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ABSTRACT 

Three models for predicting creep in plywood from measured constituent properties were formu- 
lated using phenomenological linear viscoelastic theory. The three models represent a one-dimen- 
sional, quasi-elastic solution, a two-dimensional, quasi-elastic solution, and a two-dimensional, vis- 
coelastic solution. In part I1  of this study, the models will be used to compute the principal components 
of the two-dimensional creep compliance tensor for plywood and will show that predictions of creep 
behavior based on all three solutions give similar results. The most accurate prediction of parallel 
and perpendicular creep was made with the one-dimensional model. 

Kryrc,ords: Plywood, creep. viscoelasticity, orthotropic elasticity, two-dimensional stress analysis, 
modeling. predicting. 

INTRODUCTION 

Solid wood, when subjected to low stress levels in tension parallel-to-grain at 
a sufficiently low temperature and moisture content, behaves as a linear elastic 
material (Bach 1965). Because of the simplicity of the linear elastic constitutive 
relationship, this model has been used almost exclusively for stress analysis and 
structural design problems for wood. At load levels actually encountered in struc- 
tures, however, wood exhibits both elastic and viscous behavior. Proper material 
constitutive relations should describe the evaluation of the state variables (stress, 
strain) in both space and time. Therefore, for certain applications wood should 
be classified as a viscoelastic solid. 

A great deal of experimental work has been published on the response of wood 
to constant and varying conditions of stress, temperature, and moisture content 
(Schniewind 1968). By contrast, much less work has been reported on the vis- 
coelastic behavior of plywood and other wood composites. 

The objective of this study was to develop analytical models to relate creep 
deformation of plywood to constituent (veneer) behavior. This was done for the 
two-dimensional creep compliance tensor, assuming a state of plane stress. The 
models were developed using a linear viscoelastic theory, treating plywood as a 
layered orthotropic composite material. 

I The authors wish to thank Dr. Robert L. Taylor, Professor of Civil Engineering, Univ. of Cali- 
fornia, Berkeley, for his assistance in performing the viscoelastic analysis. 
' Based on a paper presented at the Annual Meeting of the Forest Products Research Society, 

Chicago. IL.  1974. 
Wnnd and Fiber. 10( 1). 1978. pp. 28-38 
C 1978 by the Soc~ety of Wood Sc~ence and Technology 
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LITERATURE REVIEW 

A number of studies have been performed to characterize the functional form 
of the creep curve for plywood and other wood-based materials and to compare 
relative time-dependent deflections (Norris and Kommers 1943; Campredon 1947; 
Halligan 1965; Narayanamurti and Aswathnarayana 1970; Perkitny and Steller 
1972; Kalina 1972; and Gressel 1972a,b,c). These studies indicate that relative 
creep is greatest in fiberboard, followed by particleboard, plywood, laminated 
wood, and solid wood. Work at the Technical Research Center of Finland has 
been of a more fundamental nature. Ranta-Maunus (1972) studied creep and stress 
relaxation in bending and observed linear viscoelastic behavior under steady-state 
climatic conditions at allowable stress levels for spruce plywood. Weak nonlin- 
earity was observed for birch plywood. The shear deformation in bending was 
weakly nonlinear for plywood made from both species of wood. Increasing mois- 
ture content increased the degree of nonlinearity. This work has been extended 
to include nonsteady-state environments (Ranta-Maunus 1973) for the case of 
periodic variations in moisture content. 

The theory of elasticity for laminated composites made from anisotropic lamina 
is well developed. A review of the theory has been published by Stavsky and 
Hoff (1969). Considerable success has been achieved in predicting elastic behav- 
ior of plywood from properties of its constituents. The U.S. Forest Products 
Laboratory has done much work in this area (Anon. 1964). 

Significant contributions have also been made by Hearman (1948), Sawada et 
al. (1959), Steller (1967), Masuda et al. (1969). Rautakorpi (1969, 197 1) and many 
others. These studies are based primarily on the two-dimensional theory of elas- 
ticity for anisotropic composite materials. Various simplifying assumptions have 
been made in each analysis. The most common simplification is the use of the 
rule of mixtures. This rule states that each constituent of the mixture is a separate 
continuum that may be acted on by external forces and by other constituents, 
with the mixture mass, momentum, and energy being conserved. Thus, the con- 
tribution of each constituent to mixture behavior is in proportion to its mass 
weighted average. 

