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ABSTRACT

The objective o f this research was to develop an analytical solution to the heat 

transfer problem in raicrochannels with slip-flow  —  a heat transfer problem for gases at 

low pressures or in extremely small geometries, and to verify this solution 

experimentally. In this investigation, an analytical expression for the velocity 

distribution with slip-flow  was obtained which involved the Knudsen (Kn) number in an 

infinite series form. The result showed that the velocity always increased as the Knudsen 

number was increased. The Knudsen number for extremely small channels may become 

large enough to affect significandy the velocity distribution and consequendy affect the 

heat transfer properties. A  mathematical model o f temperature distribution was 

established by combining the energy and momentum equations. A  series solution was 

obtained. Also, expressions for the local and overall Nusselt numbers were derived in 

terms o f the Knudsen number and Graetz number.

A new technique for evaluation o f eigenvalues for the solution o f the heat transfer 

problem in raicrochannels was developed. This method was based on the construction 

o f a matrix. The computational results showed that the method was effective. The local 

values and average Nusselt number were found for Kn from 0.005 to 0.3 with aspect ratio 

a = 1, 2/3, 1/2, 1/4 and 1/8. Experiments for helium through a microchannel with 

dimensions o f 117 pm x 24 pm x 63.5 mm and a microtube with inside diameter o f 52 

pm were conducted.

iii
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CHAPTER 1

INTRODUCTION

The objective o f this research is to develop an analytical solution o f the heat transfer 

problem in microchannels with slip-flow  —  a heat transfer problem for gases at low 

pressures or in extremely small ducts, and to verify the analytical model experimentally. 

To do this, the velocity profile with slip-flow  must be found firs t A  mathematical model 

of the temperature distribution in slip flow  should be established by combining the energy 

and momentum equations. And finally, an effective technique for evaluation of the 

eigenvalues for the series solution should be developed and heat transfer experiments 

with microchannel/microtube should be conducted.

1.1 Heat Transfer Problem in Ducts

By the end o f the last century, the problem of forced convection heat transfer in a 

circular tube in laminar flow  gained interest because o f its fundamental importance in 

physical problems such as the analysis and design o f heat exchangers.

The Graetz problem is a simplified case o f the problem of forced convection heat 

transfer in a circular tube in laminar flow. With the assumptions o f steady and 

incompressible flow, constant flu id properties, no ’’swirl”  component o f velocity, fu lly 

developed velocity profile, and negligible energy dissipation effects, Graetz (1883) 

originally solved this problem analytically. The solution by Graetz involved an infinite 

number o f eigenvalues, and in his paper, only the firs t two eigenvalues were evaluated.
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Since the accuracy o f the Graetz solution mainly depends on the number of 

eigenvalues, it  is extremely important to obtain more eigenvalues, as Tribus and Klein 

(1953) pointed out For seventy years, the research on this problem focused mainly on 

finding more eigenvalues. Abramowitz (1953) employed a fa irly rapidly converging 

series solution o f the Graetz equation in making the calculation and found the lowest five 

values with much more accuracy. Sellars et al. (1956) extended the problem to include 

a more effective approximation technique for evaluation o f the eigenvalues of the 

problem; they could get any number o f eigenvalues as needed. This work solved the 

Graetz problem completely.

Dennis et al. (1959) studied the case in rectangular ducts. By employing 

homogeneous linear algebraic equations and Rayleigh quotient, they devoloped a 

technique for evaluation o f the eigenvalues for the analytical solution o f the problem of 

forced convection heat transfer in rectangular ducts with different aspect ratios. The same 

results were obtained by other researchers numerically (Shah and London, 1978).

1.2 Heat Transfer Problem in Ducts 
in Slip-Flow

Applications o f microstructures such as micro heat exchangers have led to increased 

interest in convection heat transfer in micro-geometries. Some experimental work has 

been done, such as the experimental investigations in microtubes (Choi et al., 1991), in 

microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993). 

Appropriate models are needed to explain the significant departures in the micro-scale 

experimental results from the thermofluid correlations used for conventional-sized 

geometries. For example, Choi et al. (1991) conducted heat transfer experiments using 

essentially smooth tubes with a relative roughness o f0.0003 and a diameter ranging from 

3 pm to 81 |im . As shown in Fig. 1.1, the measured heat transfer coefficients in laminar
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4

flow  in small tubes exhibited a Reynolds number dependence, in contrast to the 

conventional prediction for fu lly  established laminar flow, in which the Nusselt number 

is constant Also, an experimental investigation o f fluid flow  in extremely small channels 

showed that there are deviations between the Navier-Stokes predictions and the 

experimental observations (Pfahler et al., 1991).

Therefore, some effects and conditions that are normally neglected when 

considering macro-scale flow  must be taken into consideration in micro-scale 

convection. One o f these conditions is slip-flow  (F lik et al., 1992, Beskok and 

Kamiadakis, 1992). It has been found that the analytical model combined w ith slip-flow  

conditions can f it  the experimental data in microchannels with a uniform cross-sectional 

area (A rkilic et al., 1994) and with a non-uniform cross-sectional area (Liu et al., 1995).

S lip-flow  occurs when gases are at low pressures or for flow  in extremely small 

passages. A t low pressures, with correspondingly low densities, the molecular mean free 

path, which can be expressed as Eq. (1.1), becomes comparable with the body 

dimensions, and then the effect o f molecular structure becomes a factor in flow  and heat 

transfer mechanisms (Eckert and Drake, 1972).

The relative importance o f effects due to the rarefaction o f a gas can be indicated by 

the Knudsen number, a ratio o f the magnitude o f the mean free molecular path in  the gas 

to the characteristic dimension in the flow  field. The effects of rarefaction phenomena on 

flow  and heat transfer becomes important when the Knudsen number can no longer be 

neglected. The Knudsen number may be defined as

(1.1)

( 1.2)
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In defining when slip-flow  occurs, Beskok and Kamiadakis (1992) have proposed 

to classify four flow  regimes for gases, as follows:

When slip-flow  occurs, the gas adjacent to the surface, in contrast to its behavior in 

continuum flow, no longer reaches the velocity or temperature o f the surface. In 

continuum flow, intermolecular collisions dominate the flow  field, and a usual boundary 

condition (continuous boundary) at the interface between a fluid and a solid surface is that 

the flu id  adjacent to the surface assumes both the velocity and temperature of the surface. 

In the case o f slip-flow, the molecular mean free path Xm is rather larger than any 

significant body dimension so that most o f the gas molecules striking and leaving the 

body surface do not collide with free-stream molecules until very far from the surface. 

Thus, the gas at the surface has a tangential velocity, and it appears to slip along the 

surface.

The slip velocity can be expressed as follows as a function o f the velocity gradient 

near the wall:

Continuum flow:

Slip-flow:

Kn < 10-3

10-3  < /& i < 0.1

Transition flow: 0.1 < K n <  10

Free molecular flow 10 $K n

US ------ X m(  ^  )y  =  0

and A rkilic et al. (1994) give the expression as follows:

(1.3)

(1.4a)

or

u =  2 ( —  )
s F  dy Jy=0

(1.4b)
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which includes the consideration o f three accommodation coefficients represented by the 

speculation reflection coefficient F, which has values that typically lie between 0.9 and 

1 (Ebert etal., 1965). In the case o f F having the value one,Eq. (1.4) becomes Eq.( 1.3). 

For simplicity in this investigation, Eq. (1.3) was applied to evaluate the velocity.

The temperature boundary condition can be regarded as discontinuous; that is, there 

is a jump in temperature at the wall. Actually, the temperature o f the gas near the solid 

surface changes continuously to the temperature o f the surface but only in a very thin layer 

on a microscale so that on the macroscale there appears to be a jump in temperature 

between the surface and the adjacent gas. Eckert and Drake (1972) give expressions for 

the temperature jump condition;

'r  'r    / ^7 \^tn i BT \
T*-Tw ~  - ( ~Pr By d-5)

where Am represents the mean free path for collisions between a moving molecule and 

the fixed molecules (or Am _ 1  is the average number o f collisions per unit distance ) 

(Present, 1958), and BT/By is the temperature gradient at the wall. As shown in Eq. (1.5), 

the temperature jump is proportional to Am: a small value o f Am means that a great 

numbers o f molecules are involved in energy transport so that the temperature jump is 

small, while a large value o f Am means that fewer molecules are involved in energy 

transport so that the temperature jump is relatively larger. When Am is small enough, as 

in a conventional case, the temperature jump may be neglected.

With the introduction o f the slip-flow  condition into the Graetz problem, it  becomes 

more d ifficu lt to solve such problems. The classical Graetz problem is governed by a 

partial differential equation with a continuous temperature boundary condition; while in 

the Graetz problem combined with slip-flow  condition, the temperature boundary 

condition is no longer continuous, which makes the solution as well as the corresponding 

eigenvalues much more complicated and d ifficu lt
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In the case o f circular tubes in slip-flow, that is, gases at low  pressures or in extremely 

small tubes, the heat transfer coefficient depends not only on the Reynolds number and 

Prandtl number, but also on the Knudsen number. Barron et al. (1995) developed a 

technique and evaluated the eigenvalues o f the analytical solution fo r this problem in the 

case o f a constant wall temperature. Wang et al. (1995) solved this problem completely. 

Their studies shows that the Nusselt number increases significantly with the increase o f 

the Knudsen number, as shown in Fig. 1.2. Ameel et al. (1996) studied the case with

Pr = 0.7 

y = 1.4

u.

u

aoo 002 OM OjOS aio
Knudsen number, Kn

Fig. 1.2 Fully developed Mi as a function of Kn [Barron et al.]
(constant wall temperature)

constant heat flux, and the results indicate that the fully-developed Nusselt number 

decreases with the increase o f the Knudsen number, as shown in Fig. 1.3. Therefore, 

some research is needed to analyze this type o f problem in the case o f rectangular ducts 

in slip-flow .
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1.3 Related Research

Ebert and Sparrow (1965) have found the fluid velocity distribution for s lip-flow  in 

microchannels. Their results can be summarized as follows:

The momentum equation can be written as follows in the coordinate system shown 

in Fig. 1.4:

d2w _j_ d2w _  1 dp
d£2 dr}2 F dg ( 1.6)

/I

a = h/b
2h

_ L

k — 2b

Fig. 1.4 Coordinate system

with the slip-flow  boundary condition

w =  at rj =  h, 0 <  % < b_  2—F i dw 
F drj

(1.7a)

w =  —_  2—F  i dw at ^ =  b, 0 <  rj < h (1.7b)

(1.7c)

=  0  at t; =  0 , 0 ■< r) <  h (1.7d)
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The velocity can expressed as

=  cosa i V , s ina  -t _____________cosh _______
; a i n ?  1 -1 - 9  K n  c in ^  n .   i_ O-i . - i ts _  Ct;

( 1-8)

____ / * / ! P  /T  « |  P IM  ^ 'w   ___ _________________________________________
P-B.-P 1=1 a i3 1 + 2  Kn sin2 a : cosh ^  +  2 Kn a: sin 7f
M dz

and the mean velocity can be determined by

wq xti n sin2 a-. % a.- sinh %
D^dp ~  / = i a ,-5 \ +  2 Kn sin2 a t ( fl c<wA §  +  2 Ah a f stn §  } (L9)
f* dz a i a

where the eigenvalues a,- satisfy

a,- tan a f =  ( 1.10)

Dennis et al. (1959) solved the problem of forced heat convection in laminar flow  

through rectangular ducts with non-slip-flow. Their results may be summarized as 

follows:

The energy equation can be written as follows in the coordinate system shown in Fig.

1.5:

kl £ T  +  £ T  + £ L  _  om,§T
K  % * to,* * * ’  e as O i l )

T
2 h '

_ L

I -

a = h/b

■2 b

o _  2h _  1 +  a
e - T r H ~  —

O '  _  2b _  1 +  1/g
P D  °H

Fig. 1.5 New coordinate system for dimensionless variables
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with the boundary condition

Tw =  Tl g > 0 (1.12a)

T =  T0 g <  0 (1.12b)

Introducing diraensionless variables

*  = -L  v = -2- , = J -  f  T~ T '
D „  y D „  D h  T0-T i

where the hydraulic diameter Dh = 4A/S, and the aspect ratio a and Knudsen number

„  — h v_ _  1—F^m
a -  b " " - 7 1 h

When the aforementioned change o f variables is carried out and neglecting the axial 

conduction kd2T/dg2 for large enough Peclet number, since it  is of order (1/Pe)2 

compared to the axial convection term wdT/dg, the governing equations and the boundary 

conditions become

d2w , d2w D fidp „  2 Dfidp
+  ~W 7z or v i w =  — Tz (1.13)

+  or V ,2e =  M M

where V j2 =  d2/dx2 +  d2ldy2, w0 is the mean velocity, and

w =  -K n  f i —  at y =  0 and /S, 0 <  x <  (1.15a)

w =  -K n  at x  =  0 and /S', 0 < y < $  (L15b)

^  =  0  m y  = |  , 0 s  x  s  f t ' ( u 5 c >

= 0  at x  =  0 £  y £  ft (1.15d)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

and

6W =  0 j *  0  z >  0  (1.16a)

0 = 1  z <  0  (1.16b)

The solution o f Eq. (1.16) can be written as

00

6 =  I  CnGn(x,y)e~1^  +  6 X (1.17)
rt= 1

where Gn andA„ are eigenfunctions and eigenvalues required to make the solution to the 

following membrane equation:

V 2G +  i * M c =  0  (1.18)
I vv0

subject to the boundary condition deduced from Eqs. (1.14) Gn = 0 on the boundary C ’. 

Coefficients Q  can be determined by

Ik
I L

w Gn dx dy

Cn =  ~ r~ ? ------------------  (1.19)

w dx dy

The Nusselt number can be determined by

Nu(z) =  I X nCn2e ^4 n=l

where
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I L w 6 dx dy
I I n 1

0g =

I L w dx dy ( 1-2 0 )

=  S c n2e
/ X =  1

and Nuco =  A i /4 .

Eigenvalues An can be determined by the following infinite set o f homogeneous 

linear algebraic equations

00 00

^  n ) / lm̂ i-A bp^(jn,n)} apq — 0  ( m,n — 0 , 1, 2 , ... ) ( 1.2 1 )
p = 0  q = 0 ™

where

<5M (m ,n ) =  | |  (1 .22 )

&m,n(m ,h)■Am,n ~  I 4a J ( m2 + a2n2)y (1.23)

bptq{m , f l)  ^  ^ im -p i/t+q  ^ m + p ji+ q  + pM-q\ J 0*24)

rp rp
d‘J =  I I vv  ̂ cos cos (^ jr) dx &  ( ij-0 ,1 ,2 , ...) (1.25)

^ 0  for all pyq,myn *  0 
bpAm,n) { ,,

=  0 fo r any p,qymyn =  0  (1-26)
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Dennis et al. (1959) estimated the eigenvalues for different aspect ratios for 

nonslip-flow by employing the Rayleigh quotient

=  j  dnVfOndx dy/ j  j  r$n2dx dy

00 00 00 00 00 00

=  ^  ^  ^  ^  ^  bp^qil,J)AiJjl)Apq{n)
p =  0 q =0 i‘= l  j — 1 p  =  1 9=1 “

(1.27)

for example, for aspect ratio a -  1, Ai =11.91 and Nu^ = 2.98.

Therefore, based on those research, a model for the case o f rectangular channel in 

slip-flow  can be established and a technique o f evaluation o f the corresponding 

eigenvalues for the analytical solution o f the model should be developed.
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CHAPTER 2

VELOCITY AND TEMPERATURE DISTRIBUTIONS

In order to build the mathematical model for the problem in slip-flow, the velocity 

profile must be found first in the new coordinate system. In this chapter, based on some 

assumptions, the expression for velocity w ill be derived from the continuity equation and 

momentum equation. The slip condition w ill be used to evaluate the slip velocity, and 

the velocity w ill be expressed in terras o f a Knudsen number. A  mathematical model of 

temperature distribution in slip-flow  w ill be established by combining the energy and 

momentum equations.

