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ABSTRACT 

Infrared spectroscopy was used to differentiate coniferous woods commonly found in mixtures in 
lumber producing mills in British Columbia. The method required collection of reflectance Fourier 
transform infrared spectra of wood samples at a 2 cm ' resolution. From a small subset of spectra, 
frequencies useful for species differentiation were selected using a combination of correlation analysis 
and principal component analysis. The selected frequencies were used to develop methods for differ- 
entiating species using discriminant analysis. These models were then tested against the remainder of 
the spectra. This approach was successfully used to classify the same wood samples in freeze-dried 
and green conditions, but was unsuccessful in classifying extractive free samples. 
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INTRODUCTION Typical species mixtures of western Canada 

The lumber industry in Canada has ex- 
pressed a need for rapid methods to sort freshly 
cut lumber by species. This would enable the 
industry to take advantage of unique proper- 
ties of each species, either to increase the value 
of end products, or to solve problems associ- 
ated with the processing or use of lumber of a 
particular species. 

are hem& (primarily composed of western 
hemlock (Tsuga heterophylla (Raf.) Sarg.), 
amabilis fir (Abies amabilis (Dougl.) Forbes) 
and Sitka spruce (Picea sitchensis (Bong.) 
Carr.)), SPF (primarily composed of white/En- 
gelmann-interior spruce (Picea spp.), lodge- 
pole pine (Pinus contorta Dougl.), and subal- 
pine fir (Abies lasiocarpa (Hook.) Nutt.)), and 
D-fir/larch (Douglas-fir (Pseudotsuga men- 
ziesii (Mirb.) Franco.) and western larch (Larix 
occidentalis Nutt.)). 

' Taken in part from J. R. Nault's Doctor of Philosophy Currently the most reliable method for iden- 
dissertation, Faculty of Graduate Studies (Department of tification of wood samples from various spe- 
Forestry), University of British Columbia, Vancouver, 
British Columbia, Canada, Dec. 1989. cies is by examination of anatomical features 

Present address: Pacific Forestry Centre, 506 W. On both a visual and ~ ~ C ~ O S C O ~ ~ C  scale (Strelis 
side Rd.. Victoria, British Columbia, V8Z 1M5, Canada. and Kennedy 1967). 
Wood and Fiher Sclence, 24(4), 1992, pp. 424-43 1 
O 1992 by the Society of Wood Science and Technology 



Naull and Manville-SPECIES DIFFERENTIATION BY FTIR 425 

Another means of species identification of 
wood samples is by examination of their ex- 
tractives. Extractives vary considerably in 
composition and concentration from species 
to species, tree to tree, heartwood to sapwood, 
from growth ring to growth ring, and from one 
type of wood tissue to another. Certain ex- 
tractive chemicals can be species-specific, and 
much research has centered upon identifying 
them and their biological significance. 

Species identification by means of extrac- 
tives has taken several forms. One approach 
involves using reactions of unique extractives 
with indicator chemicals to form colored com- 
plexes, which can then be used to identify spe- 
cies (Barton 1973; Miller et al. 1985). Another 
approach is through gas chromatography ei- 
ther alone or in combination with spectro- 
scopic methods (Manville and Tracey 1989; 
Swan 1966). Ion mobility spectrometry has also 
been used to study volatile compounds from 
the wood (Lawrence 1989). 

Infrared (IR) spectroscopy has been used ex- 
tensively to study wood. The majority of the 
work published on IR spectroscopy of wood 
or wood components has focused upon the pulp 
and paper industry, where the main uses are 
quantitative determination of lignin within the 
pulp (Berben et al. 1987; Faix 1988; Kolboe 
and Ellefsen 1962; Saad et al. 1980; Schultz 
and Glasser 1986), structural studies of lignin 
(Marton and Sparks 1967; Obst 1982; Sarka- 
nen et al. 1967a; Sarkanen et al. 1967b; Sar- 
kanen et al. 1967c; Schultz and Glasser 1986) 
and monitoring progress of the pulping process 
(Faix 1988; Gurnagul et al. 1986; Marton and 
Sparks 1967; Michell 1988; Michell et al. 1965; 
Schultz et al. 1985). Very little work has been 
published on wood extractive chemicals ex- 
amined in situ, probably due to the extreme 
difficulties in analyzing small amounts of ex- 
tractives within the complex chemical matrix 
of wood structural components. 