The contribution of the glue line to total elastic behavior is small when veneers 
have a thickness greater than 0.05 inches (Curry 1957; Preston 1954), and most 
investigators have ignored the effect of the glue line in the mathematical analysis. 
Okuma (1966) was the only one to treat the glue line as a separate layer. In other 
studies, the effect of the glue line was determined indirectly by measuring con- 
stituent properties on parallel laminated specimens matched to the plywood spec- 
imens. This method has been shown by Preston (1954) to be more effective than 
using properties of solid wood for predicting elastic behavior of plywood. Pre- 
dictions of modulus of elasticity of plywood in tension parallel-to-grain of the 
face veneers, based on properties of parallel laminated specimens, are usually 
within 10% of experimental values. Larger errors result when solid wood 
is used for controls. This difference is attributable, in part, to the presence of 
lathe checks in the veneer, which have an adverse effect on bending stiffness 
(Yagishita and Egusa 1065). 

Only Ranta-Maunus (1972) has dealt with the prediction of the viscoelastic 
behavior of plywood from constituent properties. Plywood was assumed to act 
as an orthotropic multilayer sandwich plate, following the analysis Rautakorpi 
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(1971) used for the elastic case. Pure bending deflection was determined from 
creep tests on strips subjected to third-point loading. Total deflection, due to the 
combined effect of shear and bending, was then determined on strips subjected 
to a concentrated load. From these tests the constitutive equations of an individ- 
ual veneer sheet based on axial stress and rolling shear were determined. This 
enabled time-dependent deflection to be calculated for plywood using linear vis- 
coelastic theory. 

PREDICTING CREEP O F  PLYWOOD 

Three analytical models, representing different degrees of refinement, will be 
formulated to determine effective creep compliance functions for plywood based 
on experimentally measured, time-dependent constituent properties. The first is 
a one-dimensional, quasi-elastic analysis that ignores Poisson's effects and makes 
some simplifying assumptions concerning the dependency of stress at any point 
in time on the previous stress history of the body under consideration. The second 
is a two-dimensional, quasi-elastic analysis, where the Poisson's effect is consid- 
ered. The third is a two-dimensional, viscoelastic analysis where previous stress 
history is also taken into account. All three solutions employ linear viscoelastic 
theory as developed for anisotropic composite materials. The quasi-elastic solu- 
tions will be discussed first, beginning with the two-dimensional analysis as a 
matter of convenience. 

Two-dimensional, quasi-elastic analysis 

The analysis begins with the properties of the plywood constituent, either the 
veneer or the laminated material shown in Fig. 1. The elastic constitutive relation 
for this orthotropic material, relating stresses okl and strains eij is 

E . .  = S. .  " 
15 l ~ k l  k l ,  

where: 

SiJkl are components of the compliance tensor, 
i.j,k,l are equal to 1,2,3. 

The subscripts are related to the axis of veneer or parallel laminated veneer as 
follows: 

I is the longitudinal axis 
2 is the tangential axis 
3 is the radial axis. 

The linear viscoelastic constitutive equation may be determined directly from the 
elastic equation through use of the well-known elastic-viscoelastic correspon- 
dence principle. This principle may be defined as: 

Replace in the elastic equations the stress and strain by their Laplace trans- 
forms and the material properties by their associated transforms multiplied by 
the transform parameter "p" to obtain the transform of the viscoelastic equa- 
tions. 

Applying correspondence to Equation 1 yields for the viscoelastic case: 
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t 
FIG. I .  a) Orientation of plywood constituent in space. b) Plywood constituent in a state of plane 

\tress. 

where the bar signifies that the tensor has been transformed into Laplace space. 
Equation 2 may be expressed in terms of the Boltzman superposition integral 
(Schapery 1967; Halpin and Pagano 1968): 

The lower limit indicates that the problem is quiescent before, or that the problem 
begins at time t,,. Now, if the veneer in question is stress free prior to t,, and then 
experiences an instantaneous stress, a discontinuity occurs a time t,,. This dis- 
continuity can be taken outside the integral: 

Sirkl(t) is a fourth rank tensor containing, in the most general case, 81 compo- 
nents. Symmetry of the stress and strain tensors reduces the number of indepen- 
dent components to 36, with further reduction to 21 because of relations analo- 
gous to the Maxwell relations in elastic theory. 
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Plywood may be considered as a cross-laminated composite made up of thin 
layers of orthotropic plates bonded together. When this plate is subjected to in- 
plane stresses, it is reasonable to assume a state of plane stress, such that a,, = 

cr,, = a,, = 0. Figure 1 defines the state of plane stress for a thin plate such as 
plywood. For this two-dimensional problem, the creep-compliance tensor is 

Of the five creep compliance components shown, four are independent. This 
study will be concerned with tensile creep specimens that are free of shear stress- 
es. Therefore, only three components will be evaluated, namely S,, , ,(t), Szzz2(t), 
and S ,  ,,,(t). 

