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abstract

Grain pattern is an important characteristic of wood materials and it is usually assessed visually by
trained workers. This paper presents results from a study to characterize walnut grain patterns by using
image processing techniques. Grain streaks of the annual growth rings were segmented and labeled in wal-
nut surface images. Grain pattern features were computed for each streak. The average elongation and av-
erage local contrast were used to classify 48 walnut samples into three visual grades. Three types of
classification techniques were tested: linear discriminant analysis, quadratic discriminant analysis, and
neural network classification. A hold-one-out procedure yielded correct classification rates of 71.4%,
61.9%, and 69.0%, respectively. The results establish the potential usefulness of image processing tech-
niques in wood grain characterization and grading.

Keywords: Wood grain, image processing, mathematical morphology, discriminant analysis, classifica-
tion.

introduction

Wood grain is a natural phenomenon. In the
Handbook of Wood and Wood-Based Materials,
wood grain is defined as the direction, size,
arrangement, and appearance of the fibers in
wood or lumber (USDA Forest Products Labora-
tory 1987). In this paper, grain refers to the
streak pattern of the annual growth rings on a cut
wood surface. In many wood products such as
furnishings, sporting goods and wood arts, grain
is an important attribute. Traditional grain-based
wood grading is carried out by human visual in-
spection. This process needs experienced people
and the results are often inconsistent.

Image processing and pattern recognition
techniques have been used in wood research in
recent years. They are widely used in defect de-
tection, which involves identification, classifi-

cation, and location of defects such as knots,
wane, and stain in wood (Conners et al. 1983;
Koivo and Kim 1989; Lebow et al. 1996; Quin
et al. 1998; Schmoldt et al. 2000; Butler et al.
2002). Conners et al. (1983) pointed out that
the main difficulty in defect image analysis was
associated with the natural variation of wood
and wood defects. Pham and Alcock (1998)
provided a review of automatic wood inspec-
tion. Brunner et al. (1990) detailed the use of
color in machine vision systems for wood pro-
cessing. Other applications include hardwood
lumber grading (Klinkhachorn et al. 1988); dis-
placement analysis in multiple-bolted wood
connections by image correlation (Stelmokas et
al. 1997); automatic measurements of radial
and tangential lumen diameter in confocal re-
flected-light microscopic images (Moëll and
Borgefors 2001); and water content visualiza-
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tion by magnetic resonance imaging (MacMil-
lan et al. 2002).

The terms texture and grain are often used in-
terchangeably. According to the Handbook of
Wood and Wood-Based Materials, texture is
used to refer to the fine structure of wood rather
than the annual rings (USDA Forest Products
Laboratory 1987). Different textures are ob-
served in clear wood and defects (Conners et al.
1983; Pham and Alcock 1998) and in different
wood species (Liu and Furuno 2001). By using
both tonal measures of gray level moments and
texture measures based on co-occurrence matri-
ces, an overall 88.3% correct classification rate
on eight types of defects was achieved by Con-
ners et al. (1983). Other texture measures, such
as Fourier power spectrum and run-length statis-
tics, were also used in defect detection and a
summary was given in Pham and Alcock (1998).
Liu and Furuno (2001) characterized textures of
the surface of fifteen wood species with a fractal
dimension and its distribution pattern. The re-
sults showed that a fractal dimension of 2.5 sep-
arated a hardwood group from a softwood group.
It was unclear, however, whether wood species
in the same group (hardwood or softwood) could
be identified by this method. Texture measures
were computed in subdivisions of an image, and
the average value over all subdivisions was used
in discrimination or classification (Conners et al.
1983; Pham and Alcock 1998; Liu and Furuno
2001).

No reported work was found on wood grain
characterization by image processing, where
grain specifically refers to the streak pattern of
the annual growth rings. The purpose of this
work was to characterize some features of wood
grain structures by image processing techniques
and to evaluate how such automated quantifica-
tion agreed with human grading. Walnut grain
streaks were segmented and labeled. Features
that might characterize grain patterns were com-
puted and evaluated for their effectiveness in
discriminating samples of different visual
grades. Three classifiers were tested for visual
classification of walnut samples. The main chal-
lenge roots from the tremendous variability in
wood materials.