Various sampling techniques have been used, 
including transmission (Chow 1972; Kolboe 
and Ellefsen 1962; Michell et al. 1965), mul- 
tiple internal reflection (Marton and Sparks 
1967), diffuse reflection (Owen and Thomas 

1989), and photo-acoustic (Kuo et al. 1988) 
techniques. 

The possible contributions of extractive 
chemicals to overall wood spectrum have been 
noted, but generally researchers have found 
such contributions to interfere with their stud- 
ies (Chow 1972; Owen and Thomas 1989). No 
author has tried to use infrared spectra for spe- 
cies differentiation except in the most rudi- 
mentary fashion, for example to distinguish 
hardwoods vs. softwoods (Obst 1982; Owen 
and Thomas 1989; Wood 1988). 

It has been hypothesized that differences in 
the composition of wood extractive chemicals 
amongst species could be detected by measur- 
ing the reflectance spectrum of wood using 
Fourier transform infrared spectrometry 
(FTIR). If measurable, such differences could 
form the basis for a rapid means of species 
identification. However, given the low con- 
centrations of species-specific extractive 
chemicals (softwoods are composed of ap- 
proximately 42% cellulose, 27% hemicellu- 
loses, 28% lignin, and only 1 to 5% extractives 
on a dry basis), and their inclusion within the 
strongly absorbing matrix of wood tissue, very 
small differences were expected. Detection of 
these differences would thus require high-res- 
olution spectra and a sophisticated algorithm 
for interpreting the spectra. Prediction of which 
areas of the spectrum would be useful was dif- 
ficult because it was not known in advance 
which extractive compounds would be detect- 
ed within the wood, nor which specific extrac- 
tive chemicals would be of most use for species 
identification. Thus, it was necessary to ana- 
lyze in minute detail a large portion of the 
wood IR spectrum; this presented a formidable 
task in data analyses. 

METHODS 

Samples (2 x 4 trim ends) from typical pro- 
duction mixtures of freshly cut green lumber 
(SPF, hem/fir, and D-fir/larch) were obtained 
from various areas of British Columbia. Iden- 
tification of each individual sample was con- 
firmed by microscopic examination of ana- 
tomical features. 
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Several thin (5-mm) slices were cut from the 
edge or face surfaces (selected at random) of 
each board using a bandsaw. No further prep- 
aration of the sample surface was done prior 
to scanning; our samples therefore varied in 
surface smoothness, as would be the case in a 
mill. 

Initially, we prepared and scanned samples 
in conditions similar to those expected in an 
industrial setting. Thus, samples that were re- 
moved from the surface of boards were scanned 
at existing moisture contents in an open IR 
bench in which the ambient moisture and CO, 
levels would fluctuate. We also decided to con- 
centrate on classification only within species 
groups as would commonly occur within a sin- 
gle mill. 

Immediately prior to IR scanning, a disk of 
appropriate size for the reflectance accessory 
was cut from each sample. In samples where 
sapwood could be discerned, a separate sample 
was taken representing sapwood only. To pre- 
pare extractive-free samples, another disk was 
taken from the same slice as the original sam- 
ple, as close to the first disk as possible. This 
disk was sequentially extracted in cyclohex- 
ane/ethanol, ethanol, and water, and then air- 
dried before scanning. 

A Nicolet model 20SXB FTIR spectrometer 
equipped with a Spectra-Tech DRIFT cell was 
used for collection of all spectra. The resulting 
spectra were a combination of specular and 
diffuse reflectance. Each sample was scanned 
100 times from 4,850 to 400 cm-' at a reso- 
lution of 2 cm-' (time to collect = 208 sec). 

All samples were scanned at room temper- 
ature in an open sample compartment, first 
green and then after freeze-drying for 24 hours. 
No attempt was made to orient the samples 
with regard to grain or growth rings. The open 
sample compartment was to approximate mill 
conditions; it would be impractical in a mill 
to keep conditions constant, and to exclude 
water and carbon dioxide, which is normally 
done for FTIR scanning. In total, 740 samples 
were scanned while green, 738 after freeze- 
drying, and 264 after extraction. 

