.265 0.000
Cross-section 2 101.128 0.000
Grain 2 3.904 0.022
Tenon length 2 29.798 0.000
Shoulder*cross-section 2 16.614 0.000
Shoulder*grain 2 0.276 0.759
Cross-section*grain 4 2.741 0.030
Shoulder*cross-section*grain 4 0.651 0.627
Shoulder*tenon 2 16.533 0.000
Cross-section*tenon length 4 8.498 0.000
Shoulder*cross-section* 4 2.739 0.030
tenon length
Grain*tenon length 4 1.617 0.171
Shoulder*grain*tenon 4 1.256 0.288
Cross-section*grain* 8 0.982 0.451
tenon length
Shoulder*cross-section* 8 2.038 0.043
grain*tenon length
Error 216
Total 270
Corrected total 269

Figure 6 also shows that variations based on
tenon geometry were pronounced. Most notably,
the semirigid connection factors for round tenons
were substantially greater than for either rectan-

Table 2. Duncan tests results.

gular or diagonal tenons. Figure 6 also shows that
tight shoulders substantially decreased rotation
factors. For semirigid rotation factors as a factor
of grain orientation, results were mixed and dif-
ferences were small between joints with different
grain orientations. Tenon length had essentially
no effect on semirigid coefficient factors for
tenons with or without shoulders.

Statistical Analysis

According to the multiple variance analysis results
(Table 1), the effects of shoulder type, cross-
section, grain orientation, and tenon length factors
were statistically significant on bending moment
capacity. The two-way interactions of shoulder
and cross-section, shoulder and tenon length,
cross-section and tenon length, and cross-section
and grain orientation were statistically significant.
The three-way interaction of shoulder, tenon
length, and cross-section was statistically signifi-
cant. The four-way interaction of shoulder, tenon
length, grain orientation, and cross-section was
statistically significant. Differences between
groups with respect to the effect of variance on
bending moment capacity was meaningful (at 5%
significance level). The results of the Duncan tests

Factor Bending moment (N-m) HG Factor Bending moment (N-m) HG Factor Bending moment (N-m) HG
B-0-2-1 53.4 A B-0O-1-1 98.8 D-K  B-O-2-1II 141.1 M-U
B-O-1-1I1 57.5 AB B-0O-2-1 100.0 D-K A-O-2-1 145.3 N-U
B-O-3-11I 59.9 A-C  B-O-1-1 101.5 E-L B-O-2-1I 146.7 O-V
B-O-3-11 63.0 A-D  A-O-2-1 106.8 F-M  A-O-3-1 147.1 0-vV
B-O-2-11I 65.0 A-E  A-0O0-2-1 107.6 F-N  A-O-1-1 147.3 O-V
B-O-3-1 65.6 A-E  A-O-1-11 109.7 G-O B-O-3-1 147.5 O-v
B-O-1-11 65.7 A-E  A-0O-3-1 110.8 G-O A-O-1-1II 147.7 O-V
B-O-1-1 70.6 A-F  B-O-3-10 112.8 G-P  A-O-1-1I 148.3 0-V
B-0-2-11 70.8 A-F  A-O-1-1 113.0 G-P  A-O0-2-11 149.6 P-v
B-O-1-11 79.3 A-G  A-O-3-1 120.3 H-Q A-O-3-10 155.5 Q-v
B-O-2-11 85.4 A-H A-O-1-1 121.6 H-Q A-O-3-11 162.6 R-V
B-<O-2-111T 87.0 A-1  B-O-1-1I 122.3 H-Q A-O-2-0 162.7 R-V
B-O-3-1 88.1 A-1  A-O-3-1II 125.3 IR A-C-2-1T 166.6 S-v
B-0-2-1 89.7 A1 A-O-2-1II 131.7 J-S  A-O-1-1I 175.7 T-wW
B-O-3-11 91.8 B-I B-O-3-1II 131.9 IS A-O-1-1 178.8 U-w
B-<O-1-11T 96.3 C-1 A-O-1-1T 133.6 J-S  A-O-2-1I 184.2 VW
A-O-3-11 96.3 C-1  B-O-1-1II 136.8 K-S A-O-3-11 201.4 w
A-O-2-11 98.0 D-I B-O-3-II 138.3 L-T A-O-3-III 241.1 X

Shoulder type: tight Shoulder (A); loose shoulder (B).
Cross-section geometry: rectangular (0); round (O); diamond (<).
Grain orientation: radial (1); tangential (2); rift (3).

Tenon length: 25.4 mm (I); 38 mm (II); 50 mm (III).

