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ABSTRACT

The purpose of this research is to determine the usefulness of fuzzy logic and 

fuzzy control when applied to a commercial appliance. Fuzzy logic is a structured, 

model-free estimator that approximates a function through linguistic input/output 

associations. Fuzzy rule-based systems apply these methods to solve many types of 

"real-world" problems, especially where a system is difficult to model, is controlled by 

a human operator or expert, or where ambiguity or vagueness is common.

This dissertation presents fuzzy sets, fuzzy systems, and fuzzy control, with an 

example conveying the use of fuzzy control o f a consumer product and an overview of 

fuzzy logic in the field o f artificial intelligence. Ultimately, it demonstrates that the use 

of fuzzy systems makes a viable addition to the field of artificial intelligence and. 

perhaps, more generally to the application of other consumer products to reduce energy 

consumption and increase the ease of operation.

Topics such as classical logic, set theory, fuzzy set theory, and fuzzy 

mathematics are developed in this research to provide a foundation in fuzzy logic. 

Fuzzy logic is an excellent development o f a basic home appliance to a provide a 

powerful and user-friendly device. Fuzzy logic allows an engineer without a great 

knowledge o f control systems and mathematical modeling a viable alternative in 

product creation. The fuzzy logic toolbox of the program MATLAB™ developed by

m
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The Mathworks Corporation is used to build and test the fuzzy logic systems explored 

by this dissertation.

Again, in this dissertation the concept of fuzzy logic shall be explored in detail. 

Background and theoretical information shall be derived to provide a good base for 

applications. Classical logic, crisp sets, fuzzy sets, and operations on fuzzy sets are 

explained in order to cover a wide spectrum of applications. The focus or cumulating 

point will be to apply the fuzzy logic principle to any type of consumer appliance (such 

as a washing machine). The use o f fuzzy logic will allow many household goods to be 

manufactured more quickly and with more options, and be energy efficient, user 

friendly, and cost effective.

iv
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CHAPTER I

INTRODUCTION

Many, many centuries ago Buddha philosophized the principle "A and not A." 

that "everything is a matter o f degree." there are no sharply defined borders, the world is 

the color of gray rather than black and white. Fuzzy logic fits right in with this 

philosophy. It says that set membership functions are continuous, not discrete; that an 

object is "A" to some degree and "not A" to some degree. In many cases an object is 

100% in "A." in other cases, an object may be 0% in "A." This is traditional single 

valued logic.

In 300 B.C.. the Greek philosopher Aristotle came up with binary logic (0.1), 

which is now the principle foundation of modem mathematics. It came down to one 

law: A or not A. either this or not this. For example, the sky is either blue or not blue. It 

cannot be blue and not blue. Every statement or sentence is true or false or has the truth 

value 1 or the false value 0. This is Aristotle's law of bivalence and was philosophically 

accepted for over two thousand years. Two centuries before Aristotle, Buddha had the 

belief that contradicted the theory of true and false, which threw aside the worship of 

binary logic and saw the world as it is. filled with contradictions, with things and not 

things. For example, he stated that the sky could be to a certain degree completely blue, 

but at the same time could also be at a certain degree not blue. That is, the sky can be 

blue and not blue at the same time. This is truly a leap of faith, because this implies that

1
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an entity can belong to a group or set o f objects but not belong to that group or set of 

objects.

Table 1 - 1 : Glass Status Truth Table

Glass Full Status True False

Full X

Not Full X

Half - Full o 9

Half - Not Full o 9

Conventional (Boolean) logic states that a glass can be full or not full of water. 

However, suppose one were to fill the glass only halfway. This is the gray area where 

binary logic ceases to become useful and falls apart. Everyone knows that a glass can 

be in a state of full, empty, half-full or half-empty. Clearly, this disproves Aristotle's 

law of bivalence. Table 1 - 1 displays the basic meaning of 2 - valued logic. Table 1 - 1 

also shows that Boolean logic cannot explain the intermediate values of half-full and 

half-not full. This concept o f  multi-valence or multi-valued logic is the fundamental 

concept, which propelled Professor Zadeh of the University of Berkley in the 1960's to 

introduce fuzzy logic.[l]

Fuzzy logic is basically a multi-valued or infinite valued logic that allows 

intermediate values to be defined between conventional evaluations like on/off, 

true/false, cold/'hot, etc. It links traditional logic (Boolean logic) with real world 

connotations. This idea by any means is not new (as told above) but has been overlook
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because of its imprecise definition. Therefore. Boolean logic is a special case o f fuzzy 

iogic. But without multi-valued logic systems descriptions such as rather warm or 

pretty cold can not be formulated mathematically and processed by computers. In this 

way an attempt is made to apply a more human-like way of thinking in the 

programming o f computers.

Formally, fuzzy logic is a structured, model-free estimator that approximates a 

function through linguistic input/output associations. Fuzzy rule-based systems apply 

these methods to solve many types of "real-world" problems, especially where a system 

is difficult to model, is controlled by a human operator or expert, or where ambiguity or 

vagueness is common. A typical fuzzy system consists of a rule base, membership 

functions, and an inference procedure. Fuzzy systems are an alternative to traditional 

notions o f set membership and logic that has its origins in ancient Greek philosophy, 

and applications at the leading edge of artificial intelligence. Yet. despite its long

standing origins, it is a relatively new field and leaves much room for development. 

This dissertation will present fuzzy sets, fuzzy systems, and fuzzy control, with an 

example conveying the use of fuzzy control o f a consumer product and another example 

of fuzzy logic in the field o f artificial intelligence. Ultimately, it will be demonstrated 

that the use o f fuzzy systems makes a viable addition to the field of artificial 

intelligence and. perhaps, more generally to the application of other consumer products 

to reduce energy consumption and increase the ease o f operation.

Sousa. Bose, and Cleland (1995) embarked on the improvement of adjustable- 

speed-drive system efficiency with the use of fuzzy logic, not only from the view point
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4

of energy savings and cooling system operation, but also from the broad perspective of 

environmental polIution.[5]

Lai. Nakano, and Hsieh (1996) proposed a system that combines the excellent 

speed regulation of the phase-locked loop techniques and the advantages o f fuzzy logic 

(intuitiveness, simplicity, easy implementation, and minimal knowledge of system 

dynamics) to obtain a robust, fast, and precise control of motor speed. [4]

Mir. Elbuluk. and Zinger (1994) studied the fuzzy implementation of direct self- 

control of induction machines. In many applications, direct control o f torque is very 

beneficial. There is always a need for torque control at different stages o f machine 

operation, such as start-up and load disturbance. In this research, field oriented control 

schemes were considered to control the induction motor. However, field oriented 

control is highly dependent on machine parameters and speed, which is undesirable. 

Another scheme is stator direct self-control, which uses only one parameter in the 

control scheme, stator resistance. But in direct self-control the stator flux and torque are 

regulated to their command values by selecting the switching state that gives the proper 

changes in the flux and torque. This scheme uses error signals from electric torque, 

stator flux, stator position, and the stator flux vector. The state changes are determined 

from large error changes in the system. It is important to realize that large error 

changes can occur during startup and during a step change. This is undesirable because 

the system reacts sluggish or slow at these times. To overcome this drawback, fuzzy 

logic and expert knowledge of the system was called upon. Through the use o f a single 

board computer, the starting flux and torque response and the responses to step changes
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5

in command torque with fuzzy implementation showed a considerable improvement 

over the conventional control. The intriguing part of the research is the fuzzy logic 

controller. There are three inputs (flux error, torque error, and flux position) and one 

output (inverter switching state). A total of 120 rules are used to control the system.[2] 

Guillemin (1996) analyzed the different aspects o f fuzzy logic in the control of a 

universal motor. In this work, fuzzy logic is implemented in a standard micro

controller to regulate the speed of a universal motor by real time adjustment of the 

motor current. The application of this study is to improve home appliance features, user

I5V-5V
ST6265

Figure 1 - 1 : System Diagram

friendly interfaces, and security features. The home appliance presented in Guillemin's 

research is a typical food processor. The food processor has a 400-W universal motor, 

which is supplied by a direct current source. A DC to DC converter, which is shown in 

figure 1-1.  controls the motor’s power supply. The DC to DC converter is classified as 

a buck type converter operating in the continuous region. The converter operates on the
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6

principle of pulse width modulation (PWM). The frequency of the converter is not 

fixed hence it changes with tachogenerator voltage and PWM duty cycle. But before a 

fuzzy logic control system is implemented, the system behavior must be known. For 

this task experiments were made to yield graphs of open loop motor speed versus PWM 

duty cycle and tachogenerator voltage versus motor speed. The benefit o f such data is 

not to obtain a model of the system, but specific characteristics of the system.

The two input variables used by the fuzzy logic controller are speed error and 

speed error variation. Speed error is equal to the measured speed subtracted from the 

target speed. The speed error variation measurement, just as the speed error 

measurement, takes advantage of the processor timer for a time base. Speed error 

variation is the last speed measurement minus the present speed 

A f  = Vmch0 ( n ) ~ Vtacho -  I)- The system has one output variable, which is 

generated by the fuzzy inference kernel. The micro-controller calculation of the PWM 

duty cycle to be applied to the gate o f the IGBT (Insulated gate bipolar transistor) is 

done as follows: S %(n) = S % { n - \ ) ± A S . It must also be noted that the duty cycle 

calculated by the micro-controller ranges from 0 to 100% with a resolution of 0.4%.

The development software used for this application is called "/wrryTECH ST6 

Explorer Edition”, which covers all the steps o f a fuzzy logic design from definition of 

the project, the linguistic variables, and the rules. In addition, the 'fuzzyTECH  ST6 

Explorer Edition” also generates executable code for the micro-controller used in this 

application. There are four steps of project design when using the development tool: 

project definition, linguistic variables definition, rule definition, and system behavior
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optimization. The project definition is done by a part of the program known as the 

project editor. It is a graphical interface that allows the designer to directly access 

linguistic variables and rule definitions. This interface is far quicker than command line 

programming because of the function block, and also drop and connect ease o f the 

software. The next step in project development is the linguistic variables definition. 

Membership functions o f input and output variables are created by the graphical 

interface of the fuzzy logic software. When defining these variables the software allows 

the user to define two representations for the variables: the ''shell value" and the "code 

value.” The shell value exemplifies the real word value that the variables represent and 

the code values are the 8-bit internal values that the micro-controller uses to calculate 

results and range from 0 to 255. Membership functions for speed error, speed error 

variation, and PWM duty cycle variations are defined by triangular shapes and lines. It 

must be noted that the purpose of this step is to map the input values to linguistic 

variables and the output linguistic variables to a PWM duty cycle. The most important 

step of the project development is the rule definition. With too many rules the system 

can become restricted and sluggish, but with too few rules the system can become 

unstable at times. There must be a true medium meet between the two extremes for a 

well defined system. By an understanding of the system behavior, the rules were 

assigned accordingly. There were approximately 15 rules used to control the system as 

shown in Table 1 - 2. The structures o f the rules are set up in an if-then type format. 

Speed error and speed error variation are defined by eight different classifications:
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Table 1 - 2 : System Rules

Spreadsheet Rule Editor

Matrix IF THEN

Rule Speed Error Speed Error Variable DOS PWM Variable

1 Zero Neg Slow 1.00 Pos_Medium

2 Zero Nul 1.00 Zero

Zero Pos_Slow 1.00 Neg Medium

4 Pos_Small Neg Slow 1.00 Zero

5 Pos_Small Nul 1.00 Neg_Medium

6 PosSm all Pos_Slow 1.00 Neg Medium

7 Neg Small Neg_Slow 1.00 PosM edium

8 Neg_Small Nul 1.00 Pos_Medium

9 Neg_Small Pos_Slow 1.00 Zero

10 Neg_Big Nul 1.00 Pos_Big

11 Pos_Big Nul 1.00 Neg_Big

12 Neg_Big Pos_Slow 1.00 Pos_Medium

13 Pos_Big Pos_Slow 1.00 Neg_Big

14 Neg_Big Neg_Slow 1.00 Pos_Big

15 Pos_Big Neg_Slow 1.00 Neg_Medium
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Zero. Pos_small. Neg small. Neg_Big, PosBig,  Neg_Slow. Zero. Nul.Pos_Slow. and 

Neg_Slow. DOS stands for "degree o f support" for rules defined. The degrees of 

support for the rules are set to one. meaning all rules have the same weight. When the 

inputs fall into the range of the 15 rules the output of the PWM duty cycle is mapped 

into five classes : Pos_Big, Pos_Medium. Zero. Neg Big Neg Medium. These 

classifications allow the user very easy implementation, interpretation, and also 

modification at a latter date, if needed. The last step in this program process is system 

behavior optimization. The interactive debugging mode allows a graphical verification 

of every design step even while the design is being performed. This is an off-line 

function of the program that allows the user to optimize the rules and membership 

functions. Another development tool is the batch mode. The batch mode records the 

output variables versus each input variables for testing and evaluating the design's 

performance. After all of the former tools are used the program generates executable 

code for the microprocessor. [3]

This is an excellent development of a basic home appliance to a very powerful 

and user-friendly device. It allows the designer without a great knowledge of control 

systems and mathematical modeling a viable alternative in product creation.

In the previous research cases, fuzzy logic was used to enhance a system with 

out the rigor o f a precise mathematical model. But why doesn't fuzzy logic have a 

strong base in engineering sciences in the United States? Main stream engineering 

shows that this is a cultural match with eastern philosophies, and this is also why 30 

years ago Dr. Zadeh and his ideas were eagerly accepted in Japan while they were being

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

vehemently attacked and shouted down in the United States. As a result Japan holds a 

commanding lead in fuzzy logic technology: the United States, motivated by market 

demands and not science or mathematics, is only now struggling to catch up. Again, in 

this dissertation the concept of fuzzy logic shall be explored fully. Background and 

theoretical information shall be derived to provide a good base for applications. Fuzzy 

sets, crisp sets, and operations on fuzzy sets will be explained so in order to cover a 

wide spectrum of applications. The focus or cumulating point will be to apply the fuzzy 

logic principle to any type of consumer appliance (such as a washing machine). This 

will allow many household goods to be manufactured more quickly and with more 

options, and be energy efficient, user friendly, and cost effective.
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CHAPTER II

THE CREATORS OF SET THEORY  
AND FUZZY SETS

One of the most basic structures of mathematics is the concept o f sets. The aim 

of several chapters later to come is to introduce and distinguish classical sets from fuzzy 

sets. But first a brief overview and history of the development of set theory is in order.

Sets give a precise definition to a collection of mathematical and non- 

mathematical objects. Once the concept of sets is established, one can compare them, 

define operations similar to addition and multiplication on them, and use them to define 

new objects such as various kinds of number systems. In fact, most of the topics in 

modem analysis are ultimately based on sets. Therefore, it is important to have a basic 

understanding of sets, and we will review an array of set topics in the next chapter.

The history' o f set theory is rather different from the history of most other areas 

o f mathematics. For most areas a long process can usually be traced in which ideas 

evolve until an ultimate flash of inspiration, often by a number of mathematicians 

almost simultaneously, produces a discovery of major importance. Set theory, however, 

is rather different. It is the creation of one person, Georg Ferdinand Ludwig Philipp 

Cantor. Georg Cantor, bom March 3. 1845, and died January 6, 1918, was a Russian- 

bom German mathematician best known as the creator o f Set Theory and for his

1 1
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discovery of the transfinite numbers. He also advanced the study of trigonometric 

series, was the first to prove the nondenumerability of the real numbers, and made 

significant contributions to dimension theory. Cantor received his doctorate in 1867 and 

accepted a position at the University o f Halle in 1869. where he remained. Closely 

related to Cantor's work in transfinite set theory was his definition of the continuum as a 

connected, perfect set. He never doubted the absolute truth of his work, but following 

the discovery of the paradoxes of set theory, he left the defense of transfinite set theory 

to younger mathematicians such as David Hilbert. Bertrand Russell, and Ernst 

ZermeIo.[23]

As Cantor developed set theory. Lotfi Zadeh conceived the concept o f fuzzy set 

theory. Zadeh was bom as Lotfi Aliaskerzadeh in 1921 in Baku. Soviet Azerbaijan. 

While at a young age of 16. Zadeh received several patents, one for the rotary engine. 

In 1942. he was one of only three electrical engineering students to gain a degree in 

electrical engineering from the University o f Teheran in Iran. In the mists o f World 

War II Zadeh left Iran for the United States. Upon reaching the United States he 

changed his name to Lotfi Asker Zadeh. In the fall of 1944, he entered MIT as a 

graduate student. He found MIT very easy, and not as rigorous as the University of 

Teheran. He received a master's degree in electrical engineering in 1946. By this time 

his parents had moved to New York, so Zadeh applied to Columbia University. He not 

only received admission in the Ph.D. program, but also a job as an instructor. In 1949 

Zadeh earned his Ph.D. degree and became an assistant professor at Columbia a short 

time later. In 1965. Zadeh published his seminal work "Fuzzy Sets" which described the
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mathematics of fuzzy set theory, and by extension fuzzy logic. This theory proposed 

making the membership functions (or the values False and True) operate over the range 

of real numbers [0.0. 1.0]. He is now a Professor Emeritus and Director of the UC 

Berkeley's Initiative on Soft Computing. He has won numerous awards including an 

Honorary Doctorate from Paul-Sabatier in 1986. Japan's Honda Award in 1989. the 

IEEE Education Medal in 1973. the IEEE Centennial Medal in 1984, and the IEEE 

Richard W. Hamming Medal in 1992.[1]
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CHAPTER III

CLASSICAL REASONING

Without basic set theory or classical sets, fuzzy logic would not be possible. 

And without classical logic, basic set theory would not exist. This is formal logic, the 

same logic o f Greek philosopher Aristotle, which provided the first systematic account 

o f correct forms o f reasoning. These correct forms of reasoning can be condensed into 

five distinct areas: negation, conjunction, disjunction, implication, and equivalence. 

These five areas of reasoning, symbols, and English equivalents are shown in Table 3 -1 

below.

Table 3 - 1 : Reasoning Forms

Operation Symbol English Equivalent

Negation - Not

Conjunction A And; but; however

Disjunction V Or; unless

Implication => If.....then; only if

Equivalence <=> If and only if

The first form of reasoning is negation and it is a simple concept. Negation 

consists of a true and false adage. To negate a particular object is, in other words, to

14
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make a true statement false and a false statement true. Negation is also one of the oldest 

forms of reasoning. For example, a phrase saying: the sky is blue would be transformed 

by the negation process to the sky is not blue. This action is also demonstrated by the 

tables below.

