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ABSTRACT 

Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/ 
mineral streak. and clearwood in red oak, (Qurrcu.c rubm) .  Various color, ~hape,  and density measures 
were extracted for defects present in color and X-ray images captured using a color line scan camera 
and an X-ray line scan detector. Analysis of variance was used to determine which color, shape, and 
density measures differed between defects. Discriminant classifiers were used to test which defect 
measures best discriminated between different defects in lumber. 

The ANOVA method of model measure selection was unable to provide a direct method of selecting 
the optimum combination of measures; however, it did provide insight as to which measure should 
be selected in cases of confusion between defects. No single sensor measure provided overall classi- 
tication accuracy greater than 70%. indicating the need for multisensor and multimeasure information 
for defect clarsification. When used alone. color measures resulted in the highest overall defect clas- 
silication accuracy (between 69 and 70%). Shape and density measures resulted in the lowest overall 
classification accuracy (between 32 and 53%); however, when used in combination with other mea- 
sures. they contributed to a 5-10% increase in defect classification accuracy. It was determined that 
defect classification required multisensor information to obtain the highest accuracy. For classifying 
defects in red oak, sensor measures should include two color mean values and two standard deviation 
values, a shape measure, and a X-ray standard deviation value. 

Keywords: Lumber scanning. defect detection, discriminant analysis, machine vision 

INTRODUCTION there is a growing interest in developing and 
using automated defect detection systems. With a shortage of qualified labor, a desire 
These systems are of particular interest to the 

to use lower grade raw materials, and an in- hardwood manufacturing industry where de- 
creased yield benefit of using automation, fects must be removed from visible faces as 

-i- Member of SWST 

in flooring, furniture, cabinets, and millwork. 
Automated defect detection allows for more 
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precise production control methods and pro- 
duction concepts such as multiple batch pro- 
cessing and the inclusion of character-marked 
material. 

It has been proposed that new automation 
technologies will require the use of multiple 
sensor scanning systems (Kline et al. 1993). 
Although different types of sensors have been 
studied, little work has been published on the 
combination of different sensors in one system 
(Conners et al. 1992;  strand 1992; Hagman 
and Grundberg 1993). By integrating multiple 
sensor information, the accuracy of an auto- 
matic lumber inspection system can be sub- 
stantially improved. While many defect detec- 
tion systems have been able to differentiate 
between certain defect types, little information 
is known about what combination of sensors 
and what sensor information achieve the most 
accurate differentiation between defect types. 

Defects in lumber are commonly observed 
by visual examination; however, other indi- 
cations, such as density, can also be used to 
differentiate between clearwood and defects. 
Many different sensing methods have been ap- 
plied to inspection of wood including optical, 
ultrasonic, microwave, nuclear magnetic res- 
onance, and X-ray sensing (Bond 1998). Most 
automated defect detection systems require ei- 
ther visual (color, light intensity, andlor 
shape), or density differences to differentiate 
between defect types. 

Conners et al. (1985). Silven and Kauppi- 
nen (1996), and Brunner et al. (1990) dem- 
onstrated the utility of color information for 
defect detection in wood. Color is an "attri- 
bute of visual perception that can be described 
by color names such as white, gray, black, yel- 
low, orange, brown, red, green, blue, purple, 
etc., or by combinations of such names" 
(Grum and Bartleson 1980). The color of a 
material is determined by the spectral makeup 
of light reflected from its surface. Due to the 
limited understanding of the human visual sys- 
tem, many methods of describing or modeling 
of color exist. The most common and simple 
is the RGB color model, which uses three pri- 
mary colors (red, green, and blue) to describe 

a color within a color range (Weeks 1996). 
The RGB model describes a color image as a 
set of three independent gray-scale images 
each having 256 gray levels. Other color mod- 
els exist and are described by Weeks (1996). 
The use of various color models to describe 
the color of wood has been studied by Brunner 
et al. (1990); however, the RGB color space 
is the most common. 

Little detailed information exists in litera- 
ture describing the color differences of indi- 
vidual wood features. Most information on the 
subject is based on the selection of color spac- 
es for the classification of all defects rather 
than how each feature can be described by a 
particular color space. Performance of a color 
space is based on the classification accuracy 
of all feature types. By better understanding 
how each feature is represented by color mea- 
sures, improved classification performance 
could be achieved. 

The need for density information to im- 
prove defect detection accuracy has been doc- 
umented by several researchers (Conners et al. 
1990, 1992; Araman et al. 1992; Portala and 
Ciccotelli 1992). Differences in density have 
long been used in the nondestructive evalua- 
tion of objects. One common method of eval- 
uating density differences within a material is 
through the use of X-ray attenuation. The at- 
tenuation of radiation through an object to de- 
tect features based on density differences is 
known as radiography. Portala and Ciccotelli 
(1 992) demonstrated the ability of X-ray in- 
formation to be used in identifying features in 
wood that contain density differences. 