walnut grain image segmentation

Samples and image acquisition

Great complexity and tremendous variability
exist in wood grain. A species of Persian walnut
(Juglans regia) was chosen for this study. It was
the most used wood by a local sporting equip-
ment manufacturer. Experts graded each walnut
sample (hardwood dimension lumber) by evalu-
ating the “fanciness” of grain patterns on a dry,
flat wood surface. Because of the highly subjec-
tive nature of visual grading, a grader may not be
able to articulate the exact characteristics that
define each grade. Generally speaking, complex
and curved grain streaks are considered fancier
than simple, straight grain streaks. This grading
is different from the standard wood grading
based on clear cutting sizes (USDA Forest Prod-
ucts Laboratory 1987). Three grades of “extra
fancy” (EF), “fancy” (F), and “semi fancy” (SF)
were used in the factory. Fourteen walnut sam-
ples from each grade were obtained and their
surfaces were imaged with a digital color camera
(Olympus D600) set at a resolution of 640 �
512 pixels and 256 levels of intensity under fluo-
rescent lighting. The spatial resolution was 0.62
mm per pixel. While color was found valuable in
distinguishing defects on wood surfaces (Brun-
ner et al. 1990; Kline et al. 1998), walnut grain
color was found to vary independently of the vi-
sual grades in this study. The color images were
transformed into gray level ones. To exclude the
background and stains of soil or oil in some
wood images, an area of 320 � 256 pixels was
selected from each image for analysis.

Walnut grain segmentation

To characterize the grain patterns, it was first
necessary to isolate the grain streaks in an
image—a process called image segmentation.
Walnut grain segmentation was accomplished
through several steps of processing as described
below. These steps are standard operations rou-
tinely employed in image processing.

Median Filtering: A 3 � 3 median filter was
employed to reduce digitization, lighting, and
other noise effects without visually discernible
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blurring of the grain streaks. The main advan-
tages of median filters are that they achieve
noise reduction without blurring, and the edge
sharpness is preserved (Gonzalez and Woods
1992). This step of preprocessing reduced the ef-
fects of noise and prepared the images for further
analysis (Fig. 1).

Extraction of Streaks: A thresholding ap-
proach was found not suitable for segmenting
the dark grain streaks from the background. This
was because the histograms of all image func-
tions (red, green, blue, and gray level) contained
only one principal brightness region, and they
cannot be partitioned by a thresholding opera-
tion. A morphological black top-hat transforma-
tion was used to extract the dark grain streaks.
The transformation is defined as,

Black top-hat transformation of
I � C(I) – I

(1)

where I is the median-filtered image, and C(I) is
the grayscale morphological closing of I with a
structuring element (Meyer 1977; Gonzalez and
Woods 1992). A structuring element is a set in
the 2-D or 3-D integer space Z2 or Z3 (Sternberg
1986; Gonzalez and Woods 1992). In this paper,
all structuring elements are square matrices with
unity entries. The transformation in Eq. (1) can
extract the dark objects (low gray values) that
are smaller than the structuring element, which
was experimentally chosen to be 100 � 100 with
unity entries. This large size was used because

there were large grain streaks in some images.
The transformation made the streak background
reasonably uniform and improved the contrast
between the streaks and the background (Fig. 2).
A simple thresholding operation was then ap-
plied to isolate the streaks into a binary image.

Streak Edge Noise Removal: A morphological
binary opening operation (Haralick et al. 1987)
with an experimentally chosen 3 � 3 structuring
element of unity entries was applied to remove
noises on streak edges in the binary images and
to delete some false connections. The resulting
binary images approximately represented the
dominant grain streaks in the original images
(Fig. 3).

Grain Streak Labeling: The segmented grain
streaks were labeled by using a connected-
component scanning algorithm, which assigns
the same label to a set of connected pixels (Gon-
zalez and Woods 1992). The characteristics of
each labeled component can then be computed.
Each labeled component should ideally include
one and only one streak, but some included two
or more. This was because some streaks were not
separable or could not be separated by the opera-
tions described above.

walnut grain feature extraction

As stated in Tou and Gonzalez (1974), feature
extraction is one of the most difficult tasks in
pattern recognition. A good discriminatory fea-
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Fig. 1. Noise-reduced sample images.



ture should be consistent within one grade
(class) but different between two grades
(classes). Feature extraction was naturally the
most important and difficult problem in this
work for a number of reasons. First, there were
tremendous variations in the grains of even the
same wood species and grade. Each wood grain
streak could be unique in one or more aspects
(direction, size, arrangement, and appearance).
This made it hard to find consistent discrimina-
tory features. Secondly, often more than one type
of grain was present in one sample, and thus it
was difficult to characterize grain patterns as a
whole. Finally, the segmentation procedure did
not produce a streak image that exactly repre-
sented grain patterns in the original image.