Each sample spectrum was ratioed against 

the reflectance spectrum of a KBr pellet run 
on the same day. A KBr pellet was used to 
mimic wood surfaces, which were also solid 
and not powdered as is normally the case for 
DRIFT experiments. This corrected each spec- 
trum for daily background absorption origi- 
nating from carbon dioxide and water vapor 
in the air and daily variations in source inten- 
sity and detector sensitivity. 

The resulting spectra consisted of 4,6 15 data 
points each, representing ratioed signal 
strengths at evenly spaced points from 4,850 
to 400 cm-I, with each interval being 0.964 
cm-' (Fig. 1). 

RESULTS AND DISCUSSION 

This study concentrated on the spectral re- 
gion from 2,500 to 400 cm-' because it is in 
this region that the most characteristic "fin- 
gerprints" of the wood extractive chemicals 
are found, and interference from the highly 
variable moisture content (in the green sam- 
ples) is minimized in this region. Visual com- 
parison of individual spectra showed that dif- 
ferences existed amongst samples, but these 
visual differences could not be used to separate 
species. The recently published work of An- 
derson et al. (1991a and 1991b), contains in- 
frared spectra of wood of different species. At 
first glance, these spectra appear different. 
However, it is possible to find spectra that show 
obvious visual differences amongst samples 
from different species, but such differences be- 
come obscured when spectra from multiple 
samples from one species are examined. The 
visual differences between two samples of one 
species can be greater than the visual differ- 
ences between samples from two different spe- 
cies, making visual examination of infrared 
spectra unreliable for the identification of wood 
as to species. 

This indicated that a multivariate statistical 
method would be useful in identifying species 
to species variations as opposed to sample to 
sample variations. 

Starting with the freeze-dried spruce SPF 
samples (to eliminate variations from mois- 

ture content) the region from 2,500 to 400 cm - 1  
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from each ratioed spectrum was analyzed in 
the following way: 

1. Each of the 308 reflectance spectra was 
centered about its mean (baseline correc- 
tion). Figure 2 shows sample spectra for 
spruce, pine and fir. 

2. A subset of spectra for each species in its 
species group was randomly chosen to 
yield a training set (3 species x 20 sam- 
ples/species = 60 samples), with the re- 
mainder of the spectra used as a test set 
(248 samples). 

3. A Fisher weight was calculated according 
to Sharaf et al. (1 986) for each variable 
(wavelength). 

4. Next, the correlation matrix for the train- 
ing set was computed. Any variable that 
was very highly correlated (r 2 0.9995) 
with the preceding wavelength was elim- 
inated. We hoped that by removing vari- 
ables that were essentially the same, some 
degree of colinearity between variables 
would be removed, and the number of 
variables would be reduced. At the same 
time, it was recognized that the spectral 
differences sought were probably small, 
and that removal of such variables could 
remove useful information. This proce- 
dure resulted in an abbreviated spectrum 
of 700 variables for each sample. 

5 .  The calculated Fisher weight was applied 
to each variable in each abbreviated train- 
ing set spectrum. 

6. The Fisher weighted training set was an- 
alyzed using the SAS routine PRINCOMP 
(SAS 1982). 

7. The relative importance of the principal 
components within each species group was 
determined by their eigenvalues (Fig. 3). 
Note that the first five principal compo- 
nents account for virtually all of the vari- 
ation found in the SPF species group. Thus 
only the first five principal components 
were deemed useful and were used for dif- 
ferentiation. 

8. From each of the first five principal com- 
ponents, the six variables with the highest 
loadings (eigenvector value) were selected 

I 
4000 3000 2000 1000 

WAVENUMBER (cm-') 

FIG. 1. Typical wood reflectance spectrum. 

to perform a discriminant analysis on the 
training sets. These points are indicated 
on a typical spectrum in Fig. 4. A discrim- 
inant function was calculated for each 
training set using the SAS routine DIS- 
CRIM (SAS 1982), which calculates a lin- 
ear discriminant function based upon a 
measure of generalized squared distance 
between groups. 