Several investigators have demonstrated the 
usefulness of shape measures in the detection 
of wood defects (Forrer et al. 1988; Polzleitner 
and Schwingshakl 1990; Cho 1991; Kauppi- 
nen and Silven 1995; Lampinen and Smolan- 
der 1996). The most common shape measures 
for defect recognition include area, eccentric- 
ity, Euler number, compactness, and the slope 
density function (Ballard and Brown 1982). 
Lampinen and Smolander (1996) stated that 
while shape information is of great importance 
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T~s1 . t  I .  Dqfinitiot~ ofprevalent ~.vood defects included in this srudjl. 

I)eIccl Definition 

Bark pockets: Inclusion of bark within the wood where a knot or wane are not present. 
Knots: Part of the limbs that are embedded in the main stem. 
Stain ( 1 )  and ( I )  Discoloration caused by fungi or bacteria. Initial evidences of decay. (2) An olive to 

mineral streak greenish-black or brown discoloration of undetermined cause in hardwoods. 
Clearwood: Normal earlywc?od and latewood area that contains no other defects 

for defect classification of wood features, it is 
insufficient when used alone. 

While the scanning methods discussed are 
useful in systems that detect wood features, no 
single method has proven adequate for all de- 
fect types. By optimally combining several 
measures from multisensor scanning systems, 
a more reliable defect detection system can be 
developed, However, it is not understood how 
well these different measures can describe in- 
dividual lumber defects. By gaining knowl- 
edge of what feature measures are important 
for classification, more appropriate sensing 
methods can be selected and better defect de- 
tection methods can be developed. 

The objective of this research was to deter- 
mine the differences between color, shape, and 
density measures between various wood de- 
fects (features) and to determine the best com- 
bination of measures for classification. Defects 
studied were knots, stain, bark pockets, and 
clearwood in  red oak lumber. Analysis o f  var- 
iance and discriminant analysis techniques 
were used to study how different combinations 
of measures performed in differentiating be- 
tween the various defects. 

METHODS 

Materia1.s and measurements 

Images of clearwood, knots, bark pockets, 
and stain were attained from red oak, (Quer- 
cus ruhra) lumber samples. Images were col- 
lected using a color line scan camera and an 
X-ray line scan detector mounted on equip- 
ment designed for multisensor scanning of 
lumber (Conners et al. 1997; Bond 1998). Red 
oak lumber was chosen because of its com- 
mercial importance to the furniture and cabi- 

net industry. Eight-foot samples of No. 2 
Common lumber (National Hardwood Lumber 
Association, NHLA 1994) were obtained in 
the kiln-dry condition (8% MC) from various 
sources within the Appalachian mountain re- 
gion. The widths of the samples were less than 
10 in. Moisture content of 8% was chosen be- 
cause it is commonly used in the manufactur- 
ing of wood products in the United States and 
allowed for stable moisture conditions in the 
laboratory. All lumber was planed within 718 
in. to 15/16 in. to create a clean surface free 
of soil, grease, surface roughness, and other 
marks that would alter the natural variability 
of the features studied. 

The defects investigated in this study are 
listed in Table 1. Defects were selected based 
on their frequency and the area they occupy 
in NHLA graded No. 1 and No. 2 Common 
red oak (Buehlmann et al. 1997; Wiedenbeck 
and Buehlmann 1995). Only intergrown 
(sound) knot specimens were included in this 
study. Twenty samples of clearwood, knots, 
and bark pockets, and nineteen samples of 
stainlmineral were selected from the lumber. 

The lumber was scanned using a multiple 
sensor detection system assembled at Virginia 
Tech (Fig. l), which generates both X-ray and 
color images with a cross-board resolution of 
1.2 pixelslmm (30 pixelslin.) and a down- 
board resolution of 0.63 pixelslmm (16 pixels1 
in.) (Conners et al. 1997). The lumber was 
scanned at a rate of one foot per second. The 
X-ray and color systems were configured to 
have identical spatial resolution and align- 
ment. 

Color images were collected using a Pulnix 
TL-2600 RGB line scan camera with a line 
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FIG. I .  Lumber scanning 5ystcrn. 

resolution of 864 pixels. The camera was 
mounted perpendicular to the wood surface, 
and four linear Fostec fiber-optic light lines 
were used to illuminate the surface of the lum- 
ber. These light lines were arranged pairwise 
in a small angle from the optical axis of the 
camera illuminating a line across the boards 
perpendicular to the feeding direction (see Fig. 
1). The Pulnix camera has three sensor arrays 
filtered with red, green, and blue interference 
filters, respectively. This camera configuration 
gives a slight spatial offset of the three color 
images, but no undesired effects were ob- 
served for this experiment. The camera was 
fitted with two color-balancing filters (Schott 
filter numbers FG-6 and BG-34), and the three 
color channels were individually shade-cor- 
rected with a linear function. 