2.1 Velocity Distribution

Consider the flow  o f a fluid in a rectangular duct, as shown in Figure 2.1:

Fig. 2.1 Coordinate system for the problem

For this model, the following conditions have been assumed (Barron, 1996):

(1) The flow  is steady. This means that the properties o f the flow  are time 

independent

(2) The flu id is incompressible (or, i f  a gas is considered, the Mach number is less 

than 0.30). In this case, the density may be assumed constant

15
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(3) The flow  is fu lly  established. In this case, the axial velocity, w, is a function o f 

the coordinates rj and £ only, and not a function o f the axial coordinate g. In addition, the 

radial velocity is zero.

(4) The ’’swirl”  component o f velocity is identically zero. This means that both u = 

0 and v = 0 .

(5) Fluid properties are constant

(6 ) Energy dissipation effects are negligible.

(7) The tube wall temperature is constant

2.1.1 Continuity Equation

The general continuity equation can be written in the cartesian coordinates as 

follows:

f  + + £ j ^  + = 0 a i )

For steady flow  o f an incompressible fluid, the equation above reduces to:

du , dv , dw _  n
dg dtj a? (2-2)

For fu lly developed flow,

^  =  0 
at

Therefore,

a t ' a?
du | av _  q

Since the normal velocity is zero at the walls (the wall is impermeable), we must conclude 

that:
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u = 0  (identically).

and

v = 0  (identically).

2.1.2 Velocity Distribution with 
Slip Condition

The Momentum Equation can be written in the coordinates shown in Fig. 2.2 as 

follows (Kays et al., 1993) for fully-developed (hydrodynamic) flow:

d2w . dhv _  J_dp
d£2 dt}2 Pdg (2.3)

T
2h

_ _  i  .

y. p-

f i

----------2b --------4 ’  ?

Fig. 2.2 New coordinate system for dimensionless variables

with the slip-flow  boundary condition

w =  - 2—F ] dw 
~ F  dt] at rj =  0 ,2  h, 0 < £ <  2b (2.4a)

w =  - 2 -F i dw
F m dk

at £ =  0 ,2  b, 0 <  V <  2 h (2.4b)

-a
rlS

’
II 0  at tj = h, 0 *  £ S 2b (2.4c)

dw
0 at £ = b, 0 <  TJ < 2 h (2.4d)
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Introducing dimensionless variables

X = A . y =  JL  Z = ± -
D „  y D „  z D „

where the hydraulic diameter Dh = 4A/S, and the aspect ratio a and Knudsen number

„   h ir_   2-F^-m
b 101 "  ~ 2 k

The governing equations and the boundary conditions become

d2w , d2w _  Dfjdp v  2 _  DHdp
dx2 dy2 f* dz 1 P dz

(2.5)

w =  -K n  0 ^  at y =  0 and 0, 0 < *  <  0 ' (2.6a)

w =  -K n  at x =  0 and {S', 0 < y < /3 (2.6b)

=  0  at y = %  , 0 <  x  <  /3' (2 .6c)

^  =  0 at x  =  4 -, 0 <  y <  /S (2 .6 d)dx 2
The solution may be proposed as

w =  2  W, (x) cos $ r - \)a L i
P Hdp ~  ~ I 1- w  '  P } 1 (2.7)
P dz

where a-, are a set o f eigenvalues, and the (x) are a set of x -  dependent functions. Eq.

(2.7) identically satisfies boundary condition (2.6c), that is 

dw m

D„dp =  ^ sin ^ a ‘ =  0 at y ~  P/1
T T z

By substituting Eq. (2.7) into the boundary condition (2.6a), we have
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For a non-trivial velocity solution, it is necessary that

a { tan a t =  (2.9)

This is the condition from which the eigenvalues are determined.

Now, we find the function (*). To do this, Eq. (2.5) can be rewritten as

(2.10)d2w , d2w _  Df{dp y  2y
dx2 dy2 t* d z ~ i l ( ) ( $  }

From Eq. (2.7), we have

=  _D h±  £  , 2y
dx2 t2 d z Z i  dx2 { P

dy2 t2 dz p 2 ,T, ‘ 1 p  u a ‘

so we derive a differential equation

" S T  ’  ' X 1 Q> =  0  (2-12)

(2.11)
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We can obtain the homogeneous solution from

2a ,

A2 -  (“ sr) =  0  (2.13)P
that is,

2a:
A = ± . ( - ^ )  (2.14)

Therefore, let

V - * -  C1Jt x +  C2e~Tx +  C3 (2.15)

substituting Eq. (2.15) into Eq. (2.12), we have

-  (^ p )2C3 = 0

or

P2® i
^ 3 = - ^  (2.16)

From boundary condition (2.6d), that is,

d}y. 2a- „ 2a 2a
~±T  =  (■ ^ -W 1«7*-C 2e -7 * ] x = ^ /2  =  0 (2.17)

Therefore, we obtain

2a,
C2 =  Cjg"

so

a: a.

¥*,* =  Cj«* [ +  e - i W ) ] +  C3

=  cosh j( 2 x - P ')  +  C3 (2.18)
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And from boundary condition (2.6b), we have

« « »  - - * > / * £

2>
P

or

m u . (x\
(x) +  Kn n — ^ 1  }x=p> =  0

Substituting Eq. (2.18) into Eq. (2.19), we have

C jO -  +  e a ° ] +  C3 +  Cj Kn P '—jj^VLe* - e a‘~ a‘ ] = 0  

C\ =  C3/ [ ( « t  +  1 ) +  2  «#i ^ ( e ^  - I ) ]

4a ,2 e

[ cosh^j- + 2  Kn ^ -s ir th ^  ]

Evaluation o f can be made from the assumption

S Q i  (x) cos ( ^ —l)a , =  1

and the property o f orthogonality

B , I (cot a, ( ~ D 1 2 d ( ~  1) =  f
J /»/2 P P ) ,

P 2y 2y
cos a t < r f - \ )  d ( r $ ~  1) 

P/2 P P

(2.19)

(2.20)

(2.21)

(2.22)
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Let a  = (2y/p -  1), we have

E Q i  (jc) cos a t o  =  1
i= i

(2.23)

From the orthogonality we have

f 1 t lQ j I car a i a  cos a} o  do =  I cos a -} a do 
Jo  Jo

(2.24)

Carrying out the integration for a\ = a j, we obtain:

r t r  a i +  sina-t cosa -t 1 _  sinaf 
2^  ] ~  ~

or

_ 2sina -. 9 , sina,-Q. = ________ !____ — A. ( _________ I_____  \ (n 9S1
‘ a i +  sirwii cosa -t O-i 1 +  2 Kn sin2̂

Now, the velocity can be expressed as

w /C  =  - l E  COS g<~ < sin a ‘ v i co sh % {2x /fi'- l)
1=1 a /3 1 + 2  Kn sin2 a t cosh £■ 4. 2  Kn a { sin ^

(2.26)

where C = (Dff/fi)(dp/dz) and the mean velocity is found by integration o f Eq. (2.26) 

across the section o f the channel: thus,

w0 =  i  j  w d A  <2-27>

Upon carrying out the indicated operation, we obtain:
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2.2 Temperature Distribution

The general temperature field equation for flow of an incompressible flu id  with zero 

swirl or angular components, zero energy generation, and negligible frictional energy 

dissipation is:

,,  d2T . d2T , d2Ts _  n ST
W  ~a? e ' *  ( 2 '30>

with the boundary condition

Tw =  T j g >  0 (2.31a)

T =  T0 g <  0 (2.31b)

introducing dimensionless variables

r =  _L v = - i -  r = J _  ft =  r~r i
d „  y d h d „  r0-r,

When the aforementioned change o f variables is carried out and the axial conduction 

kd^/dg2, can be neglected for a large enough Peclet number, the governing equations and 

the boundary conditions become

u  d2T , d2T\ _   r» dT   rr 2zi _  w dd
( I t i2 ~  q c w D h 1 z  ° r V ‘ 6 -  ^~oTz (2.32)

where V \ 2 =  dVdx2 + d2/dy2, w ith the boundary condition
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ew =  0J =  0 Z >  0 (2.33a)

0 = 1  z <  0 (2.33b)

2.3 Summary

In this chapter, the velocity distribution with slip-flow  has been obtained which can 

be expressed simply in terms o f the Knudsen number: From the relationship o f Kn in 

terms o f pressure and dimension, we can see that Kn in microtubes may become large 

enough to significantly affect the velocity distribution and consequently affect the heat 

transfer for this problem. Also, a mathematical model o f temperature distribution in 

slip-flow  has been established by combining the energy and momentum equations.
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CHAPTER3

ANALYTICAL SOLUTION

In the last chapter, the velocity distribution was expressed in terms o f mean velocity 

and Knudsen number, and a mathematical model o f temperature distribution in slip-flow  

was established by combining the energy and momentum equations. In this chapter, a 

series solution w ill be obtained by the method o f Frobenius. Considering the boundary 

condition, a temperature distribution in terms o f a generalized Fourier series w ill be 

derived. Also, expressions for the local and overall Nusselt numbers w ill be obtained.

3.1 Graetz Solution

3.1.1 Separation of Variables Solution

The governing equation

n  2/3   w 88
V l & "  ~vTz (3.1)

where V \2 =  82!8z9- + d2/dy2, with the boundary condition

8W =  0 z >  0 (3.2a)

6 =  1 z <  0 (3.2b)

Eq. (3.1) can be solved by a separation-of-variables technique. Suppose we let:

0(x,y,zj = G(x,y) Z(z)

25
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Making this substitution into Eq. (3.1) and rearranging results in the following:

, ££G , £ G  _  dZ _  i
1 d* 2 fly2 'G w  Z &  (3.3)

where A is an arbitrary constant The ordinary differential equations which result are: 

—  +  kZ =  0 (3.4)

and

V , ! C + ^ C =  0 (3.5)

with boundary conditions:

G(0,0) = 0

G(0,l) = 0

G (l\0 ) = 0

G (l’,l) = 0.

The solution o f Eq. (3.4) is:

Z(z) =  C exp[ -kz ] (3.6)

The constant C in Eq. (3.6) w ill be evaluated below and k  w ill be evaluated later.

3 .1 .2  Determination o f Constants Cn

We can write the solution for the temperature distribution in terms o f a generalized 

Fourier series, as follows:
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6 =  E c nGn{x,y)e^  (3.5)n = l

where Gn andA„ are eigenfunctions and eigenvalues required to make the solution to the 

Eq. (3.3) subject to the boundary conditions deduced from the boundary condition Eq. 

(3.2a)

G(0,0) = G(0,l) = G(l’,0) = G (l\l)  = 0.

The constants Cn can be found from the entrance condition, Eq. (3.2b) 

at z = 0 , q ( x,y,0) = 1

Making this substitution into Eq. (3.5), we obtain:

00

S c n Gn(x,y) =  1 (3.6)
/ ' = o

The governing differential equation, along with the boundary conditions, is a 

Sturm -Liouville problem, with a weight function,

w = w(x,y)

where w(x,y) is the z-component o f velocity and from orthogonality,

j  j  wQc,y)GnGm dx dy =  0 fo r m ^ n  (3.7)

The constants may be evaluated by multiplying Eq. (3.6) on both sides by

w{x,y)Gm
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and integrating between on the domain D ’ bounded by C ’. Only the term in which m 

= n is the result non-zero, and we find:

Each Gn has arbitrary amplitude which we choose for convenience, so 

that

The temperature 6 (x, y, z) is therefore known to any desired accuracy once sufficient 

Ga have been found. Two further thermal quantities are o f interest Experimental 

measurements are made on the basis o f a mean mixed temperature o f the fluid, that is, 

Q(x,y,z) averaged with respect to the local fluid velocity over any section o f the channel. 

This temperature is a function o f z only and its difference between any two sections gives 

a measure o f the heat transferred across the wall between them.

From these expressions, we can see that the coefficients Ga and Q, must be 

predetermined in order to calculate the temperature.

w(x,y) Gn dx dy (3.8)
D ' J J D'

therefore,

(3.9)

(3.10)
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3.2 Heat Transfer CoefBdent Correlation

3.2.1 Bulk Temperature

The bulk or average temperature can be determined from:

dB -

w(x,y) 6 dx dy 
D'

l b * * y) dx dy

or

9 b(z) = I  Cn2
n= 1

where:

_ Tg-Tw 
-

tq- tw

3.2.2 Local Heat Transfer Coeffident

The local or ’’point”  convective heat transfer coefficient can be defined by: 

Q/Aw = hx ( Tb — Tw )

The heat flux can also be written, as follows:

« =  £  =  - * * j c f  *  - - *  < n r  r .  >■* J c f  «

(3.11)

(3.12)

(3.13)
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where s is the distance measured along the perimeter of the boundary curve C in an 

anti-clockwise direction and v is the outward-drawn coordinate normal to the channel 

wall: v ’= v /D h , s '= s /D h  . Equating the heat flux from Eqs. (3.12) and (3.13) and making 

the substitutions from Eq. (3.11) for the temperature gradient at the wall and for the local 

bulk temperature, the following expression is obtained for the local or “ point”  Nusselt 

number.

Nu{z) =  - D „  ds'/SdB (3.14)

We now eliminate q in term o f the Gn by Eq. (3.5) and apply Green’s theorem to Eq. (3.3), 

so that

^  I I G .d x d y  (3.15)

Using Eq. (3.10) and since f f  o ’ w dx dy = A ’wo, where A ' is the dimensionless area 

within C \ we finally obtain

Niiiz) =  2 5 -  ^ A „ C „ 2 e-**  (3.16)
4Or «=1

A t large distances down the channel, Nu(z) approaches a lim iting minimum value. 

I f  Ai is the smallest o f the X’ we have, as z -» «>, that 4$B Nu(z) -  X\ C i2 exp ( - X\ z) 

and 0 b (z) ~ C i2 exp ( - X\ z) so that

Afa(oo) =  (3.17)
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3.2 J  Overall Convective Heat 
Transfer Coefficient

The average or overall convective heat transfer coefficient is defined through the 

following expression:

■ IQ =  hc ( 4 h b L ) ( 4 T ) lJV= \  1 hz ( T0-T w) ( 4  h b dg) (3.18)
o

where ( A T )ln = log-mean-temperature difference (LMTD).

The LMTD may be written in terms o f the inlet temperature To and the exit bulk 

temperature T i , as follows:

. _ = ( 7-p- tw ) -( t l -  t„  ) ( eu -  1 ) ( r0- r. )
>UI l n U T 0- T w ) /  ( T l - T w ) ]  t n ( 0 BJL) W'

Let us define the dimensionless LMTD, as follows:

™  ~  T0-  Tw (3.20)

Then,

_ (  0 * z r l )
to ( &BJL ) (3-21)

The expression for the average convective heat transfer coefficient can then be written, 

from Eq. (3.18):

hc =  0^ /  o kz &B *  (3*22)

In the fundamental equation, we have q -  h jji S 5 A7zjy. Now q can either be obtained 

by integrating Eq. (3.13) from zero to g or, alternatively, it  is the heat given up by the fluid
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in cooling from To to Tm, so that q = Awoqc^ J o -  Tm). Equating these two and 

introducing dimensionless quantities, we have the mean logarithmic Nusselt number, 

hisDn/k, given by:

- 4  * ■ < • * >  (3-23)

3.3 Summary

In this chapter, a series solution for the mathematical model o f temperature 

distribution in slip flow  in microchannels has been obtained. Considering the given 

boundary condition, a temperature distribution in terms o f a generalized Fourier series 

has been derived. Also, expressions for the local and overall Nusselt numbers have been 

obtained. A ll these expressions can be taken as functions o f the Knudsen number and 

the Graetz number. In order to calculate either the temperature or the Nusselt numbers, 

the coefficient CJ, and A„ must be predetermined.
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CHAPTER 4

EVALUATION OF EIGENVALUES

In the last chapter, we obtained a series solution for the temperature distribution. 