To deal with these difficulties, many features
were computed from the labeled streaks and
tested by analysis of variance (ANOVA) (Johnson
and Wichern 1998) for their usefulness in dis-
criminating walnut samples of different grades.
The following features were found to be ineffec-
tive: (1) The total area of streaks or the amount of
streaks in an area was found not to depend on the
grade. (2) The streak width varied significantly
along a streak, especially those in the EF samples.
The average streak width was therefore not a use-
ful grade indicator. (3) The global contrast was
the difference between the average gray level of
all streak regions and that of non-streak regions. It
was not related to grade, but it appeared to be in-
fluenced by lighting conditions and noise. (4) The
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Fig. 2. Grain streaks extracted by the morphological black top-hat transformation.

Fig. 3. Binary grain streak images after edge noise removal.



direction of major axis was the orientation of the
best ellipse fit to a streak region. Since grain
streaks of different shapes may have the same di-
rection of major axis, this feature was not found
useful. (5) The skeleton or medial axis is a good
representation of simple and elongated objects,
such as written or typed characters (Haralick and
Shapiro 1992). The skeletons, however, failed to
represent the streaks sufficiently because wood
grain streaks are complex and irregular objects.
Two features were found to display significant
differences among the three grades (P � 0.0001)
as described below.

Average elongation

Elongation is defined as the difference be-
tween the lengths of the major and minor axes of
the best ellipse fit of a region divided by the sum
of the axis lengths. Most grain streaks in the EF
samples were wide, complex patterns, which
would have smaller values of elongation. On the
contrary, most grain streaks in the SF samples
were narrow and straight line-like patterns,
which would have large values of elongation.
The average elongation EAve was calculated as,

(2)

where Ei and Pi are, respectively, the elongation
and the size of streak i in number of pixels, and n
is the total number of labeled components or
streaks in an image.

Average local contrast

The sharpness of streaks appeared to be an-
other important property of wood grains. In an
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image, this sharpness is indicated by the local
gray level contrast between a streak and its
neighboring non-streak region. The greater the
contrast, the sharper a streak appears. To com-
pute the local contrast of a streak, morphological
dilation and erosion operations (Gonzalez and
Woods 1992) were employed to obtain an exter-
nal neighborhood and an internal neighborhood
of a labeled streak object as,

External neighborhood of S � D(S) – S
Internal neighborhood of S � S – R(S) 

(3)

where D stands for dilation, R stands for erosion,
and S is a streak object. A 2 � 2 structuring ele-
ment of unity entries was experimentally chosen
for both D and R. The local contrast of a streak
was computed as the difference between the mean
gray level of its external neighborhood and that of
its internal neighborhood in the median-filtered
image. The average local contrast for all the
streaks was computed as a feature for a sample.

The means and standard deviations of these
two features are shown in Table 1 for the three
grades. Comparisons of individual feature means
by ANOVA and the mean feature vectors of the
three grades by the multivariate analysis of vari-
ance (Johnson and Wichern 1998) showed that
both features differed significantly among the
three grades (P � 0.0001).

walnut sample classification

Classifiers

Figure 4a shows a scatter plot of the average
elongation and the average local contrast for all
42 walnut samples. It is obvious that there exists
a clear linear boundary between grades EF and
SF, but the samples of grade F overlap with those
of grades EF and SF. Since the scale of the aver-
age local contrast (8.0–25.0) was much larger

Lu and Tan—GRAIN PATTERN CHARACTERIZATION AND CLASSIFICATION OF WALNUT 315

Table 1. Mean and standard deviation (SD) of average elongation and average local contrast.

Grade EF Grade F Grade SF

Mean SD Mean SD Mean SD

Average elongation 0.712 0.080 0.749 0.207 0.947 0.049
Average local contrast 12.646 3.093 16.512 3.059 18.199 2.275



than that of the average elongation (0.3–1.0),
each feature was linearly normalized by using its
mean and standard deviation. The normalization
transformed the two features into comparable
scales without modifying the relative sample
distribution. Three types of classifiers—linear
discriminant analysis (Johnson and Wichern
1998), quadratic discriminant analysis (Johnson
and Wichern 1998), and a multiple perceptron
neural network (Haykin 1999)—were tested in
classifying a sample represented by the two (nor-
malized) feature values into one of the three
grades. The latter two classifiers include, respec-
tively, quadratic terms and complex nonlinear
terms in their decision mechanisms.