The X-ray scanning system provides an av- 
eraged image of the wood density throughout 
the lumber thickness. This average wood den- 
sity is useful for detection of defects in wood 
since most defects are of higher or lower den- 

sity than normal or clear wood. The X-ray sys- 
tem employed an EG&G Astrophysics X-ray 
source with the radiation energy set to 100 
keV and 0.6 mA. The X-ray sensor was a 256- 
pixel line array manufactured by FISCAN. 
The images were shade-corrected using a lin- 
ear function, and the contrast was optimized 
for 414 red oak by calibrating the minimum 
level (highest absorption) with a target of 45- 
mm-thick polyethylene. 

Wood feature images were imported into 
Image-Pro Plus image analysis software (Me- 
dia Cybernetics 1995). The area contained 
within a defect was manually isolated. The ex- 
act location and size of a defect were mea- 
sured to verify defect locations in the images. 
Measurements of color (mean and standard 
deviation for each of the red, green, and blue 
image gray-scale values), shape (aspect and 
roundness), and X-ray attenuation (mean and 
standard deviation for the X-ray image gray- 
scale values) were quantitatively measured for 
the selected defect region. The measurements 
collected from each defect region, their nota- 
tion, and definitions are presented in Table 2. 
Aspect and roundness measurements were cal- 
culated from measurements taken from the 
color image. Aspect is the ratio of maximum 
cord A to maximum cord B perpendicular to 
A as shown in Fig. 2. Roundness of an object 
is defined as 

Roundness = 
p2 

(4 X P X a )  
(1)  

Color Rr11 

GI11 
B ,,, 
K, 
G, 
B, 

Sh'lpc ASP 
RND 

X-ray attenuat~on XI,, 
x, 

Red mean Color 
Green mean 
Blue mean 
Red standard deviation 
Green standard deviation 
Blue standard deviation 
Aspect Color 
Roundness 
Attenuation mean X-ray 
Attenuation standard deviation 
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different for multiple defect types were used 
as classification variables. Finally, variables 
were systematically added and deleted to de- 
termine their effect on the classification ac- 
curacy. 

Discriminant analysis procedures 

Discriminant functions are often used in 
FIG. 2. Eccentricity measure defined AIB. pattern recognition and classification for the 

separation of data into groups (Duda and Hart 

where p is the perimeter (cm), and a is the 
area (cm2). 

While the X-ray image is actually a gray- 
scale representation of the attenuation of X- 
rays through the wood, it is also a represen- 
tation of the relative density through the thick- 
ness of the material. Hence, this measure will 
be referred to as the density measure in further 
discussion. To collect the density measures 
that spatially correspond to the color mea- 
sures, the defect area was manually segmented 
from clearwood, measured, and then super- 
imposed on both the color and X-ray images 
to insure that the same region in the lumber 
was selected for measurement. 

Statistical procedures 

The relationship of the color, shape, and 
density measures between defects was deter- 
mined using analysis of variance techniques 
(Bond 1998). The assumption of equal vari- 
ance for the tested groups was verified before 
each ANOVA. Tukey's W procedure was used 
to determine which groups were significantly 
different. Tukey's W procedure was chosen 
since it is conservative in determining group 
differences and is able to account for unequal 
sample sizes (Ott 1988). SAS (SAS Institute 
1996) statistical analysis software was used for 
all statistical analysis. 

To study the effectiveness of the discovered 
differences, color, shape, and density measures 
were used as classification variables in a dis- 
criminant analysis. All variables (measures) 
were tested individually to determine their 
ability to separate defects. Then, only those 
measures that were shown to be significantly 

- .  

1973). Discriminant analysis is a statistical 
technique that is used to classify objects into 
groups based on a priori information. The use 
of a priori information is a limiting factor of 
this work as drastically different color or den- 
sity in samples could change the results. 

The most common methods of discriminant 
analysis include Fisher's Discriminant func- 
tion and linear logistic discrimination (Everitt 
and Dunn 1992). Other methods are available 
and are reviewed in Hand (1981). The many 
different methods are a result of the variety of 
distribution assumptions made about the var- 
iables describing the feature to be classified; 
however, Fisher's linear discriminant function 
has been shown to be relatively robust for 
those situations where there is a departure 
from normality (Everitt and Dunn 1992). Fish- 
er's approach to constructing a classification 
rule is based on specifying a theoretical prob- 
ability distribution model (normal) and assum- 
ing that the data fit the model, then estimating 
the parameters using the data, and finally con- 
structing a rule using these estimates (Everitt 
and Dunn 1992). 