Also, expressions for the local and overall Nusselt numbers have been obtained as 

functions o f the Knudsen number and aspect ratio. In this chapter, we present a technique 

for evaluation o f eigenvalues for the solution o f the heat transfer problem in slip-flow , 

since eigenvalues X„ must be predetermined for the calculation o f either the temperature 

distribution or the Nusselt numbers. A matrix w ill be constructed and a formulation 

described to find the coefficients bPiq(m,n). Based on these bp>q(m,n) the eigenvalues Xn 

can be calculated numerically.

4.1. Introduction

We consider the general domain D ’. Based on the principle o f the method o f 

Galerkin, let be the complete set o f eigenfunctions o f the equation

w ith d<t>tdv ’= -N(p on C \ Any arbitrary function &(x,y) which satisfies these boundary 

conditions and which possesses continuous partial derivatives up to the second order can 

be expanded in an absolutely and uniformly convergent series in the form

V20  +A<j> =  0 (4.1)

00 00

0(x,y) =  2  2  amjl (pmAx,y)
m= 0 /»=0

(4.2)

33
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where

(4.3)

and

dp,q(m,n) =  |  J <Pmj<t>p4  dx dy (4.4)

m,n) = 0 unless m = p and n = <7. We can make 0  the solution o f Eq. (3.5) so that 

multiplying this equation by ip^n and integrating over D ’ we have, by Eqs. (4.1) and (4.3),

&m,n(.m,n) A  =  X J  J  r{x,y)0<pm̂  dx dy (4.5)

where r(x,y) = w(x,y)/wo. I f  we substitute for 0  by Eq. (4.2), then Eq. (4.5) is reduced 

to an infinite set o f homogeneous linear algebraic equations

00 00

2  2  {dp Jm ,n) A mjrC-X bPtJ,m,n)} ap<q =  0 ( m,n =  0,1,2, ... ) (4.6)
p - 0 g = 0

where

bp,q(m, n) = r  $ m j$ p ,q  dx dy (4.7)

The matrix associated with Eqs. (4.6) is symmetrical since bPtq(m,n) = bmtft(p,q) and the 

eliminant for a non-trivial solution gives an infinite determinantal equation A (A) = 0 

whose latent roots are the eigenvalues o f Eq. (3.5). Dividing each row o f A (X) by its 

leading diagonal elements, the resulting determinant converges i f  the off-diagonal sum 

is absolutely convergent and A has no value which makes a leading diagonal element zero.
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I f  this condition is satisfied, then the convergence o f sura Xp=oXq=o I <*p,q I and, 

moreover, o f sura Xp=oXq=o ^p,q(p><l)^p,q,I Op,q I follows. The eigenvectors {Op,q(n)}

corresponding to a given root A = Ai can then be obtained, theoretically, in terms o f any 

arbitrary coefficient; in practice, the determination o f a given eigensolution is a problem 

in numerical analysis.

Eigenvalues Xn can determined by the following infinite set o f homogeneous linear 

algebraic equations

00 00

p — 0 <7=0
2  2  fdM (m,n) A m jrX bp^(m ,n)} aM  =  0 ( m,n =  0,1,2, ... ) (4.6)

where

(4.8)

(4.9)

\m-p\ji+q m+pji+q

di j  =  j o j o cos ( J-X ) cos ( J?y ) dx dy (ij= 0 ,l,2 , ...) (4.11)

with

(4.12)
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4.2 Expansion o f Eq. (4.6)

Considering the condition Eqs. (4.8) and (4.12) and underlining the only one with 

both p = m and q = n, we have the following expansion:

1) m = 0, n =  0

(5n,oAQ,n-kboto)ao>o+(SotiAoto-Xboti)ao>i+(6o,2Aoto-Xbot2)ao,2+(6o,3Aoto-4.bot3)ao,3+...

(S[,oAo,o-^bi)o)ai>o+ (6 ijA o ,o -X b ij)a ii i+ (6 i>2Ao,o-^bi>2)aii2+(5i,3Ao,o-Xbii3)ai,3+... 

(82,oAo,o-^b2,o)a2,o+(52,iAo,o-^b2,i)a2,i+(82,2Ao,o-^b2,2)a2,2+(S2.3Ao,o-^b2,3)a2,3+... 

(83,oAo,o-M>3t0)a3,o+(83,iAo,o-Xb3,i)a3>i+(S3,2Ao,a-X.b3,2)a3,2+(83t3Ao,a-Xb3,3)a3,3+... 

=  0

the underlined term may not be equal to zero. A ll terms o f 8piqAo,o and coefficients o f X, 

bp,q but 6n nAn n are zeros according to the condition Eqs. (4.8) and (4.12); therefore, 

(8o,oAo,o)ao,o =  0

2) m =  0, n =  1

(8 o,oAoti-Xbo<o)ao>o+(8n[ i An, i-Xbp, i )ao, i +(80,2 Ao, i-Xbo,2)ao,2+(8o,3 Ao, i-Xbo,3)ao,3+... 

(8i,oAo,i-Xbiio)aito+(8i>iA o ,i-X b ii i)a iti+ (8 ii2Ao,i-Xbii2)aii2+(8ii3Ao,i-Xb1>3)ai>3+... 

(82,oAo,i-Xb2,o)a2,o+(82,iAo,i-^.b2,i)a2,i+(82,2Ao,i-X.b2,2)a2,2+(82,3Ao,i-^b2,3)a2,3+... 

(83,oAo,i-kb3io)a3>o+(83>iAo,i-Xb3ii)a3ti+(83>2Ao,i-A.b3i2)a3t2+(83t3Ao,i-Xb3,3)a3>3+... 

=  0

therefore,

(8o,iAo,i)ao,i = 0

Similarly,

3) m = 0, n = 2

(8 o,2Ao^)ao,2 = 0

4) m = 0, n = 3

(6o,3Ao3)ao,3 = 0
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5) ra =  1, n = 0

(8o>oA i>o-X.bo,o)ao,o+(So,iAi,o-X.bo,i)ao,i+(8o,2Ai>o-Xbo,2)ao,2+(So,3Ai,o-X.bo,3)ao,3+...

(^ m A jji-^ b i,o )a i,o + (8 i,iA i,o -X b i,i)a i,i+ (8 i,2A iio-Xbi<2)ait2+(8 i,3A i,a-Xbif3)ai,3+...

(82,oAi,o-^b2,o)a2,o+(82,iAito-X.b2,i)a2,i+(82>2 A iicrX.b2>2)a2,2+(82,3Aijo-^b2,3)a2,3+-

(S3,oAi,o-X.b3to)a3to+(83>iA i to-\b3,i)a3>i+ (83>2 A iio-Xb3i2)a3,2+(83,3Aito-X.b3t3)a3>3+„. 

=  0

therefore,

(& l,oA i .^ )ai,o= 0

6) ra =  1, n =  1

(8o,oAi,i-?ibo,o)ao,o+(8o,iAi,i-kbo>i)ao,i+(8o,2Ai,i-kbo,2)ao,2+ (8o,3Ai,i-4.bo,3)ao,3+...

(8 i,oA i,i-^b i,o )a ito+ (^w A L rL_^ b i,i)a ifi+ (8 i<2A lti-X b i>2)aii2+ (8 i>3 A iii-X b ij3)aii3+...

(82,oAi,i-Xb2,o)a2,o+(S2,iAi,i-Xb2,i)a2,i+(82,2Aiti-X.b2,2)a2,2+ (S2,3Ai,i-X.b2,3)a2,3+-

(&3,oAi,i-Xb3,o)a3,o+(83,iAu-Xb3ti)a3ti+ (83t2Au-X,b3t2)a3t2+(83t3 A i>i-Xb3t3)a3,3+... 

=  0

therefore,

( ^ u A iTi-^ b i>i)a i,i+ (-X .b i<2)ali2+(-A.bi>3)ai>3+...

+(-Xb2>i)a2>i+(-Xb2,2)a2,2+(-^b2,3)a2,3+... 

+(-^b3,i)a3,i+(-Xb3,2)a3,2+(-Xb3,3)a3,3+... =  0

or,

(8 i , iA i , i  -X b lli,i)a i,i+ (-A .b l 1 i,2)a i,2+ (-W )lli,3 )a i,3 + ...

+(-Xb 112, i)a2, i+ (-X b  112,2)a2,2+(~^b 112,3)a2t3+ -  

+ (-X b ll3 >i)a 3 ,i+ (-X b ll3 >2)a3,2+(-X.bll3t3)a3i3 + ... =0

7) ra =  1, n =  2

(8o,oAi,2-^bo,o)ao,o+(So,iAit2-^bo,i)ao,i+(8o,2Aii2-X.bo,2)ao,2+ (6o,3Ai,2-^bo,3)ao,3+...
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(8 i,o A ii2-Xbi>o)aiio + (8 i,iA ii2-Xbiii)a i>i+ (5 x ^ A i^ b i ,2 )a i i2+ (5 i,3A ii2-Xbit3)aii3+„. 

(82,0Ai^-A.b2,0)a2,0+(82,lAi,2-^b2,i)a2,i+(52,2Ai,2-^b2,2)a2,2+(82,3Ai,2-A.b2,3)a2,3+- 

(83,oAi^-Xb3,o)a3,o+(83,lAit2-A.b3>i)a3>i+(63,2A ii2->.b3,2)a3t2+(83,3Al,2-^b3t3)a3>3+... 

=  0

therefore,

( -X b ij)a iti+ ($ i,2 A i,2 -^ b i>2)ait2+ (-X b ii3)ait3+... 

+(-^b2,l)a2,l+(-Xb2,2)a2,2+(-^b2,3)a2,3+ -  

+(-^b3,i)a3,i+(-Xb3,2)a3,2+(-Xb3,3)a3,3+... =  0

or,

( -X b l2 i , i )a i , i+ (4 u A iT2 -^b l2 i,2 )a i,2+ (-A .b l2 it3)ait3 + ...

+(-Xb 122,1 )a2, i+ (-X b  122,2)a2,2+(-M> 122,3^ , 3+ .. .

+ (-X b l23,i)a3 ,i+ (-X b l23 ,2)a3,2+(-Xbl23,3)a33+... =  0

8 ) m = 1, n = 3

(8o,oA i3-Xbo,o)ao,o+(8o, 1 A i  ,3-X.bo, i)ao,i + (80,2 A i,3-Xbo,2)ao,2+ (8o,3 A i  ,3-kbo,3)ao,3+. •• 

(8 i,oA i3-X .b i,o )a i,o+ (6 i,iA i,3 -X b i,i)a i,i+ (8 i,2A i,3-> .b i,2 )a i,2+ (.8uA i^ -^b i>3)ai,3+... 

(82,0Ai3-Xb2,0)a2,0+(82,lAi^-A.b2,i)a2,i+(82,2Ai,3-Xb2,2)a2,2+(82,3Ai,3->.b2,3)a2,3+-

(83,oAi3 -Xb3,o)a3,o+(83,iA i ,3-X.b3,i)a3,i+ (83,2A i,3-Xb3,2)a3,2+ (83i3A i,3-X.b3,3)a3,3+... 

=  0

therefore,

(-kb i,i)a i,i+ (-X b i,2)a i,2+C $-uA u3-^bi,3)ai,3+...

+(-X.b2, l )a2, l +(-Kb2,2)a2,2+(-^b2,3)a2,3+ —

+(-^.b3,i)a3,i+(-Xb3,2)a3,2+(-X.b3,3)a3,3+... =  0

or

(-A .b l3 i,i)a i,i+ ($ ii2Ai.2 -^ b13i,2)ai,2+(-Xbl3i,3)ai,3+...

+(-Xb 132, i)a2,i+(-X.b322,2)a2,2+(-^.b 132,3)a2,3+ -  

+ ( -X b l3 3 , i )a 3 , i+ ( -A .b l3 3 ,2 )a 3 ,2 + ( -X b l3 3 ,3 )a 3 3 + ... =  0
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Similarly,

9) m = 2, n = 0

(&2flA2£ )a2,o= 0

10) m = 2, n = 1

(-Xb21 i>i)ai,i+(-Xb21 it2)ai,2+(-Xb21 lt3)ai,3+... 

+($24A2,l -^b212,1 )a2, l+(“ ^b212,2)a2,2+(-Xb212,31̂ 2.3+ — 

+(-Xb2l3,i)a3,i+(-Xb2l3>2)a3,2+(-Xb2l3i3)a3^+... = 0

11) m = 2, n = 2

(-Xb22i>i)aij+(-Xb22ii2)aii2+(-Xb22ii3)ait3+ ...

+(-Xb 122,l )a2, l +(§2^A2,2 1^2,2)^2,2+(-Xbl22,3)a2,3+ —

+(-Xb223,i)a3,i+(-Xb223>2)a3,2+(-Xb223,3)a33+... = 0

12) m =2, n = 3

(-Xb23i>i)a iii+(-Xb23i,2)ai^+(-Xb23i>3)ai,3+... 

+(-Xb232,i)a2,i+(-Xb232,2)a2,2+($2,3A2.3 -Xb232,3)a2,3+ -

+(-Xb233ti)a3>i+(-Xb233i2)a3,2+(-Xb233>3)a33+... = 0

13) 3 =  2, n =  0

i&Lfifa fi )a3,o= 0

14) ra =  3, n =  1

(-X b31 i ,i)a i,i+ ( -X b 3 1 i,2)ai,2+(-X b31 1,3^ 3+ . . .

+(-Xb3 l 2,i )a 2,i+ (-X b 3  l 2,2)a2,2+(-X b3  l 2,3) a ^ + ...

+ ( § 3 ^ 3 .1 ~Xb313i i )a3t i+ (-X b313,2)a3,2+(~Xb3 13 3 ^ 3 ,3+ . . .  =  0
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15) ra = 3, n = 2

(-Xb32it l)a ii i+(-Xb32Ii2)ai>2+(-Xb32li3)a1>3+...

+(-Kb322j )a2,i+(-Xb322,2)a2,2+(-^b322,3)a23+ -  

+ (-X b 3 2 3 j)a 3 j+ (§ 3 i2A i,2 -Xb323 2)a3,2+(-^b323,3)a3i3 + ... =  0

16) m = 3, n = 3

(-A.b33i>i)a ii i+(-Xb33ij2)ait2+(-X.b33i>3)ai,3+... 

+(-Xb332,i)a2,i+(-Xb332,2)a2,2+(-^b332,3)a23+... 

+(-Xb333ti)a3j+(-Xb333t2)a3i2+(53^A34~^b333,3)a3,3+ ••• = 0

From all these expansions, we can obtain 

(5j,nAi,n )ai,o= 0

and, in matrix form and introducing = 6 m,nA m n , Eq. (4.6) becomes

ex j- J ii l l,  i -2611j2 —2611j 3 -26112ii -26112,2 -26112,3
-Abl2u eur&bl2l2 -26121<3 .. -26122,1 -26122^ —̂612^3 au
-Xbl3u -2613^ e ,3-2613,3 .. -26132,1 -26132^ 4 6 1 3 ^  ... a l,3

-J.b2lu -2621u —2621j 3 2̂,1—26212,1 -26212^ -462123 a2,l
-2622i. —AZj22 j 2 -2622,3 .. —26222,1 eZ2~^^222^ ■4622^3 .*• a2J
-2623 i t -A623u -2623,3 .. -26232,1 -2623 e2,3^26232,3 ... a2,3

_ ••• • •• ••• • •• ••• *•*_ > "" .