9. This function was then used to classify all 
of the samples in both the training set and 
the test set by species. The results of this 
discriminant classification are presented 
in Table 1 (a). 

10. A discriminant function was then calcu- 
lated and tested for the spectra from the 
green samples using the same samples in 

FIR - 
PINE - - 

Cnn..^- - 

WAVENUMBER (cm-') 

FIG. 2. Typical reflectance spectra. 
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o S P F  
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1 2 3 4 5 6 7 

PRINCIPAL COMPONENT NUMBER 
FIG. 3. Eigenvalues for important principal compo- 

nents. 

the training set and test set and the same 
variables (Table 1 (b)). 

1 1. The two variables with the lowest weight 
in each principal component were then 
dropped (leaving 4 variables x 5 principal 
components = 20 variables) and the dis- 
criminant classification was run again (Ta- 
ble 1 (c)). Finally, the next two variables 
with the lowest weight in each principal 
component were dropped (leaving 2 vari- 
ables x 5 principal components = 10 vari- 
ables), and the discriminant classification 
was run again (Table l(d)). Further drop- 
ping of variables seriously degraded the 
classification efficiency. (For a description 
of principal components analysis and dis- 
criminant analysis, see Hope 1968; John- 
son and Wichern 1982; Klecka 1980; Ma- 
linowski and Howery 1980; Massart et al. 
1988; Sharaf et al. 1986). 

FIG. 4. Typical spectra for each species group showing 
frequencies used for classification. 

To demonstrate the fact that the sorting al- 
gorithm relied upon extractive chemicals, a 
matched set of 264 extractive-free SPF sam- 
ples were scanned and the spectra were pro- 
cessed by the identical algorithm. Ninety-nine 
percent of the extracted samples were classified 
as lodgepole pine. The inability to correctly 
classify spruce or fir samples confirmed that 
the presence of extractive chemicals was a pre- 
requisite for the application of this technique. 

This series of operations (steps 1 to 10 above) 
was then applied to the 192 freeze-dried Doug- 
las-fir/western larch samples using 20 samples 
in the training set (2 species x 10 samples/ 
species). In this case the correlation analysis 
left 93 1 variables remaining in the spectra. The 
principal components analysis showed only 
four principal components of any importance 
(Fig. 3), so the 10 variables with the highest 
weights were taken from each of these prin- 
cipal components (10 variables x 4 principal 
components = 40 variables) as illustrated in 
Fig. 4. 

Using the 20 sample training set, a discrim- 
inant function was calculated and applied to 
the remaining 172 sample test set. The SAS 
DISCRIM procedure output for this trial re- 
ported a warning that the covariance matrix 
was not full rank and that only the first 18 
variables had been used for the discriminant 
function. The not full rank warning indicates 
that some variables are highly correlated and 
thus redundant. These variables were dropped 
from the analysis. As shown in Table 2(a), by 
using only the first 18 variables, 188 of 192 
samples were correctly identified as to species, 
or 98%. 

Discriminant analysis using the same 40 
variables from the green samples resulted in 
only 17 variables being used (Table 2(b)), with 
fewer correctly classified samples (8 1%). To see 
if this could be improved upon using other 
variables, three DISCRIM analyses were per- 
formed, utilizing the first 14 variables, the next 
14 variables, and the final 12 variables (Table 
2 (c), (d) and (e), respectively), with the best 
classification coming from the last 12 variables 
(9 1 % correct). 
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TABLE 1 .  Percentage of samples ofjir, pine and spruce correctly classified by discriminant analysis. 

Species 
Variables 

Species group Condition of sample used Fir Pine Spruce All 

.............................................................. ............................................................... 

(a) SPF (freeze-dried) 30 5 8 90 73 76 
(b) SPF (green) 30 8 3 78 66 77 
(c) SPF (wen) 20 89 76 74 80 
(d) SPF (green) 10 7 8 93 68 83 
(e) SPF (extractive free) 30 3 99 0 44* 

* (99% of all samples were classified as pine, so virtually all pine pieces were classified as pine, wh~le virtually all spruce and fir pieces were misclassified, 
as plne.) 