Table 3 - 2 : Negation Equivalence (English Phrase versus Symbolic Representation)

English Phrase Symbolic Representation

The sky is blue a

The sky is NOT blue —ia

Table 3 - 3 : Negation Truth Table

A -ia

True (1) False (0)

False (0) True (1)

The next form of reasoning is conjunction. Conjunction is not a single value or 

a single phrase operation. The conjunction operation contains two statements separated 

by a conjunction such as and, but, however, etc. The rules o f this operation are identical 

to the AND gate in electronics. A typical phrase, such as the sky is blue, then a 

conjunction, and then another phrase, such as the weather is not good. All o f the 

former put together is the sky is blue and the weather is not good makes up a complex 

prepositional phrase. The tables below show how the conjunction function operates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

Also, another way to define the action of the conjunction is with a minimum statement 

shown in the following equation.

\aa  b\ = min [|a|.|6|]..............................................................................Equation 3 -1

Table 3 - 4 : Conjunction Equivalence (English Phrase versus Symbolic Representation)

English Phrase Symbolic Representation 

(a A b )

The sky is not blue and the weather is 

not good

( a A b )  = False

The sky is not blue and the weather is 

good

( a A b )  = False

The sky is blue and the weather is not 

good

( a A b )  = False

The sky is blue and the weather is good ( a A b )  = True

Table 3 - 5 : Conjunction Truth Table

A B aAb

False (0) False (0) False (0)

False (0) True (1) False (0)

True (1) False (0) False (0)

True (1) True (1) True (1)
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The disjunction operation is very similar to the conjunction function in structure. 

The disjunction is true if at least one of the two propositions involved is true. The rules 

of this operation are identical to the OR gate in electronics. A typical phrase, such as 

the sky is blue. then a disjunction or. then another phrase, the weather is not good. All 

of the former put together is the sky is blue or the weather is not good makes up a 

complex prepositional phrase. Also, another way to define the action of the disjunction 

is with a minimum statement is shown in the following equation. The tables below 

show how the disjunction function operates for all combinations of inputs.[24]

\a v b\ = min [ l,|a | + |6j].....................................................................Equation 3 -2

Table 3 - 6 : Disjunction Equivalence (English Phrase versus Symbolic Representation)

English Phrase Symbolic Representation 

(av b )

The sky is not blue or the weather not 

good

(avb) = False

The sky is not blue or the weather is good (avb) = True

The sky is blue or the weather is not good (avb) = True

The sky is blue or the weather is good (avb) = True
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Table 3 - 7 : Disjunction Truth Table

A B a v b

False (0) False (0) False (0)

False (0) True (1) True (1)

True (1) False (0) True (1)

True (1) True (1) True (1)
!

Another form o f reasoning is implication. Implication is a consequential type of 

reasoning that includes an if...then format. This type of reasoning is prevalent in many 

if not the majority o f computer programming languages. This type of reasoning is not 

as restrictive as conjunction, but its format is not similar to conjunction or disjunction. 

Implication requires a sense of forethought and a higher level of reasoning, than the 

former three types.

The two parts o f this type of reasoning are the antecedent and the consequent. 

The antecedent is the i f  part o f the statement, and the consequent is the then part o f the 

statement. The only odd conclusion that is involved with this logic is when the 

antecedent is false and the consequent is true. When the former two situations occur, 

the total statement is true. This is hard to believe, but when the antecedent is false one 

cannot disprove the consequent. Therefore the whole statement is true. Am example 

antecedent, such as i f  the sky is not blue, then a consequent phrase, the weather is 

good. All of the former put together is i f  the sky is not blue then the weather is good, 

makes up a complex prepositional phrase. This is a true statement, meaning when the
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sky is not blue the weather is good. The function (Equation 3 - 3 )  and truth tables 

(Tables 3 -8  and 3 - 9 )  that describe this type logical reasoning are found below.

\a => ti\ = min [ 1.1 + \a\ -  |6|]......................................................... Equation 3 - 3

The last type of reasoning is equivalence. Equivalence is a very simple concept 

to implement. The format is similar to the implication type o f reasoning. But. this type 

of reasoning is totally inclusive or exclusive. In this type of format, as the previous, it 

includes an antecedent and a consequent. The antecedent and consequent are separated 

by the connecting phrase i f  and only if. The equivalence operation cannot be compared 

to a single electronic gate, because it takes a combination o f gates to achieve the 

equivalence result. This is also called combinational reasoning or semi-complex 

reasoning. Complex reasoning relies on a mix and match of the former four concepts to 

achieve a desired result. The equivalent equation, constructed from the previous types 

of reasoning, is represented by Equation 3 - 4 .  whereas the equation for the truth- 

functional is illustrated in Equation 3 - 5 .  The truth tables that describe this logical 

function are found in the Tables 3 - 1 0  and 3-11.

Table 3 - 8 : Implication Equivalence (English Phrase versus Symbolic Representation)

English Phrase Symbolic Representation 

(a=>b)

If the sky is not blue then the weather is 

not good

(a=>b) = True
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If the sky is not blue then the weather is 

good

(a=>b) = True

If the sky is blue then the weather is not 

good

(a=>b) = False

If the sky is blue then the weather is good (a=>b) = True

Table 3 - 9 : Implication Truth Table

A B a=>b

False (0) False (0) True (1)

False (0) True (1) True (1)
1

True (1) False (0) j False (0)

True (1) True (1) 1 True (1)

( a => b) a  (b => a )  Equation 3 - 4

|u o  6j = | a | • | A | + | -i a  j • j -■ 6 1.................................................... Equation 3 - 5

Table 3 - 10 : Equivalence Equivalent (English Phrase versus Symbolic Representation)

English Phrase Symbolic Representation 

(a<=>b)

The sky is not blue if and only if the 

weather is not good

(a<=>b) = True

The sky is not blue if and only if the (a<=>b) = False
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weather is good

The sky is blue if and only if  the weather 

is not good

(a<=>b) = False

The sky is blue if and only if the weather 

is good

( a o b )  = True

Table 3 - 1 1 :  Equivalence Truth Table

A B a o b

False (0) False (0) True (1)

False (0) True (1) False (0)

True (1) False (0) False (0)

True (1) True (1) True (1)

These five former types of reasoning are the basics on which all reasoning is 

founded. There are several other types of reasoning, not explained in this chapter, such 

as complex propositions, contradictions, tautologies, etc. These all are a combination of 

the five basic forms of reasoning mentioned in detail in the chapter.

In conclusion the five types of reasoning lay a foundation for set theory and in 

turn, fuzzy set theory. Classical reasoning, even though basic, provides a true insight to 

the fundamental background of set theory operations.
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CHAPTER IV

CLASSICAL SET THEORY

Set theory is the natural evolution of classical reasoning in the truest sense. 

The evolution of set theory was done by one person. Georg Cantor. Once basic set 

theory is established, one can compare sets, define operations similar to addition and 

multiplication on them, and use them to define new objects such as various kinds of 

number systems. In fact, most o f the topics in modem analysis are ultimately based on 

sets and the manipulation o f these sets.

Any collection of objects is called a set. and set theory is the study of the 

relationships existing among sets. Set theory underlies the language and concepts of 

modem mathematics--both pure and applied. The study of sets, especially infinite ones, 

has also become a fascinating branch of mathematics in its own right. Set theory began 

with the work of Georg Cantor in the 19th century, but its roots in logic go back much 

further—to Aristotle and Plato. The prevailing view in mathematics today is that every 

mathematical object can ultimately be described as some sort o f set. A set may be 

specified in one of two basic ways. The roster method, or tabulation method, simply 

lists all the elements in the set. The descriptive method, or set-builder notation, gives a 

rule for determining which things are in the desired set and which are not. For an

22
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example, a set may contain a collection of all seventh grade students. To simplify this 

notation one can express and should express the set as shown in Equation 4 -  1. But 

this set is a member of a larger and more infinite set called a universal set. The 

universal set contains all sets and subset o f the particular represented sets. The 

universal set of these seventh graders may contain all junior high school students in the

B = {x j all seventh grade students}....................................................Equation 4 - 1

state. A Venn diagram of this universal set and the previously defined set of seventh 

graders are shown in Figure 4 - 1 .  B can be called a subset of the universal set A. 

These definitions o f sets are very precise or crisp. A student is contained in the 

universal set or the student is not contained. There is no half or partial inclusion in this 

set definition.

Set o f  Seventh Graders

Universal Set A

Figure 4 - 1  : A Set Defined in a Universal Set.
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The versatility of set theory is the concept of subsets. Subsets are sets contained 

within another set. All data that is contained in the subset is also contained within the 

inclusive or parent set. The previous example set. which contains the seventh graders, 

is actually a subset of the universal set. But this is somewhat misleading because any set 

is a subset of the universal set. For a true example of subsets the set of seventh graders 

can by divided into seventh grade boys and seventh grade girls. A Venn diagram o f this 

subset in relation to the previous set and universal set is shown in Figure 4 - 2 .  The 

equations for the two sets that contain all the seventh grade boys and seventh grade girls 

are show in Equations 4 - 2  and 4 - 3 .  It must be noted that a pair of

Set o f Seventh Graders

Universal Set A

Figure 4 - 2 : A Set and Subset Defined in a Universal Set.

C = {x | all seventh grade girls} Equation 4 - 2

D = {x | all seventh grade boys} Equation 4 -3
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braces (curly brackets) surrounding its description designates a set. Bear in mind that 

not every description that seems to make sense actually denotes a set. If it did. many 

inconsistencies, such as Russell's Paradox, would arise.

Russell's Paradox is the most famous of the logical or set-theoretical paradoxes. 

The significance of Russell’s Paradox can be seen once it is realized that, using classical 

logic, all sentences follow from a contradiction. In the eyes of many, it therefore 

appeared that no mathematical proof could be trusted once it was discovered that the 

logic and set theory apparently underlying all of mathematics was contradictory. The 

paradox itself stems from the idea that any coherent condition may be used to determine 

a set (or class). Attempts at resolving the paradox therefore have typically concentrated 

on various means of restricting the principles governing the existence of sets. Naive set 

theory contained the so-called unrestricted comprehension (or abstraction) axiom. This 

is an axiom, first introduced by Georg Cantor, to the effect that any predicate expression 

P(x). containing x as a free variable, will determine a set. The set’s members will be 

exactly those objects which satisfy P(x), namely all x’s which are P. It is now generally 

agreed that such an axiom must be either abandoned or modified. Russell’s response to 

the paradox is contained in his theory of types. His basic idea is that we can avoid 

reference to S (the set of all sets, which are not members o f themselves) by arranging all 

sentences into a hierarchy. This hierarchy will consist o f sentences about individuals at 

the lowest level, sentences about sets o f  the next lowest level, etc. It is then possible to 

refer to all objects for which a given condition (or predicate) holds only if they are all at 

the same level or of the same "type. "[23]
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The paradox arises within naive set theory by considering the set of all sets, 

which are not members o f themselves. Such a set appears to be a member of itself if and 

only if  it is not a member o f itself. This seems to be a contradiction of terms but in a 

way this is a paradox. Most people think o f a paradox in the sense of time travel. If a 

person could go back into time, before they were bom and murder their mother or 

father, a paradox insues. The paradox is. when you return to your own time you could 

not have been bom. and. in turn, you cannot exist.

The basic types of sets are the universal set. subset, standard set and the power 

set. The power set. not mentioned previously, consists o f all possible subsets of a given 

set X. The expression for the power set is shown in Equation 4 - 4 .  But when a 

power set o f X is finite containing n elements, the number of subsets o f X are 2 n. This

These previous types of sets can be manipulated in four elementary set 

operations: complement, intersection, union, and difference. For a brief description, the 

complement of A in X is A - X. the set o f all elements in A that are not in X. If every 

element o f a set A is also an element o f the set B, set A is a subset of B. The

P(X) Equation 4 - 4

can be shown in Equation 4 - 5 .

P (X) j = 2 " Equation 4 - 5
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intersection of A and B is the set of all elements that are in both A and B. The union of 

A and B is the set o f all elements that are either in A, or in B. or in both. For difference 

A is subtracted from B or B is subtracted from A.

To achieve a more detailed development of elementary set manipulations, 

equations and graphical methods will be employed.

To complement a set. true boundaries must be defined to begin any set 

operations. The complement of a single set contained in a universal set is done by 

noting the set as shown in Equation 4 - 6 .  I f  the double complement or compound 

noting is done to a set. then the conclusion is the original set. The complement of a 

universal set is a null set or empty set. The universal set contains all possible sets and 

subsets, and the opposite of containing everything is to contain nothing. Shown in 

Equations 4 - 7  and 4 - 8 are null set and double negation operations, respectively. A 

graphical representation of a set complement is shown in Figure 4 - 3 .  The portion of 

Figure 4 - 3  that is labeled "not A" is the complement of A. The complement of A is 

also defined by the subtraction of the universal set and set A.

A = {x | x  e  X  and x € A} Equation 4 - 6

X  = 0  and 0  - X Equation 4 - 7

A = A Equation 4 - 8
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Universal Set X

Figure 4 - 3 : Complement o f Set A

The next elementary set operation is union. The union operation takes place 

between two distinct sets. The universal set is not included in the operation but the 

universal set contains the operation. But when the universal set is in union with another 

set the product is the universal set. as shown in Equation 4 - 9 .  When the union 

operation is imposed on two sets, those two sets actually become one set. All contents

Universal Set X

Figure 4 - 4 : Union o f Set A and B
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of the first set and the second set are combined within the universal set. The Venn 

diagram in Figure 4 - 4  shows the union operation graphically. The union operation can 

also express the law o f  the excluded middles as illustrated in Equation 4 - 1 0 .  Most 

importantly, the union operation of two sets contained in a universal set is expressed 

formally in Equation 4 - 1 1 .

A kj X  = X ............................................................................................ Equation 4 - 9

A u  A = X ..........................................................................................Equation 4 - 1 0

A u  B = {.t | x e A or x e  B }........................................................Equation 4 - 1 1

The intersection operation is very similar to the union operation on sets. When 

the union operation is acted on two sets, the sets are combined to represent one unified 

set. However, the intersection operation does not join both sets completely unless the 

sets are equal. Intersection between two sets can be represented in Equation 4 - 1 2 .

A n  B = {x | x  e  A and x e B }  Equation 4 - 1 2

Where the two sets overlap or intersect is where the above definition is true. A good 

example of the operation is when given two sets, one containing all tall people and 

another set containing all women, the intersection between these two sets would be all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

tall women. The intersection would not contain all the contents of the set. tall people or 

all women. But the intersection will contain a portion o f both sets, as pictured in Figure 

4 -  5 by the dark elliptical region.

A n  B
Universal Set X

Figure 4 - 5 : Intersection of Sets A and B

Some other interesting facts concerning intersection is the intersection with 

subsets and the intersection with null sets. If set A contains all the contents o f set B and 

more, then B is a subset of A. The formal notation o f this action is shown in Equation 4 

- 13.

5  cr A ................................................................................................. Equation 4 - 1 3

There can be more than one subset for a given set. When there is an intersection 

between a set and its subset, the result can only be the subset. The reason is that the 

subset is intersecting with its own contents. When a null set or a set that contains no
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objects is intersected with a normal set, however the result is a null set. The Equations 

for both of these operations are shown in Equations 4 - 1 4  and 4 - 1 5 .  respectively.

The last elementary set operation is difference. The difference operation is not 

symmetrical like the union or intersection operation. That is, the difference o f set A and 

set B is not the same as the difference of set B and set A. This concept is described 

formally in Equation 4 - 1 6 .  A good example of intersection is to again consider a set 

o f all tall people (set A) and a set of all women (set B). The difference operation can be 

applied to these two sets in two different ways. In Figure 4 -  6 set A is subtracted from 

set B. meaning the set of all tall people is subtracted from the set of all women. The 

result is all tall people excluding all tall women. As in Figure 4 - 7 ,  the reverse is 

considered. The set of all women is subtracted from the set of all tall people. Hence, 

the result is all women excluding the tall women. The difference operation can also be 

applied to the universal set and an included normal set. The difference between the

A -  B = {x | x  e A and x  e B } ........................................................Equation 4 - 1 6

I f  B q  A then A n B  = A Equation 4 - 1 4

.4 0  0  = 0 Equation 4 - 1 5
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universal set and a normal set is the complement o f the normal set. When the situation 

is reversed, the result is a null or empty set. Equations 4 - 1 7  and 4 - 1 8  show these 

previously discussed relationships.

X  -  A = A  Equation 4 - 1 7

0

A -  X  =  Equation 4 -  18

Universal Set X

Figure 4 - 6 : Difference of Sets (A - B)

Universal Set X

Figure 4 - 7 : Difference of Sets (B - A)
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Now that the elementary set operations have been defined, more complex 

combinations and theoretical set manipulations can be explored. The next section 

includes some o f the most popular identities and theories associated with complex set 

theory. Table 4 -  1 illustrates six very popular set manipulations. It is very apparent

Table 4 -  1 : Set Properties

Property Name Property Set Equivalent

Absorption A n  ( A u  B ) = A . A u  ( A n  B ) = A

De Morgan Laws A n  B = A B, A u  Z? = A n B

Commutativity A vj B = B kj A, A n  B = B n  A

Associativity A n  { B n  C ) ={A n  B) n  C . A u  ( B u  C ) = ( A u  B ) u C

Idempotence A n  A = A.  A u  A -  A

Distributivity A n  ( B v  C ) =(A n  B)  u  ( A n C ) ,  
A u  ( B n  C ) =(A v  B ) n  ( A u C  )

that these six set manipulations build upon all of the elementary set operations.

The first set identitified is absorption. Absorption utilizes the union and the 

intersection operation. As shown in Table 4 - 1 ,  absorption results in a single set 

solution. There is a union between set A and set B that is denoted in parentheses. Then 

the result of the former equation is intersected with set A. This gives a result of set A. 

This is illustrated below in Figure 4 - 8 .  Two examples o f this property can be shown 

by a set of all tall people and by a set of all women. The union between the set o f all
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tall people and the set of all women gives a product o f a set o f all tall women. The 

second half of the equation is the intersection of tall people and all tall women. Since 

the set of all tall women is a subset of all tall people, the result of this action is the set of 

all tall people. The second example is equivalent to the first example. Given an 

intersection between the two sets, all tall people and all women. The result is a set of all 

tall women. The second step is to union the previous set with the set o f  all tall people. 

The conclusion is a set of all tall people. This conclusion is also shown in Figure 4 - 9 .  

The same result was obtained by the previous example, proving that these two equations 

are interchangeable.

Universal Set X A r\ (A B

Figure 4 - 8 : Absorption Sets

A u  (A n  B
Universal Set X

Figure 4 - 9 : Absorption Sets
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The next property is known as De Morgan's laws, which are named after 

Augustus De Morgan, an important innovator in the field of logic. In addition, he had 

many contributions to the field of mathematics and the chronicling of the history of 

mathematics.

Augustus De Morgan was bom in Mandura. India, on June 27. 1806. His father 

was a colonel in the Indian Army. His family soon moved to England where they lived 

first at Worcester and then at Taunton. His early education was in private schools where 

he learned Latin. Greek. Hebrew, mathematics and a dislike o f exams. He entered 

Trinity College. Cambridge, in 1823. and graduated four years later.