(4.13)

In the next section, we w ill deal with Eq. (4.13).
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4.3 Simplification of Eq. (4.13)

From condition (4.12) and bmnp>q being non-zero only i f  m+p and n+q  are both 

even, Eq. (4.13) can be further simplified as

exv-kb\ \xx 0 -AM I i>3 0 0 0

0 el2~^bl2l2 0 0 0 0 a l  2

-AM3U 0 fij3-Ahl3i3 0 0 0 a l,3

0 0 0 ... eu -M>2\u 0 -4h2123 ... a 2,l

0 0 0 0 e2j-Ah222>2 0 a 22

0 0 0 ... -U23u 0 e23-A6232j  ... a 2.3

_ ... ... ... ... m

(4.14)

or generalized as

X 0 X 0 ... 0 0 0 0  ... X 0 X o ..: * 1.1'

0 X 0 X ... 0 0 0 0  ... 0 X 0 X ... a l 2
X 0 X 0 ... 0 0 0 0  ... X 0 X 0  ... a l,3
0 X 0 X ... 0 0 0 0  ... 0 X 0 x  ... a lA

0 0 0 0 ... X 0 X 0  ... 0 0 0 0  ... a 2,l

0 0 0 0 ... 0 X 0 X ... 0 0 0 0  ... a 2 2
0 0 0 0 ... 0 0 X 0  ... 0 0 0 0  ...
0 0 0 0 ... 0 X 0 X  ... 0 0 0 0  ...

a 2A

X 0 X 0 ... 0 0 0 0  ... X 0 X 0  ... a 3,l
0 X 0 X ... 0 0 0 0  ... 0 X 0 x ... a 32
X 0 X 0 ... 0 0 0 0  ... X 0 X 0  ... a 3 3
0 X 0 X .. 0 0 0 0  ... 0 X 0 x  ...

a 3A

where x  are ( ep>q -  XbpqPtq ) and x are -A hm nPiq.
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Employing block matrices, Eq. (4.14) can be further rewritten as

' * 1 0 X13 0
q

X15 — ‘ V
0 * 2 0 X24 0  ...

X31 0 *3 0 X35 "■ a 3
0 x42 0 *4 0  ...

A ,
X51 0 x53 0 * 5 ...

4

^5

where

0 X o ..:
"x 0 X o ..; ap,i

0 *2 0 X ... 0 X 0 X ... ap2

= X 0 *3 0  ... Xpq = X 0 X 0  ... Ap — ap3

0 X 0 x4 ... 0 X 0 x ... ^pA

m m aPA
. It. n

4.4. Summary

In this chapter, a technique fo r calculation o f the eigenvalues occurring in the heat 

transfer problem in slip-flow  has been derived by constructing a matrix. W ith this 

formulation, any number o f eigenvalues can be theoretically determined. The next 

chapter w ill deal with the algorithms and the computational procedure, and the 

calculation of the eigenvalues w ill be carried out.
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CHAPTERS

COMPUTATIONAL RESULTS

In the previous chapter, the formulation for the calculation of the coefficients 

occurring in the eigenfunction was determined. In this chapter, we w ill discuss the 

procedures for the evaluation o f eigenvalues for the heat transfer problem in slip-flow . 

We w ill calculate the eigenvalues and discuss the computational results.

5.1 Procedures o f Computation

The procedures o f computation are as following:

1) Calculate a\ for certain Knudsen number Kn by Eq. (2.10) in Chapter 2

2) Calculate coefficients d\j for certain Knudsen number Kn and aspect ratio a by Eq.

(4.11) in Chapter 4

(5.1)

^  aw ( f x ) c o s ( p y ) d x d y  ( i j= 0 , l,2 , ...) (5.2)

where

w /C  =  - 2 Z
*  cos a i ( i y  -  1)
y  p

43
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3) Determine bp>q(m, n) (or bmnPiq) by Eq. (4.10) in Chapter 4

bp,q(fn,n) ^  ^\m-p\ji+q ^m + p ji+ q  ^m+p,\n-q\  ̂ (5.5)

4) Calculate ePiq -  dPiqAPwq for certain m and n by Eq. (4.9)

dp,q( m,n)Ap' q = 0n 2/4 a ) ( m2 + a ln 2), (5.6)

5) Determine truncation eigenfunction for certain m and n by Eq. (4.15) in Chapter 4

X 0 X13 0 x15 " ' ^ 1  ■

0 * 2 0 x24 0  ... * 2

X31 0 *3 0 x35 — ^3
0 x42 0 *4 0  ...

Aa
X51 0 x53 0 x 5 ...

4

A 5
m m

where

X 0 X o ..: X 0 X o ..: a m, 1
0 X 0 X ... 0 X 0 X ... ^m.2
X 0 X 0  ... Xmn — X 0 X 0  ... A m = am3
0 X 0 x  ... 0 X 0 x ... a mA

Qm ji
- . .

where x  are ( ep>q -XbmnM  ) and x are -Xbmripq and ep>q = dPiqAPiq for certain m and n.
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For example, the truncated eigenfunction for m, n = 0,1 and for ra, n = 0,1,2,3 are 

respectively

Aj(X) = IX /1=0 (5.8a)

A3 (X) = IX |ll% l!% l-b 3 /IU fe l!x b l = 0 (5.8b)

and A(X) = UmAp(X) when p —» .

6) Evaluate the eigenvalue X by the known truncated eigenfunction such as Eq. (5.8)

7) Determine the fully-developed Nusselt number by Eq. (3.17) in Chapter 3

Nuoc =  (5.9)

5.2 Calculation of a.

Table 5.1 lists the firs t eight values o f each a\ fo r Kn from 0.005 to 0.3 by Eq.(5.1). 

Fig.5.1 shows thatcq vary as functions o f Kn. From Fig.5.1, we can see that the difference 

oftheadjacenta,andai+i becomes smaller as A>i increases butgoes to a constant Jt as both 

Kn and i increase.

Table 5.1 The first eight values o f a.

Kn a l 02 <z3 a4 0 5 06 a? 08
0.005 1.5552 4.6658 7.7764 10.887 13.998 17.109 20.221 23.333
0.01 1.5400 4.6202 7.7012 10.783 13.867 16.952 20.039 23.128
0.02 1.5105 4.5330 7.5603 10.595 13.638 16.690 19.752 22.822
0.04 1.4549 4.3757 7.3240 10.306 13.320 16.360 19.421 22.498
0.06 1.4039 4.2416 7.1452 10.114 13.132 16.183 19.258 22.348
0.08 1.3570 4.1286 7.0112 9.9841 13.014 16.079 19.165 22.265
0.10 1.3138 4.0336 6.9096 9.8928 12.935 16.011 19.106 22.213
0.20 1.1422 3.7318 6.6431 9.6776 12.760 15.864 18.981 22.104
0.30 1.0211 3.5776 6.5330 9.5967 12.697 15.813 18.937 22.067
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0.1 0.2 0.3
Knudsen number, Kn

Fig. 5.1 Velocity eigenvalues a, as functions of Kn
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5.3 Calculation of

For Kn = 0.00 and a -  1 (for Kn = 0.00 and a = 1 see Appendix B), and i,j = 0,1,2,..., 10, 

the are as following:

'  1.0015 0 -0.27819 0 -0.08309 0 -0.03854 0 -0.02209 0 -0.01431 
0 0 0 0 0 0 0 0 0 0 0  

-0.27809 0 0.08285 0 0.02237 0 0.00979 0 0.00542 0 0.00342
0 0 0 0 0 0 0 0 0 0 0  

-0.08299 0 0.02237 0 0.00725 0 0.00338 0 0.0192 0 0.00122
0 0 0 0 0 0 0 0 0 0 0  

-0.03844 0 0.00979 0 0.00338 0 0.01670 0 9.73e-4 0 6.31<?-4

0 0 0 0 0 0 0 0 0 0 0  

-0.02198 0 0.00542 0 0.00191 0 9.73e-4 0 5.82e-^t 0 3.84e-4
0 0 0 0 0 0 0 0 0 0 0  

-0.01418 0 0.00343 0 0.00122 0 6.30e-4 0 3.94e-A 0 2.63e-A

5.4 Determination of bp>q(m, n) (or bmnm )

bp,q(m, n) (or bnvip>q) fo r m,n = 1,2,3 and p,q = 0,1,2,..., 5 are as following:

b l l p j  =

0

0

0

0

0

0

0

0.41015
0

-0.06390
0

-0.01428

0

0

0

0

0

0

0

-0.06390
0

0.01134
0

0.002178.

0

0

0

0

0

0

0

-0.01428
0

0.002178
0

5.340 e-4
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b n p,q =

' 0 0 0 0 0 O'
0 0 0.3463 0 -0.07818 0

0 0 0 0 0 0

0 0 -0.05256 0 0.01352 0

0 0 0 0 0 0

0 0 - 0 .01 21 1 0 0.002718 0

b l3p<q =

bM P,q =

b\ 5ptq —

0 0 0 0 0 0

0 -0.06390 0 0.3320 0 -0.08338
0 0 0 0 0 0

0 0.01134 0 -0.05040 0 0.01425
0 0 0 0 0 0

0 0.002178 0 -0.01157. 0 0.002908

'0 0 0 0 0  O'
0 0 -0.07818 0 0.3268 0
0 0 0 0 0  0

0 0 0.01352 0 -0.04965 0

0 0 0 0 0  0

0 0 0.002718 0 -0.01137 0

0 0 0 0 0 0

0 -0.01428 0 -0.08338 0 0.3243
0 0 0 0 0 0

0 0.00218 0 0.01425 0 -0.04933
0 0 0 0 0 0

0 5.4 e-4 0 0.00291 0 -0.01128
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b l \ pA =

0 

0

0.3463 
0

0 -0.07818
0  0

0

0

0

0

0

0

0

0

-0.05256
0

0.01352
0

0

0

0

0

0 - 0.01211 

0  0

0 0.002718
0  0

'0 0 0 0 0 O'
0 0 0 0 0 0

0 0 0.2937 0 -0.06466 0
0 0 0 0 0 0

0 0 -0.06466 0 0.01624 0

0 0 0 0 0 0_

0 0 0 0 0 0

0 0 0 0 0 0

0 -0.05256 0 0.2816 0 -0.06914
0 0 0 0 0 0

0 0.01352 0 -0.6194 0 0.01715
0 0 0 0 0 0

‘0 0 0 0 0 O'
0 0 0 0 0 0

0 0 -0.06466 0 0.2771 0

0 0 0 0 0 0

0 0 0.01624 0 -0.061024 0

0 0 0 0 0 0
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b25p<q =

0  0

0  0

0 -0.01207 
0  0

0 0.02460
0  0

0

0

0

0

0

0

0

0

-0.06984
0

0.01568
0

0  0

0  0

0 0.3126
0  0

0 -0.06173
0 0

b 3 1 ptq —

0

-0.06373
0

0.3705

0

0 -0.08289

0

0

0

0

0

0

0

0.01040
0

-0.05134

0

0.01306

0

0

0

0

0

0

0

0.001988
0

-0.01595.

0

0.002629

0 0 0 0 0 0

0 0 -0.05333 0 0.012390 0

0 0 0 0 0 0

0 0 0.31922 0 -0.6294 0

0 0 0 0 0 0

0 0 -0.06984 0 0.01568 0

b33p,q —

0

0

0

0

0

0

0

0.01040
0

-0.05134

0

0.01306

0

0

0

0

0

0

-0.5134
0

0.3076

0

0 -0.06721

0

0

0

0

0

0

0

0.01306
0

-0.06721.

0

0.01658
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‘0 0 0 0 0 O'
0 0 0.01239 0 -0.05068 0

0 0 0 0 0 0

0 0 -0.06294 0 0.3033 0

0 0 0 0 0 0

0 0 0.01568 0 -0.06631 0

b35Piq =

0 0

0 0.001988 
0  0

0  -0.01160 
0  0

0 0.002629

0

0

0

0

0

0

0

0.01306
0

-0.06721
0

0.01658

0  0

0 -0.05038 
0  0

0 0.3013 
0  0

0 -0.06591

bmnp qshould be equal to bnntp^or the matrices bmn should be equal to bnmT. Using these 

properties, we can check the computational errors. For example, from b l 13,1 =-0.06390 

and M l i j  =-0.06373, we know the third digit in these values maybe not be correct

5.5 Determination of Truncation Eigenfunction

4.9348-40.41015 0  A0.06390

0 12.33701-40.3463 0

X i =  A0.06390 0 24.67401-40.3320 ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

‘ 12.33701-40.3463 0  A0.05256
0 19.73921-40.3294 0

X 2 =  A0.05256 0  32.076214.0.3705

* 3  =

'24.6740140.3320 0  A0.05134
0 32.0762140.3705 0

A0.05134 0  44.4132240.3076

X 13 ~  *3 1  —

40.06373 0 40.01040

0 A0.05333 0

40.01040 0 A0.05134

I f  we take the first 3x3 elements o f each matrices only, we have then

LX> I = (12.3370140.3463)[(4.934840.41015)(24.6740140.3320)420.063902] 

IX2I = (19.7392140.3294)[(12.3370140.3463X32.07621-X0.3705)420.052562] 

I* jI  = (32.0762140.3705)[(24.6740140.3320)(44.4132240.3076)420.051342] 

1*?jI = \xi3 \ = A3[(0.06373)(0.05333)(0.05134) -  (0.0104)2(0.05333)]

Therefore,

Aj(X) = Xj\

= (12.3370140.3463)[(4.934840.41015)(24.6740140.3320)420.063902]= 0
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and

A3 (X) = IXf I \X2\ \X3 \- \x 3j I IX2\ Iry jl

= {(12.33701-A0.3463)[(4.9348-A0.41015)(24.67401-A0.3320)-A20.063902] -  

(19.73921-X.0.3294)[(12.33701-X0.3463)(32.07621-X0.3705)-X20.052562] -  

(32.07621-A0.3705)[(24.67401-A0.3320)(44.41322-A0.3076)-A20.051342] } -  

{(19.73921-X0.3294)X6[(12.33701-A0.3463)(32.07621-A0.3705)-A20.052652] 

[(0.06390)(0.05333)(0.05134) -  (0.0104)2(0.05333)]2} = 0

In the first order approximation o f eigenfunction A\(K), the value o f Aj can be 

calculated approximately by the firs t term (4.9348-A0.41015), because the value o f the 

term (X20.063732) can be neglected. It w ill be discussed in the following section.

5.6 Evaluation of Eigenvalue A and 
Fully-Developed Nusselt Number

From the above approximation o f eigenfunctions, we can evaluate the eigenvalues. 

Table 5.2 shows the comparison o f X.i(<z =1) for A>i = 0.00 with previously known values 

(see Appendix C). From this comparison, we know that the first eigenvalues calculated 

by the first term are sufficiently accurate.

Table 5.2 Comparison o f Ai(a =1) calculated by different approximation

Dennis et al. First term Ai(X) A3 (X)
A,i 11.91 12.030528 11.96289311 11.962888035

difference % 0 1 .012 0.44410672 0.44406406

Table 5.3 gives the computational results o f Ai (a) by the firs t term for different aspect 

ratios. Table 5.4 lists the comparison o f Ai(a) for Kn = 0.00 with previously known values
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Table 5.3 Eigenvalue * i(a ) for different aspect ratios

Kn * l(D *1(2/3) * i( l / 2 ) *1(1/4) * 1(1/ 8)
0 12.0305 12.6418 13.7316 17.9174 22.487

0.005 12.219 12.7896 13.873 18.0654 22.653
0.01 12.380 12.9928 14.071 18.2681 22.839
0 .02 12.680 13.1959 14.266 18.4708 23.025
0.04 13.204 13.5795 14.638 18.8488 23.465
0.06 13.646 13.9631 15.011 19.2153 23.905
0.08 14.027 14.3466 15.383 19.5876 24.344
0 .10 14.359 14.7302 15.755 19.9829 24.784
0 .20 15.549 15.8749 17.281 20.8838 25.467
0.30 16.295 16.6361 17.618 21.7846 26.151
0.50 17.189 17.5510 18.563 22.6739 27.517

Table 5.4 Comparison o f Xffa) for Kn = 0.00 with previously known values

*l(a ) * i( l) *1(2/3) * i( l / 2 ) * ld /4 ) * 1(1/ 8)
This work 12.0305 12.6418 13.7316 17.9174 22.487

Dennis et al. 11.91 12.49 13.57 17.76 22.38
difference% 1.01 1.21 1.19 0.89 0.48

and it  shows that all o f the differences are less than 1.3 percent From this comparison, we 

know that the first eigenvalues calculated by the firs t term arc sufficiently accurate for all 

different aspect ratios.