Discriminant analysis techniques used in 
this study utilized a group of classifiers re- 
ferred to as quadratic classification functions. 
In general, each observation is placed in the 
class from which it has the smallest general- 
ized squared distance. For example, an obser- 
vation f is assigned to class c if 

Q,,. > Q,,. (2) 

where el,, is the quadratic classification func- 
tion score for observation f' in class c, and Q,<.. 
is the quadratic classification function score 
for observation f' in any other class c ' .  The 
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quadratic classification function score is cal- 
culated as 

Q,, = Inq, - l/zlnl~,I - ?hD'fi (3) 

where y, is the estimated prior probability for 
class c, S, is the covariance matrix for class c, 
and D 2 ,  is defined as sample distance between 
observation f and class c. 

When the within-group covariance is used, 
the distance from observation f to class c is 

where D2,, is the sample distance between ob- 
servation f and class c, Sc is the covariance 
matrix with class c, X ,  is a p-dimensional vec- 
tor containing the quantitative or measured 
features of an observation, X, is the p-dimen- 
sional vector containing the feature parameters 
that are known to represent class c. 

The misclassification rate of the discrimi- 
nant function can be determined several ways 
as described in Hand (1986). The most com- 
mon method is the "leaving one out method" 
where the discriminant function parameters 
are derived on the basis of (n - 1) subjects 
and is used to classify the individual or ob- 
servation not included (Everitt and Dunn 
1992). The whole process is then repeated for 
each individual to be classified. 

The McNemar chi-squared statistic is used 
to compare the overall classification accuracy 
of two different rules (Huberty 1994). The 
McNemar chi-squared statistic compares the 
proportion of correctly classified defects of 
one rule to the portion of correctly classified 
defects of another. 

For this study there were 4 defect classes 
and sample sizes from 19-20 available for es- 
timating parameters for most defect classes. 
The number of feature measures used to rep- 
resent a class ranged from I to 10. Discrimi- 
nant classifiers using 10 measures were close 
to overfitting the data. Since all of the classi- 
fiers tested used no more than 7 classification 
variables, the level of samples fell within an 
acceptable level for adequate discriminant 
analysis for the highest performing classifiers. 
The sample size of 19-20 for each defect cat- 

TABLE 3. Acc~uruc.ies ,fi)r single sensor i3s. rn~llti sensor 
classifiers. 

Classilicallr,n accuracy ipcrccnt cla\i.thed correct) 
- 

S1n,n/ 
V;ir~ahle Bark Clcaruood Knul\ mineral Obcrall " 
- - 

RIII 95 100 65 21.1 70.9 A" 
G, 95 100 60 21.1 69.6 A 
B n, 95 100 60 21.1 69.6 A 
x m  20 65 45 0.0 32.9 B 
ASP 45 10 90 47.4 48.1 C 
RND 65 0 95 52.6 53.2 C 
R, 40 50 60 0.0 37.9 DB 
Gs 0 75 85 15.8 43.3 DC 
B, 20 85 80 5.3 48.1 C 

x s  20 80 50 31.6 45.6 C 
Wherc cornparlson\ o f  two cla\\tficat~on accuracle. \hare lhc \amc capttal 

letter. no i~gncticant dillcrrnce exl\t\ at thc a = 0 01 lebcl 

egory is relatively small for quadratic discrim- 
inant classification and is a limiting factor of 
the study. 

The methods employed in this study involve 
the use of shape measures in both ANOVA 
and discriminant analysis. When a shape mea- 
sure was tested in the analysis, it was included 
to represent all defect classes. While shape 
measures are not applicable for clearwood, it 
is important to classify suspect defect regions 
as clearwood when they are, in fact, normal 
or defect-free wood. To eliminate bias toward 
any arbitrary shape measures used in the clear- 
wood samples, an average of all the other de- 
fect type shape measures were used for clear- 
wood in all analysis. 

RESULTS 

Differentiation of defects 

Discriminant classifiers were first developed 
and tested for each measure (Table 2) sepa- 
rately to evaluate their effectiveness as clas- 
sification variables. The classification results 
from individual measures are presented for 
each defect in Table 3. The greatest classifi- 
cation accuracy for any one measure does not 
exceed 70% for any defect. The inability of 
single measure to achieve high classification 
accuracy (e.g., greater than 90%) demonstrates 
the need for multisensor and multimeasure de- 
fect classification methods. 
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TAIILL 4. Mra.srrr~~.s thui have sigtz(fic,anr difiretlc~rs between defects in red ocik. 