After graduation. De Morgan reached the point of deciding what to do with the 

rest o f his life. Dubious of competitive fellowships and master degrees, he refused to 

continue his education. Fearful of hypocrisy and religious bigotry, he also rejected his 

parents' wish of becoming a priest. After contemplating medicine and law. he finally 

decided to become a mathematician. In 1828, he was awarded the position of first 

Professor of Mathematics at University College in London.

His time at the university was far from quiet. In 1831. he resigned on principle 

after another professor was fired without explanation. He regained his job five years 

later when his replacement died in an accident. He would resign again in 1861. As a 

teacher he was highly praised at making mathematics alive and interesting to his 

students. In addition, he wrote textbooks on numerous subjects in mathematics and 

logic.
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He was married in 1837 to Sophia Frend, who would later write his biography. 

During his life. De Morgan was constantly involved in various activities. A member of 

the Astronomical Society and the Society for the Diffusion o f Useful Knowledge, he 

founded the London Mathematical Society and was its first president. He wrote many 

books and articles on mathematics, logic, philosophy and many other subjects. In 

addition, he assembled a large personal library of over 3000 books, a vast feat 

considering he was never wealthy. Unfortunately with all his work, he had little time for 

the rest of his life, but he was known as a kind and humorous individual. Augustus De 

Morgan died on March 18. 1871. in London, England. His library was later donated to 

the London University library.

De Morgan contributed many accomplishments to the field of mathematics on 

many different subjects. He was the first person to define and name "mathematical 

induction" and developed De Morgan's rule to determine the convergence of a 

mathematical series. His definition of a limit was the first attempt to define the idea in 

precise mathematical terms. In addition, he also devised a decimal coinage system, an 

almanac o f all full moons from 2000 B.C. to 2000 A.D. and a theory on the probability 

of life events which is used by insurance companies.

However. De Morgan's biggest contribution was in the field of logic. His most 

important work. Formal Logic, included the concept of the quantification of the 

predicate, an idea that solved problems that were impossible under the classic 

Aristotelian logic. For example, the following is only workable using De Morgan's 

method: In a particular group of people.
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• most people have shirts

• most people have shoes

• therefore, some people have both shirts and shoes.

He devised the idea around the same time as a Scottish philosopher. Sir William 

Hamilton, who accused him of stealing his ideas. However, it is clear that De Morgan's 

work is clearer, more developed and all around superior to Hamilton's version. With no 

evidence to back him up. the Scot's charge of plagiarism has been dismissed as sour 

grapes. De Morgan's other works include a system of notations for symbolic logic that 

could denote converses and contradictions and the famous De Morgan laws.

De Morgan laws rely heavily on the negation principle. The two sets involved 

are manipulated by an intersection or union and then negated. As shown in Table 4 - 1 .

De Morgan laws have two parts such as the absorption property, but the concepts o f De

Morgan laws are more involved than absorption. The set A and set B can be easily 

intersected, as done earlier in this chapter. The negations of the intersected sets are 

shown in Figure 4 -  10 by the dotted area.

De Morgan laws state that the complement of the intersection of two sets is 

equivalent to the union of their individual complements and the complement o f the 

union of two sets is equivalent to the intersection of their individual complements.

Commutativity is the third property of set operations. The commutativity 

operation proves that the set order can be interchanged without any effect to the result. 

The union or intersection operation can be applied to sets and the former will hold. It
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Universal Set X

Figure 4 - 10 : De Morgan Laws

does not take much effort to prove this operation. Consider two sets, one o f all tall 

people (set A) and the other of all women (set B). When set A is intersected with set B. 

the set order does not matter. The result will still be the same, a set o f tall women.

The next set operation is called associativity. Associativity deals with the 

ordering of the operation. This is true with the union or intersectioin operation. The 

operation is non-dependent on parentheses placement, meaning that the result of the 

operation will be the same no matter where the parentheses are placed. The AND 

function which is used in digital logic, displays the associativity operation described in 

Table 4 - 2 .  The associated gates with this truth table are illustrated in Figures 11 and 

12 .

Idempotence is the next property o f sets. Idempotence deals with the 

intersection and union operations. According to this property, the intersection of any 

set with itself results in the original set. This is also true when the union operation is 

applied to a specified set. This property is very useful when simplification is needed to
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collapse long set equations. Idempotence can also be used when collapsing several 

union operations contained in a singular function. This operation is shown in Equation 

4 -  19.

.4, u  .4, u  A3 u  ... u  4, = U 4  ............................................................. Equation 4 - 1 9

Table 4 - 2 : AND Function of Associative Property

X = (AB)C Y = (BC) A

A B C X A B c Y

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 0 0 1 I 0

1 0 0 0 1 0 0 0

1 0 I 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

B

C
B • C

A • B • C

Figure 4 - 1 1 :  Gate Equivalent of Associative Property
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Figure 4 - 12 : Gate Equivalent of Distributive Property

The last property associated with set operation is called distributivity. This 

property is used extensively in combinational logic and linear algebra. As shown in 

Table 4 -  1 a set function can be easily expanded or collapsed with this property. The 

associated gates with this truth table are illustrated in Figures 13 and 14. The AND 

function used in digital logic displays the distributivity operation described in Table 

4 - 3 .

Figure 4 - 13 : Gate Equivalent of Distributive Property

Figure 4 - 14 : Gate Equivalent of Distributive Property
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Table 4 - 3 : AND Function of Distributivity Property

x  == A (B + C) Y := A B  + A C

A B C X A B C X

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 0 0 I 1 0

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 I 1 1 1 1
i1

The last subject associated with classical set theory is the characteristic function. 

This concept is very important in fuzzy set theory and will materialize in later chapters.

The basic idea of a function is to map or correlate a set of data to another set of 

data. The function's purpose is to link both sets o f data. A simple function is a set of 

data complemented. The set could contain data such as hot. tall, boy, and wet. The 

result of the function could be cold, short, girl, and dry. This is by no means the extent 

o f function operation or complexity, but it shows very compactly function operation. 

Function operation is not limited to sets or set theory, although that is the length on 

which functions will be used in this text.
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The definition o f a characteristic function is to declare elements o f X which are 

members o f the set and are not members of the set. In concept X denotes the universe 

of discourse, or universal set. Equation 4 - 2 0  illustrates the characteristic function. XA,

X a ( * ) = <
1 fo r  x  e  A
r. r  a.................................................................Equation 4 - 2 00 fo r  x  g A n

of set A. As shown by Equation 4 -  20. there cannot be an element belonging and not 

belonging to the set. The correct terminology is actually a subset o f the said set. 

Moreover, this is the downfall o f crisp theory.

For the lower limit o f all tall people being 6  feet, all people under this criteria 

will be considered short. In Graph 4 -  1 there is a distinct line between tall and short 

people. This line restricts a 5 foot and 11 inch person from being tall, which is truly 

ridiculous in real life.

The characteristic function can also be used with various set operations. The 

most common and popular operations used in conjunction with the characteristic 

function are complement, union, and intersection, but it is not uncommon to see the 

other operations as well. The associated equations for the complement, union, and 

intersection operations are shown in Equations 4 - 2 1 , 4 -  22. and 4 - 2 3 ,  respectively.

X ~4 C*)=  1 — X a (x ) ..........................................................................Equation 4 - 2 1
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Height. Ft

Graph 4 -  1 : Membership of Tall and Short People

X a ~b (x )= m ax (j :_4 (x), x B ( x ) )  Equation 4 - 2 2

X A -  B (* )=  n r in (x 4 (x), Xg ( x ) ) ................................................... Equation 4 - 2 3

To explain these concepts in greater detail, two characteristic functions are 

defined with these operations in mind. The first function is o f all short people, which 

includes heights from 4 feet to 6  feet tall. The next function shall include all tall people 

with heights from 5 feet to 7 feet tall. Both o f these functions are shown in Graphs 4 -  

2 and 4 - 3 .  These former functions are somewhat skewed from real world occurrence, 

but for the sake o f demonstration the function definitions make good examples.
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The first operation is complement and is carried out on function Xa- The result 

of the complement operation is heights less the 4 feet and heights greater than 6  feet. 

The union operation utilizes both functions. The union action takes the maximum 

values of both functions and disregards the minimum. This is done by combining all 

values of both sets to achieve a result o f heights between 4 and 7 feet. Conversely the 

intersection action only returns the minimum of both functions. Hence the result is 

heights between 5 and 6  feet.

The set operations and characteristic functions have several faults when applied 

to certain types of sets and tested against real world situations. From these anomalies 

fuzzy set theory becomes an invaluable tool. In the next chapter fuzzy set theory will 

address these problems.

x

Graph 4 -  2 : Characteristic Function of Short People
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Graph 4 -  3 : Characteristic Function of Tall People
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CHAPTER V

FUZZY SET THEORY

When a person gathers data, no matter how precise he or she is there will be a 

level o f inaccuracy. But in all data gathering rounding is assumed, and some bad or 

inaccurate data enters the data set for many reasons. The former is dreadfully true in 

engineering applications, where the range o f data can vary in the ratios greater than one 

million. But how can data be taken from the field and interpreted to a satisfactory and 

usable level o f acceptance?

Acknowledging that the data is somewhat imprecise is the first step. The next 

step is to represent the data in a way that the inaccuracy does not compromise the 

situation further. But even explaining the set o f  data can be inaccurate. Telling 

someone the data taken is pretty good, tolerable, or even good enough, can make the 

situation very confusing. Inaccuracies in measurement and verbal explanations make it 

almost impossible to take data and represent it correctly. One cause is the English 

language. Not realized by most people, the English language is very complex and 

ambiguous. Fuzzy logic is an organized method, which allows the digital world o f the 

computer to deal with the imprecision of data, especially that which deals with human 

reasoning. In reality, information is often puzzling and unclear. However, people have 

the ability to sort through muddled information and come out with sound conclusions. 

In fuzzy logic, the imprecise data being considered are called fuzzy sets.[18]

46
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A fundamental concept is the distinction between fuzzy sets and crisp sets. 

Crisp sets represent any set o f data that denote membership by a certain criteria. 

Suppose there is a set of all young women (18 -25 years of age) in a small town in the 

United States and that a modeling agency would like a new crop of models for the 

spring catalogues. One criterion that the agency is looking for is tall women. This is 

not the only criterion for a model, but this is a start. On the surface it would seem a 

easy task to pick all the tall women and disregard the rest, but it is not. The reason for 

this difficulty is the definition o f tall.

Table 5 - 1  : Set of All Potential Models

Name Height

Angela 4 feet 8  inches

Anne 5 feet 2 inches

Bobbie 5 feet 5 inches

Crystal 5 feet 6  inches

Diana 5 feet 7 inches

Gloria 5 feet 7 inches

Jane 5 feet 8  inches

Jessie 5 feet 11 inches

Karen 6  feet 1 inches

Susan 6  feet 3 inches
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Everyone would agree that a 7-foot woman is tall but how about a 5 foot 7 inch 

woman. In crisp sets there must be a criteria to discern between tall and short women. 

To pick this criterion, experience is needed in the specified field of concern. The 

modeling agency would be the most qualified to ascertain such a height. Suppose the 

agency picked 5 feet and 7 inches as the minimum height and 6  feet 2 inches as a 

maximum of height. From this criterion Table 5 - 2  was spawned including 5 women. 

The master or universal set of all women in consideration is shown in Table 5 -  1.

Table 5 -  2 : Set of all Potential Models that Poses Suitable Height

Name Height

Diana 5 feet 7 inches

Gloria 5 feet 7 inches

Jane 5 feet 8  inches

Jessie 5 feet 11 inches

Karen 6  feet 1 inches

The new set in Table 5 - 2  contains all women taller than 5 feet 6  inches and 

shorter than 6  feet 2 inches. This set of data is also demonstrated with a membership 

function of all tall women in Graph 5 - 1 .  The crisp set does truly represent the 

criteria, that the modeling agency specified. But when considering a tall person one 

inch does not make that person short or tall. But how can a crisp set relay this apparent
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fact to the resulting data? The answer is that it cannot. The problem with crisp sets is 

the interpretation of boundaries. The boundaries in the model agency example are 5 

feet 7 inches and 6  feet 2 inches. Crisp sets are too precise to make a reasonable 

judgement. When a person says another person is tall, the difference of one inch is not 

a factor in the decision. But with crisp sets, one inch can mean the difference between 

inclusion and exclusion. Fuzzy sets take into account the gray area o f data under 

consideration as opposed to a set being considered as simply true or false. The gray 

area in our example is the region of data adjacent to 5 feet 7 inches and 6  feet 2 inches. 

These data gray areas are represented in a one-dimensional Euclidean space diagram in 

Figure 5 - 1 .  Gray areas are where fuzzy sets reign superior over crisp sets. Fuzzy sets 

embrace the gray areas and incorporate them into the set operation. In other words, 

fuzzy sets allow partial membership in the set structure, whereas crisps sets by 

definition have no way to incorporate the concept o f partial membership. [2 1 ]

4.75 5.75

Graph 5 -  1 : Membership of Tall Women Models
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4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

Figure 5 -  1 : Grey Area Mapped on a One Dimensional Euclidean Space

The foundation o f a fuzzy set is the membership function. As shown in 

Equation 5 - 1 the membership function assigns to each element x o f X a number. 

A(x). in the

A: X —> [0. 1].......................................................................................Equation 5 - 1

closed unit interval [0. 1 ] that characterizes the degree of membership o f x in A. It must 

be noted that when one is defining a membership function, the universal set X is always 

assumed to be a classical set. To transform a crisp set to a fuzzy set a technique known 

as mapping is used. Mapping is not a new concept; it has been around a very long time. 

The process is very simple: data is transferred from one set to another set. As an 

example, consider again the modeling agency and. more importantly, the models. Each 

model must be assigned a membership value between 0 and 1. This value or numbers 

shows the degree of memberships displayed by each model. The number 0 would 

categorize the model o f having no membership or very short (greatly less than 5 feet 7 

inches) or very tall (greater than 6  feet 2 inches). All o f the heights in between shall 

have a specific level of membership. This level of membership is graduated depending 

on the height of the model. The closer she is in the interval height o f 5 feet 7 inches to
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6  feet 2 inches the higher degree of mapping she receives. To carry crisp sets one step 

further a full representation of all potential models is shown in Table 5 - 2  and Graph 5 

- 2 shows the membership function with a fuzzy interval. This is a graph of a fuzzy set 

and a intermediate step to achieve fuzziness. This graph is similar to 5 -  I in some 

ways but the most important difference is the trapezoidal function shape. There are two 

lines drawn from the top o f the trapezoid to the x-axis. which represents the interval of 

total inclusion or where every mapped data point is equal to 1. This shape includes all 

data before and after the critical or included set. In Table 5 -  3 the complete sets of 

potential models are mapped to a fuzzy set using the concept o f degree of membership. 

One can see from Table 5 - 3  that the taller the person is the higher degree of 

membership is allocated, until a height greater than 6  feet 1 inch is reached. This is 

truly different than crisp set theory where the potential models under 5 feet 7 inches and 

over 6  feet 2 inches were disregarded and were not in membership. But with fuzzy sets 

these models are in contention to become a model.

Another point about Table 5 -  3 is that there are three sets listed. One set is the 

name of every model, the second set is the height o f the models, and the third set. which 

is the fuzzy set. is the degree of membership of each model. Graph 5 - 2  can be used in 

the realm of fuzzy logic and is used in many fuzzy programs, because of its simplicity 

and ease o f manipulation. The down side is that data does not usually follow a 

trapezoidal function in nature. Data usually conforms to open ended curves, bell shaped 

curves, Gaussian distributions, and so on. This typical membership function is known 

as a fuzzy interval because it satisfies the following.
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1. A is normal.

2. The support {x : A(x) > 0} of A is bounded.

3. The a  - cuts o f A are closed intervals.

The concept of a fuzzy quantity being normal assumes it has a value of one. The other 

two properties will be explored later when fuzzy numbers are considered. This function 

can be simplified by deleting one of the model agencies criteria. The model height is a 

factor but too short out weighs being too tall, so the 6  feet 2  inch criteria is abolished.

Table 5 -  3 : Set of All Potential Models Mapped to a Fuzzy Set

Name Height Degree of Membership

Angela 4 feet 8  inches 0

Anne 5 feet 2 inches 0 . 2

Bobbie 5 feet 5 inches 0.5

Crystal 5 feet 6  inches 0 . 8

Diana 5 feet 7 inches 1

Gloria 5 feet 7 inches 1

Jane 5 feet 8  inches 1

Jessie 5 feet 11 inches 1

Karen 6  feet 1 inches 1

Susan 6  feet 3 inches 0 . 8
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a.

4.5 4.75 5.25 5.5 5.75 6 6.25 6.5

Graph 5 -  2 : Membership Function with a Fuzzy Interval

Table 5 -  4 : Set of All Potential Models Mapped to a Non-Interval Fuzzy Set

Name Height Degree o f Membership

Angela 4 feet 8  inches 0

Anne 5 feet 2 inches 0 . 2

Bobbie 5 feet 5 inches 0.4

Crystal 5 feet 6  inches 0 . 6

Diana 5 feet 7 inches . 8

Gloria 5 feet 7 inches . 8

Jane 5 feet 8  inches 1

Jessie 5 feet 11 inches 1

Karen 6  feet 1 inches 1

Susan 6  feet 3 inches 1
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This will allow simplification o f the example until fuzzy numbers are introduced. With 

this assumption fact Table 5 - 4 is created. Another criteria is that 5 feet 8  inches is now 

the ideal height and every model above that height is considered in full membership. 

This graph shows a gradual and smooth transition from the short potential models to the 

potential models o f 5 feet 8  inches and taller.

4.5 4.75 5.75

Graph 5 -  3 : Membership Function of Potential Models without Fuzzy Interval

In Equation 5 -  2, the degree of membership is listed in ordered pairs for 

potential models instead of tabular format. This equation format is found in popular 

fuzzy logic papers, as are Equations 5 - 3  and 5 - 4 .  In Equation 5 -  5, x l, x2, and so 

on are known as labels for corresponding potential model names. The generalized

A = { <Angela. 0>, <Anne, 0.2>. <Bobbie, 0 .4> ,........................... Equation 5 - 2

<Crystal, 0.6>. <Diana, 0.8>, <Gloria, 0.8>,

<Jane, 1>. <Jessie. 1>. <Karen. 1>, <Susan, 1>}
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A = { <xi, 0>, <x2, 0.2>. <X3 . 0.4>.<X4. 0.6>. <xs, 0.8>.................Equation 5 - 3

<Xft, 0.8>, <X7, 1>. <Xg, l>. <Xg. 1>. <Xio, 1>}

A = 0/Angela. 0.2/Anne. 0.4/Bobbie, 0.6/Crystal. 0.8/Diana. Equation 5 - 4

0.8/Gloria. 1/Jane. I/Jessie. 1/Karen. 1 /Susan

notation for these membership functions is represented in Equation 5 - 5 .  Finally, the 

popular notation for a fuzzy set is p of X. a function from the reference set X to the unit 

interval, is shown in Equation 5 - 6 .