Table 5.5 shows the computed results o f Nu«(a) for different aspect ratios by 

Eq.(5.9), and Figure 5.2 shows Nu«(a) as functions o f Kn. It shows that Nusselt number 

Nuoo increase as the Knudsen number Kn increases and that the values o f Nu« increase as 

the aspect ratio, a, decreases for a fixed Kn.
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Fig. 5.3 Ratio k  as a function of Kn for different aspect ratio 
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Table 5.5 Nu„(a) fo r different aspect ratios

Kn Nuoo(l) Nu«,(2/3) Nuco(l/2) N iU l/4 ) Nuco(l/8)
0 3.0076 3.1605 3.429 4.4794 5.6217

0.005 3.0548 3.1974 3.468 4.5164 5.6632
0.01 3.0950 3.2482 3.518 4.5670 5.7098
0.02 3.1700 3.2990 3.566 4.6177 5.7563
0.04 3.3010 3.3949 3.660 4.7122 5.8662
0.06 3.4115 3.4908 3.753 4.8038 5.9761
0.08 3.5068 3.5867 3.846 4.8969 6.0861
0.10 3.5898 3.6826 3.939 4.9957 6.1961
0.20 3.8873 3.9688 4.320 5.2209 6.3668
0.30 4.0736 4.1590 4.405 5.4462 6.5376
0.50 4.2970 4.3878 4.6408 5.6685 6.8792

Table 5.6 k(a) for different aspect ratios

Kn ktube *(1) *(2/3) *(1/2) *(1/4) *(1/8)
0 1 1 1 1 1 1

0.005 1.015 1.016 1.012 1.011 1.008 1.007
0.01 1.028 1.029 1.028 1.026 1.020 1.016
0.02 1.054 1.054 1.044 1.040 1.031 1.024
0.04 1.099 1.100 1.074 1.067 1.052 1.043
0.06 1.138 1.137 1.105 1.094 1.072 1.063
0.08 1.170 1.169 1.135 1.122 1.093 1.083
0.10 1.198 1.194 1.165 1.149 1.115 1.102
0.20 - 1.292 1.256 1.260 1.166 1.133
0.30 - 1.354 1.316 1.285 1.216 1.163
0.50 - 1.459 1.388 1.353 1.266 1.224

Note: k = Nu« (Kn) /Nu« (0), kc -  for channel and k,ube -  for round tube

To see the effect o f the Knudsen number Kn on the Nusselt number Nu« for a certain 

aspect ratio with respect to the case o f non-slip-flow, a ratio k = Nu« (Kn) /Nu« (0) was
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introduced. Table 5.6 gives the computed results o f k(a) for different aspect ratios.

Figure 5.3 shows that the ratio k as a function o f the Nusselt number Kn for different 

aspect ratios. I t  shows that the ratio k increases as Kn increases fo r all aspect ratios and 

that the ratio k decreases as the aspect ratio decreases for 0< Kn <0.30. The maximum 

increase o ik  (or the Nusselt number N il* ) is as follows: 35.4 percent {Kn = 0.30)fora = 1; 

31.6 percent for a = 2/3; 28.5 percent for a=  1/2; 21.6 percent fo r a - 1/4; and 16.3 percent 

for a = 1/8. Figure 5.4 shows the comparison o f Nusselt number values with that o f a 

round tube. The result o f an aspect ratio a = 1 agrees with that o f the round tube (the 

maximum difference is 0.33 percent), because the "aspect ratio”  o f the round tube can be 

regarded as around 1 while the ratio k becomes smaller with a decreasing aspect ratio.

The aspect ratio a also affects the Nusselt number Nu«. Fig. 5.5 shows the ratio o f the 

Nusselt number with the aspect ratio (a < 1) to Nusselt number w ith a =  1, or Nu(a)/Nu( 1), 

as a function o f aspect ratio a. As shown in Fig. 5.5, these ratios increase greatly as the 

aspect ratio a moves toward 0 ; however, the effects are weaked slightly with the increase 

of the Knudsen number Kn.

5.7 Local Heat Transfer Coefficient 
for the Case of a Microtube

The local heat transfer coefficient Nux plays an important role in determining the 

thermal effect o f Kn in the entrance length. To depict how the local heat transfer 

coefficient Nux behaves with length, at least two eigenvalues are needed. Unfortunately, 

it is extrcmly d ifficu lt at present to obtain the second eigenvalue in the case o f a 

microchannel. However, based on the similarity of the circular microtube and the square 

raicrochannel, the situation in the Graetz problem with s lip-flow  condition can be 

revealed by considering the microtube solution.
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Figure 5.6 shows the local Nux value in the case o f a microtube as a function o f x*/Gz 

fo r Kn = 0.02 and with the number o f eigenvalues as a parameter. The value o f the local 

Nusselt number converges dramatically with the increase in the number o f eigenvalues in 

the computation. When x*/Gz is 0.02, the error in Nux is 0.7 percent when two 

eigenvalues are used and, comparing to the straight line ( using one eigenvalue), the error 

is 14 percent It can be concluded that the results using four eigenvalues are sufficiently 

accurate for x*/Gz > 0.02. When x*/Gz is greater than 0.05, the error is at most 1.3 

percent -  that is, all three plots become nearly flat, indicating a thermally fully-developed 

condition.

NU:

6

X *

- n: number of eigenvalues used in calculation
R: radius o f tube

Kn*0.02
\ \  n*4

I n«3

r  \  4.39365
\  \  4.39326* W 4.36429 3.90620
7 3.85581 3.90620

3.90620

-  n-1 3.85581

0.00 0.02 0.04 ( 0.05) 0.06 0.08 0.10
x*/Gz

Fig. 5.6 The local Nusselt number as a function of x*/Gz
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Figure 5.7 shows the local Nusselt number as a function o f Kn. It is obvious that Kn 

has an influence on the Nusselt number. A ll the plots in Fig. 5.7 show that the Nusselt 

number increases as Kn increases and that this effect is magnified near the entrance. When 

x*/Gz is greater than 0.05, all the plots become nearly flat, indicating a thermally 

fully-developed condition.

0.12
0.10
0.08
0.06
0.04

4.160

0.01
0.005
0.00

3.855
3.761
3.710
3.675

0.08
x/(RRaPr)

Fig. 5.7 The local Nusselt numbers as functions of x*/Gz and Kn

From the above discussion, we can see that:

( 1) slip-flow  has a positive influence on the heat transfer coefficient and can enhance 

the heat transfer efficiency;

(2) the influence depends on the Knudsen number and increases as Kn increases;

(3) when Kn is equal or greater than 0.02, the increase in the fully-developed Nu is 

greater than 5 percent so that the effect o f slip-flow  should be taken into
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consideration in the computations o f the heat transfer coefficient; and

(4) that the influence o f Kn on N il*  w ill decrease as Kn increases.

5.8 Discussion on Other Eigenvalues

In the expressions o f A p(X), i f  we take Xm to be an ix i matrix, then there should exist 

ip eigenvalues. For example, for p = 1 and i = 1, there exists only one eigenvalue; fo r p = 1 

and i =3, that is A\(X)in  the calculations, there exists three eigenvalues; and for p =3 and i 

= 3, that is A 3(A) in the calculations, there should exist nine eigenvalues rather than the 

five shown in Table 5.7 (four eigenvalues are missing). The calculated results are shown 

in Table 5.7 (see Appendix A  in details). From the results in Table 5.7, it is obvious that 

the first eigenvalue is reliable, while the others are not reliable due to truncation error. 

Therefore, in this research, only first eigenvalues were evaluated.

Table 5.7 Comparison o f Xn(a =1, Kn = 0.00) calculated by different approximation

Dennis et al. A](A) or Xi x 2 *3
A.1 11.91 11.962893 - - 11.962888
X.2 - 35.62984 34.96576 - 35.62984

^3 71.07 77.06352 67.20875 71.40406 71.40407

b - - 121.27253 113.90901 113.90902

b 157.9 — - 180.87005 121.27253

5.9 Summary

In this chapter, the procedures for the evaluation o f eigenvalues for the heat transfer 

problem through microchannels in slip -flow  were developed. The first eigenvalues and 

the fully-developed Nusselt number Nu« were found for different aspect ratios. From the 

comparison and discussion, it  is evident that the new technique for evaluation of the first 

eigenvalues and the fully-developed Nusselt numbers o f the Graetz Problem through
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rectangular microchannels in slip-flow  is computionally effective, and the calculated 

Nusselt numbers are valuable to predict the heat transfer coefficients for the 

dimensionless length x*/Gz greater than 0.05.
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CHAPTER 6

EXPERIMENTAL APPARATUS AND PROCEDURE

The purpose o f this work was to determine the heat transfer coefficient and Nusselt 

number in the rectangular microchannel and microtube in a laminar flow  region and 

compare the analytical results with experimental measurements. Section 6 .1 details the 

test section with the microchannel and microtube. The flow  loop and the data acquisition 

system are described. Section 6.2 discusses the design background fo r the apparatus. 

Section 6.3 describes the procedure used to obtain the data in the experiment It should 

be noted that while an attempt was made to verify the analytical results experimentally, 

the data obtained from the experiments was inconclusive. I t  is hoped that the details o f 

the experiments contained in the next two chapters may aid others what attempt sim ilar 

experiments in slip-flow.

6.1. Experimental Apparatus

6.1.1 Test Section

The test section is the part o f the experimental apparatus where the microchannel and 

microtube are tested. The microchannel/microtube were fabricated from 3.2 mm (0.125 

in) thick 6061-T6 aluminum bar. Aluminum was chosen for its high thermal 

conductivity. Conventional cutting and m illing processes were used to machine the 

aluminum pieces and channel blanks, to the final 25.4 mm x 101.6  mm (1 in x 4 in) shape. 

The fabrication technique was discussed in detail by Bailey (1996).

65
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The microchannel blank configuration is shown in Figure 6.1. The macrochannel 

with dimensions o f 117 pm x 24 pm x 63.5 mm was milled by Dr. Craig Friedrich o f the 

Institute for Micromanufacturing. The m illing machine, referred to as the Ultra Precision 

M illing Center, is a one-of-a-kind machine that was specially built by Dover Instrument 

Corporation for the Institute for Micromanufacturing at Louisiana Tech University.

The roughness o f the channel was obtained by using a WYKO Roughness/Step 

Tester (RST) along the channel at 30 locations. The raw data are shown in Appendix D. 

The average roughness was shown to be 2.28 pm.

The WYKO RST was also used to determine the channel width and depth. The 

average top width is 120.43 pm, and the average bottom width is 112.76 pm; the average 

depth is 24.04 pm.

An aluminum cover was glued onto the surface o f the blank with epoxy. A 70 mm 

long microtube (shown in Fig. 6.2) was glued into the channel having dimensions o f 350 

pm x 350 pm x  63.5 mm. Two pieces o f lexan also were glued onto the glued aluminum 

parts to form the whole test section with a water jacket Lexan was chosen based on its 

combination o f the properties o f insulation, strength, and machinability. Care was 

exercised to prevent the glue from entering the microchannel section.

6.1.2 Flow Loop

Figure 6.3. shows the flow  loop used to conduct heat transfer experiments. It 

consisted o f (a) a helium gas cylinder ( fu ll pressure o f2200  psi), (b) three flowmeters, (c) 

two metering valves, (d) a heater, (e) a test section, (f) two vacuum gages, (g) a vacuum 

pump, and (h) a constant temperature water bath. The test section, as shown in Fig. 6.3, 

consisted of a microchannel and a water jacket with two thermocouples. As shown in Fig.

6.4, two other thermocouples located at the ends o f the microchannel fixed in the test 

fixture (Bailey, 1996) were used to measure the inlet and outlet conditions o f the
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a) the test section

aluminum blank thermocouples lexan parts

m
2SHS2£f%s£2y2̂ £w

thermocouple thermocouple

microchannel water jacket

b) the blank with a microchannel

gluing areas

grooves for glue escaping

Fig. 6.1 Side cut-away view of the test section and 
the blank with microchannel

(117 pm x 24 pm x 63.5 mm )
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aluminum blank thermocouples
lexan parts

t e is t e is ii&
thermocouple

microtube

thermocouple 

water jacket

— 1 ------------------- ’ [ > >
< < l | --------------------1

-------------------

Fig. 6.2 Side cut-away view of the test section and 
the blank with microtube

( Dj = 52.1 pm, D0 = 350 pm, L  = 70 mm )
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Fig. 6.4 Top view and side cut-away view of test fixture
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microchannel or microtube. The reading from the thermocouple in the water jacket was 

used to determine the overall heat transfer coefficient

6.1.3 Data Acquisition

The data acquisition system consisted o f a Gateway 2000 personal computer 

equipped with a Lab VIEW for Windows data acquisition system. The raw data consisted 

o f temperature readings (°C) from the thermocouples, voltage output from the pressure 

transducers, and frequency from the flowmeters. Converted data are displayed on the 

monitor to allow the user to determine when a steady state has been reached. The raw data 

can be sent to an Excel spreadsheet when desired. Once in the spreadsheet, the voltage 

output can be converted into pressure, and the frequency output can be converted into 

volumetric flow rate by using the calibration curve supplied with the meters. In addition, 

the pressure and temperature readings at the exit o f the flowmeter can be used to convert 

the volumetric flow  rate into a mass flow  rate.

6.2 Design Background

There are two restrictions that must be achieved in the experimental apparatus:

1) The flow must be in the slip-flow  regime, so

0.01<Kn<0.30

2) The flow  must be laminar, so

Re < 2300

6.2.1 Working Fluid, Sizing and Pressure

For a gas, the Knudsen number is found from:

(6.1)
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Therefore, there are three factors which may be chosen to achieve slip flow:

1) Small geometry (small hydraulic diameter),

2) Low pressure, and

3) Large value o f gas viscosity.

Table 6.1 shows the corresponding pressure ranges for different Dh for nitrogen and 

helium from Eq. (6.1). Knowing that a microchannel o f 10 pm on aluminum could not 

be milled on the Ultra Precision M illing Center, Dh = 50 pm is chosen. Thus, for the case 

o f the microtube, the diameter D =50 pm, and for the case o f microchannel, the dimension 

is 100 pm wide x 25 pm deep, Dh = 40 pm. Helium gas was chosen as the working fluid 

because its required pressure fo r a given Knudsen number is three times higher than that 

o f nitrogen. Note that the atmospheric pressure is patm = 14.7 psia (101.3 kPa). Thus, 

we conclude that a vacuum must be used to achieve slip flow. Table 6.2 lists the fluid 

properties for two gases.

Table 6.1 Corresponding pressure for different Dh for nitrogen and helium

Dh: pm 10 50 100

Kn 0.01 0.3 0.01 0.30 0.01 0.30

P
(psia)

n 2 9.7 0.32 1.94 0.064 0.97 0.032
He 29.1 0.96 5.82 0.190 2.91 0.096

Table 6.2 Properties o f nitrogen and helium gases

gc M Ru T
kg-ra/N-s2 kg/m s g/mol J/m ol-K K

n 2 1 1.784xl0~5 28.95 8.3144 300
He 1 1.987xl0~5 4.003 8.3144 300
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6.2.2 Flow Rate

To assure the gas flow  in the slip flow  condition, we let p i = 5.82 psia (300 torr) and 

P2 = 0.19 psia (9.79 torr) or less. Thus, we assume that flow  in such a condition (rarefied 

gas) should be treated as a compressible flow. Consequently, the estimation o f pressure 

drop, Reynolds number, and flow  rate become complicated problems.

The exit pressure and inlet pressure are related by (Shapiro, 1953):

fo r helium gas y = 1.667. Although the flow  can be treated as choked flow, that is, M 2 

= 1, M i must be known for the estimation o f inlet pressure, while the determination o f 

M i (or the velocity o f the flu id  at the inlet) depends on the inlet pressure and outlet 

pressure. Also, the Reynolds number is a function o f pressure and may increase at most 

ten times o f that at STP (standard temperature and pressure, 300 °K and 101.325 kPa or 

1 atm) (White, 1991).