Linear discriminant analysis: This classifier
allocated a sample x (consisting of two features)
to population k (k � 1, 2, 3) if the linear discrim-
inant score dk(x) was the largest of d1(x), d2(x),
and d3(x) with di(x) given by:

(4)

where x̄i was the sample mean vector of popula-
tion i,Spooled was the pooled sample covariance
matrix, and pi was the prior probability of popu-
lation i (Johnson and Wichern 1998). Each popu-
lation consisted of 14 walnut samples in one
grade with equal prior probability of 1/3.

Quadratic discriminant analysis: This classi-
fier allocated a sample x to population k (k � 1,
2, 3) if the quadratic discriminant score dk(x)
was the largest of d1(x), d2(x), and d3(x) with
di(x) given by:

(5)

where x̄i and pi were the same as in Eq. (4),
and Si was the sample covariance matrix of pop-
ulation i (Johnson and Wichern 1998).

Neural networks can be useful classifiers as
described by Castleman (1996). One possible
advantage of the neural network approach is that
it is capable of implementing complex partition-
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ing. A three-layer perceptron model was experi-
mentally constructed for classification. The
input layer, hidden layer, and output layer con-
sisted of two, eight, and two neurons, respec-
tively. The inputs to the neural network were the
two features. The output was the group member-
ship or grade label. Grades EF, F, and SF were
labeled with (0, 1), (0, 0), and (1, 0), respec-
tively. The linear transfer function was used for
the input and output layers, and the hyperbolic-
tangent-sigmoid transfer function was chosen
for the hidden layer (The MathWorks 1998). The
model was trained with a backpropagation algo-
rithm (Haykin 1999).

Because the sample size N was small (N�42),
a hold-one-out procedure (Johnson and Wichern
1998) was used for validation of each classifier.
In this procedure, one sample was withheld from
the sample set, a classification function was de-
veloped based on the remaining N-1 samples,
and the withheld sample was then classified by
using the function constructed. This process was
repeated for all samples. The correct classifica-
tion rate was the rate at which the withheld sam-
ples were correctly classified.

Classification results

The results from the three classifiers with the
hold-one-out procedure are given in Table 2.
The correct classification rates for the linear
discriminant analysis, quadratic discriminant
analysis, and the neural network were 71.4%,
61.9%, and 69.0%, respectively. For all three
classifiers, some samples from grade F were
misclassified to grade EF or grade SF, or vice
versa. No samples were misclassified from
grade EF to grade SF, or from grade SF to grade
EF. The correct classification rate for the neural
network was slightly lower than that for the lin-
ear discriminant, but greater than that for the
quadratic discriminant. This suggested that the
classification did not benefit from quadratic or
general nonlinear terms. The linear discrimi-
nant analysis should be used as advised by
Castleman (1996). The linear boundaries gener-
ated by the linear discriminant analysis are
shown in Fig. 4b.
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discussion

A texture spectrum-based classification
method proposed by Wang and He (1990) was
tested on the walnut samples plus two oak and
two maple samples. This preliminary experiment
showed that this textural classification method
was useful in distinguishing different species of
wood, but failed to distinguish walnut samples
of different grades. The shape and gray level fea-
tures used in this study appeared more useful
than the textural spectrum for characterizing
walnut grains formed by the annual growth
rings. The reason for this was probably because
the grain streaks were not fine textures as dis-
cussed early in this paper. Other texture features,
however, may be useful in characterizing and
classifying wood grain patterns. A discussion on

textural features for image classification is given
by Haralick et al. (1973).

conclusions

A segmentation algorithm was developed to
extract walnut grain streaks. Two features, aver-
age elongation and average local contrast, were
found useful in classifying walnut samples. A
hold-one-out procedure yielded correct classifi-
cation rates of 71.4%, 61.9%, and 69.0% for the
linear discriminant analysis, quadratic discrimi-
nant analysis, and neural network classifier, re-
spectively. Though the species and samples were
limited, the results established the potential use-
fulness of image processing in wood grain char-
acterization and classification. Further research
is needed to find other useful features for charac-
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Table 2. Classification results by the hold-one-out procedure, sample size N�42.

Predicted grade

Linear Quadratic Neural network

EF F SF EF F SF EF F SF
Actual EF 12 2 0 11 3 0 10 4 0
grade F 3 5 6 3 4 7 3 8 3

SF 0 1 13 0 3 11 0 3 11

Fig. 4. Sample distribution and classification results: (a) scatter plot of samples; (b) linear boundaries generated by the
linear discriminant analysis.



terizing such complex and variable objects as
wood grain patterns.
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