A = X  A(x)/x...................................................................................... Equation 5 - 5

p : X —» [0. 1]...................................................................................... Equation 5 - 6

Operations on fuzzy sets are very similar to the operations done on crisp sets. 

The main difference is that the rules of crisp sets do not transfer over to fuzzy sets. 

There are three main operations considered in fuzzy set theory. These operations are 

complement, union, and intersection.

The complement of fuzzy set A defined on a universal set X. concludes that A 

is another fuzzy set on X that inverts the degrees of membership associated with A. 

This definition is totally different from crisps sets. In crisp set the complement o f set
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A. contained in a universal set X, would have all the data that was not included in set A. 

But as stated before, a fuzzy set can overlap its complement. The complement of all

potential models are shown in Table 5 - 5 .  The standard complement. A . of fuzzy set 

A

Table 5 -  5 : Set of All Potential Models Membership Functions and Complements

Name Degree of Membership of A Complement of A

Angela 0 1

Anne 0 . 2 0 . 8

Bobbie 0.4 0 . 6

Crystal 0 . 6 0.4

Diana 0 . 8 0 . 2

Gloria 0 . 8 0 . 2

Jane 1 0

Jessie 1 0

Karen 1 0

Susan 1 0

is defined by Equation 5 - 7  and illustrated with A in Graph 5 - 4 .  The fuzzy set 

complement has a property that contradicts complement properties of crisp sets. This 

property is called equilibrium of points and is described in Equation 5 - 8 .  This can
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only happen at one point o f the two curves. The reason it can only occur once is 

because the fuzzy set has to be convex, meaning that no a  - cut can intersect a fuzzy

A (x) = 1 -  A (x)................................................................................. Equation 5 - 7

A ( xq) = A (xo) Equation 5 - 8

4.5 4.75 5.75

Graph 5 -  4 : Membership Function of Potential Models and Complement

curve twice. The a-cuts are discussed in detail in the next chapter, along with other 

advanced properties o f fuzzy sets. The equilibrium point of fuzzy set A is near the 

value of 0.5. This point shows that set A and its complement share the same point. 

Crisp sets have a theorem call the law of the excluded middle to contradict this action.

For crisp sets, taking the union of set A and its complement. A , the result must be the 

universal set X. as shown in Equation 5 -  9.[15] This is absolutely is not true for fuzzy
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sets, as can be observed by Graph 5 - 4 .  This situation more aparent in the next 

paragraph.

A u  A = X.............................................................................................. Equation 5 - 9

The next operation is the union or standard fuzzy union. The standard fuzzy 

union is an operation between two fuzzy sets. The concept uses max. an abbreviation 

for the maximum operator, to achieve the union function. This function is shown in 

Equation 5 - 1 0 .  and used in the model example shown in Table 5 - 6 .  The law of the

Table 5 -  6  : Union o f Fuzzy Set A and B

Name A = Model Height B = Complement o f A A k j B

Angela 0 1 1

Anne 0.2 0.8 0.8

Bobbie 0.4 0.6 0.6

Crystal 0.6 0.4 0.6

Diana 0.8 0.2 0.8

Gloria 0.8 0.2 0.8

Jane 1 0 1

Jessie 1 0 1

Karen 1 0 1

Susan 1 0 1
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excluded middle is very easy to contradict with the standard fuzzy union operation. As 

in the previous Table 5 -  6 , a model with part membership in A. such as 0.6 and a 

complement of 0.4. has the standard fuzzy union of 0.6. This result shows that x is not 

a member of X with full membership, and therefore breaks the law o f the excluded 

middle. The standard fuzzy operation is illustrated in Graph 5 - 5 .  The shaded region

(A uB)(x) = max [A(x). B(x)]........................................................... Equation 5 - 1 0

represents the standard union operation. When comparing the standard fuzzy union 

operation to the union of crisp sets, they both possess the maximum operation. This is 

where the similarities end. The area under the curve in Graph 5 - 5  shows all 

membership of the union operation. This area classifies all potential models and their 

complements with membership functions no less than 0.6. Another example of the 

union operation is to use the same example, but disregard the complement and use a 

new fuzzy set. This set is abbreviated and considers model beauty. This set is 

listed in

4.5 4.75 5.75 6.25 6.5

Graph 5 -  5 : Union of Fuzzy Sets A and B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Table 5 - 7 .  For this example X is a set of the models, and A and B denote fuzzy sets of 

those models in X that exhibit substantial height or beauty.

Table 5 -  7 : Union o f Modified Fuzzy Set A and Fuzzy Set B

Name A =  Model Height B = Model beauty A n  B

Angela 0 0.5 0.5

Anne 0 . 2 0.7 0.7

Bobbie 0.4 0.3 0.4

Crystal 0 . 6 0.7 0.7

Gloria 0 . 8 0.4 0 . 8

Jane 1 0.5 1

The last fuzzy set operation is the standard fuzzy intersection. This operation 

needs two sets just as the standard fuzzy union. The two fuzzy sets A and B are always 

considered to be defined in the universal set X. Intersection uses min, an abbreviation 

for the minimum operator, to achieve the intersection function. This function is shown 

in Equation 5 - 1 1 .  and is also used in the model example shown in Table 5 - 8 .  The 

law of contradiction for crisp sets is a very useful tool in determining if an intersection 

is valid. If a crisp set violated the law of contradiction, this would result in an invalid 

set type or definition. The law of contradiction for crisp sets is shown in
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(A nB)(x) = min [A(x). B(x)] Equation 5 - 1 1

( A n A )  = 0 ......................................................................................Equation 5 - 1 2

Table 5 -  8  : Intersection of Fuzzy Set A and B

Name A = Model Height B = Complement of A A n B

Angela 0 1 0

Anne 0.2 0.8 0.2

Bobbie 0.4 0.6 0.4

Crystal 0.6 0.4 0.4

Diana 0.8 0.2 0.2

Gloria 0.8 0.2 0.2

Jane 1 0 0

Jessie 1 0 0

Karen 1 0 0

Susan 1 0 0
i
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4.5 4.75 5.25 5.5 5.75

Graph 5 -  6  : Intersection of Fuzzy Sets A and B

Equations -  12. This law can be easily violated with the help o f Table 5 -  8 . For 

example, consider the potential model Crystal, who is associated with a membership of 

A(x) = 0.6 and B(x) = 0.4. Substituting these numbers into Equation 5 - 1 3  the result is

(A nB)(x) = min [0.6. 0.4] = 0.4...................................................... Equation 5 - 1 3

not zeroed or a null set. Graph 5 - 5  illustrates the standard fuzzy intersection function 

using the potential model example.

Up into now all the concentration has been on fuzzy sets. Subordinate and 

sometimes overlooked topic is fuzzy subsets. To give some background, any fuzzy set 

A defined on a finite universal set X, has a scalar cardinality shown in Equation 5 - 1 4 .

\A\ =  Equation 5 - 1 4
X €  - V
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Data from the potential model example (Table 5 -  8 ), is inserted into Equation 5 - 1 4  

and yields the result in Equation 5 -15. Considering the former, any pair o f fuzzy 

subsets defined on a finite universal set X, the degree of subsethood is found in

|^| = 0.2 + 0.4 + 0.6 + 0.8 + 0.8 + 4= 6 . 8  Equation 5 - 1 5

S  ( A. B ) = ( |.4| -  ^  max[0. A (x) -  B(x)  ] ) ......................... Equation 5 - 1 6

Equation 5 - 1 6 .  It must also be noted that the |A| is known as the sigma count of A and 

the Z in Equation 5 - 1 6  denotes the sum of the degrees to which the subset inequality 

A(x) < B(x) is violated.[29]
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CHAPTER VI

ADVANCED PROPERTIES OF 
FUZZY SET THEORY

Just like crisp sets, fuzzy sets have properties and operations in addition to than 

complement, union, and intersection. These other properties and operations are 

explored in detail in this chapter. Also, as seen from Chapter IV. fuzzy sets do not 

conform to the same rules as do crisp sets. There was a mirrored similarity in chapter 4. 

but in this chapter other such similarities can be made. The main topics o f this chapter 

are a  - cuts, the extension principle, t -  norms, and t -  conorms. Briefly, the a  - cuts 

allow a horizontal action to be applied to fuzzy sets. The extension principle takes two 

fuzzy sets with a common factor and maps them into one set. And lastly, t -  norms and 

t -  co-norms are widely used in multi-valued logic and are used in fuzzy logic to 

reclassify the standard fuzzy union and intersection The remainder of this chapter shall 

be devoted to an in-depth discussion and development of the former subjects.

The principle o f a  - cuts plays a very important role in the relationship between 

crisp sets and fuzzy sets. This principle relies on a unique aspect of an expert. The 

expert factor is very common in everyday life. In every field of research, trade, or 

profession, the sense of an expert conveys a sense of experience, knowledge, and 

foresight. An expert is a person that is looked upon as achieving the pinnacle of

64
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knowledge in a certain field in which he or she is associated. To capture the knowledge 

of an expert, a type of computer system was developed called an expert system. Expert 

systems are management tools that aid in the decision making process. By accumulating 

the knowledge of one or many experts, these computer programs have the ability to 

provide advice or make recommendations to users. There are two types of expert 

systems that will be discussed: rule-based and case-based. Although the systems have 

been criticized for having no "common sense." they perform well in areas that require 

years of education and training for the human mind. [6 ]

The acceptance and use of expert systems in the commercial market has been 

established in three different waves. The first wave of use of expert systems began in 

the early 1980's. In this stage of development o f expert systems, companies were not 

looking for these systems to become integral parts o f their business. Rather, these early 

designers and users of expert systems were interested primarily in the research and 

development aspects of these new systems. The first commercial expert system. Digital 

Equipment Corporation's XCON, was put into use in 1981. Although it did not make a 

major impact on the market, it established an introduction into a new aspect of 

computing. The research and development completed in the early 1980's laid the 

groundwork for expert systems. By 1983. such expert systems building tools as VAX. 

OPS5. and Expert Ease were available for sale. This leads into the second major wave 

of expert systems adaptation. Using the expert systems builders now available on the 

market, some leading edge companies moved to take advantage of this new technology. 

Through 1985 and 1986. expert systems were in great demand as companies used their
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available resources to try to create an advantage for themselves. However, the systems 

and technology were not mature enough to make a major impact right away. Some of 

these early adopting companies did contribute a great deal to the maturation of expert 

systems. The successful early adopters o f expert systems created a valuable advantage 

for themselves in moving toward the increase in sophisticated use o f expert systems in 

the 1990's. The 1990's begin the third wave of acceptance for expert systems. By this 

time, a majority o f United States companies have become interested in the adaptation of 

expert systems. The technology has matured, many problems have been solved by 

research and development teams and the prices of the programs have come down. This 

leads us into the present state o f expert systems. Companies are building on and 

increasing the use o f expert systems, leading the market onward towards the 2 1 st 

century.

One of the goals of an expert system is for the computer to be able to make 

decisions without the help of human beings. In order to do this, knowledge must be 

represented in a way that the computer can understand and use it. Fuzzy logic's main 

purpose is to bridge the gap between human reasoning and computer programming. 

Fuzzy logic allows a computer to make decisions based on a rule set without the aid or 

dependence of human input. But, knowledge involves relationships between things. It is 

very difficult to grasp because people bring knowledge to the data through analysis. 

And, expert systems try to find a way for the computer to perform this analysis.

There are three different ways to express knowledge. The first way is to follow 

a specific set o f steps to achieve a particular result. This is known as procedural
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knowledge and is the basis for rule-based systems. This kind of system is used almost 

exclusively because it is easy to understand. Knowledge is represented as statements 

and rules, most commonly as if-then statements. There are two types of rules that are 

used, definitional and heuristic. Definitional rules show the relationship between terms 

and heuristic rules are used when there is incomplete evidence. No program could be 

developed to solve all possible solutions, but a system that uses heuristic rules can make 

reasonable guesses based on these rules and therefore, is generally more beneficial. In 

addition to these two types o f rules, there are two ways to group these rules. The simple 

way is to group all the rules together in one set and examine them all at once. The 

complex way is to divide the rules into subsets and examine them according to some 

search strategy. The variety chosen depends on what is trying to be accomplished. A 

second type of knowledge is declarative. This type knows that two or more terms are 

logically related. And the third type of knowledge uses hunches and rules of thumb 

learned from experience. This kind of knowledge is the hardest to represent to the 

computer because it doesn't have the experience.

In addition to rule-based systems, induction systems and hybrid systems can be 

used to represent knowledge.

Induction systems represent knowledge in a table o f attributes and values and 

then use an induction algorithm to convert the knowledge to a decision tree. Semantic 

nets can be used to describe knowledge in this type of system. They consist of arcs and 

nodes that are usually used to describe and illustrate larger relationships.
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Hybrid systems are the most complex. They combine object-oriented 

programming with rules. Knowledge in this context is represented in frames, a 

combination of descriptive and operational knowledge. This type of system is used 

when the description of knowledge is best thought of in terms of diagrams and models, 

but this form is rarely used because o f its complexity and incomprehensibility to users.

One of the primary means of constructing an expert system is through the use of 

rules. The basis of a rule-based system is to assemble a knowledge base of rules from 

which the system can make a decision. As mentioned earlier, rules are composed of an 

if-condition-then action format. The if  clause establishes a value or variable for which 

the information is found to exhibit. The then action section prescribes an appropriate 

action that should be taken. This type o f expert system is very similar to some concepts 

in fuzzy logic. That is why the area o f fuzzy expert systems have grown exponentially.

Case-based expert systems, as might be guessed, make decisions on the use of a 

warehouse of cases. The idea behind this system is to mirror human analogical 

reasoning. This process involves viewing the current situation and using your 

knowledge of previous experiences (cases) to find similarities. The solution or 

prescribed action from the previous case(s) can then be accepted or modified to the 

current situation. A comparison between rule-based and case-base systems is shown in 

Table 6-1. [21]

The concept of a  - cuts will now be resumed before the digression into the realm 

of expert system goes any further. But it must be noted that expert systems were in 

wide-spread acceptance before fuzzy logic was considered a worthwhile field o f study.
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Table 6  -  1 : Comparison between Rule-Based and Case-Based Expert Systems

Rule-Based Case-Based

Limited learning capabilities Learning is inherent in the architecture

Reasons using IF-THEN rules Reasons using situation-specific cases

Knowledge acquisition is time intensive Knowledge acquisition is less complicated

Time consuming to build and maintain because 

knowledge is dynamic

Easier to build and maintain because cases 

already exist

Difficulty with problems outside original scope Can solve problems outside original scope

Adding knowledge is complex and error-prone Adding knowledge is adding a case

Ideal for knowledge-rich domains Ideal for experience-rich domains

And recently, fuzzy logic has propelled the concept of expert systems to the next level 

with fuzzy expert systems.

As stated before, the a  - cut relies on an expert to interpret the horizontal portion 

of the fuzzy curve. Up to now only the vertical portion of the fuzzy set has been 

manipulated. There has only been concern with the degree of membership of the x in A 

(x) confined in the universal set X. Going back to the model example, Table 6  -  2 is an 

abbreviated list o f tall potential models, their height, and their degree of membership. 

Further illustrating this example, Graph 6  -  1 plots the model heights versus the degree 

of membership. The corresponding membership function is depicted in Equation 6  -  1 

and Equation 6 - 2 .  This is the point where fuzzy sets are linked to crisp sets. As an
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Table 6  - 2 : Set o f All Potential Models Mapped to a Fuzzy Set

Name Height Degree o f Membership

Angela 4 feet 8 inches 0

Anne 5 feet 2 inches 0.2

Bobbie 5 feet 5 inches 0.5

Crystal 5 feet 6 inches 0.6

Diana 5 feet 7 inches 0.8

Jessie 5 feet 11 inches 1

Karen 6 feet 1 inches 1

A (x) = 0/4-8 + 0.2/5-2 + 0.6/5-6 + 0.8/5-7 +1/5-11 + 1/6-1............Equation 6  -1

A (x) = 0/xi + 0.2/ xt + 0.6/ X3 + 0.8/ X4  + 1/ X5 + 1/ ....................Equation 6  -2

0 . 8 -----

Q.
0.6

CU 0 .4 -----

0.2  -  —

4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

Graph 6  -  1 : Potential Models Fuzzy Set with Horizontal Membership Lines
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example, the closed interval [X2  , X3 ] maps to [0.2, 0.6] in the fuzzy set. These can be 

classified as subsets that consists of all elements of X whose membership degrees in the 

fuzzy set are restricted to some given crisp subset o f [0, 1]. This restriction applied to A 

is known as a crisp subset “A o f the universal set X. This restriction is formally known 

as an alpha cut of A. which is defined in Equation 6 - 3 .  It must be noted that this

“A = {.x e X | A(x) > a } ....................................................................... Equation 6 -3

equation is valid for any a  e [0. 1]. The alpha cut makes a distinction between various 

crisp subsets by the choice o f an expert. There are three different properties of a fuzzy 

set that determine the property of the alpha cut. These properties are support, core and 

level. The support of a fuzzy set is shown in Equation 6 - 4 .  The support region of a 

fuzzy set is the non-zero membership in A of all elements in the universal set X. In 

other words the support area is any data point in A that has a greater than zero 

membership. In the model example this would be all potential models over 5 feet 1 

inches. The next property is called the core area. The core area of a fuzzy set is shown 

in Equation 6 - 5 .  This area represents all the data in A that has a full membership in A

supp(A) = °"A = { x e X |  A(x) > 0 } ..............................................Equation6 - 4

core (A) = '.A = {x e X | A(x) > 1} = {xe X | A(x) = 1}.............Equation 6 - 5
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0 .8 ------

0.6 06

£  0 .4 ---- 04

0.2 -  —

4.5 4.75 5.25 5.5: 5.75 6 6.25 6.53

Graph 6 - 2  : Potential Models Fuzzy Set with Horizontal Membership Lines

defined on a universal set X. In the potential model example this would be all the 

women greater than or equal to the height of 5 feet 8 inches. The last property is the 

concept of a level set. The level set is formally defined in Equation 6 -  6. A level set is 

a set of numbers which represents all distinct a  - cuts of A. A level set is a very 

important concept because this portion of the graph contains all of the alpha cuts. 