The same series of operations (steps 1 to 10 
above) was next applied to the 166 freeze-dried 
western hemlock/amabilis fir/Sitka spruce 
(HFS) mixture using 30 samples in the training 
set (3 species x 10 samples/species). In this 
case, the correlation analysis left 1,085 vari- 
ables remaining in the spectra. The principal 
components analysis showed only five prin- 
cipal components of any importance (Fig. 3), 
so the four variables with the highest weights 
were taken from each of these principal com- 
ponents (4 variables x 5 principal components 
= 20 variables), as illustrated in Fig. 4. 

The SAS (DISCRIM procedure) output for 
this trial again reported a warning that the co- 
variance matrix was not full rank and that one 
variable had been dropped from the discrim- 
inant function. As shown in Table 3(a), by us- 
ing 19 variables, 138 of 166 samples (83%) 
were correctly identified as to species. 

The same method was then applied to the 
green samples. Again the rank warning oc- 
curred, this time dropping five variables and 
retaining 15 variables. The results were poor; 
68% of the samples were correctly classified 

(Table 3(b)). The discriminant analysis was 
then attempted using only the variables with 
the highest and lowest loadings for the first five 
principal components, resulting in 10 vari- 
ables (five principal components with two 
variables each). The results were somewhat 
poorer than for 20 variables, with only 63% 
of all samples being correctly classified, rep- 
resenting a decrease in effectiveness for each 
species (Table 3(c)). 

In an attempt to develop a sorting method 
applicable to separating only western hemlock 
and Sitka spruce, all amabilis fir samples were 
dropped from the data and classification was 
attempted again. Using the same 20 variables 
as selected for the sort of all three species (with 
the same five dropped by SAS), the results were 
promising; 82% of all samples were classified 
correctly as were 88% of Sitka spruce samples, 
and 78% of western hemlock samples (Table 
3(d)). 

When only 10 variables were used (five prin- 
cipal components with two variables each), the 
results were almost the same (Table 3(e)) as 
for 20 variables; 82% of samples were correctly 

TABLE 2 .  Percentage of samples of Douglas-fir and larch correctly class~jied by discriminant analysis. 

Variables Species 
Condltlon of 

Spccles group sample Selected Used D-fir Larch All 

.................................................... .................................................. 

(a) DFL dry 40 18 88 100 98 
(b) DFL wet 40 17 59 86 8 1 
(c) DFL wet 14 14 88 90 90 
(d) DFL wet 14 14 68 8 8 84 
(e) DFL wet 12 12 8 5 92 9 1 
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TABLE 3.  Prrcmtage o f f r ,  hemlock and spruce correctly classified by discriminant analysis. 

variables Species 
Cond~tlon of 

Spec~es group sample Selected Used Fir Spruce Hemlock All 

............................................................. o/o ............................................................. 

(a) IIFS dry 20 19 8 1 84 8 3 8 3 
(b) IiFS wet 20 15 6 3 69 67 68 
(c) IiFS wet 10 10 56 60 6 5 63 
(d) HS wet 20 15 - 8 8 7 8 8 2 
(e) IIS wet 10 10 - 8 3 8 2 8 2 

classified. Sitka spruce was slightly poorer 
(83%) and western hemlock slightly better 
(82%) than before. 

To conclude, it has been demonstrated that 
the combination of Fisher weighting, principal 
components analysis, and discriminant anal- 
ysis with a linear discriminant function can be 
used to sort hem&, SPF, and D-fir/larch with 
a degree of success. 

This demonstrates the validity of the orig- 
inal hypothesis that the reflectance FTIR spec- 
tra of wood samples contain the information 
needed to determine species of samples within 
the common industrial species groups. Fur- 
ther, we have shown that the classification cri- 
teria are based upon the presence of extractable 
chemicals. This technique has proven suc- 
cessful for both heartwood and sapwood, and 
for green and freeze-dried samples. 

The techniques presented in this paper are 
biased towards using the fewest possible num- 
ber of frequencies, mainly for the purpose of 
designing a simple identification procedure 
which would be of use to the wood industry. 
Further investigation of other techniques that 
make use of different statistical techniques or 
a different subset of variables could yield more 
accurate sorting algorithms. 
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