These three material functions may be determined for veneer and veneer lam- 
inates from uniaxial tension tests using the step-function stress input: 

where: 

H(t) is the Heaviside unit step function. Substitution of Equation 6 into Equa- 
tion 4 yields: 

where the components of Sijkl(t), defined by Equation 3 ,  are represented by ex- 
perimental data fit to an equation such as 

J(t) = J,, + mt", (8) 

where: J(t) is the creep compliance at time "t," and 
J,,, m and n are constants determined experimentally for each test. 

Equation 7 is a linear elastic constitutive relation for a single lamina or layer since 
the strain at any time (t) depends only on the value of the creep compliance tensor 
at that time. In other words, previous stress history has been ignored in deriving 
Equation 7. 

Mathematical derivation of effective creep compliance components for ply- 
wood, expressed in terms of constituent behavior is analogous to Schniewind's 
(1972) analysis of the elastic behavior of the single wood fiber in terms of its 
distinct layers. To obtain the effective creep compliance tensor for plywood, 
Equation 7 is rewritten to express the stresses as functions of the strains: 

and the matrix of components of time-dependent stiffness is obtained by inversion 
of the creep compliance matrix: 
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Since in plywood the stiffness components Cijkl(t) will generally vary from layer 
to layer, but all layers are required to deform together, the stresses will also 
generally vary. Equilibrium dictates that the externally applied stress wok, be 
equal to the sum of the stress in the nth layer times the area ratio of that layer, 
,An: 

Substituting Equation 9 into the right hand side of Equation 12 yields: 

u O k l  = { A n [ C i j k l ( t ) l n [ ~ i j ( t ) l n }  . (13) 

All layers of the plywood will deform in an amount equal to the overall defor- 
mation eij(t) = ei.,(t)" SO that Equation 12 becomes: 

= z [A,Cijkl(t)ln [cij(t)l. (14) 

From Equation 14 we see that the effective stiffness matrix is defined as: 

Cijkl(t) = z {An[Cijkl(t)ln} ( I 3  

and the effective creep compliance tensor for plywood is finally obtained by 
inverting the effective stiffness matrix 

It is common in practical calculations of the elastic stiffnesses of plywood to 
ignore Poisson's effect in order to simplify calculations. The consequence of 
ignoring Poisson's effect in conventional cross-laminated plywood is to reduce 
the predicted elastic stiffness parallel-to-the-face grain by a small amount, from 
I to 3% (Stavsky and Hoff 1969). The lower predicted stiffness from the one- 
dimensional solution is explained by restraints that are present in the plywood 
panel. An individual ply, if it were free to do so, would expand in the direction 
of the tensile stress and contract in the direction normal to the stress in response 
to stress parallel to one material axis. In plywood, however, the adjacent ply 
partly restrains the contraction unless all layers have identical Poisson's ratios. 
The one-dimensional solution, of course, ignores this restraint. 

The one-dimensional solution for effective parallel and perpendicular creep 
compliance for plywood is determined by the simple relation: 

where: 

T is the layer thickness, 
S(t) is an effective plywood stiffness component, 
S(t) is a veneer stiffness component, and 
a.b refer to parallel and cross plies, respectively. 

Equation 17 can be derived in a manner analogous to the two-dimensional case. 
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For the effective parallel-to-face-grain, creep compliance component, Equation 
17 becomes: 

and for the effective perpendicular-to-face-grain, creep compliance component, 

where, as before, the creep compliance components Sl lI l ( t )  and S,,,,(t) are ex- 
perimentally determined values obtained from tests on veneer or laminates fitted 
to Equation 8. Since Poisson's effects are ignored, the transverse compliance 
S,,,,(t) is not obtained in this analysis. 

Two-dimensional viscoelastic analysis 

The linear viscoelastic constitutive relation has been presented in Equation 2 
as a direct result of the correspondence principle. The difficulty of this solution 
is in performing the inverse Laplace transform to obtain the effective creep com- 
pliance matrix in real space. The problem is made more tenable when the exper- 
imental data are fitted to a creep function other than Equation 8. A more con- 
venient representation of the data, applicable to linear materials, is by a series 
of exponentials. The simplest relation, containing one exponential term is: 

The parameters necessary to characterize Equation 20 are defined in Fig. 2. 
The parameters J l  and J, are read off experimental curves for each compliance 
component. The assumption is made that the creep curves have zero slope at the 
end of the test. The parameter A will, in general, be different for each creep 
compliance component. However, to facilitate transformation, it is best to stip- 
ulate that A is the same for all creep compliance components. The parameter A 
can be determined by finding the intercept of the line J(t) = J ,  with the curve 
tangent to the creep curve at t,, and subtracting the value oft,,. 