Considering the example of the potential model the level set would be all women with

L (A) = {a € [0. 1 ] | {A(x) = a  for some xe X }..........................Equation 6 - 6

heights between 5 feet 1 inch and 5 feet 8 inch. All alpha cuts are contained in this 

region.
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Another important fact about alpha cuts is that as the value of the alpha gets

smaller the region represented gets larger and as the value o f the alpha gets larger the

region represented gets smaller. This leads to Equations 6 — 7 and 6 -8. These two 

equations represent a common union and intersection operation on alpha cuts or crisp 

subsets. Equation 6 - 7  uses the intersection operation on two fuzzy subsets to achieve 

the result 02 A. It must be noted that a l<  a2 and alA is partly included in the region of

“*A n  1x2 A = 02A ....................................................................................Equation 6 - 7

alA u  ^ A  = alA .....................................................................................Equation 6 - 8

02A. This can also be seen in Graph 6 - 2  where0 6A dissects the fuzzy set and includes 

parts of the lower alpha cuts and hence, proves Equation 6 - 7 .  represents the 

intersection of two fuzzy subsets and the smaller alpha cut is the intersection. Like 

intersection the union operation also has the criteria of a l<  a2 and alA is partly 

included in the region of 02A. The union of the a  - cuts is performed in the same 

fashion as the union of crisp sets. As a result, the union operation on the alpha cuts is 

the exact opposite o f the intersection result. For the union operation, the data from two 

sets become joined into one set as shown in Equation 6 - 8 .

To get a better understanding of the order o f alpha cuts on A, Figure 6 -  1 is 

presented to convey this concept. This figure shows how alpha cuts include parts of
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0.8

0.6

0.4

0

4.75 5.25 5.5̂  5,75 6 6.25 6.5

'A

0 6

0 6

0.2

Figure 6 - 1 : Decomposition of Fuzzy Sets into Alpha Cuts
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0 8other alpha cuts. Take, for example. A shown in Figure 6 - 1 .  This alpha cut 

intersects all of the other alpha cuts in A. Figure 6  - 1 also shows the decomposition of 

the fuzzy sets with some of the alpha cuts. To represent a one line equation for 08A. one 

must first represent the characteristic equation for the containing fuzzy set. Equation

A = 0.2/xi + 0 .4/x t  +O.6/X3 +O.8/X4 + l / x j ........................................ Equation 6 - 9

02A = l/xi + l/x 2 + I /X 3  + I /X 4  + I / X 5 ............................................... Equation 6 - 1 0

04A = 0/xi + l/xi +I/X3 +I/X4  -+- I/X5 

06A = 0/x, + 0/x2 +I/X3 +I/X4  + l/x 5 

08A = 0/xi + 0/x2  +O/X3 +I/X4  + 1/xs 

1 °A = 0/xi + 0/x2  +O/X3 +O/X4  + I/X5

6 - 9  shows the characteristic equation for fuzzy set A contained in the universal set X. 

The next step is to show how the previous fuzzy set can be represented by its alpha 

cuts. The fuzzy set has five distinct alpha cuts that each has a respected characteristic 

equation. These characteristic equations are shown in Equation 6 - 1 0 .  Each 

characteristic equation has a definite membership in other fuzzy quantities. For 

example, the alpha cut 06A has a definite membership of 1 in X3, X4, and X5 and a 

membership of 0 in xi, x2. This means that the alpha cut 06A contains the data 

represented by X3, X4, and X5 From Equations 6  -7  and 6 - 8 , and Figure 6  -  1. one can 

easily prove the union and intersection operations o f alpha cuts.[7]
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A term mentioned previously in this chapter is the concept of decomposition of 

fuzzy sets. This is an important concept because it proves that the representation of 

fuzzy sets and their alpha cuts are universal. This theory can be illustrated by a special 

case o f fuzzy sets shown in Equation 6 - 1 1 .  It is now possible to convert Equation 6 -

aA (x) = a  • aA (x)...........................................................................Equation 6- 11

10 with the assistance o f Equation 6 -  11 to obtain a result shown in Equation 6 - 1 2 .  

This result shows partial membership for different alpha cuts where before there was 

complete membership. This last step completes the decomposition of fuzzy set A to the 

special fuzzy set aA. It must also be noted that this definition of a special fuzzy set 

applies to any fuzzy set defined on a finite or infinite universal set X. Since the 

decomposition is complete, it would be prudent to reconstruct the original fuzzy set

0 .2  A = 0.2/xi + 0.2/xi +O.2 /X3 +O.2 /X4  + O.2 /X5 ................................Equation 6 - 1 2

0 .4 A = 0/xi + O.4 /X2 +O.4 /X3 +O.4/X4 +  O.4/X5 

0 .6 A = 0.x 1 + O/X2 +O.6/X3 +O.6/X4 + O.6/X5 

0.8A =  0/x i  +  O/X2 +O/X3 +O.8/X4 +  O.8/X5 

1.0A = 0/xi +  O/X2 +O/X3 +O/X4 + I/X5
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A from the decomposed fuzzy set aA. This is done by the standard fuzzy union 

operation applied to Equation 6 - 1 2 .  It is easy to see from Equation 6 - 1 3  that the 

standard fuzzy union o f the five special fuzzy sets in Equation 6 -  12 is exactly the 

original fuzzy set A.

A = o. 2 A u  o.4A u  0  6A u  o.gA u  1A .................................................Equation 6 - 1 3

Complement is another important operation in crisp set and fuzzy set theory. In 

alpha cuts, however, the concept o f complementation takes on a totally different 

meaning. The alpha cut of a complement of A has two distinct and different definitions.

The first is the alpha cut o f the complement o f A. denoted by °(a ); the second is the

a —
complement of the alpha cut A. which is denoted by A. As shown in Equation 6 - 1 4 .  

the alpha cut of the complement of the alpha cut A and the alpha cut of the complement 

of A are not equal. Revisiting the potential model example, an alpha cut of 0.4 is

(a ) * A  Equation 6 - 1 4

carried out on the fuzzy set A. The fuzzy set is dissected by the alpha cut, which in turn 

intersects the complement. At this point o f intersection both the fuzzy set and its

complement can be investigated. The alpha cut of the complement of A, "(a ), is 

extruded from the fuzzy set to the orgin in Figure 6 - 2 .  There is a closed interval and
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an open interval representing this section . The other complement of the alpha cut

0 . 8 ------

C.
-  0.6

X

0.2

4.5 4.75 5.25 5.75 6.25 6.5

a A

Figure 6 -  2 : Two Different Complements o f an Alpha Cut of Fuzzy Set A

A. A . is sightly larger than the previous complement °(a ), but it depends on the 

orginal fuzzy set. However the two complements will never be equal no matter the 

fuzzy set.

These previous operations concerning alpha cuts on fuzzy sets are just the basic 

operations. Listed in Equations 6 -  15. 6 -  16, and 6 -  17 are other fuzzy identities with 

fuzzy sets A and B dissected by alpha cuts. These identities cover the addition,
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subtraction, and multiplication on alpha cuts and also prove that alpha cuts react the 

same way to distributivity as crisp sets.

(A + B) a  = A a + Ba Equation 6 - 1 5

(A - B) a  = Aa - Ba Equation 6 - 1 6

(A • B) a  = Aa • Ba Equation 6 - 1 7

Alpha cuts can be characterized as one of the most important concepts of fuzzy 

sets, and strong alpha cuts are no exception. The strong alpha cut is very similar to the 

regular alpha cut in definition. The only difference is that for the strong alpha cut the 

membership grades in the given set are greater than the specified value of alpha. In 

regular alpha cuts the membership grade is greater than or equal to the specified value 

of alpha. The strong alpha cut is shown formally in Equation 6 - 1 8 .  Also it must be

noted that when expressing the strong alpha cut, it is always included in the alpha cut of 

any fuzzy set and for any a s  [0, 1 ] contained in the universal set X. This statement is 

proven by the previous Equations 6 - 3  and 6 - 1 8 .  This concept is shown formally in 

Equation 6 - 1 9 .  Other identities that represents the strong alpha cut on fuzzy sets are

A = {x € X | A(x) > a} Equation 6 - 1 8
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shown in Equations 6 -  20. 6 -  21, and 6 - 22. These identities can be

a~A e aA  Equation 6 - 1 9

extended to include regular alpha cuts. To clarify a point in some of the identities, it is 

assumed that a l  > a2  and they both are defined in any fuzzy set and for any a  e  [0. 1] 

contained in the universal set X.

al~A n  “^ A  = “^ A ............................................................................. Equation 6 - 20

al~A u  “^ A  = al~A Equation 6 - 2 1

a_,A u B )  = a' A u a*B .......................................................................Equation 6 -22

a~(A n  B) = a~A n  a "B .......................................................................Equation 6 -23

u( A ) = (l ' a)"( A )............................................................................... Equation 6 -24

a' ( A )  *  a~ A ..................................................................................... Equation 6 -25

The next topic of advanced property o f fuzzy sets is known as the extension 

principle. The extension principle is an operation for fuzzifying crisp functions. This is
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an evolution of this dissertation because formerly this paper has examined similarities 

and differences between crisp sets and fuzzy sets. This led to the development of 

computation with fuzzy sets where there is a need to find a way to take traditional crisp 

set functions and fuzzify said function.

Consider the basic definition of a function shown in Equation 6 - 25 .  A function 

maps a set of data to another set of data. An equation may be as simple as a negation or 

complex as an nth degree polynomial. But the operation o f the function does not

change in any instance. The equation for the fuzzifying crisp set is very similar to the 

generic function equation . The fuzzifying equation is shown in Equation 6 -  26. This 

equation takes data from fuzzy set X and transposes them to fuzzy set Y. The inverse of

this equation is found in Equation 6 -  27. To further explain this concept, the potential 

model example shall be called upon. The data set shall be modified to assure true 

representation of the extension principle in its entirety. The data set that has been 

developed throughout the previous chapters is height versus potential models. Each

/ : X - >  Y Equation 6 -25

/  : J (X ) -* J (Y ) Equation 6 -26

f '  : 7(Y) -+ 7(X) Equation 6 -27
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data point corresponds to a discrete case, in other words a young woman. Assume that 

some of the potential models met the height requirement and became professional 

models. There is another concern of the modeling agency, model pay. Now that the 

potential models are placed in a data set of all professional models, their pay should be 

different than an experienced model. Each photo shoot pays the professional models 

salaries ranging from 500 dollars to 4000 dollars. There is also an assumption in this 

example that the model with the most experience is very beautiful and highly sought 

after by advertising companies. Also, the modeling agency has very high standards and 

does not allow a model to stay with the agency if her popularity rating does not continue 

to increase with time. To extend this example, one could consider the experience o f the

Table 6 -  3 : Model Experience and Model Pay

Months of Experience Salary per Photo Shoot

0 500

6 1000

12 1500

18 2000

24 2500

30 3000

36 3500

42 4000
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professional model in months and her corresponding salary. The data of the 

professional model's experience and salary are shown in Table 6 -  3. In the table one 

side does not necessarily correspond to the other. For example, that if a professional 

model has 12 months experience, her salary per photo shoot may not be 1500 dollars. 

The table is not reversible from salary to experience either. The reason for this is that a 

professional model salary may be, for example. 1500 dollars and the corresponding 

level of experience is 12 to 18 months. But. if the inverse of the function was 

considered, correlating experience to salary, the 12 month experienced model would be 

correlated with the 1500 dollar salary. The reason for this is that a function has one real 

answer only and hence one of the experience levels will be left out. Also, designating 

the young professional model's salary is another problem for the modeling agency. It 

must be noted that experience and not age of the model corresponds to young in this 

case.

To contend with the previous problem, the extension principle is used. But first

the data sets found in Table 6 - 3  have to be fuzzified. This can be done by a set of

criteria found listed below:

1. Models start to gain experience around one year.

2. Models are very experienced when they have worked three and a half years.

3. Young models never get over 3000 dollars per photo shoot.

4. All young models start at 500 dollars and work their way up in pay.
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From this criteria two graphs can be constructed. One graph shows the concept 

of inexperience of a professional model. The other graph focuses on the pay per photo

0 . 8 ____

0.6c.

0.4E
2

0.2

0 6 12 18 24 30 36 42 48

Months o f  Experience 

Graph 6 -  3 : Fuzzy Set o f  Inexperienced Professional Models

0.8

0.6c.

■f 0.4 5 
2

0.2

500 1000 1500 2000 2500 3000 3500 4000 4500
Model Salary per Photo Shoot

Graph 6 -  4 : Fuzzy Set o f  Inexperienced Professional Models Salary per Photo 
Shoot
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Months o f  Experience

0 6 12 18 24 30 36 42 48
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0.2

0.2
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-§ 0.6

0.8

500 1000 1500 2000 2500 3000 3500 4000 4500
Model Salary per Photo Shoot

Figure 6 -  3 : Extension Principle Applied to Salary and Experience Fuzzy Sets
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shoot. These two concepts are shown in Graphs 6 - 3  and 6 - 4 .  Instead of using 

experience and pay related to experience as the deciding factor, the opposite is used to 

show the flexibility o f fuzzy sets. Also, the graphical data is shown is a one-line 

function in Equation 6 - 2 9 .  This was done after modifying Equation 6 - 2 5  and 

solving for the B in Equation 6 - 28. The notations o f A and B are referred to the two 

fuzzy sets considered in this example, months o f inexperience and pay per shoot, 

respectively.

A(x) = B • J i x ) ....................................................................................Equation 6 - 2 8

B = l//(0) + 1 //6 )  + 1//12) + 0.8//(18) + 0.6//(24) + ..............Equation 6 - 2 9

0 .4 //3 0 )  +0.2//36) + 0 //4 2 )  = 1/500 + 0.8/1000 +

0.6/1500 +0.4/2000 +0.2/2500+ 0/3000 + 0/3500 +

0/4000

The former two graphs are combined and mapped together to form Figure 6 - 3 .  This 

figure shows how the extension principle is used to map a fuzzy set or to connect one 

fuzzy set to another. These sets had a common factor involving the inexperience o f a 

professional model, but this is not a prerequisite for the extension principle. [29]

The former example is of a discrete nature, but not all fuzzy sets are discrete. 

Equation 6 - 3 0  shows a continuous function defined on the set of real numbers. The
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[/(*4)](y) = sup A(.x) .................................................................. Equation6-30
c y =  f i x )

sup in the equation is known as supremum or least upper bound. The supremun is 

defined if X is a subset of the set 7 . o f real numbers. If there is a real number u such 

that x is greater than u for every x in X. then u is known as the least upper bound.

The last topics of this chapter are t -  norms and t -  conorms o f fuzzy sets, which 

are considered the basic connectives for fuzzy logic. These are done by modeling the 

logical connector “and” and "or.” The logical connector "and” is known as the t -  

norm: the "or" logical connector is considered to be the t -  conorm. These two 

operations represent the intersection and union of fuzzy sets in logical terms, 

respectively. This section will introduce the concept of basic connectives used in 

combining knowledge that comes from fuzzy sets defined in the universal set X.

The t - norm is the intersection of two fuzzy sets A and B specified in general by 

a binary operation. If A and B are ordinary subsets of the universal set X. then there 

can be a truth evaluation of "A and B” in terms of the possible truth values 0 and 1 of A 

and B. Figure 6 - 4  shows the binary "and” equivalent for the t -  norm or intersection 

action. Taking Figure 6 -  4 in consideration and adding any function /, one can write 

Equation 6 - 3 1  as the binary operation on the unit interval. To transform

A

\  0 1 
B \

0 0

0 1

Figure 6 -  4 : Binary Operation "And” Connector
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i : [0. 1] x [0. I] —► [0. 1] Equation 6- 31

this definition from a binary operation to a set operation, the intersection operation used 

in crisp sets is utilized. Equation 6 - 3 1  considers a pair o f sets consisting of the 

element's membership grades in sets A and B and yields the membership grade of the 

element in the set constituting the intersection of A and B. The function z in Equation 

6 - 3 1  can be any function that qualifies as a fuzzy intersection. For z to qualify as a

(A n  B) (x) = z [A(x). B(x)]..............................................................Equation 6 - 3 1

fuzzy intersection, necessary and sufficient. Axioms 6 -  1 through 6 - 7  must be 

satisfied. These axioms are defined on the unit interval with the common assumption 

that a. b. d e[0. 1],

z (a. 1) = a ................................................................................................... Axiom 6 - 1

b < d implies / (a. b) < / (a. d)................................................................... Axiom 6 - 2

z (a. b) = z (b. a).......................................................................................... Axiom 6 -3

z (a, z'(b, d)) = /(/(a. b), d)...........................................................................Axiom 6 - 4
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/ is a continuous function.........................................................................Axiom 6 - 5

/ (a. a) < a .................................................................................................. Axiom 6 - 6

ai < ai and bi < b2  implies . i (ai < bi) < / (a2  < b2 ).............................. Axiom 6 - 7

The t - conorm is the union of two fuzzy sets A and B specified in general by a

binary operation. This action is very similar to the t - norm or intersection operation. If 

A and B are ordinary subsets of the universal set X. then there can be a truth evaluation 

of "A or B" in terms of the possible truth values 0 and 1 of A and B. Equation 6 - 3 2  

shows the binary “And" equivalent for the t -  conorm or union action. To transform

u : [0. 1] x [0, 1] —> [0. 1].................................................................... Equation 6 - 3 3

this definition from a binary operation to a set operation, the union operation used in 

crisp sets is utilized just like the intersection operation is used in t - norms. Equation 

6 - 3 3  considers a pair of sets consisting o f the element's membership grades in sets A 

and B and yields the membership grade o f the element in the set constituting the union 

of A and B. The function u in Equation 6 - 3 1  can be any function that qualifies as a 

fuzzy union. For u to qualify as a fuzzy union, as a minimum. Axioms 6 - 8  through

(A kj B) (x) = u [A(x), B(x)] Equation 6 - 3 4
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6 - 1 4  must be satisfied. These axioms are also defined on the unit interval with 

the common assumption that a. b. d e[0. 1].[15]

u (a. 0) = a ................................................................................................. Axiom 6 -8

b < d implies u (a. b) < u (a. d).................................................................Axiom 6 -9

u (a. b) = u (b. a).......................................................................................Axiom 6 - 10

u (a. r/(b. d)) = u{u{a. b). d) Axiom 6-11

u is a continuous function Axiom 6 - 12

u (a. a) > a Axiom 6-13

ai < ai and bi < bi implies u (ai < bi) < u (ai < b2 )  Axiom 6 - 1 4
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CHAPTER VII

FUZZY MATHEMATICS

The basics of conventional mathematics are the manipulation of numbers. This 

manipulation may be addition, subtraction, multiplication, or division of these numbers. 

Fuzzy mathematics is very similar to conventional mathematics in this area. But where 

numbers are manipulated in conventional mathematics, fuzzy numbers are manipulated 

in fuzzy mathematics. This is where the similarity breaks down between the two types 

of mathematics.