Knrrt Hark pocket  S t a ~ n l ~ n i n e r a l  

I l e lec l  Ivnc Mcn\urc 1'-v.~luc Me;t\ure 1'-baluc Mca\ure /'-value 

Bark pocket h,, 
GI11 

B ,,I 
R N D  

R, 
Sta~n/ni~nel-al ASP 

RND 
G, 
B, 
x, 
R, 
R I l l  

GI,, 
B,,, 
XI,, 
G, 

B, 
x, 

Clearwood 

0.0 10 
0.0 I0 
0.00 1 
0.030 
0.006 
0.001 Rlll 

0.00 1 G,,l 
0.0 19 B "1 

0.003 ASP 
0.00 1 RND 
0.068 x, 
0.00 1 R m  
0.001 G m  
0.00 1 B ,,I 
0.009 x, 
0.0 1 2 
0.00 1 
0.00 1 

0.00 1 
0.00 1 
0.00 1 
0.001 
0.00 1 
0.003 
0.00 1 Kill 0.001 
0.00 1 GI,, 0.00 1 
0.00 1 B ,,, 0.00 1 
0.00 1 ASP 0.00 1 

KND 0.001 

B, 0.00 1 

Table 3 is also useful for identifying where 
certain measures may provide information to 
improve classification accuracy. For example, 
classifiers based on mean color parameters 
give high accuracy (95% or higher) for both 
clearwood and bark, indicating that color mea- 
sures are useful in differentiating these defect 
types. 

To gain knowledge of how color, shape, and 
density measures differ between defects in red 
oak, the feature measures described in Table 2 
were compared using Tukey's W analysis of 
variance. By characterizing how defects differ 
by sensor measures, it can be determined how 
these defects are unique and how to best dif- 
ferentiate between them. When a measure was 
found to be significantly different between two 
or more defects, it was suggested that the mea- 
sure would be suitable for use as a classifica- 
tion variable for differentiating between the 
defect types. The use of ANOVA as a method 
to select classification variables was suggested 
by Huberty ( 1994). 

The significant p-values (i.e., values less 
than 0.0 1 ) resulting from T~tkey's multiple 
comparisons between defect types for red oak 
arc listed in Table 4. All values listed as 0.001 

are equal to, or less than this value. The table 
is in matrix form, where the defects are listed 
in the top row and left column, and the p- 
values representing the significant difference 
levels between the specific defect types are 
presented in the appropriate row and column. 
While the ANOVA results in Table 4 give an 
indication as to what measures are important 
to differentiate defects, they do not quantify 
the marginal contribution of individual mea- 
sures to classification accuracy. The effective- 
ness of the ANOVA methods to select dis- 
criminant variables will be discussed in the 
following sections referring to the results of 
single measure (Table 3) and multimeasure 
(Table 5 )  classification accuracies. 

Color measures 

Table 4 shows the occurrence of high sig- 
nificance levels in color means, R,, G,, and 
B,,,, for all defect types except between knot 
and stainlmineral. This occurrence indicates 
that these color measures are useful for dif- 
ferentiating between all defect types except 
between knots and stainlmineral. Table 3 
shows that each of the color means, when used 
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7 ' ~ l r l . ~  5 .  C ' l u ~ ~ ~ j i f i ( ~ u ~ i o ~ z  results i i ) r  etrch vuriable fi)r red oak defects. 

V , ~ ~ - ~ a h l e \  ~ncluded ~n cla\\rticr Bark Clearwood Knot Slainlmincral Overall 

Color measures 

Rm 11, 80.0 100.0 70.0 47.3 74.6 A 

Rr11 (;[I, 95.0 100.0 70.0 21.1 71.5 A 

GI,, BITI 90.0 100.0 65.0 26.3 70.3 A 

K 1 1  Gr,, B,,, 80.0 100.0 70.0 47.3 74.6 A 

K, G,  B, 85.0 90.0 75.0 47.3 74.6 A 

RIII R\ c;rll G\ BIII B\ 100.0 95 .0 90.0 84.1 92.4 B 

R,I, R BIT, B, 100.0 100.0 85.0 79.0 91.1 B 

Shapc measures 

ASP KND 65.0 40.0 95.0 52.6 63.3 C 
ASP 45.0 10.0 90.0 47.4 48.1 D 

KND 65 .0 0.0 95 .O 52.6 53.2 E 

X-ray measures 

XI, x, 25.0 75.0 45.0 3 1.6 44.2 D 
x, 20.0 80.0 50.0 31.6 45.6 D 

x 111 20.0 65.0 45.0 0 32.8 F 

Color and shape measures 

R,II R, B,I, B\ RND 90.0 100.0 95.0 94.7 94.9 B 

Color and X-ray measures 

Rrn R, GIII G, BIT, B, X, 100.0 95.0 90.0 84.2 92.4 B 

R111 K, '3111 B, x, 90.0 100.0 90.0 94.7 93.7 B 

RII, K\ BIII B\ Xr11 X\  85.0 100.0 90.0 94.7 92.4 B 

Shape and X-ray tneasures 

ASP RND X, X, 75.0 60.0 95.0 52.6 70.9 AC 

Optirnum rneasurc combination 

RII, R, B111 B\ RND X, 100.0 100.0 100.0 95.0 98.8 F 
.' Whcrc colnp;irl\on\ 01 two uln\';lhc;~lion ncuur;rccc\ \hal-c thc \ an l r  capital 