The rough estimation o f the Reynolds number is carried by using the formulas for 

incompressible flow. The maximum mass flow  rate to achieve laminar flow  may be found 

as follows:

P2_ =  (P/P *>2 
Pi (p /p*)!

(6.2)

where

_  _L / V +  * 
p * M y  2[1 +  (y -l)M 2/2] (6.3)

Re = =  2300

(2300)(0.01987)(10-3)
(50X10-6)

=  914.0 kg/s-ra2
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in = (914.0)(ji/4)(50 x IQr6)2 = 1.795 x lO "6 kg/s 

The corresponding volumetric flow  rate at STP is:

v =  —  =  C1-?95^ 10-6)- =  n  04  x 10 m3/s  
eo (0.1625) • u '

v =  11.04 cmJ/s  =  662.6 cm^/min. at STP

This is the maximum flow  rate fo r the slip flow condition, corresponding to a Reynolds 

number o f2300. I f  the flow  rate is reduced to 10 cra3/min. at STP, which is the minimum 

flow rate for the flowmeter in the lab in the Institute for Micromanufacturing, the 

corresponding Reynolds number is:

Re = (2300)(10/662.4) = 34.7 

Even ten times this value (347) is much less than 2300, the value o f Reynolds number for 

laminar flow. Thus, laminar flow  should be assured with the design parameters. Taking 

the experiment conducted by Yu (1994) as a reference ( D i=52.1 pm, nitrogen, p i = 42.64 

psia, flow  rate = 9.81 ral/min, Re = 255.91), the flow rate maybe higher than 10 ml/min. 

Therefore, the experiments should be carried out without technical problems.

6.3 Experimental Procedure

The test gas was supplied from an industrial helium gas cylinder and the pressure o f 

the test gas was reduced down to the proper pressure (about 100 psia) by the coarse valve. 

The pressure and the flow  rate were controlled precisely by the fine metering valve.

Before entering the test component, the gas was heated to the desired temperature 

range by a heater strip with a length o f 400 mm wrapped around the stainless steel tube. 

The input power was controlled by a temperature controller. In the test section, water was 

circulated on the outside o f the microchannel by a recirculating pump in the constant
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temperature water bath.

The experimental procedures in the experiments were as follows:

1) Pump the test section including the steel pipes connected to the flow  meter over 40 

hours to check gas leakage and water leakage.

2) Run the acquisition system half an hour.

3) Control the metering valve to desired flow  rate.

4) Take the data when the flow  reaches steady-state. It took about 20 minutes for 

stabilization.

6.4 Data Reduction

6.4.1 Data Reduction of the MicroChannel

For the heat transfer test, the heat transfer coefficient o f the inside channel is derived 

by the following procedures. From the energy balance of the control volume as shown in 

Figure 6.5, we have

- h ^  dx (T -T w) =  m CpdT (6.4)

Aw Tw

T + dT

dx

Fig.6.5 Control volume of heat transfer in microchannel
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Integrating Eq. (6.4) over the entire length o f the channel yields

L

hAw [d x  =  [  dT (6.5)
m c p J  L  J  T -T w2 

0 t , - t w2
resulting in

¥ ¥  -  >  ( 6 - 6 )11 1 w2 '-p

The wall temperature was considered constant along the microchannel so that the 

heat transfer coefficient h was estimated by Eq. (6.6) and the Nusselt number by Eq. (6.7)

=  DGygCp T2-T w2 (6 7)
A 1r V T  —T  Js \w £  1 1 A w2

Fluid properties were evaluated at the mean bulk temperature of the flu id . The 

Reynolds number is evaluated as follows:

Re =  ° v  s f e  <6-8>

6.4^ Data Reduction of the Microtube

In the case o f the microtube, because the tube is made o f polymide (low thermal 

conductivity), the wall temperature w ill change along the raicrotube, decreasing from 

Twi to TW2 so that the average temperature difference is over-estimated by Eq. (6.6). 

Traditionally, a correction factor is used to correct the error, where F is a function o f 

parameters F (T i,T 2,Twi,T W2) and the function is readily available from Holman (1986).

The heat transfer process in the tube involves a combination of convection and 

conduction. The overall heat transfer is expressed in terms of an overall heat transfer 

coefficient U as:
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Q = U Aw AT

where U is dependent on the definition o f AT. I f  AT = TflUid -  Tw , the h is given by

1 _  1 , (6.9)
U itD j h jiiD j 2nkt 2jtkc

Once U (= h) is evaluated from Eq. (6.6), h, can be calculated from the above 

equation. Fluid properties were evaluated at the mean bulk temperature o f the fluid.
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CHAPTER7

EXPERIMENTAL RESULTS

In this chapter, the experimental results involving the microchannel and the 

microtube are discussed. It was noted that there was a significant discrepancy between 

the Nusselt number measured experimentally and the Nusselt number calculated from the 

analytical model involving slip-flow. The fact that the gas temperature did not increase 

from inlet to outlet as heat was added to the flow  passage indicated that there was some 

problem in measurement of the gas temperature at the e x it Upon examination o f the 

thermocouple location at the flow  passage exit, it was noted that the thermocouple 

position was not at the centerline o f the flow  channel; therefore, the indicated temperature 

was not the gas exit temperature, in all likelihood. It is possible (but not probable) that 

micro-specific mechanisms caused the results o f the experimental study to deviate 

significantly from the analytical model.

7.1. Heat Transfer with MicroChannel

In this experiment, inlet and outlet pressures, flow rate, and inlet and outlet fluid 

temperatures were measured. These readings were used to determine the heat transfer 

coefficient of the microchannel with a certain Knudsen number. It was found that the 

temperature drop o f the flow media depended on the flow  rate, as shown in Table 7.1.

In Figure 7.1, Nusselt number was plotted as a function o f Reynolds number, Re.

From this experiment, one can observe:

1) Constant wall temperature. As shown in Table 7.1, the temperature differences o f 

wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.

78
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Table 7.1 Experiment with microchannel

Gv
ml/min

Tjnlet
°c

Toutlet
°c

Twi
°C

TW2
°c

Nu Re

343.3 29.90 37.47 78.41 78.56 80.96 720
300.9 29.62 33.56 74.89 74.96 43.18 618
246.7 29.84 32.15 69.83 69.88 20.43 507
198.6 29.77 31.69 74.81 74.89 11.78 408
173.3 29.42 30.54 70.65 70.69 6.59 356
149.2 29.31 30.12 72.13 72.22 3.59 307
125.9 29.21 29.67 71.07 71.12 1.76 259
101.8 29.11 29.18 68.69 68.74 0.11 208
*47.3 29.33 28.79 70.65 70.71 0.52 97

±36%
Nu = 3.233 x 10-9 Re3-64 

( a = 117/24 = 0.227)
3z
uTO

X>
E
3
C

— 5.62 (a = 1/8, Kn = 0 )
— 4.48 (a = 1/4, Kn = 0 )
* * 3.65 (circular tube, Kn = 0_

Nu = 0.023 Re0-8 Pr0-3

(259) 300 400 500 600 700
Reynolds number, Re

Fig. 7.1 Nusselt number as a function of Reynolds number
( microchannel o f 117 pm x 24 pm x 63.5 mm )
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In Figure 7.1, Nusselt number was plotted as a function o f Reynolds number, Re.

From this experiment, one can observe:

1) Constant wall temperature. As shown in Table 7.1, the temperature differences o f 

the wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.

2) MicroChannel flow. Fig. 7.1 shows that Nusselt numbers were much larger than 

those o f the empirical formula ( Dittus et al. 1930) for laminar flow  i f  the flow rate is 

greater than 200 ml/min (Re > 400). It is obvious that the flow  condition cannot be 

explained simply by slip-flow  or even turbulent flow. For the case o f laminar with Kn = 

0.00 and a = 1/4, Nu = 4.48; when a = 1/8, Nu = 5.62; and, even in slip-flow  with Kn = 

0.30 and a = 1/8, Nu = 6.54. Therefore, there is likely a different mechanism in a flow 

through a microchannel/microtube to explain such a large discrepancy. It w ill be 

discussed in detail later in the next section o f this chapter.

3) Non-heating-up-phenomenon. The experimentally measured gas temperature at 

the outlet was higher than the inlet gas temperature when the flow  rate was relatively large 

(343.3 ml/min., fo r example). As the gas flow  rate was decreased to a value less than 125 

ml/min., the gas temperature difference became quite small. In fact, a negative 

temperature increase (i.e., a temperature decrease) was indicated when the flow rate was 

less than 47.3 ml/min. This phenomenon was not anticipated.

Upon examination o f the test apparatus, it  was noted that the thermocouple at the 

flow  channel exit was not positioned exactly along the centerline o f the flow channel. As 

the gas exited the test flow channel, instead o f impinging directly on the thermocouple, 

the gas mixed with the gas already within the plenum chamber at the flow passage ex it 

The thermocouple indicated the gas temperature in the exit plenum instead o f indicating 

the exit gas temperature.
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This thermocouple measurement error is the most probable source o f the so-called 

“ non-heating-up”  phenomenon observed in the experiments. For high flow  rates, the gas 

in the plenum chamber was rapidly replaced by gas exiting the flow  passage; therefore, 

the thermocouple indication was more nearly that o f the exit gas temperature. On the 

other hand, at low flow  rates, the warm gas exiting from the flow  passage mixed with the 

much larger volume o f colder gas already in the plenum chamber. As a result, the gas 

mixture temperature (measured by the thermocouple) was significantly lower than the 

gas exit temperature.

It is also possible that there was some leakage along the length o f the microchannel, 

although gas leakage would not result in a decrease o f the gas temperature while the gas 

was being heated.

12. Heat Transfer with Microtube

In this experiment, the flow  rate was carefully controlled to 0.1 ml/m in in an attempt 

to keep the inlet pressure in the vacuum regime. After twenty minutes, the data were 

measured with the in let pressure 737 torr (14.3 psia) and outlet pressure 5 torr (0.097 

psia); the gas temperature in the pipe far away from the test section was 25°C. The results 

are shown in Table 7.2.

Table 7.2 Experiment with microtube

Run
no.

Gv
ml/min

Tinlet
°c

Toutlet
°c

Twi
°C

TW2
°C

Nu Re

1 0.11 29.50 25.11 88.41 82.56 0.27
2 0.11 30.05 25.58 91.35 85.43 0.27
3 0.11 30.28 25.87 89.50 84.12 0.27
4 0.11 30.29 25.92 87.73 82.93 0.015 0.27
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From Table 7.2, one can observe that:

1) Non-constant wall temperature. It  is obvious that constant wall temperature 

condition cannot be achieved by the current designed apparatus. The temperature 

difference between the inlet wall temperature Twi and the outlet wall temperature TW2 

(approximately) is about 6 °C. It is due to that the microtube wall being made o f polymite 

(k = 0.155 W /m -K) rather than aluminum (k = 204 W /m -K). Therefore, it cannot be 

regarded as an isothermal wall.

2) Non-heating-up-phenomenon. The experimental results shows that the inlet gas 

temperature Tjniet is higher than the outlet gas temperature T0Uuet by about 4.5°C, which 

was not the anticipated situation. This phenomenon happened also in the experiment with 

the microchannel when the flow  rate was 47.3 ml/min.

One explanation is that the Joule-Thomson effect caused by the expansion o f the gas 

at the outlet may result in a cooling effect to such an extent that the outlet gas temperature 

Toutiet is o f a smaller value. The expansion o f a real gas from a high to a lower pressure in 

an isenthalpic (constant-enthalpy) process w ill result in a temperature change, which 

may be either positive or negative, depending on the pressure and temperature and type o f 

gas. For helium gas expanding from T i = 300 K = 26.8°C to an exit pressure o f 1 atm, we 

find the following values (Table 7.3) forthe exit temperature, using h i = h2 (Mann, 1962). 

Note that the temperature increases during the Joule-Thomson expansion for helium gas. 

We may conclude that any decrease in temperature o f the helium gas could not be caused 

by the Joule-Thomson expansion effect Any Joule-Thomson effect for helium gas 

around the ambient temperature would result in a warming effect or an increase in 

temperature. Unless the inlet pressure is greater than about 30 atm (440 psia), the 

temperature change is small (less than 2°C or 4°F).
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Table 7.3 Temperature change vs. pressure fo r helium gas

PRESSURE• Pi EXIT TEMPERATURE, t 2 (T2- Ti)
atm psia kPa K °F °c °C °F

4 58.8 405 300.2 80.6 27.0 0.2 0.4
6 88.2 608 300.3 80.8 27.1 0.3 0.5
8 117.6 811 300.4 81.0 27.2 0.4 0.7

10 147.0 1013 300.6 81.3 27.4 0.6 1.1
20 294.0 2027 301.2 82.4 28.0 1.2 2.2
50 735.0 5066 303.2 86.0 30.0 3.2 5.8

Other explanations are as follows:

Wang et al. (1994) pointed out, based on their experiments:

Microscale heat transfer and transport phenomena are expected to be quite 
different from those in customary situation. . . .

(1) For single-phase liquid forced convection through microchannel, a fu lly  
developed heat transfer regime is initiated at about Re = 1000-1500. The 
transition to turbulent mode is influenced by liquid temperature, velocity and 
micro size. . . .

(2) Transition and laminar heat transfer in microchannels are highly strange 
and complicated [italics added], compared with the conventionally sized 
situation. The range o f transition zone, and heat transfer characteristics of both 
transition and laminar flow  are highly affected by liquid temperature, velocity and 
micro size.

Yu (1994) pointed out in his dissertation:

One may ask the reason and significance o f the shifting. It is well known now 
that the process o f convective heat transfer depends on flow  field. The relative 
rates o f diffusion o f heat and momentum are related by the Prandtl number. In the 
micro tube experiments, it  has been shown that flow resistance was reduced both 
in laminar and turbulent flow. As it  is well known, i f  the velocity profile follows a 
parabolic curve, then the friction factor f  times the Reynolds number should be 64. 
But in various micro tube experiments, the number is around 50. As discussed 
before in Section 1, i t  cannot be caused by a slip boundary condition. This
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manifests that there are some alterations in velocity profile, and this in turn w ill 
effect convective heat transfer [italics added]. Similarly, flow  resistance 
reduction is also found in turbulent flow. All of these will lead one to expect that 
heat transfer in micro tubes will behave differently both in laminar and 
turbulent flow [bolds added].

Also Bailey et al. (1995) pointed out:

Several effects and conditions can exist in micro-scale convection that are 
normally neglected when considering macro-scale flow. . . .  Another observed 
micro-scale effect is that o f large temperature variations o f the transport flu id  
[italics added] (Wang and Peng, 1994). This can cause a significant variation in 
flu id properties throughout a micro-systera, invalidating the often used 
assumption o f constant properties. . . .  As o f yet, it  is not completely clear when 
these factors come into play as flu id  convection systems are reduced in size. A t 
present, there are not enough experimental data to make this determination. 
Additionally, there are likely more micro-specific effects and conditions that 
have yet to be observed [bolds added].

The experimental results fo r the heat transfer in the microtube and the microchannel 

were different in this study. In both the microchannel and the raicrotube, the Reynolds 

number was significantly less than 2000; therefore, the flow  pattern was completely 

within the laminar flow  regime. Although it  is possible that unrecognized micro-specific 

phenomena could be responsible fo r the unusual experimental results, it  is more probable 

that the placement error of the thermocouple at the flow  channel exit caused the 

unanticipated experimental results at the very low flow  rates.

The fact that the dimension o f the flow  passages and the thermocouple bead were the 

same order of magnitude could also contribute to the thermocouple measurement error. 