It is apparent how to represent a number in conventional mathematics, but it is 

not that apparent in how to define a fuzzy number. As the concept of fuzzy logic is 

rooted in vagueness, so is fuzzy numbers. Fuzzy numbers are not that uncommon to a 

person in every day life. At one time or another people say. it's about 2 o'clock. I have 

donated approximately 2.000 dollars to charity, or she's about 6 feet tall. Fuzzy 

numbers have attributes of conventional numbers but with the addition of a linguistic 

modifier. These modifiers are very important to the concept of fuzzy numbers. A 

linguistic modifier can make a big difference in the range o f a fuzzy number. For 

example, one can say. she is almost 6 feet tall or she is about 6 feet tall. The modifier 

"almost" relays the concept o f very close to a specific height. The modifier "about" 

dredges up the feelings of someone being 3 to 4 inches from the desired height. The
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linguist modifier allows many fuzzy numbers with the same specific underlying 

numerical value to have drastically different fuzzy values. The concept of a fuzzy 

number is formally shown in Equation 7 -  1. This equation states that a fuzzy number 

A is expressed by a membership function. Different types o f fuzzy numbers are shown 

in Figures 7 -  1 through 7 - 3 .  The first fuzzy number (Figure 7 - 1 )  has a triangular 

shape. This fuzzy number is found extensively in control applications where fuzzy 

logic is utilized. Also, this type of control theory is known as fuzzy control and will be 

discussed in coming chapters. This fuzzy number is define by four points on the x-axis. 

a  b. c. and d. These points represent real numbers, and f(x) and g(x) stand for functions 

defined in a closed interval. It can be gathered from the presentation of this fuzzy 

number that Equation 7 -  1 does not represent all fuzzy numbers but it does convey the

A: —> [0. 1]...................................................................................... Equation 7 -  1

f(x) g(x)

b = c

Figure 7 -1 : Triangular Fuzzy Number
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ftx) g(x)

Figure 7 -2  : Trapezoidal Fuzzy Number

Figure 7 -3 : Bell Shaped Fuzzy Number
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concept o f the membership around a real number. The real number that is the focus of 

this fuzzy number is b and c. It must be noted that b and c are the same point, hence the 

same real number. To define this type and other types of fuzzy numbers, interval 

analysis must be applied. The concept of interval analysis of a function is an old and 

proven area in mathematics. A membership function that conforms to the conception of 

a set of numbers that are around a given real number or an interval of real numbers is 

shown in Equation 7 - 2 .  The functions f(x) and g(x) in Equation 7 -  2 are

A (x) = <

f  f(x) for x e [a. b].................................................. Equation 7 - 2

I for x e [b. c]

g(x) for x e [c. d]

0 for x < a and x > d

continuous which increase to 1 at point b and decrease from 1 at point c. respectively. 

The second fuzzy number is of a trapezoidal shape and is shown in Figure 7 - 2 .  This 

fuzzy number is sometimes called a fuzzy interval. The two names are frequently used 

interchangeably in various fuzzy logic texts. This dissertation shall take the standpoint 

of classifying fuzzy numbers and fuzzy intervals as fuzzy numbers. The trapezoidal 

fuzzy number is defined by four distinct points a. b, c, and d. The two points b and c 

display an interval within an interval. This flat plateau has full and continuous 

membership between b and c. The interval defines a place where this fuzzy number is 

in fact a set of real numbers.[27]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

The model example will be revisited to further explain this concept. The idea of 

fuzzy numbers allows this example to approach real world conditions because, when 

picking a group of people or beautiful women out o f a larger an all inclusive group, 

some criteria must be established. Height is one criterion that has been considered in 

this example so far. But the membership function was all inclusive on one end (short 

models) and restrictive on the other extreme (tall models). The trapezoidal fuzzy 

number allows the models height to be all inclusive or in full membership over a range 

of heights. For example, the modeling agency could say any girl between 5 feet 7 

inches and 5 feet 10 inches should be picked, and some girls around these heights will 

be considered. This fuzzy number considering the models is shown is Graph 7 -  1. 

This is how decisions are made in the real world. Vagueness is becoming more and 

more prevalent in this example because of the complexity of the English language. But 

fuzzy numbers account for this lacking o f precision with intervals o f real numbers. The 

linguistic modifier used in this example is "around". The dilemma is how far from the 

interval does "around" represent? This is a very elementary' concept because when 

someone uses a linguist modifier they have a crude, maybe even very precise, idea of 

the including area of acknowledgement. In this example the area around the interval is 

represented by 2 inches, one inch on both sides of the core number, which is also shown 

in Graph 7 -  2.[13]

Before venturing any further into fuzzy numbers some statements must be made 

about their construction. All true fuzzy numbers must conform to the following:

1. Fuzzy numbers are normal fuzzy sets.
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2. The alpha cuts of every fuzzy number are closed intervals of real numbers.

3. The support of every real number is the open interval of real numbers.

4. Fuzzy numbers are convex fuzzy sets.

5 ’ 6 "  5 * 7”  5 ' 8 ”  5 ’ 9 ”

Height

Graph 7 -1 : Trapezoidal Shaped Fuzzy Number of Model Height Parameters

These properties are very essential to be able to perform arithmetic operations on fuzzy 

numbers. The first criterion means that the fuzzy set must have a height o f one. If the 

fuzzy set does not have a height o f one it is called a subnormal fuzzy set. This concept 

o f a normal fuzzy set suggests that the core o f the fuzzy set not be empty as well. The 

second statement conveys the concept o f alpha cuts being closed intervals of real 

numbers. This is a very important statement because the closed interval concept allows 

interval arithmetic to be performed on fuzzy numbers. Each alpha cut represents a 

small piece or slice o f the fuzzy number. If this slice is defined on a closed interval, it
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is considered to be a conventional interval of real numbers. And hence, conventional 

interval mathematics can be performed on said intervals. The third criterion states that 

the support of the real number is the open interval of real numbers. This simply means 

that the realm were the fuzzy number is defined, between zero and one. contain all real 

numbers. The support is the portion o f Graph 7 - 1 that is between heights 5 feet 6 

inches and 6 feet. Since this is an open interval the end points are included in the 

representation. The last criterion states that fuzzy numbers are convex fuzzy sets. 

Fuzzy sets can be convex or show no conformity to convexion. A convex fuzzy set is 

intersected by an alpha cut twice. If there are multiple intersections on the fuzzy set it is 

considered to be non-convex. This concept of convexity and a fuzzy set is shown in

(a)

C_

ZJ_c

Figure 7 - 4 : (a) Convex Fuzzy Set, (b) Non-Convex Fuzzy Set

Figure 7 - 4 .  The triangular and trapezoidal fuzzy numbers are very common, even 

popular, but they are not the only types o f fuzzy numbers. Shown in Figure 7 - 5 are 

other types of fuzzy numbers similar to triangular and trapezoidal shapes. Another type 

of fuzzy number is one that enjoys smooth transition from zero to one and back to zero.
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a = b = c b = c =d

b = c

Figure 7 - 5 : Other Types of Triangular and Trapezoidal Shaped Fuzzy Numbers
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Figure 7 - 6 : Other Types of Gaussian and Exponential Shaped Fuzzy Numbers
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The fuzzy number pictured in Figure 7 - 3 is called a bell shaped or a Gaussian fuzzy 

number. This fuzzy number is very useful in representing averages of large sets. Also, 

the Gaussian function has no sharp or sudden inclusive points that convey full 

membership. Other fuzzy numbers of this type and other popular types are shown in 

Figure 7 - 6.[30]

Another concept used in fuzzy numbers is called a linguistic variable. This 

takes the idea o f a linguistic modifier one step further. These are variables whose states 

are fuzzy numbers. The occurrence o f a linguistic variable happens because fuzzy 

numbers represent linguist concepts, such as very short, short, average, and so on. The 

linguistic variable allows manipulation on a base variable. This base variable is a 

collection o f real numbers within a specific range. Base variables fall into two different 

categories:

1. Physical variable

2. Numerical variable

The physical variable is a description of a real world event. This event must be 

measurable by some physical means. Pressure, temperature, wind velocity, and light 

intensity are all physical variables. Examples of numerical variables are salary, 

efficiency, and interest rates. These variables do not represent a measurable real world 

event. One may contest that a salary is measurable with money but the basic idea of a 

salary is not measurable physically.
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The linguistic variable can be very useful in the model example. The linguistic 

variable allows a greater degree of selection and complexity to the concept of height. 

This is done by assigning height as the base variable and very short, short, medium, tall, 

and very tall as the linguistic modifiers. The model example utilizing the concept of 

linguistic variables has several membership functions, which convey a complete aspect 

of height. This is shown in Figure 7 - 7 .

It must be noted that every linguistic variable is characterized by five distinct 

elements. The five terms representing these elements are v. T. X. g. and m. and each 

term is listed below with its definition.

1. v is the name of the linguistic variable

2. The set of linguistic terms of v that refers to a base variable is known as T.

3. The universal set where all variables exist is denoted by X.

4. g  is the syntactic rule for generating linguistic terms.

5. m is a semantic rule that assigns to each linguistic term its meaning.

The statements above characterize a linguistic variable and can be applied to the 

model example. In Figure 7 -  7 a complete range of fuzzy numbers were used to 

develop the concept of height. The base variable in this example is defined on the x- 

axis. Five different fuzzy numbers subdivide the numerical range of different model 

heights. Three of the fuzzy numbers are trapezoidal and the other two can be classified 

as a degenerate case of the trapezoidal shape. As seen in Figure 7 - 7  these fuzzy 

numbers overlap each other. This overlap is not a combination of the fuzzy numbers
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but it is a distinct period of contradiction. The reason for this contradiction is that a 

height can be associated to more than one membership value corresponding to more 

than one fuzzy number. At first glance it is not apparent on which membership value 

the height corresponds. This will be defined by conditional rules, which are covered in 

the next chapter. It must also be noted that any o f the other types of fuzzy numbers 

could have been used in place of ones found in Figure 7 -  7. [20]

Interval analysis is an area in mathematics that allows the description of 

uncertainty about the actual value of a numerical variable. Fuzzy numbers, with the 

assistance of alpha cuts, are classified as real number intervals. With this distinction 

interval mathematical operations can be applied. Typical arithmetic operations on 

intervals include addition, subtraction, multiplication and division. Using the model 

example, consider two intervals defined between 4 feet to 5 feet and 5 feet to 6 feet in 

height. These intervals represent no contribution to the example at hand. But it does 

supply two sets of intervals for arithmetic interval operations. The operations on these 

intervals are shown in Equations 7 -  3 to 7 - 15 and diagrams 7 -  8 to 7 -  11. In the

interval division example 0 is assumed not to be one of the elements c or d.

[4. 5] and [5. 6]..................................................................................Equation 7 - 3

[a. b] + [c. d] = [a + c. b + d].............................................................Equation 7 - 4

[4. 5] + [5. 6] = [4 + 5, 5 + 6] Equation 7 - 5

[9.11] Equation 7 - 6
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Height

Figure 7 -  8 : Interval Addition

[a. b] - [c. d] = [a - d. b - c]...................................................................Equation 7 - 7

[4. 5] - [5. 6] = [4 - 6. 5 - 5]...................................................................Equation 7 - 8

[-2. 0]....................................................................................................... Equation 7 - 9

 ►

3 4 5 6 7 8 9 10 11 12

Height

Figure 7 -  9 : Interval Subtraction

[a. b] • [c. d] = [min (ac, ad. be, bd), max(ac, ad, be, db)] Equation 7 - 1 0

[4. 5] • [5. 6] = [min(4 • 5). (4 • 6), (5 • 5). (5 • 6) Equation 7 - 1 1

max(4 • 5). (4 • 6), (5 • 5), (5 • 6)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

[20. 30].................................................................................................Equation 7 -  12

- 2 - I 0 I 

Height

3 4 5 6

Figure 7 -  10 : Interval Multiplication

[a. b] / [c. d] = [a. b] • [I d. 1 c]..................

= [min (a / c. a / d. b / c. b / d).

max (a / c. a / d. b / c. b / d)]

.Equation 7 - 1 3

[4. 5] / [5. 6] = [min(4 / 5). (4 / 6). (5 5). (5 6)...

ma\(4 5). (4 ' 6). (5 5). (5 6)]

.Equation 7 - 1 4

[0.67. 1].................................................................................................Equation 7 - 1 5

4 5 6 7 8 19 20 21 22 23 24 25 26 27 28 29 30 31

Height

Figure 7 - 1 1 :  Interval Division

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Interval mathematics is an excellent tool for fuzzy numbers because of its ease 

of implementation. But there are some drawbacks when the interval operations are 

applied to fuzzy numbers. The addition and subtraction interval operations are well 

suited to trapezoidal and triangular fuzzy numbers, although this is a one-dimensional 

solution to interval mathematical problems. Fuzzy numbers have a degree of 

membership, and this solution falls apart brought the two-dimensional realm concerning 

different types o f fuzzy numbers. However, interval addition and subtraction can be 

applied to the four fuzzy numbers shown in Graphs 7 - 2  and 7 -  3.

c.

0

c .

b.

0

(a) (b)

Graph 7 - 2 : (a) Triangular Shaped Fuzzy Number with a Defining Interval [3. 5] 
(b) Triangular Shaped Fuzzy Number with a Defining Interval [4. 6]
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a .
S.L.

0

c .

0

(a) fb)

Graph 7 - 3 : (a) Trapezoidal Shaped Fuzzy Number with a Defining Interval [2. 5] 
(b) Trapezoidal Shaped Fuzzy Number with a Defining Interval [3.6]

These fuzzy numbers are o f triangular and trapezoidal shapes and can be 

operated on by interval addition and subtraction. Graphs 7 - 4  and 7 -  5 are the results 

of the addition and subtraction of the fuzzy numbers found in Graphs 7 - 3  and 7 - 4 .  It 

must also be noted that multiplication and division are not applicable to fuzzy numbers 

in the simplified form. Therefore, alpha cuts must be utilized to perform arithmetic 

operations on fuzzy numbers. To formulate any of the four basic arithmetic operations 

on arbitrary fuzzy numbers, one represents the numbers by their alpha cuts and employ 

interval arithmetic to the alpha cuts. In order to develop this concept, one first must 

consider two fuzzy numbers. A and B. and let * denote any of the four interval 

arithmetic operations. Then, for each interval the alpha cut o f A * B is defined in terms 

of the alpha cuts o f A and B. This is formally defined by Equation 7 - 1 6 .  In the case

“(A * B) = aA * aB.............................................................................Equation 7 - 1 6
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of division. B cannot contain zero in its interval. Once alpha cuts “(A * B) are 

determined, the resulting fuzzy number A * B is expressed by Equation 7 - 1 7 .  where

A * B = U a(A * B)........................................................................Equation 7 - 1 7
t f € ( 0 . 1 |

u  is the standard fuzzy union of a special fuzzy set defined for each x e X. 

Considering the former, all arithmetic operations can be applied to the two triangular 

shaped fuzzy numbers found in Graph 7 - 2 .  The formulas for these two fuzzy numbers 

are shown in Equations 7 - 1 8  and 7 - 1 9 .  But first the intervals must be defined to 

satisfy the requirements of alpha cuts. These requirements were covered in Chapter VI.

Cl

■s.
z>

- C

1)

0

Cl

_C
C /5

fiJ -C
ZJ

0

- J

(a) lb)

Graph 7 - 4 : (a) Addition of Two Triangular Shaped Fuzzy Numbers with 
Defining Intervals [3, 5] and [4, 6]

(b) Subtraction o f Two Triangular Shaped Fuzzy Numbers 
with Defining Intervals [3, 5] and [4.6]
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a.

0 0

(a) (b)

Graph 7 - 5 : (a) Subtraction of Two Trapezoidal Shaped Fuzzy Numbers with 
Defining Intervals [2. 5] and [3. 6]

(b) Subtraction of Two Trapezoidal Shaped Fuzzy Numbers with 
Defining Intervals [2, 5] and [3. 6]

The fuzzy number defined by A(x) is dissected by an alpha cut and is shown in 

Figure 7 - 1 2 .  This is very important because this alpha cut forms two end points which 

can be classified as an interval. This interval is of general format and the fuzzy number

0 for x < 3 and x > 5.............................. Equation 7 - 1 8

A (x) = J (x - 3) for 3 < x < 4

(5 - x) for 4 < x < 5

r 0 for x < 4 and x > 6 .............................. Equation 7 - 1 9

(x - 4) for 4 < x < 5

(6 - x) for 5 < x < 6
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c_
c/5
UrnZJ

0

“ A

Figure 7 - 12 : Alpha Cut Applied to a Fuzzy Number

B(x) would be very similar to Figure to 7 -12. so a graphical example is not pursued.

The interval defined in Figure 7 - 12 is more precisely defined by its endpoints 

in Equations 7 - 2 0  and 7 - 2 1 .  These equations are referenced back to Graph 7 - 2  

where fuzzy numbers are defined by A(x) and B(x). The endpoints of the intervals

“A = [aai. aa2 ].......................................................................................Equation 7 — 20

“B = [“bi. “b i].......................................................................................Equation 7 - 2 1
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defined by the alpha cuts are substituted into the formula of both functions (Equations 7 

- 18 and 7 - 19). which are shown in Equations 7 - 2 2  through 7 - 25. These previous 

equations can be considered as transforming the formulas from the x domain to the 

alpha domain. But since this is a direct translation this terminology would be 

considered redundant.

A (aai) = (aai - 3) = a ........................................................................... Equation 7 - 2 2

A (“ai) = (5 - “ai) = a ........................................................................... Equation 7 - 2 3

B (abi) = (abi - 4) = a ........................................................................... Equation 7 - 2 4

B (“bj) = (6 - “bi) = a ........................................................................... Equation 7 - 2 5

The reason for these substitutions is to find the value of the endpoint associated 

with alpha cuts. Equations 7 - 2 2  through 7 - 2 5  display the intervals that

*ai -  3 + a  Equation 7 - 2 6

xa2  -  5 - a  Equation 7 - 2 7

xbi = 4 + a  Equation 7 - 2 8
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ab2 = 6 - a ..............................................................................................Equation 7 -2 9

are associated with an endpoint. These equations are set equal to the alpha cut that is

transposed to the x axis. Solving for the endpoint variable is done for each part of the

two fuzzy numbers and is shown in Equations 7 - 2 6  through 7 - 29. From these 

equations. aai. “a2 - “b|. and ab2  can be substituted into Equations 7 - 2 0  and 7 - 2 1  to 

achieve Equations 7 - 3 0  and 7 - 3 1 .  Equation 7 - 32 is the representation of both alpha

“A = [3 + a . 5 - a ] ................................................................................Equation 7 - 3 0

“B = [4 t a . 6 - a ] ................................................................................Equation 7- 31

a( A * B ) = [3 -r a . 5 - a] * [4 + a . 6 - a ]  Equation 7 - 3 2

cut endpoints or alpha intervals o f the corresponding fuzzy numbers. The * operation 

represents all arithmetic operations for the two endpoints considered.