HG, homogeneity group.
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were conducted to determine the importance of the
differences between the groups (Table 2). The
lowest value was obtained from the group of sam-
ples with round cross-section, loose shoulders,
tangential grain, and 25.4-mm tenon length. The
highest value was obtained from the group of sam-
ples with rectangular cross-section, shoulders, rift
cut grain, and 50.8-mm tenon length.

APPLICATIONS

Results of these tests perhaps can best be
interpreted through the use of a design example.
Referring to the sample chair frame shown in
Fig 7, if the seat depth, x, and the seat height, y,
are 431.8 mm, then the horizontal force, FH, is

WOOD AND FIBER SCIENCE, OCTOBER 2012, V. 44(4)

related to the bending moments acting on the
ends of the stretchers, f4 (assuming an identical
moment acts on the ends of each stretcher in two
side frames), by means of Eq 2.

Thus, for a 25.4-mm-long rectangular tenon with
tight shoulders,

FH = (203.2 x 4.4)/431.8 or, 2.05 kN (2)

This value may be interpreted through the use of
the American Library Association (ALA) stan-
dard for library chairs used in library reading
rooms (Eckelman 1995), which relates cyclic
load resistance to estimated light-, medium-, and
heavy-duty library use categories. Specifically,
this test method specifies cyclic front-to-back
loads of 1.1, 1.6, and 2.0 kN for use categories
that correspond to light, medium, and heavy duty.

Experience indicates that if chairs do not have at
least 1.1 kN front-to-back strength, a significant
number will fail during the first 2 yr in an adult
library environment, which is a severe use envi-
ronment, whereas chairs with strengths of at least
2.0 kN survive indefinitely. Furthermore, chairs
that meet only the low ALA acceptance level
have given good service in fast food restaurants,
again indicating the severity of university library
use and indicating that the load levels are higher
than needed for domestic use. Ongoing research
indicates that the cyclic strength of chairs of the
type used in this study corresponds to about 75%

Figure 7. Schematics of chair frame performance testing.  of their static strength.
Table 3. Estimated static front-to-back load bending moment capacities.
Shoulder No shoulder
Tenon Calculated Equivalent Calculated Equivalent
length Average bending front-to-back cyclic load Average bending front-to-back cyclic load
(mm) Tenon type moment (N-m) force (kN) (kN) moment (N-m) force (kN) (kN)
254 Rectangular 110.5 2.05 1.53 113.4 2.1 1.58
38.1 Rectangular 145 2.69 2.02 135.7 2.51 1.89
50 Rectangular 214.2 3.97 2.98 132.8 2.46 1.85
xbar= 120.1
254 Round 116.3 2.15 1.61 63.3 1.17 0.88
38.1 Round 101.3 1.88 1.41 66.4 1.23 0.93
50.8 Round 134.9 2.5 1.88 60.8 1.13 0.845
xbar= 128.7
254 Diamond 145.4 2.72 2.04 93.2 1.73 1.29
38.1 Diamond 151.9 2.82 2.11 85.5 1.58 1.19
50.8 Diamond 187.1 3.47 2.6 98.7 1.83 1.37
xbar= 161.5
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The estimated static front-to-back load capac-
ities of the chairs in Fig 7 constructed with
joints of the type investigated in this study are
given in Table 3. As shown, chairs constructed
with any of the three joint configurations would
be satisfactory for domestic use, whereas those
constructed with rectangular- and diamond-
shaped tenons would be suitable for school or
commercial use. However, the performance of
chairs constructed with any of the joint configu-
rations can be moved into a high-performance
category simply by adding a third stretcher.

CONCLUSIONS

Overall, joints with tight-fitting shoulders had
158% greater bending moment capacity than those
with loose fitting shoulders. In addition, tenon
shoulders substantially decreased rotation factors.

Tenon cross-section also had a substantial effect
on bending moment capacity. Joints with a
round tenon configuration had only 50% of the
capacity of those with a rectangular tenon con-
figuration, whereas those with a diagonal con-
figuration had 72.7% of the capacity of the
rectangular. Likewise, joints with a round tenon
configuration had only 68.8% of the capacity of
joints with a diagonal configuration.

Bending moment capacity increased with tenon
length in joints with rectangular- and diamond-
shaped tenons but did not increase in joints
with round tenons, whereas grain direction
had little effect on bending moment capacity,
regardless of whether the tenons had load-
bearing shoulders.

Semirigid rotation factors were substantially
affected by tenon geometry and shoulder effect.
Overall, semirigid connection factors for joints
with loose shoulders were 39% greater than for
joints with tight shoulders. Connection factors
for round tenons were substantially greater than
for either rectangular- or diamond-shaped tenons.
Also, differences were small among joints with
different grain orientations, and tenon length
had essentially no effect on semirigid coeffi-
cient factors for tenons with either tight or
loose shoulders.
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