Because o f these uncertainties, the experimental data obtained in this research are likely 

to be o f little  value in assessing the validity o f the analytical solutions.
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7.3 Uncertainty Analysis for the 
Experimental Data

Along with statistical analysis, uncertainly analysis mainly concerns uncertainty in 

the final results because o f uncertainties in the primary measurements. The method 

presented by Kline and McClintock (1953) was used in this research. I f  the final result R 

is a function o f several independent variables, x i, X2, . . . ,  xn,

R = R (x i, x2, . . . ,  x j ,

then the uncertainty o f R associated with the uncertainties in measuring the primary 

variables is:

From the manufacturers’ data, the measuring uncertainties for each independent 

variable are:

Ud/D = 0.0025, Ul/L  =0.001, UGv/Gv = 0.0128

Up/P = 0.0025, UT = 0.4 °C, Uc/cp = Uq/q =  Uv/v = Uk/k =0.005

(1) uncertainty in the Reynolds number

and URe/Re = 1.4%.
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(2) uncertainty in dimensionless temperature

Uq/0= 1.45% for the case o f microtube; U0/0=2.13%forthecaseofamicrochannelwith 

Gv = 343.3 ml/min and U0/0  = 1.92% with Gv = 149.2 ml/min

(2) uncertainty in the Nusselt number

Unu/Nu = 18.3% for the case o f a microtube; Unu/N u = 36.0% for the case o f a 

microchannel with Gv = 343.3 ml/min and Unu/N u = 14.9% with Gv = 149.2 ml/min.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In the previous chapters, the mathematical models o f velocity distribution and 

temperature distribution were established, and the expression for the series solution 

shows the importance o f the eigenvalues. Since those eigenvalues were extremely 

d ifficu lt to evaluate directly from the original expansion, a concise matrix was derived 

based on the properties o f the elements in the original matrix. A  truncated eigenfunction 

was obtained which can be used to evaluate the eigenvalues. The procedures were 

developed and some results were obtained. Also, the heat transfer experiments were 

conducted with a single microchannel and with a microtube. From the discussions o f 

analytical and experimental results, the following conclusions can be drawn:

1) The technique for evaluation o f the eigenvalues o f the heat transfer problem in 

slip-flow  is computationally effective in the evaluation of the firs t eigenvalues;

2) The Nusselt number increases as Kn increases, or the heat transfer is enhanced 

under slip-flow  conditions fo r a given aspect ratio;

3) When Kn is equal to or greater than 0.02, the increase in Nu« is greater than 5 

percent so that the effect o f slip flow  conditions should be taken into consideration in the 

computations o f the heat transfer coefficient;

4) The experiments were o f no value in assessing the validity o f the analytical 

solutions in this research.

87
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8.2 Recommendations for Future Study

Considering the results such as the non-heating-up-phenomenon occurring in the 

heat transfer experiment with a microchannel/microtube may be caused totally by 

measurement errors due to the small flow  rate and the fact that both the dimensions o f the 

microtube to be measured and that o f the t-c bead are o f the same dimension level, it is 

suggested that further experiments which may result in acceptable data be conducted. 

The suggested changes to the experiment include the following:

1) A microchannel machined in the aluminum should be used to reach an 

approximate isothermal wall condition. The wall made o f a material with high heat 

conductivity can easily maintain a small temperature difference between the inlet and the 

outlet, better approximating the isothermal boundary condition.

2) A  much shorter microchannel or several parallel microchannels should be 

employed to increase the flow  rate for a reasonable pressure drop.

3) A  hot gas that is cooled by a surrounding cold water jacked should be used rather 

than the reverse situation. A  high temperature is desired at the inlet in order to produce 

a relatively large Kn.

For the analytical solution, the evaluation o f the eigenvalues is very important for 

the solution o f the heat transfer problem through microchannels in slip-flow . Although 

the technique is effective for the firs t values, it is extremely time-consuming and the 

computational error is a problem for other eignevalues. It is suggested that new codes 

be developed on a supercomputer to solve the extremely large matrices to obtain more 

eigenvalues more effectively so that the thermal entrance effect in the rectangular 

microchannels can be established.
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APPENDIX A

CALCULATION OF EIGENVALUE k FOR Kn = 0.00 

W ITH  ASPECT RATIO a = 1
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Calculation of Eigenvalue X for Kn = 0.00 with A spect Ratio a = 1 10/27/95

11 = p = (1+a)/2 and 12 = p* = (1+i/a)/2

11 = 1 12 = 1 a = 1

i =0,1.. lOj =0,1.. 10 
3

1R0 = .  JL. V
a4 j— , (2 k - l ) 4 L (2 k - l ) .a

1-
r

•tanhi (2 k - 1H
L

W*,y) = ~  E
1

coshj (2 -k - l)-ft-(x- 0 .5 )11

it k = 1 (2k_  1}
ini (2  k -  | 1 -

aj
cosh

i ( 2  k - l)-ff

Calculating time is about 30 minutes for i = j = 10 

r ii ri2
d . . = !  

•*j i
R(x.y)

•*0 -*0

f ^ ^  cosi i n -  " c o s i d y  dx 
i R0 I 11/' lJ 12/

r 1.00147 0 -0.27819 0 -0.08309 0 -0.03854 0 -0.02209 0 -0.01431
0 0 0 0 0 0 0 0 0 0 0

-0.27809i 0 0.08285 0 0.02237 0 0.00979 0 0.00542 0 0.00343
oj 0 0 0 0 0 0 0 0 0 0

-0.08299 0 0.02237 0 0.00725 0 0.00338 0 0.00192 0 0.00122

= 0 0 0 0 0 0 0 0 0 0 0

-0.03844 0 0.00979 0 0.00338 0 0.00167 0 9.73085-10'4 0 6.30798-10'
0 0 0 0 0 0 0 0 0 0 0

-0.02198 0 0.00542 0 0.00191 0 9.72637-10'4 0 5.81959-10'4 0 3.83988-10'
0 0 0 0 0 0 0 0 0 0 0

1-0.01418 0 0.00343 0 0.00122 0 629649-10"4 0 3.93537- IQ'4 0 2.62711-10"
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m - 0  n =0

p = 0 ,1..5 q =0 ,1 ..5  b6 () =0 b7 0 =0 bg 0 =0

b - — id; : -  d> — d — dP.<1 4 \ ! m - p i , , n - q i  m— p, , n —q m —p ,n —q m —p , n - q /

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ;

0 0 0 0 0 0

b = | 0 0 0 0 0 0

; o o o o o o

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

boo =

0 0 0 0 0 0 !
0  0  0  0  0  0  i

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 :
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 I
0 0 0 0 0 0

m = 1 n = 1

p = 0 ,1..5 q = 0 ,1 ..5

1
p,q P‘ , :n —ql -d -d[in — p , n~-q m—p ,n —q m-*-p, n — q'

0 0 0 0 0 0 0 0 0 00 0
0 0.41015 0 -0.063895 0 -0.0142825 1 j 0 0.41015 0 -0.063895 0 -0.0142825
0 0 0 0 0 o io 0 0 0 0 0
o -0.063895 0 0.01134 0 0.0021775 i •o -0.063895 0 0.01134 0 0.0021775

b = | 0 0 0 0 0 0 b ll = 0 0 0 0 0 0

; 0 -0.0142825 0 0.0021775 0 5.4* io '4 ; j 0 -0.0142825 0 0.0021775 0 5.4-10'4

; 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

. 0 0 0 0 0 0 lO 0 0 0 0 0
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0 0 0 0 0 o ' 0 0 0 0 0 0
0 0 0.346255 0 -0.0781775 0 0 -0.063895 0 0.3319725 0 -0.0833825
0 0 0 0 0 0 0 0 0 0 0 0
0 0 -0.052555 0 0.0135175 0 o 0.01134 0 -0.0503775 0 0.014245
0 0 0 0 0 0 bl3 = 0 0 0 0 0 0
0 0 -0.012105 0 0.0027175 0 : 0 0.0021775 0 -0.011565 0 0.0029083
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 o . .0 0 0 0 0 0

fo 0 0 0 0 o ' To 0 0 0 0 0
0 0 -0.0781775 0 0.3267675 o ; 0 -0.0142825 0 -0.0833825 0 0.324325

! 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.0135175 0 - 0.04965 0 i 0 0.0021775 0 0.014245 0 -0.0493275

bl4 =j 0| 0 0 0 0 o ; bl5 = 0 0 0 0 0 0
jo 0 0.0027175 0 -0.0113742 0 iO 5.4-10'4 0 0.0029083 0 -0.0112848
;0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

LO 0 0 0 0 0 : 0 0 0 0 0 0

ro 0 0 0 0 0 0 0 0 0 0 o '
o 0 0 0 0 0 0 0 0 0 0 0
o 0.346255 0 -0.052555 0 -0.012105 0 0 0.2937 0 -0.06466 0

o 0 0 0 0 0 0 0 0 0 0 0
0 -0.0781775 0 0.0135175 0 0.0027175 b22 - ! 0  0 -0.06466 0 0.016235 0
0 0 0 0 0 0 0 0 0 0 0 0

io 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

.0 0 0 0 0 0 .0  0 0 0 0 0
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r0 0 0 0 0 0 ' 0 0 0 0 0 O'
o 0 0 0 0 0 0 0 0 0 0 0

]0 -0.053331 0 0.319167 0 -0.0698377 0 0 -0.06466 0 0.2771175 0
1° 0 0 0 0 0 0 0 0 0 0 0
io 0.0123898 0 -0.0629381 0 0.0156838 i b24 =i 0 0 0.016235 0 -0.0610242 0
0 0 0 0 0 0 0 0 0 0 0 0 !
o 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

lO 0 0 0 0 0 .0 0 0 0 0 o.

To 0 0 0 0 0 :

o 0 0 0 0 0
;o -0.012105 0 -0.0691375 0 0.2749975
;o 0 0 0 0 0
io 0.0027175 0 0.0171533 0 -0.0606123
01 0 0 0 0 0

i 0 0 0 0 0 0
0 0 0 0 0 0

:0 0 0 0 0 o

To 0 0 0 0 0 0 0 0 0 0 0
0 -0.063895 0 0.01134 0 0.0021775 I 0 0 -0.052555 0 0.0135175 0
0 0 0 0 0 0 :0 0 0 0 0 0

;0 0.3319725 0 -0.0503775 0 -0.011565 ;o 0 0.281595 0 -0.0619425 0
b31 = 0 0 0 0 0 0 b32 = 0 0 0 0 0 0

jo -0.083385 0 0.0142425 0 0.0029107 i 0 0 -0.0691425 0 0.0171532 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 o <0 0 0 0 0 0
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0 0 0 0 0 0
0.0104014 0 -0.051343 0 0.0130546

0 0 0 0 0 0
0 -0.0513426 0 0.3075718 0 -0.0672085

io 0 0 0 0 0 1
0 0.0130546 0 -0.0672105 0 0.0165824
0 0 0 0 0 0
0 0 0 0 0 0

_0 0 0 0 0 0

•0 0 0 0 0 0

io 0.01134 0 -0.0503775 0 0.014245

io 0 0 0 0 0

0 -0.0503775 0 0.27003 0 -0.0662292
b34 = 0 0 0 0 0 0

0 0.0142425 0 -0.0662318 0 0.018148

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0.0021775 0 0.014245 0 -0.0493275
0 0 0 0 0 0

0 -0.011565 0 -0.0662292 0 0.2637127

0 0 0 0 0 0
0 0.0029107 0 0.018148 0 -0.064789
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Comparison of different approximation used in evaluation of eigenvalue

X =11,11.1.-80

X1(X) =(4.9348 -  X0.41015)-( 12.33701 -  X-.346255)(24.67401 -  X .331973)-(1) -

o

X K l)

1000

-1000

-  (12.33701 -  X-.346255) X -0.0638952 

X =10
root(Xl(X),X) =11.96289 

X =40
root(Xl(X),X) =35.62984 

X =70
root(Xl(X),X) =77.06352

4.9348
0.41015
12.33701
0.346255
19.73921
03937

= 12.0317 

= 35.62984 

= 6730875

X =30,30.1.. 130

X2(X) = (19.73921 -  X 0.2937) ( 12.33701 -  X-0.346255)-(32.07621 -  X-0.281595) -

o

X2(X)

- (19.73921 -  X 0.2937)-X 0.064662 

X =10
root(X2(X),X) =34.%576 

X =70
root(X2(X),X) =67.20875

X =120
root(X2(X),X) = 121.27253

1233701
0.346255
19.73921
0.2937

32.07621
0381595

= 35.62984 

= 6730875 

= 113.90902

2000

-2000
20 40 60 10 100 120 140
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X =70,70.05.. 190

X3(X) = (24.674 -  X-0.331973)(32.07621 -  X-0.281595H44.41322 -  X0.270) 

-  (32.07621 -  X 0281595) X2 0.06914252

3000

2000

1000

-1000

-2000
60 80 100 120 140 160 180 200

X

X =70
root(X3(X),X) =71.40406

X =110
root(X3(X),X) = 113.90901

X =180
root(X3(X),X) = 180.87005

M * ™ ”  =74.32535 
0.331973

32.07621 = 113 90902 
0.281595

44.41322 
021003

= 164.47513
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X =11,11.05.. 125

x(X) =X3 0.063895 0.0503775 0.00291065925 -  X3-0.0833850.0503775-0.0021775 

X123(X) =X1(X) X2(X)-X3(X)- X2(X)-x(X)2

1* 10'

S*10'

-J‘109

— 1*10

—1.5*10 0 20 40 60 SO 100 120 140

X

X =10
root(X123(X),X) = 11.96288801491174 

X =40
root(X123(X),X) =35.62984 

X =70
root(X123(X),X) =71.40407

X =110
root(X123(X),X) = 113.90902

X =165
root(X123(X),X) = 121.27253
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a = h/b aspect ratio

a - l  I  =1
n =0,1.. 5

m =0,1..5

2
s - % ✓ 2 2 2,5  ( m  +- a -n )
«.* 4-a

8 =

0
2.4674011

9.8696044

22.2066099

39.4784176

61.6850275

2.4674011

4.9348022

12.3370055
24.674011

41.9458187

64.1524286

9.8696044

12.3370055

19.7392088

32.0762143

49.348022
71.5546319

22.2066099

24.674011

32.0762143

44.4132198

61.6850275

83.8916374

39.4784176

41.9458187

49.348022
61.6850275

78.9568352

101.1634451

61.6850275

64.1524286

71.5546319

83.8916374

101.1634451

123.370055
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APPENDIX B

CALCULATION OF d,j AND bmnp>q FOR Kn = 0.02 

WITH ASPECT RATIO a - I
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Calculation of d, j and bmnp q for Kn = 0.02 with Aspect Ratio a = 1

Kn =0.02 a =.01,.02..22 

f(a) =2K not*n (o )- 1. tg(o) =tm(a)a n(o) = I
(2-Kn)

3000

2000

1000
0(a)

- 100010 5 10 15 2520 30

root(f(a),a) = 1.510451617057772

a =4.533017031227471 
root(f(a),a) =4.533017098853988 
a = 7.560312429685289 
root(f(a),a) =7.560312976908389 
a = 10.59472926320076 
root(f(a),a) = 10.59472964716824 
a =13.63777351248604 
root(f(a),a) = 13.63777658025087 
a = 16.69010436230128 
root(f(o),a) = 16.69010802858231 
a =19.75169253134426 
root(f(<x),a) = 19.75169677799757 
a =22.822056878%281 
root(f(a),a) = 22.82205788967408

b, =1.510451617057772

b2 =4.533017098853988

b3 = 7.560312976908389

b4 = 10.59472964716824

b5 =13.63777658025087

b6 =16.69010802858231

b7 = 19.7516%77799757 

bg =22.82205788967408
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w/wO (w) for 8 a’s for ratio a =1 ( here a = b ) in Eq.(19) [ Eqs. (12) and (13) ]

i / b. \
JL, a sm (b)2 lb. “ “M - l„0 =-2- V -■---------  |_i------------\1L

(bj)5 l ^ 2  Kn sm(b;)2 ! a /M  b
cosh — ; -  2-Kn-b.-sinh! — J .