individually as a classifier, gives similar ac- 
curacy results indicating that any one of the 
color means has equal importance towards 
classification. Since color means are not sig- 
nificantly different between knots and stain1 
mineral, they will not be effective in differ- 
entiating stainlmineral from knots. This diffi- 
culty is verified in Tables 3 and 5 where ac- 
curacy is lowest for stainlmineral and knot 
detection. No evidence was found to support 
that the use of more than two color means in- 
creased classification accuracy. 

Table 4 shows that there were no prominent 
trends in the significant differences between 
defect types for color measure standard devi- 
ations. No one measure proved to be signifi- 
cantly different for all defect types. Table 3 
verifies the lack of significance between defect 

Irltcr. no cignkticant d~fferrncc exlat\ at thc a = 0 0 1  Icvcl. 

types for color standard deviation measures 
since when used individually, all resulted in 
low classification accuracies (e.g., 47.6% or 
less). However, when at least two color stan- 
dard deviations are combined in a classifier 
(Table 3 and Table 5 ) ,  the overall accuracy 
increases significantly, indicating that better 
defect detection can be obtained by combining 
two or more color standard deviation measures 
as classification variables. 

Table 4 shows that knots and stainlmineral 
were not significantly different for color 
means, but were significantly different for col- 
or standard deviations. Hence, by combining 
both color means and color standard devia- 
tions into a classifier, the accuracy of differ- 
entiating knots from stainfmineral should im- 
prove. Table 5 illustrates this improvement by 
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'r .4~1.~ 6. A ~ C L / ~ ( ~ ( . F  ( ? / ' t h ~  to[>,fi\'e c~ltr.\.sifiers und the clus.rzfier constructrd qf'meu.sures selected using ANOVA methodv. 
~ -~ 

V,ilt;thle\ ~ni ludcd ~n C I ~ I \ ~ I I I L . I  H,II h Clcarwond Kni~t  Sta~nlmlneral Overall 

Top five classifiers 

R , i ,R ,G, l ,  B ,ASP X,,,X, 95.0 100.0 90.0 100.0 96.3 A 
Rn1 R, Bnl R, ASP X, 95.0 100.0 95.0 100.0 97.5 AB 
R,,, R, R,,, R, ASP RND X, 95.0 100.0 95.0 100.0 97.5 AB 
R,,, R, B,,, B, RND XI,, X, 90.0 100.0 95.0 100.0 97.5 AB 
R,, R, B,,, R, A S P  XI,, X, 95.0 100.0 95.0 1 00.0 97.5 A B  
R, , ,R,  B,,,H, RND X, 100.0 100.0 1 00.0 95.0 98.8 B 

" Whccc c<rlnp,ill\<,n\ ol Iwi, ci ; l r \~ l ica l~o~l  .ai.ol-acle\ \hare thc wmc capttal Icttcr, no  \~gn)f icanl d ~ l l c ~ c n c c  exist\ at the n = 0 0 1  level. 

showing an overall classification accuracy in- 
crease (92.4% vs. 74.6%) along with a signif- 
icant increase in the detection accuracy of 
knots (90.0% vs. 70%) and stainlmineral 
(84.1 % vs. 47.3%). This result indicates that 
the proper combination of different measures 
from the same sensor can improve defect clas- 
sification accuracies. 

Density rneasurcs 

High and low density defect types (e.g., 
knots and clearwood) were significantly dif- 
ferent for XI,, and X,. However, defects with 
similar densities (e.g., stain/mineral and clear- 
wood) were not significantly different for den- 
sity measures. While these results indicate that 
X-ray information alone is not capable of un- 
ambiguously differentiating the four defect 
types in red oak (see Table 5 ) ,  when used in 
conjunction with color information, they 
should improve the ability of differentiating 
between knots and stainlmineral since there is 
a significant difference in density between 
these two features. X, was found to have a 

higher occurrence of significant differences 
between defect types than X, indicating that 
it would be a more useful measure to include 
in defect classification. The results in Table 5 
confirm this finding since X, provides signifi- 
cantly higher classification accuracy than X,. 