Once the exponential relation of the form shown in Equation 20 is fitted to the 
experimentally determined data for plywood constituents, the effective creep 
compliance components for plywood may be calculated. Equation 20 is substi- 
tuted into Equation 5 to give: 

The creep compliance matrix for the plywood constituents may then be trans- 
formed into Laplace space using a table of transforms (Flugge 1967): 
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'0 TIME '100 

to TIME 
FIG. 2. Exponential creep function to which experimental data was fitted for use in viscoelastic 

analysis of plywood creep behavior. The parameters are defined for an idealized creep curve generated 
by a step function stress input. 

where: 
p is the transform parameter. 
The remaining steps in computing effective creep compliances for plywood are 

completely analogous to the two-dimensional, quasi-elastic solution, except that 
they are carried out in Laplace space. The matrix of Equation 22 is inverted to 
obtain the stiffness components for each constituent lamina: 

Then, as before, effective stiffness components for the plywood may be obtained 
by weighting each lamina by its area ratio: 

Cijkl(~) = 2 {An[Cijkl(~)ln}. Q4) 

Next, the effective creep compliance components for the plywood composite are 
obtained by inverting the effective stiffness matrix. 

We now have an algebraic expression for each creep compliance component 
containing powers of the transform variable (p). Several methods for performing 
the transform inversion have been proposed to obtain the desired solution in real 
space (Schapery 1961, 1962; Cost 1964). The method of partial fractions (Hilde- 
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brand 1960) is suggested to perform the transform inversion. After algebraic ma- 
~~ipulation, an expression must be obtained for each component Sijkl(p) of the 
form: 

where: G(p) and H(p) are polynomials of p, and the degree of G(p) is lower than 
that of H(p). Through further algebraic manipulation, Equation 26 must be ex- 
pressed as the sum of a number of partial fractions containing both repeated and 
unrepeated factors in the denominators. Techniques that may be used to trans- 
form these partial fractions are described in some detail by Kreyszig (1967). 

S U M M A R Y  

This paper has developed prediction models for creep of plywood based on 
linear viscoelastic theory. Plywood was considered to be a cross-laminated com- 
posite made from orthotropic laminae. Three types of solutions were presented: 
a one-dimensional, quasi-elastic solution that ignores Poisson's effects and stress 
history; a two-dimensional, quasi-elastic solution that includes Poisson's effects, 
and a two-dimensional, viscoelastic solution that also incorporates the effects of 
previous stress history. 

In the second part of this study, the time-dependent properties of veneer and 
veneer laminates will be used to calculate components of the two-dimensional, 
creep compliance tensor for plywood using the three analytical models described 
in this paper. 

The effects of lathe checks will be evaluated through a comparison of plywood 
made from both conventional rotary peeled veneer and sawn veneer devoid of 
lathe checks. Glue line effects will be evaluated through comparison of creep 
properties of single-ply and parallel laminated sawn veneer, and by the ability of 
each type of constituent to predict the time-dependent behavior of plywood made 
from matched veneer. The appropriateness of using linear viscoelastic theory will 
be determined through creep tests on plywood, carried out over a wide range of 
stress levels. 

SUMMARY OF EXPERIMENTAL RESULTS 

Results of the experimental phase of this research, to be published at a later 
date, are summarized here for convenience. Plywood was shown experimentally 
to behave as a linear viscoelastic material for stress levels as high as 59% of 
maximum static strength. Predictions of creep behavior based on all three solu- 
tions gave similar results. Questions remain concerning the prediction of trans- 
verse creep since positive creep was observed experimentally, while negative 
creep was predicted with both two-dimensional solutions. The most accurate 
prediction of parallel and perpendicular creep was made with the one-dimensional 
solution using measured creep properties of parallel laminates, with maximum 
difference between predicted and experimental total creep compliance of 10.6%. 
The presence of lathe checks influenced both elastic and creep behavior, tending 
to increase deformation relative to predicted results. The presence of glue lines 
and the laminating process has an effect on the creep of plywood which is greater 
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than the direct effect of wood compression. However, this work has demonstrated 
that creep behavior of plywood parallel and perpendicular-to-face grain may be 
predicted with a high degree of accuracy from measured properties of parallel 
laminates, made of the same veneer type and thickness. 
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