\ a / * \ a / j  wO = “0.16265

wO =-2-

r /jj \ '
8 oitt/k',2 lh sinhj —I I

V  a ^  ! ________u /  j
(b.)5 1 -i-2-Kn-sinj’b.')2 I a J bi\ „  /b ;\ j

1 * ' ' ' i cosh— i r- 2-Kn-b.-sinh— I !
L U I 1 \ a / J

i =1 ,2 -8

c. -  1 = 1__________
1 -  2-Kn-sm(b; i2 (b-'i3 *  J bji /b .\

' ' ' ' cosh! — I -r 2-Kn-b--sinh—
\ *  / 1 \ a /

3  r r  ' - - p  T rb- I

w(x,y) =-2- V  cosj1 i b.-i 2-f- -  1 i i j-c.-i 1 -  coshl - •  ' 2 -  -  1 j j-g. j
“  LL \  n  y j J  * L  L «  \  12 / j  “ ‘ J

wO =-0.16284

w(0,0.5) =-0.02681 
w( 1,1) =-0.00259 
w( 0.5,0) =-0.02498

8

w(x,y) =-2- cos|

i = l  1

b. /
b.-j2-— -  1 j i l-Cj-i 1 -  cosh — 12----- 11 l-g.

. ‘ \ 11 / ,j  1L La \ 12 ;]***_

Therefore, using 8 u's is accurate enough

w(0,0.5) =-0.0265 
w ( l , l )  =-0.00305 
w(0.5,0) =-0.02629
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m = 1

P =

b =

n = 1

=0 1 -5  q =0,1 ..5

b P . ,
= 1 . 

4 ^|m-pi , |n-q ^|m-p|

^0 0 0 0 0 0

1 ° 0.38917 0 -0.05173 0 -0.01325

i °
0 0 0 0 0

0 -0.05191 0 0.0079 0 0.00198

0 0 0 0 0 0

0 -0.01406 0 0.00199 0 4.625*10"

0 0 0 0 0 0

0 0 0 0 0 0

.0 0 0 0 0 0

-4

bu » 0.38917 

similarly,

bl2 =

0 0 0 0 0 0
0 0 0.33744 0 - 0.06498 0 
0 0 0 0 0 0
0 0 - 0.04401 0 0.00988 0 

0 0 0 0 0 0
0 0 - 0.01207 0 0.00245 0 
0 0 0 0 0 0
0 0 0 0 0 0

[o 0 0 0 0 Oj

0 0 0 0

bl4 =

0 0 - 0.06498 0 0.31782 0 
0 0 0 0 0 0
0 0 0.00988 0 - 0.04134 0 
0 0 0 0 0 0
0 0 0.00245 0 - 0.01142 0 I
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 OJ

- d  -  dm-p,n-q m-f-p, jn- ql)

ij 0 0 0 0 0 0
! 0 0.38917 0 -0.05173 0 -0.01325
0 0 0 0 0 0

| 0 -0.05191 0 0.0079 0 0.00198
b ll = i

l
0 0 0 0 0 0

0 -0.01406 0 0.00199 0 4.625-10'4
3 0 0 0 0 0
3 0 0 0 0 0

.0 0 0 0 0 0

0 0 0 0 0 0
0 -0.05173 0 0.32419 0 -0.07135
0 0 0 0 0 0
0 0.0079 0 -0.04203 0 0.01056

bl3 0 0 0 0 0 0
0 0.00199 0 -0.01161 0 0.00264
0 0 0 0 0 0
0 0 0 0 0 0

.0 0 0 0 0 0

0 0 0 0 0 0 !
0 -0.01325 0 -0.08323 0 0.36255 i|
0 0 0 0 0 0 i
0 0.00198 0 0.01306 0 -0.05037

bl5 = 0 0 0 0 0 0

0 4.625-1(F4 0 0.00264 0 -0.01134
{0 0 0 0 0 0

i c 0 0 0 0 o  i

C 0 0 0 0
1

o  J
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0 0 0 0 0 0
0 0 0 0 0 0
0 0.33726 0 -0.04383 0 -0.01127
0 0 0 0 0 0
0 -0.06596 0 0.00989 0 0.00244
0 0 0 0 0 o  1
0 0 0 0 0 o
0 0 0 0 0 °  !
0 0 0 0 0 o  J

! ° 0 0 0 0 0
0 0 0 0 0 0

1 ° -0.04383 0 0.28216 0 -0.06079
i o 0 0 0 0 0
0 0.00989 0 -0.05363 0 0.0132
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
l O 0 0 0 0 0

1 01 0 0 0 0 0
0 0 0 0 0 0

0 -0.01127 0 -0.06079 0 0.27422
0 0 0 0 0 0
0 0.00244 0 0.0132 0 -0.05239b
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
LO 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.29343 0 -0.0551 0
0 0 0 0 0 0
o 0 -0.05608 0 0.01233 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
.0 0 0 0 0 0

[0 0 0 0 0 0
0 0 0 0 0 0
0 0 -0.0551 0 0.27647 0
0 0 0 0 0 0
0 0 0.01233 0 -0.05277 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 -0.05191 0 0.0079 0 0.00198
0 0 0 0 0 0
0 0.32321 0 -0.04184 0 -0.01081
0 0 0 0 0 0
0 -0.07107 0 0.01055 0 0.0026
0 0 0 0 0 0
0 0 0 0 0 0

.0 0 0 0 0 0
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'0 0 0 0 0 o' i 0
0 0 0 0 °  !

0 0 -0.04401 0 0.00988 0 101 0.0079 0 -0.04203 0 0.01056 I1
0 0 0 0 0 0 Ioi 0 0 0 0 o !

0 0 0.28136 0 -0.05265 0 0 -0.04184 0 0.27055 0 -0.05815 j

0 0 0 0 0 0 b33 =j0 0 0 0 0 0 j

0 0 -0.06052 0 0.01316 0 iOi 0.01055 0 -0.05792 0 0.0141 j
0 0 0 0 0 0 io

|
0 0 0 0 0 !

0 0 0 0 0 0 !° 0 0 0 0 0 1
n n n n n n Lo 0 0 0 0 0 i

fo 0 0 0 0 o] ro 0 0 0 0 0
0 0 0.00988 0 -0.04134 0 0 0.00198 0 0.01056 0 -0.04105
0 0 0 0 0 0 o 0 0 0 0 0
0 0 -0.05265 0 0.26505 0 0 -0.01081 0 -0.05815 0 0.26288
0 0 0 0 0 0 b35 = 0 0 0 0 0 o
0 0 0.01316 0 -0.05697 0 0 0.0026 0 0.0141 0 -0.05657
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

.0 0 0 0 0 0. .0 0 0 0 0 0
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i =0,1-10 j =0,1-10

•11 •12
A . =

JO

; inicrruplod r

Mtx,y) 
I wO

/ x \ i „ \
-cosli-it— |-cos(j-ii-— dydx 

\ 11/ \ 12/

d =

0.99883 0 -0.24674 0 -0.08526 0 - 0.04342
0 0 0 0 0 0 0

-0.24538 0 0.06573 0 0.02028 0 0.00912
0 0 0 0 0 0 0

-0.08324 0 0.02024 0 0.00639 0 0.00315
0 0 0 0 0 0 0

-0.03838 0 0.00887 0 0.00297 0 0.00158
0 0 0 0 0 0 0

0
0
0
0
0
0

- 0.0222
0

0.00486
0

0.00162
0

0
0
0
0
0
0

-0.01381
0

0.00306
0

0.00101
0

0 7.94552- Id 4 0 4.91934-iOT4 

0 0 0 0

-0.02189 0 0.00493 0 0.00169 0 9.45238-IOT4 0 4.68553-Id 4 0 2.89189-Id 4
0 0 0

-0.01411 0 0.00313 0 0.00108 0 6.24868-10,-4 0 3.15992-Id 4 0 1.94737-10'4

p = 0 , 1 - 5  q = 0 , 1 - 5  b6,0 0 b7,0 0 b8,0 0

bP><! 4  , |n -q |  ^ |m -p i ,n 4 -q  ^m-f-p,n-t-q ^m-t-p, | a - q |  )

0 0 0 0 0 o' 0 0 0 0 0 o'
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 boo = 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

.0 0 0 0 0 0. .0 0 0 0 0 OJ
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APPENDIX C

TH E FIRST THREE EIGENVALUES FOR K n = 0.00 

BY DENNIS ET A L.
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THE FIRST THREE EIGENVALUES FOR Kn = 0.00 (DENNIS ET AL.)

a 1.000 0.667 0.500 0.250 0.125

*•1 11.91 12.49 13.57 17.76 22.38

h. 71.09 51.58 41.17 28.17 25.61

h 157.9 99.71 94.93 47.82 31.81
SBj 0.804 0.802 0.789 0.756 0.737

$2 0.104 0.064 0.071 0.107 0.091

$3 0.014 0.043 0.020 0.028 0.034
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DATA OF ROUGHNESS AND DIM ENSION OF M ICROCHANNEL
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DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL

Test* Ra: nm Rq: nm Rt: micro
1 143.31 179.43 2.6
2 140.81 169.44 2.74
3 102.9 129.28 1.77
4 141.38 176.5 3.39
5 116.37 154.2 2.36
6 113.79 144.95 2.05
7 108.68 141.12 2.81
8 91.45 121.73 2.16
9 97.62 131.5 3.06

10 149.83 187.22 2.25
11 90 117.61 1.86
12 98.37 122.61 2.05
13 118.83 155.26 2.26
14 82.42 111.46 3.39
15 98.07 124.16 1.81
16 79.71 100.51 1.81
17 75.25 95.66 2.05
18 100.62 129.55 2.89
19 91.26 117.22 3.02
20 127.49 160.78 1.71
21 128.89 157.93 2.12
22 115.02 146.06 2.02
23 93.57 118.38 2.37
24 115.21 149.07 2.15
25 142.57 181.83 2.28
26 149.95 184.24 1.97
27 88.13 119.18 1.86
28 128.61 162.84 1.99
29 105.2 133.64 1.69
30 93.32 122.5 1.92

Mean 2.280333
Standard Error 0.089209
Median 2.135
Mode 2.05
Standard Deviation 0.488619
Variance 0.238748
Kurtosis -0.00615
Skewness 0.973331
Range 1.7
Minimum 1.69
Maximum 3.39
Sum 68.41
Count 30
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Test* Width Depth
Top Bottom

1 115.56 112 20.97
2 133.11 114.12 20.58
3 133.97 114.23 22.32
4 131.56 113.19 20.87
5 128.01 114.97 21.51
6 118.52 114.37 21.96
7 117.34 113.19 22.29
8 117.82 114.23 23.67
9 118.52 112.6 22.71

10 117.93 110.82 21.55
11 119.17 113.21 22.85
12 122.6 113.03 24.61
13 128 112.61 22.65
14 126.12 113.63 25.18
15 123.2 113.04 25.83
16 118.89 112.35 25.51
17 117.22 111.24 24.86
18 117.2 112.44 24.41
19 118.42 114.83 23.27
20 119.71 112.6 24.62
21 118.41 112.44 25.34
22 118.52 113.18 26.81
23 116.74 112.01 24.84
24 114.35 110.01 25.94
25 120.02 113.63 27.81
26 117.15 112.41 27.22
27 116.84 112.02 23.92
28 116.59 112 26.25
29 116.61 111.89 26.66
30 114.69 110.58 24.21

Mean 120.4263 112.7623 24.04067
Standard 1 0.991225 0.22057 0.368448
Median 118.47 112.605 24.31
Mode 118.52 112 #N/A
Standard I 5.429164 1.20811 2.018072
Variance 29.47582 1.459529 4.072613
Kurtosis 0.910125 -0.0658 -0.96811
Skewness 1.396207 -0.21856 -0.01815
Range 19.62 4.96 7.23
Minimum 114.35 110.01 20.58
Maximum 133.97 114.97 27.81
Sum 3612.79 3382.87 721.22
Count 30 30 30

[
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EXPERIMENTAL HEAT TRANSFER DATA
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In le t, outlet and w all temperatures 

Experiment date: June 3,1996 

Flow media: Helium gas 

Size o f microchannel: 117 pm x 24 pm 

Length o f microchannel: 63.5 mm 

Operation temperature: 24°C

Run
number

Gv
m l/m in

Tinlet
°c

^outlet
°c

Twi
°C

TW2
°c

1 343.3 29.90 37.47 78.41 78.56
2 300.9 29.62 33.56 74.89 74.96
3 246.7 29.84 32.15 69.83 69.88
4 198.6 29.77 31.69 74.81 74.89
5 173.3 29.42 30.54 70.65 70.69
6 149.2 29.31 30.12 72.13 72.22
7 125.9 29.21 29.67 71.07 71.12
8 101.8 29.11 29.18 68.69 68.74
9 47.3 29.33 28.79 70.65 70.71
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In le t, outlet and wall temperatures 

Experiment date: June 18, 1996 

Flow media: Helium  gas 

Size o f microtube: 52.1 fxm 

Length o f microchannel: 70 mm 

Operation temperature: 25°C

Run
no.

Gv
m l/m in

Tinlet
°c

Toutlet
°c

Twi
°C

TW2
°C

1 0.11 29.50 25.11 88.41 82.56
2 0.11 30.05 25.58 91.35 85.43
3 0.11 30.28 25.87 89.50 84.12
4 0.11 30.29 25.92 87.73 82.93
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Data reduction o f heat transfer 

Experiment date: June 3,1996 

Flow media: Helium gas 

Size o f microchannel: 117 pm x 24 pm 

Length o f microchannel: 63.5 mm 

Operation temperature: 24°C

Table F .l

Run
number

Gv
ml/m in

Tinlet
°c

Toutlet
°c

Twi
°C

TW2
°c

Nu Re

1 343.3 29.90 37.47 78.41 78.56 80.96 720

2 300.9 29.62 33.56 74.89 74.96 43.18 618

3 246.7 29.84 32.15 69.83 69.88 20.43 507

4 198.6 29.77 31.69 74.81 74.89 11.78 408

5 173.3 29.42 30.54 70.65 70.69 6.59 356

6 149.2 29.31 30.12 72.13 72.22 3.59 307

7 125.9 29.21 29.67 71.07 71.12 1.76 259

8 101.8 29.11 29.18 68.69 68.74 0.11 208

9 47.3 29.33 28.79 70.65 70.71 -0.52 97
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Experiment date: June 18, 1996 

Flow media: Helium gas 

Size o f microtube: 52.1 pm 

Length o f microchannel: 70 mm 

Operation temperature: 25°C

Table F.2

Run
no.

Gv
ml/m in

Tinlet
°c

Toutlet
°c

Twi
°C

TW2
°c

Nu Re

1 0.11 29.50 25.11 88.41 82.56 0.27
2 0.11 30.05 25.58 91.35 85.43 0.27
3 0.11 30.28 25.87 89.50 84.12 0.27
4 0.11 30.29 25.92 87.73 82.93 -0.015 0.27
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Table G .l. Physical properties o f the microchannel

Channel material Aluminum Polymide

Mechanical Properties
Density, kg/m3 2707 1042

(lb ra /ft3) (169) (65)
Tensile Strength (MPa) 120.7 103

(psi) (17500) (15,000)

Thermal Properties
Thermal Conductivity

W /m -K  204 0.155
(B tu /h r-ft-°F ) (118) (0.090)

Specific Heat
K J/kg-K  0.896 1.088
(Btu/lbm  -°F ) (0.214) (0.260)

Source o f Data: J.P. Holman, Heat Transfer, M cG raw -H ill Book Co., New York, 1986
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Table G.2. Properties o f helium gas at atmospheric pressure 

Values o f p, k, and Cp are not strongly pressure-dependent fo r He and may be used over 

a fa irly  wide range o f pressures.

T,K Q ,
kg/m3

Cp
kJ/kg°C kg/m s

V
m2/s

k
W/ra °C

200 0.2435 5.200 15.66x10-* 64.38x10-* 0.1177
255 0.1906 5.200 18.17 95.50 0.1357
366 0.13280 5.200 23.05 173.6 0.1691
477 0.08282 5.200 27.50 269.3 0.197
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