Shape measures 

ANOVA results show that RND is moder- 
ately better suited as a classification variable 
and Table 3 shows that RND provides higher 
overall classification accuracy than ASP. How- 
ever, when combined with other variables, 
shape measures appear to be interchangeable 
without significantly affecting the overall clas- 
sification accuracy (Table 6 and Table 7). The 
addition of a shape measure to a multimeasure 
classifier improves the overall accuracy (Table 
5). Earlier it was noted that RGB color mea- 
sures could be used to differentiate bark pock- 
ets and clearwood but not knots and stainlmin- 
era1 streak. Since ASP and RND are signifi- 
cantly different for these two defect types, in- 
cluding a shape measure in a multimeasure 

TABLF: 7 .  L'ontrihution of' .shupe rnetr.sctres to c~lassijication accurucj. 

Vart;~hlc\ ~ncludeil ~n c la \ \ l t~cr  Hark C1r;~rwaod Kllrrt Stalnlm~neral Overall 

ot \ h a p  rneawres. 

R,,, R, ASP RND 
Bnl B, RND 
B,,, B, ASP 
Bill B, 
B,,, €3, ASP R N D  

Rill B, RND 
Bm B, ASP 
B", B, 

' Where conlp.ulwn\ ot two cl;t\\nlccntlon .iccur.lcte\ \hare thc \ame c ; ~ p ~ t a l  letter. nrr \ipnlllcant difFelencr cxl\L\ at the u = 0.01 lcvcl 
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classifier will likely improve the ability of the 
classifier to differentiate between these defect 
types. Table 5 shows that adding RND with 
R ,,,, R,, B,,,, and B, as classifiers, the accuracy 
of stainlmineral detection can be increased by 
almost 16% (79.0% vs. 94.7%). These results 
demonstrate that in red oak, defect differenti- 
ation will require a multimeasure or multisen- 
sor classifier to achieve the highest possible 
classification accuracy. The requirement of 
feature measures other than color in defect 
classification has been suggested by Lampinen 
and Smolander (1996) and Conners et al. 
( 1990), who suggest the use of X-ray imaging 
for a density measure. 

Combined measures 

The classification results of discriminant 
functions with single variables demonstrate 
the need for multifeature measures. Further 
evidence to support this finding can be found 
by comparing combinations of individual sen- 
sor measures to those with multiple sensor 
measures. The highest obtainable classification 
accuracy of any combination of color mea- 
sures from the same sensor type is no greater 
than 92.4% (see Table 5). The highest obtain- 
able classification accuracy for X-ray combi- 
nations and shape con~binations is 45.6% and 
63.396, respectively (see Table 5) .  The best 
combination of any three sensor measures in- 
creases the classification accuracy to 98.8%, 
which is 6.5% higher than color measures 
combined, 53.4% higher than obtainable with 
X-ray measures, and 35.6% higher than ob- 
tainable with shape measures alone (see Table 
5) .  The increased classification accuracy ob- 
tained by combining measures helps to dem- 
onstrate that a combination of different mea- 
sures provides greater accuracy. These results 
also indicate the importance of color in feature 
classification methods and that while color is 
able to give high classification results, the ad- 
dition of other measures helps to reduce con- 
fusion in differentiating between difficult fea- 
ture types. 

The statistical relationships for defects 

found in the ANOVA analysis were used to 
guide the selection of measures for classifica- 
tion. Over 150 measure combinations were 
tested in discriminant functions with classifi- 
cation accuracy's ranging from 38 to 98.8%. 
The feature measures and accuracies for the 
top five classifiers are listed in Table 6. While 
the ANOVA method of measure selection pro- 
vides some useful insight as to how individual 
measures differ between defects, it does not 
give any direct indication as to the optimum 
combination of measures for classification. 
Nevertheless, the ANOVA results do give an 
indication of the measures that should be in- 
cluded in cases where classification accuracy 
is limited by confusion between two defect 
types. For example, the ANOVA results (Ta- 
ble 4) show that R, is significantly different 
between knots and stainlmineral, and the suc- 
cess of R, in reducing classification confusion 
between these defect types is noted by the in- 
clusion of R, in the top five classifiers (Table 
6). 

When testing the measure combinations in 
classifiers, several important observations 
were made. A combination of all measures. 
while providing relatively high classification 
accuracy, tends to over-fit the data, indicating 
that it is important to consider which measures 
are complementary and which are over-fitting. 
For example, it was determined that only two 
color means are required to achieve the high- 
est classification accuracy and that the inclu- 
sion of R,, in the classifier was also required 
to attain the highest possible accuracy (see Ta- 
ble 6). Reducing the number of measures or 
variables in defect differentiation can be very 
important to the speed of the classifier in in- 
dustrial settings and also reduce the cost of a 
defect detection system. 