The first operation explained is addition. Using the Equation 7 - 4 on the four 

endpoints. Equation 7 -  33 is generated. From this equation simple interval arithmetic 

is applied and the result is Equation 7 -  34. followed by Equation 7 - 3 5 .  Equation 7 -  

36 finds out where these endpoints are valid. Each equation is set equal to x and 0 and 

1 are substituted in for alpha. The result of Equation 7 -  36 is 7 -  37, which represents
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a( A + B ) = [3 + a . 5 - a] + [4 + a . 6 - a ] ....................................... Equation 7 -3 3

“(A-^-B ) = [3 + a  + 4 + a. 5 - a  + 6 - a ] ....................................... Equation 7 - 3 4

a( A t  B ) = [7 + 2a. 11 - 2a]............................................................ Equation 7 - 3 5

7 + 2a = x and 11 - 2a = x ................................................................ Equation 7 - 3 6

closed and open-ended intervals for which these equations satisfy the definition of alpha 

cuts. Equation 7 -  38 is the solution of 7 -  36 when alpha is solved for and the equation

x e  (7. 9] and x e [9. 11)................................................................ Equation 7 - 3 7

is solely comprised of the element x. Taking all the previous information into 

consideration the equation of the new fuzzy number is shown in Equation 7 -  39. The 

equation is plotted in Graph 7 - 7  along with the fuzzy numbers A and B. Subtraction.

a  = (x - 7)/2 and a  = (11 - x)/2....................................................Equation 7 - 3 8

multiplication, and division are all done in the same fashion. Subtraction is represented 

by Equations 7 - 4 0  through 7 - 4 6  and Graph 7 - 7 .  Multiplication is shown by 

Equations 7 - 4 7  through 7 - 5 3  and Graph 7 - 8 .  And finally division is represented by 

Equations 7 - 5 4  through 7 - 5 9  and Graph 7 - 9 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A + B

“( A - 

“( A - 

“( A -

-3 + 2o 

X6(-3

a = (x

A - B

“( A .

0 .... for x < 7 and x > 11.

114

Equation 7 - 3 9

 ̂ (x - 7)/2 for 7 < x < 9

(11 - x)/2 for 9 < x < 11

B ) = [3 + a . 5 - a] - [4 + a . 6 - a ] ..........................................Equation 7 - 4 0

B ) = [3 a  - 6+ a.  5 - a  - 4 - a ] . .Equation 7 - 4 1

B ) = [-3 + 2a. -1 - 2a].............................................................Equation 7 -4 2

: = x and 1 - 2a = x .Equation 7 - 4 3

i . - l ]  and x e [-1. I).................................................................Equation 7 - 4 4

3 )/2 and a = (1 - x)/2..................................................... Equation 7 - 4 5

r 0 for x < -3 and x > 1..........................Equation 7 - 4 6

 ̂ (x + 3)/2 for -3 < x < -1

(1 - x)/2 for -1 < x < 1

B ) = [min ((3 + a)(4 + a). (3 + a)(6 - a),(5 - a ) .................Equation 7 - 4 7

(4 + a). (5 - a)(6 - a)), max (3 + a)(4 + a).

(3 + a)(6 - a),(5 - a)(4 + a),a), (5 - a)(6 - a)]
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“( A • B ) = [min (a2 +- 7 a  + 12. -a 2 +3a + 18. a 2 -1 l a  + 30.......Equation 7 - 4 8

a 2 + a + 20). max (a 2 + 7a + 12. -a2 +3a + 18. 

a 2 -1 l a  + 30. a 2 + a + 20)]

“( A • B ) = [a2 -r 7a + 12. a 2 -1 l a  + 30] Equation 7 - 4 9

a 2 -+- 7a •+■ 12= x and a 2 -1 l a  -r 30 = x ...........................................Equation 7 - 5 0

x e ( 1 2 .  20] and x e  [20. 30) Equation 7 - 5 1

a  = (x + 0.25)I/2 - 3.5 and -(x + 0.25)l/2 + 5.5 Equation 7 - 5 2

r  0 for x < 12 and x > 30 Equation 7 -  53

A # B = -< (x + 0-25)1/2 -3.5 for 1 2 < x < 2 0

-(x + 0.25)1'" + 5.5 for 20 < x < 30

a( A / B ) = [min ((3 + a )  / (4 + a). (3 + a) / (6 - a).(5 - a) / .......Equation 7 - 5 4

(4 + a). (5 - a )  / (6 - a)), max (3 + a) / (4 + a).

(3 + a) / (6 - a).(5 - a) / (4 + a). (5 - a) / (6 - a)]
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“( A / B ) = (3 + a )  / (6 - a). (5 - a ) / (4 + a ) ................................... Equation 7 -5 5

(3 + a)  / (6 - a)  = x and (5 - a )  / (4 + a) = x................................Equation 7 - 5 6

x e (1/2. 5/4] and x e [5/4. 5/4) Equation 7 - 5 7

a  = (6x - 3) / (1 + x) and a  = (5 - 4x) / (x +- 1)...............................Equation 7 - 5 8

r  0 for x < 1/2 and x > 5/4 Equation 7 - 5 9

A / B  = -< (-3 + 6x) / (1 + x) for 3/6 < x < 4/5

(5 - 4x) / (x + 1) for 4/5 < x < 5/4

A - B

c .

Cl

0

Graph 7 - 6 : Addition of Two Triangular Shaped Fuzzy Numbers using Alpha 
Technique
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A-B

0

-j

Graph 7 - 7 : Subtraction of Two Triangular Shaped Fuzzy Numbers using 
Alpha Technique

A • B

c.

IS

0

Graph 7 - 8 : Multiplication of Two Triangular Shaped Fuzzy Numbers using Alpha 
Technique
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A. B

0

0.25 1.250.5 0.75

Graph 7 - 9 : Division o f Two Triangular Shaped Fuzzy Numbers using Alpha 
Technique
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CHAPTER VIII

FUZZY LOGIC

The chapters preceding this one have dealt with ideas o f set theory, fuzzy set 

theory and fuzzy mathematics. These topics lead to the development of fuzzy logic. 

Fuzzy logic is the evolution from two-valued logic to continuous logic. There are other 

logic fields that fall between the previous two types of logic. These other logic fields 

are three-valued logic and n valued logic.

Lukasiewicz described three-valued logic in the early 1900*s. The third value 

he proposed can best be translated as the term "possible." and he assigned it a numeric 

value between True and False. This value assigned is a medium representing not totally 

true and not totally false. This term takes a numerical value of one half (1/2). 

Eventually he proposed an entire notation and axiomatic system from which he hoped 

to derive modem mathematics. The connectives for this three valued logic is shown in 

Table 8 - 1 .  This table shows one of several connectives for three-valued logic. 

Lukasiewicz was not the only person to conceive the notion of three-valued logic. 

There were others, such as Bochvar, Kleene, Heyting. and Reichenbach to conceive a 

system of three-valued logic. It must be noted that each of these three valued logic 

connectives are different. Therefore, this is one reason three valued logic has never 

truly gained great acceptance in mathematics.

119
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Later. Lukasiewicz explored four-valued logics, five-valued logics, and then 

declared that in principle there was nothing to prevent the derivation of an infinite-

Table 8 -  1 : Lukasiewicz Connectives of Three Valued Logic

a b Lukasiewicz

A V => O
0 0 0 0 1 1

0 1/2 0 1/2 1 1/2

0 1 0 1 1 0

1/2 0 0 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1 1

1/2 1 1/2 1 1 1/2

1 0 0 1 0 0

1 1/2 1/2 I | 1/2 1/2

1
1 1 1 1 1

valued logic. Lukasiewicz felt that three- and infinite-valued logic's were the most 

intriguing, but he ultimately settled on a four-valued logic because it seemed to be the 

most easily adaptable to Aristotelian logic.

N-valued logic or many-valued logic is defined by n number of truth values that 

a proposition may have in some particular logic. N valued logic is used to describe 

many different types of logic, such as the five-valued logic. The states of the five
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valued logic are 0. V*. Vz. V*. and 1. These states show a very true or false of the subject 

being studied. This logic set is finite and truly lacks the continuous truth and false 

membership as fuzzy logic enjoys. Fuzzy logic is very similar to n-valued logic, but 

with one exception: fuzzy logic is infinite valued and continuous.

The notion central to fuzzy logic systems is that truth-values (in fuzzy logic) or 

membership values (in fuzzy sets) are indicated by a value on the range [0. 1], with zero 

representing absolute falseness and one representing absolute truth. For example, 

consider the statement:

"Jane is old."

If Jane's age is 75. the corresponding truth value could be 0.80. The statement could be 

translated into set terminology as follows:

"Jane is a member of the set of old people."

This statement would be rendered symbolically with fuzzy sets as:

mOLD(Jane) = 0.80

where m is the membership function, operating in this case on the fuzzy set of old 

people, which returns a value between 0 and I.
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The previous example brings up several concepts into consideration, such as 

fuzzy propositions, fuzzy quantifiers, and linguistically hedges. All of these concepts 

build on the linguistic philosophy that characterizes fuzzy logic from other types of 

logic. The fuzzy propositions, are the first concept and are divided into four different 

areas:

• Unconditional and unqualified propositions

• Unconditional and qualified propositions

• Conditional and unqualified propositions

• Conditional and qualified propositions

The unconditional and unqualified propositions are assertions that are not in the 

traditional if-then format. These propositions are asserted to be simply true with the 

truth values not qualified by any modifying expression. One example of this type of 

proposition would be:

The girl who stands 6 feet is tall.

This proposition is formally defined in Equation 8 -  1. P stands for the unconditional

p  : X is A................................................................................................ Equation 8 - 1
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and unqualified preposition. X is a variable, and A is some property, or predicated 

attributed to the variable. Applying the previous to the statement above, the parts of 

this proposition are as follows: "the girl who stands 6 feet" is X (the variable) and "is 

tall" is A (the property o f the variable).

The second propositions discussed are unconditional and qualified propositions. 

These are propositions making the unconditional assertion that another proposition has 

a qualified truth-value. This type of proposition is formally defined by Equation 8 - 2 .

p : 'X  is A' is S ......................................................................................Equation 8 - 2

In this equation p. X. and A mean the same as stated for the unconditional and 

unqualified propositions in Equation 8 - 1 .  S is what makes Equation 8 -  1 different 

from Equation 8 - 2 .  The S stands for a fuzzy truth quantifier, which is a linguistic 

expression that adds a modifier to the claim of simple truth. The propositions of this 

form are also known as truth qualified. An example of the fuzzy truth quantifier is as 

follows:

p(6): 'The girl who stands 6 feet is tali' is S

The girl's height of 6 feet is shown by the vertical line in Figure 8 —1, which dissects 

the three falsity lines. These three lines represent falsity, hence the line with the lowest 

value of the corresponding height conveys the highest truth value. The lines can
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Barely False = 0.95

0.8

False = 0.7c- \
1  0.6  —  
k-ZJ
•s

0 . 4 -----ZJ
2

Very False = 0.3
0.2  -  —

0 0.2 0.4 0.6 0.8

Figure 8 -  1 : Illustration of the Truth Quantifier

represent truth and the curves would start at the origin and end at value [1. 1]. This type 

o f figure is sometimes called a unity truth graph. For S to validate the example o f the 

truth quantifier. S would have to be o f value 0.3. This value of true for the girl height is 

expressed in Equation 8 - 3 .  The level of membership of 0.3 must not be

Ts (Pb) -  S(0.3).........................................................................................Equation 8 -3

confused with the falsity value found on the y-axis. This value of S corresponds with 

the vertical line that intersects all three falsity lines.

The third proposition is the conditional and unqualified proposition. This 

proposition is constructed from the if-then conditional statement. A formal definition of 

this proposition is shown in Equation 8 - 4 .  These types of propositions are also known
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p  : 'I f  X is A. then y is B’ is true........................................................Equation 8 - 4

as fuzzy implications and contain simple fuzzy propositions as antecedent and 

consequent. One example o f this type of proposition is as follows:

‘If the girl is tall, then the boy is short’ is true.

This is why these types o f propositions are unqualified. The truth-value of this last 

example is of questionable validity. The girl could be tall but the boy does not have to 

be considered short. This if-then format is handled well in fuzzy logic, where the girl is 

a degree of being tall and the boy is o f a degree o f being short. In classical logic this is 

a true or false statement, but fuzzy logic allows degrees of truth and false.

The last proposition is called the conditional and qualified proposition. This 

type of proposition is a combination between unconditional and qualified proposition

and conditional and unqualified propositions. Equation 8 - 5  formally

p  : 'I f  X is A. then y is B' is true....................................................... Equation 8 - 5

defines the conditional and qualified proposition. This type of proposition is similar to 

other types of propositions and the methods used to deal with the other three can be 

applied here as well.
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The second important area of fuzzy logic is known as fuzzy quantifiers. Fuzzy 

quantifiers are fuzzy numbers that take part in fuzzy propositions. The fuzzy quantifier 

is very useful because o f  the imprecision of the English language. To solidify this idea 

of the definition of this type of fuzzy quantifier, the concept of fuzzy sets and fuzzy 

numbers must be revisited in Chapters V. VI and VII.

There are two kinds o f fuzzy quantifiers. The first fuzzy quantifier is the 

absolute quantifier, which is expressed by fuzzy numbers defined on the set of real 

numbers or on a set o f  integers. This type of quantifier characterizes linguistic terms 

such as almost a gallon, about 6 feet, and at least a mile. An example of the fuzzy 

quantifier approximating a number is shown in Graph 8 -  1. This figure demonstrates 

the importance of fuzzy numbers to the concept of the fuzzy quantifier. Graph 8 -  1

0 . 8 ------

G.
'■ =  0.6  —  L.
.g

|  0 . 4 -----

0 .2 ----

3 6 74 8

Graph 8 -  1 : Fuzzy Set o f about 6 Feet in a Qualified Fuzzy Proposition
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displays the concept of 'about 6 feet.' and from this one can consider any membership 

of 0.5 and over categorized to be almost 6 feet tall. Or more precisely, the membership 

functions of over 0.5 being considered true to very true can be almost 6 feet 

tall.

Examples o f  some controversial and uncontroversial propositions are as follows: 

Controversial

• 10 girls in the group are tall.

• 50% of cats destroy furniture.

• 200 students wait to the last minute to study for a test.

U ncontroversial

• About 10 girls in the group are tall.

• At least about 50% of cats destroy furniture.

• Much more than 100 students wait to the last minute to study for a test.

The difference from the controversial and the uncontroversial phrases is the presence of 

the fuzzy quantifier. The fuzzy quantifier does not allow broad sweeping accusations or 

statements. These statements are not all-inclusive or exclusive. The phases are very 

popular in real life, and are extremely necessary in the political field.

The second type of fuzzy quantifier is the existential quantifier. The existential

quantifier is defined on [0, 1 ] and characterize linguistic terms such as almost all, about
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half, most and so on. This type o f quantifier is also called the relative quantifier. Some 

examples of this type of fuzzy quantifier as follows:

• About half of the girls are tall.

• Almost all of the dogs in the neighborhood bark.

• Most of the graduates will get jobs.

Another important feature o f fuzzy logic is the ability to define "hedges." or 

modifiers of fuzzy values. These operations are provided in an effort to maintain close 

ties to natural language, and to allow for the generation of fuzzy statements through 

mathematical calculations. As such, the initial definition of hedges and operations upon 

them will be quite a subjective process and may vary from one project to another. 

Nonetheless, the system ultimately derived operates with the same formality as classic 

logic. The simplest example is in which one transforms the statement "Jane is tall" to 

"Jane is very tall." The hedge "very" is usually defined as follows:

m"very"A(x) = mA(x)A2

Thus, if mTALL(Jane) = 0.8, then mVERYTALL(Jane) = 0.64 . Other common hedges 

are "more or less" [typically SQRT(mA(x))], "somewhat." "rather." "sort of," and so on. 

Again, their definition is entirely subjective, but their operation is consistent: they serve
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to transform membership/truth values in a systematic manner according to standard 

mathematical functions.[29]

All of these concepts discussed are inherent to fuzzy rules. Fuzzy rules or the 

fuzzy rule base is considered the core o f the whole fuzzy system. The fuzzy system is 

built from three distinct parts: inputs, fuzzy inference, and outputs. The inputs are crisp 

raw data, which are represented by a membership function. This membership function 

can be of any shape and is representative of a fuzzy number. There can be one or many 

inputs depending on the fuzzy system. The first step in a fuzzy system, which 

transforms all real world data to a degree of membership, is called fuzzification. The 

second step is the heart of fuzzy systems, fuzzy logic. This intermediate step is where 

the fuzzy rules for the system are found. The rules give the system its definition and 

customize the system to the discretion of the user. A process called the fuzzy inference 

evaluates these rules. One of the most popular fuzzy inference processes is known as 

Mamdani's fuzzy inference method. It's the most commonly seen method in fuzzy 

methodology. Mamdani's method was among the first control systems built using fuzzy 

set theory. Ebrahim Mamdani proposed it in 1975 as an attempt to control a steam 

engine and boiler combination by synthesizing a set of linguistic control mles obtained 

from experienced human operators. Mamdani's effort was based on Lotfi Zadeh's 1973 

paper on fuzzy algorithms for complex systems and decision processes.

Mamdani-style inference expects the output membership functions to be fuzzy 

sets. After the aggregation process, there is a fuzzy set for each output variable that 

needs defuzzification. It's possible, and in many cases much more efficient, to use a
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single spike as the output membership function rather than a distributed fuzzy set. This 

is sometimes known as a singleton output membership function, and it can be thought 

of as a pre-defuzzified fuzzy set. It enhances the efficiency of the defuzzification 

process because it greatly simplifies the computation required to find the centroid of a 

two-dimensional shape. Rather than integrating across a continuously varying two- 

dimensional shape to find the centroid, the weighted average of a few data points can be 

found. Sugeno systems support this kind of behavior.

The other popular inference method is the Sugeno. or Takagi-Sugeno-Kang 

method of fuzzy inference first introduced in 1985. It is similar to the Mamdani method 

in many respects. In fact the first two parts of the fuzzy inference process, fiizzifying 

the inputs and applying the fuzzy operator, are exactly the same.

A typical fuzzy rule in a zero-order Sugeno fuzzy model has the form 

if x is A and y is B then z = k

where A and B are fuzzy sets in the antecedent, while k is a crisply defined constant in 

the consequent. When the output o f each rule is a constant like this, the similarity with 

Mamdani's method is striking. The only distinctions are that all output membership 

functions are singleton spikes, and the implication and aggregation methods are fixed 

and can not be edited. The implication method is simply multiplication and the 

aggregation operator just includes all o f  the singletons.[30]

The last step in the fuzzy system is the outputs. This step relates fuzzy numbers 

and fuzzy variables to crisp numbers. The outputs can be of any number and is the end
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result of the fuzzy system. The outputs can be classified as a reverse of the inputs when 

fuzzy systems are considered.

To bring all of these concepts together, the model example is employed for the 

final time. The example has inputs of model height and model experience in months 

with an output of model pay per photo shoot. This is not an impossible task for 

conventional programming. But first one must find a model for the system that 

associates model height and experience with model pay. This would be a somewhat 

complex program and the vagueness of height and experience makes the task even more 

difficult. A program named MATLAB is implemented to overcome such a 

programming obstacle.