Both shape and density measures were 
found to further increase performance of the 
discriminant classifiers. By comparing the 
classification accuracy of discriminant func- 
tions without shape measures to those with 
shape measures, it was discovered that includ- 
ing a shape measure could increase the clas- 
sification accuracy for knots by lo%, stain1 
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mineral by IS%, and overall accuracy by 
3.9%. The difference in classification accuracy 
for individual defects varied no more than 5%, 
based on which shape measure was used and, 
when used in a multimeasure classifier, there 
was no statistically significant difference in 
classification accuracy. While density alone 
does not provide high classification accuracy 
for all defect types, when included in a mul- 
timeasure model, it was found to reduce the 
confusion of knots and staidmineral streak in 
the final model by 570 (Table 5) .  

While the high overall classification accu- 
racy of 98.8% can be achieved, it was ob- 
served that some defect types are more diffi- 
cult to classify than others. Most misclassifi- 
cations involved stain/mineral streak. For ex- 
ample, classifiers had the most difficulty with 
bark pockets and knots, both of which were 
misclassified as stainlmineral streak. Stain has 
also proved a difficult defect to classify by 
other investigators, due to the large variability 
within the defect and its color similarity with 
other defects (Adel et al. 1993). 

DISCUSSION AND CONCI.USIONS 

It must be noted that the classification ac- 
curacy obtained in these results is fairly high. 
This is in part due to the classification being 
based on manually selected defect regions. If 
regions were segmented based on automated 
segmentation methods, it is possible that more 
variability would exist and, hence, lower clas- 
sification accuracy could occur. Also, the de- 
fect classes were grouped based on anatomical 
and measure similarities, thus reducing vari- 
ability within classes. The intent of this study 
was to remove the variability associated with 
segmentation, so that the interaction of scan- 
ning measures and classification rates could be 
analyzed for various defect types. For exam- 
ple, loose or unsound knots are complex fea- 
tures, which are a composite of knot. bark. 
checks, and other features. 7b minimize the 
effect of variability associated with such com- 
posite features, the knot class in this study was 
limited only to intergrown knots. Automated 

industrial inspection systems would have to 
fully understand and represent the variability 
of many more defect classes before they could 
be implemented effectively. 

Another limitation of this study is the lim- 
ited number of samples for each defect. Nine- 
teen to twenty samples were collected for each 
defect type, and this number is relatively small 
for the quadratic discriminant functions used 
in comparing the classification accuracies of 
various sensor measure combinations. 

It was determined that single sensor mea- 
sures gave overall classification accuracies of 
less than 71%, indicating the need for multi- 
sensor and multimeasure methods for defect 
classification. It was discovered that the mean 
red color measure provided the highest overall 
classification accuracy (approximately 70%) 
between the defect classes studied. Adding in- 
formation about color variability (e.g., the 
standard deviation of red color variation) 
helped further improve defect classification 
accuracy, especially where the differences be- 
tween color measures were small in relation to 
the variation between these measures. Shape 
and density measures alone were found not to 
provide good classification variables for de- 
fects when used separately (e.g., less than 54% 
overall accuracy), but when used in combi- 
nation with other measures contributed 5-1 0% 
to the classification accuracy between individ- 
ual defects and 3-10% for the overall classi- 
fication accuracy. 

It was determined that the ANOVA method 
of model measure selection does not provide 
a direct method of selecting the optimum com- 
bination of measures; however, it was noted 
that the ANOVA results often do provide in- 
sight as to which measure should be selected 
in cases of confusion between two specific de- 
fect types. The knowledge gained about defect 
measure relationships was also valuable in ex- 
plaining classification errors. By understand- 
ing how measures contribute to classification 
errors, future classification errors may be 
avoided. It was found that most classification 
errors were based on confusion with stain/ 
mineral streak. Most single measure classifiers 
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performed 53% or lower in classification ac- 
curacy for stainlmineral streak. The ability to 
classify stainlmineral streak in multiple mea- 
sure classifiers was loo%, proving that com- 
bining measures from multiple sensors in- 
creases classification accuracy of wood de- 
fects. 

Certain feature measures were discovered to 
increase the accuracy in the classification of a 
particular defect type in a multimeasure dis- 
criminant classifier. An example of this is how 
the shape measure greatly increases the clas- 
sification of stainlmineral and knots by 10- 
15%. The addition of a density measure was 
found to increase the accuracy of the final 
model from 94.9% to 98.8%. 

It is likely that as variation increases in all 
measures, due to different segmentation meth- 
ods or increasing the number of defect classes, 
that density and shape measures, and perhaps 
others, will become even more important for 
classification. It was determined that the mea- 
sures taken from images used for defect clas- 
sification for the defects included in this study 
should include two color mean values and two 
standard deviation values, a shape measure, 
and an X-ray standard deviation value. This 
information will help in the improved devel- 
opment of multisensor defect detection in the 
wood industry by providing information on 
what measures are best used in the classifica- 
tion of defects with color, shape, and density 
information. 
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