MATLAB is an integrated technical computing environment that combines 

numeric computation, advanced graphics and visualization, and a high-level 

programming language. The extensive and powerful numeric computing methods and 

graphics allows testing and exploring alternative ideas easily, while the integrated 

development environment makes it easy to produce fast, practical results.

The name MATLAB stands for matrix laboratory. MATLAB was originally 

written to provide easy access to matrix software developed by the LINPACK and 

EISPACK projects, which together represent the state o f the art in software for matrix 

computation. Today MATLAB is used in a variety o f application areas including signal 

and image processing, control system design, financial engineering, and medical 

research. The open architecture makes it easy to use MATLAB and companion
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products to explore data and create custom tools that provide early insights and 

competitive advantages.

MATLAB also features a family o f application-specific solutions called 

toolboxes. Very important to most users of MATLAB. toolboxes are comprehensive 

collections of MATLAB functions (M-files) that extend the MATLAB environment in 

order to solve particular classes o f problems. Researched and developed by experts in 

their fields, toolboxes allows a user to learn, apply, and compare best-of-class 

techniques, allowing him to evaluate different approaches without writing the code.

Areas in which toolboxes are available include signal processing, control 

systems design, dynamic systems simulation, fuzzy logic, systems identification, neural 

networks, and others.

The Fuzzy Logic Toolbox features a simple point-and-click interface that guides 

a user effortlessly through the steps of fuzzy design, from setup to diagnosis. It provides 

built-in support for the latest fuzzy logic methods, such as fuzzy clustering and adaptive 

neuro-fuzzy learning. The Toolbox's interactive graphics allows a user to instantly 

visualize and fine tune system behavior.[25]

The fuzzy toolbox is constructed in a GUI format, which allows the user to view- 

different parts o f the design at the same time. The FIS (Fuzzy Inference System) editor 

is the main w-indow w'hich all other windows are linked. In this window all inputs and 

outputs are created and named. This window is shown in Figure 8 - 2 .  Once the inputs 

are created and named, each input and output must be defined to fit the particular 

system. Definitions for the model example inputs and output are shown in Figures 8 - 3
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through 8 - 5 .  The inputs are made of triangular and trapezoidal functions. From these 

membership functions rules for the system must be defined to satisfy the preferences of 

the user. The rules are in a verbal if-then format, which allows fast manipulation and 

creation. The rules can also be defined in other formats such as symbolic and indexed. 

The symbolic doesn't consider the if-then part of the verbose format; it is simply 

implied. The indexed version, which is shown in Listing 8 -  1. is the numerical 

equivalent of the rules in the way the computer interprets said rules. The rules for the 

model example are shown in Figure 8 - 6 .  The 1 followed by every rule is known as 

the rule weight. This weight may vary from 0 to 1 and the default is a weight of 1. The 

rule weight allows the user to prioritize rules of importance from rule that are not that 

critical to system performance. After all membership functions for input and outputs 

and rules are defined, a program listing is generated. This program listing is what the 

computer uses to obtain all calculations for the system. The program listing for the 

model example is shown in Listing 8 -  1.

To this point all the work has been done for the creation of the fuzzy system 

concerning the model example. The fuzzy system does not only simplify the creation 

but the modification of the program as well. When conventional programs are 

constructed, many lines are invoked to get the output the user wants. Years in the 

future, when the program has become deficient and needs to be reworked, the task of 

relearning what transpired very long ago is now at hand. But with a fuzzy logic 

program this is not a problem because the code is in plain and simple English
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statements. Conventional programs can be commented to make it easier for later 

modification, but this technique does not compare to the fuzzy logic rule base.

MATLAB outputs several figures when the rules and membership functions are 

defined correctly. The first figures which MATLAB outputs is the model height model 

experience, and model pay. These figures are shown in Figures 8 - 7  through 8 - 9 .  

These figures are the same as the membership function plots located in the membership 

function editor found in Figures 8 - 3  through 8 - 5 .  The next output generated by 

MATLAB is the rule viewer. The rule viewer allows the user to input different input 

values and receives a graphical solution. There are three different inputs selected 

randomly to convey the range and robustness of the fuzzy system. The solutions for 

these three different inputs are shown in Figures 8 - 1 0  through 8 - 1 2 .  The final two 

figures that the fuzzy' toolbox outputs are the system plot and the surface view. These 

two outputs are pictured in Figures 8 - 1 3  and 8 - 1 4 .  respectively. The system plot 

gives the shape of the input and output membership functions and displays the system in 

a block diagram format. The surface view generates a three dimensional picture of the 

system. This picture can be manipulated by rotation and scaling. The picture is very 

useful W'hen there are several inputs and the user needs to see the relations the inputs 

have to the output.

As mentioned previously in this chapter, there are two different techniques of 

defuzzification that can be used in the fuzzy logic toolbox. The Mamdani style was 

previously used in the model example. But to get a greater understanding of the 

capabilities of the fuzzy logic toolbox, the Sugeno style is now utilized for the model
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example. The FIS editor for this style is shown in Figure 8 - 1 5 .  There is no difference 

between the Sugeno and the Mamdani style when inputs are concerned. But there is no 

output membership functions defined by the user. There are only levels of membership 

referred to the output, which can be defined by the user. The output membership of the 

model example is shown in Figure 8 —16. The rules that define the system are the same 

as the Mamdani style. Since the output and the style are different, so is the program 

listing. The fuzzy logic program is shown in Listing 8 - 2 .  Comparing the rule view 

for the two different styles is done by inputting the same height and experience values. 

The output for the rule view considering the Sugeno method is shown in Figures 8 - 1 7  

through 8 - 1 9 .  A comparison o f the two styles is found in a compressed form in Table 

8 - 2 .  This table lists the inputs and outputs that are found in the rule view for the two 

styles. The surface view is the last figure associated with the Sugeno method. While

Table 8 - 2 :  Comparison between Mamdani and Sugeno Styles for Model Example

Model Height, Experience Model Pay (Mamdani) Model Pay (Sugeno)

4.6. 24 668 108

5.8.21 1.580 2400

6.37 3.490 4500

this figure is very similar to Figure 8 - 1 4  there is one difference. The surface view in 

Figure 8 -  14 is coarser that the one in 8 -  20. Also, the ranges of the model pay are 

greater in the Segeno method. This is attributed to the output membership values. A
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similar output could be obtained by the Mamdani method by output membership 

manipulation. Other advantages of each method are as follows:

Advantages of Sugeno’s method

• Computational efficiency

• Guaranteed continuity of the output surface

• Better suited to mathematical analysis

Advantages of Mamdani’s method

• More intuitive

• Wide spread acceptance

• Better suited to human input
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Figure 8 - 2 : FIS Editor for Model Example
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Figure 8 - 3 : Membership Function Editor for Fleight Input of Model Example
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Figure 8 - 4 : Membership Function Editor for Experience Input of Model 
Example
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I 1 Rule  E d i t o r  M O D E L

1. If (height is veiy_short) and (experience is fittle) then (pay is low) (1)
2. If (height is very_shortj and (experience is average) then (pay is low) (1)
3. If (height is very_short] and (experience is high) then (pay is low) (1)
4 . If (height is short) and (experience is little) then (pay is low) (1)
5. If (height is short) and (experience is average) then (pay is low) (1)
6. If (height is short) and (experience is high) then (pay is average) (1)
7. If (height is average) and (experience is little) then (pay is average) (1)
8. If (height is average) and (experience is average) then (pay is average) (1)
9. If (height is average) and (experience is high) then (pay is high) (1)
10. If (height is tall) and (experience is little) then (pay is average) (1)
11. If (height is tall) and (experience is average) then (pay is high) (1 j
12. If (height is tall) and (experience is high) then (pay is veiy_high) (1)
13. If (height is very_tal) and (experience is Bttie) then (pay is high) (1 j
14. If (height is very_tall) and (experience is average) then (pay is very_high) (1)
15. If (height is very_tall) and (experience is high) then (pay is very_high) (1)

■ %
Mi* *r
i t

<5

Figure 8 - 6 : Rule Editor for Model Example
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[System]
Name='MODEL'
Type='mamdani'
Numlnputs=2 
NumOutputs=l 
NumRuies=15 
AndMethod='m in’
OrMethod-max'
ImpMethod-min’
AggM ethod-max'
DefuzzMethod=’centroid'
[Input 1]
Name='height'
Range=[4.5 6.5]
NumMFs=5
M FI-short’:'trimf,[4.5 5 5.5] 
MF2='average':'trimf.[5 5.5 6] 
MF3='talI':'trimf.[5.5 6 6.5] 
MF4=’very_short':,trapmf,[4.5 4.5 4.5 5]
M F5- very_taH':'trimf.[6 6.5 8.5]
[Input2]
Nam e-experience’
Range=[0 42]
NumMFs=3
MF1-little':'trapmf,[0 0 10 21] 
M F2-average':'trimf,[l2 21 30]
MF3-highYtrapmf .[21 29 42 42]
[Output 1 ]
Name='pay'
Range=[0 4500]
NumMFs=4
M F1-low':'trimf,[0 0 1000] 
MF2=’average':'trimf,[0 1000 2000] 
MF3=’high':'trimf,[1000 2000 3000] 
MF4='very_high':'trapmf.[2000 3000 4500 4500]
[Rules]
4 1. 1 (1)
4 2. KD
4 3. KD
1 1. KD
1 2. KD
1 3. 2 (1)
2 1. 2 (1)
2 2. 2 (1)
2 3, 3(1)
3 1, 2 (1)
3 2. 3(1)
3 3. 4(1)
5 1. 3(1)
5 2. 4(1)
5 3, 4(1)

Listing 8 - 1 : Program Listing for Model Example
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Figure 8 - 7 : MATLAB Output for Model Height Input
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Figure 8 - 8 : MATLAB Output for Model Experience Input
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Figure 8 - 9 : MATLAB Output for Model Pay Output
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Figure 8 - 1 1 :  Rule Viewer for Model Example
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Figure 8 - 12 : Rule Viewer for Model Example
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Figure 8 - 13 : System Plot for Model Example
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[System]
Nam e- M0DEL7'
Type='sugeno'
Numlnputs=2
NumOutputs=l
NumRuIes=I5
AndMethod='prod'
OrMethod-probor1
ImpMethod='min’
AggMethod='max'
DefuzzMethod-wtaver'
[Input 1]
Name='height'
Range=[4.5 6.5]
NumMFs=5
MFl-short':'trimf,[4.5 5 5.5]
MF2='average':'trimf,[5 5.5 6]
MF3-tall':'trimf,[5.5 6 6.5]
MF4-very_short':'trapmf.[4.5 4.5 4.5 5]
MF5-very_taH':'trimf.[6 6.5 8.5]
[Input2]
Name='experience'
Range=[0 42]
NumMFs=3
MF1 -  Iitt!e':'trapmf,[0 0 10 21]
MF2=’average’:'trimf.[12 21 30]
M F3-high’:'trapmf,[21 29 42 42]
[Output I]
Name='pay'
Range=[0 4500]
NumMFs=4
MF 1 ='low':'constant'.0
MF2='average':'constant', 1500
MF3='high':'constant'.3000
MF4-very_high':'constant',4500
[Rules]
4 1, 1 (1): 1
4 2 .  1 (1): 1
4 3 ,  1 (1): 1 
1 1.1(1): 1 
I 2. 1 (1): 1
1 3 . 2 ( 1 ) :  1
2 1.2(1): 1 
22.2(1): 1 
2 3 . 3 ( 1 ) :  1 
3 1 . 2 ( 1 ) :  1 
3 2 . 3 ( 1 ) :  1 
3 3 . 4 ( 1 ) :  1
5 1 . 3 ( 1 ) :  1 
5 2 . 4 ( 1 ) :  1 
5 3 . 4 ( 1 ) :  1

Listing 8 - 2 : Program Listing for Model Example (Sugeno style)
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Figure 8 - 1 8 :  Rule View for Model Example (Sugeno Style)
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Figure 8 - 19 : Rule View for Model Example (Sugeno Style)
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Figure 8 - 20 : Surface View for Model Example (Sugeno Style)
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CHAPTER IX

OVERVIEW OF FUZZY CONTROL 
AND NEUROFUZZY SYSTEMS

Fuzzy systems are exploited in many different areas in engineering and science. 

These areas have been furthered in many ways by the introduction of fuzzy logic. Some 

of these areas that have been revolutionized by fuzzy logic are control systems, neural 

networks, expert systems, and others. Two o f these areas shall be investigated more 

closely in this chapter. These areas have taken on new names, fuzzy control and 

neurofuzzy systems.

Fuzzy control is a way to transform knowledge into control laws. Traditional 

control is an arrangement of physical components connected or related in such a manner 

as to command, direct, or regulate itself or another system. [10] In engineering, control 

is usually restricted to only apply to those systems whose major function is to 

dynamically or actively command, direct or regulate. Control systems are made up of 

two main defining divisions that identify with the system, input and output. The input 

is the stimulus or excitation applied to a control system from an external energy source, 

usually in order to produce a specified response from the control system. The output is 

the actual response obtained from a control system. It may or may not be equal to the 

specified response implied by the input. From these inputs and output, the control
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system is formed. There are two types of control systems, open loop and closed loop. 

The open loop control system is one in which the control action is independent o f the 

output. A closed loop system is one that the control action is somehow dependent on 

the output. A main characteristic o f a closed loop system is feedback. Feedback is a 

property of a closed loop control system, which permits the output to be compared with 

the input o f the system so that the appropriate control action may be taken. This 

appropriate action is dictated by some function for the output and input. The open and 

closed loop control systems are shown in Figures 9 -  1 and 9 - 2 ,  respectively.

Input
Control

Output
—w Element w

Figure 9 -  1 : Open Loop Control System

Input
Control
Element

Output

Feedback
Element

Figure 9 — 2 : Closed Loop Control System
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This is by no means a detailed look at control theory, but a basic introduction of 

control systems. The drawback of conventional control systems that allow fuzzy 

control to flourish must also be mentioned. This drawback is contained in the system 

control element found in Figures 9 -  1 and 9 - 2  and is known as the mathematical 

model. Mathematical models, in the form of system equations, are employed to contend 

with detailed relationships within the system control element. In theory, every system 

may be categorized by a system equation.[8]

In the application o f fuzzy control, the following stages can be distinguished: 

matching of data with rule premises (includes fuzzification), determination of degrees 

o f fulfillment for the rules, aggregation of results of individual rules, and defuzzification 

to obtain a numerical controller output. A fuzzy controller as such is a mapping; it can 

be shown that the mapping is characterized by tuples in a hyperspace and each tuple 

represents a fuzzy rule. The fuzzy reasoning performs an interpolation between these 

tuples in that hyperspace, resulting in a (non)linear input-output mapping.

If the nonlinearity o f the mapping should be defined by the fuzzy rules, the 

following choices should be made: product for conjunction, summation for disjunction 

and aggregation, fuzzy-mean defuzzification, fuzzy partitions on the input universes and 

a triangular norm for the implication.

Several adaptive fuzzy controllers have been studied, such as self-organizing 

controllers, fuzzy associative memories, fuzzy neural networks and fuzzy supervisors.
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Fuzzy control can be regarded as only a small part o f a much broader framework 

o f approximate reasoning and possibility theory. Approximate reasoning provides a 

method for modeling human classification and reasoning. There is a lack of practical 

applicability due to severe calculational effort and memory requirements to perform 

reasoning according to the theory of approximate reasoning.

In many cases, a fuzzy controller can be simplified to a look-up table and an 

interpolation method to provide the fuzzy inference. Hence, these simplifications can 

reduce the fuzzy aspect of fuzzy control to a user-interfacing concept during the design 

stage. The architecture of a fuzzy controller is shown in Figure 9 - 3 .

Inference
Engine

f
Rule Base

Input Output

Physical
System

Figure 9 -  3 : Architecture of a Fuzzy Controller

The purpose o f control is to influence the behavior of a system by changing 

input or inputs to that system according to a rule or set o f rules that model how the 

system operates. The system being controlled may be mechanical, electrical, chemical, 

or any combination o f these.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

Again, classic control theory uses a mathematical model to define a relationship 

that transforms the desired state (requested) and observed state (measured) of the 

system into an input or inputs that will alter the future state o f that system.

The most common example o f a control model is the PID (proportional-integral- 

derivative) controller. This takes the output of the system and compares it with the 

desired state of the system. It adjusts the input value based on the difference between 

the two values according to Equation 9 - 1 .  where A. B and C are constants, e is the

output = A.e + B.INT(e)dt + C.de/dt...................................................Equation 9 - 1

error term. INT(e)dt is the integral o f the error over time and de/dt is the change in the 

error term.

The major drawback o f this system is that it usually assumes that the system 

being modeled is linear, or at least behaves in some fashion that is a monotonic 

function. As the complexity o f the system increases it becomes more difficult to 

formulate that mathematical model.[31]

Fuzzy control replaces, in Figures 9 -1 and 9 - 2  shown above, the role of the 

control element (mathematical model) and replaces it with another that is built from a 

number o f smaller rules that in general only describe a small section of the whole 

system. The process of inference binds them together to produce the desired outputs. 

That is, a fuzzy model has replaced the mathematical one. The inputs and outputs of the 

system have remained unchanged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

To this point, the fuzzification of inputs, fuzzy rule base, and fuzzy inference 

engines have been discussed in detail. But there is another very import aspect that has 

just been mentioned in previous chapters. The concept is defuzzification; it is very 

important in fuzzy controllers and. hence, fuzzy control. Figure 9 - 4  displays 

defuzzification in a fuzzy controller and how it relates to the control system.

The method of choosing the correct defuzzification method is extremely critical 

in fuzzy control. There are three common methods used for defuzzification. These 

methods are center o f area (centroid), mean of maximum, and center o f maximum.

Defuzzification
module

Fuzzy Inference 
Engine

Fuzzy Rule 
Base

Fuzzification
Module

Controlled
System

Fuzzy Controller

Figure 9 -  4 : Control System Featuring a Fuzzy Controller
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The most popular method of defuzzification is the center of area method or the 

centroid method. The center of area method calculates the center of area under the 

curve. The defuzzified value. dcA (C), is defined as the value within the range of 

variable v for which the area under the graph of membership function C is divided into 

two equal subareas. The variable v represents the relevant control actions of the fuzzy 

controller. This action is also known in classical control as feedback.[19] The

remaining two variables are e and e are the error and the derivative o f the error, 

respectively. These values are also shown in Figure 9 - 4 .  Furthermore, the center of 

area method is formally defined in Equation 9 - 2 .

£c(r,)--,
d( j(C) =- —n................  Equation 9 - 2

k  = I

The next method of defuzzification is mean of maximum. The mean of 

maximum method selects the most typical value of the term that is most valid as an 

output value. This method's great advantage over other methods is that the 

computational time is very fast. The reason for this short execution time comes from its 

definition. This method is usually only defined in the discrete case. The defuzzified 

value dviM(C) is the average of all values in the crisp set M. The formula for the mean 

of maximum is found in Equation 9 - 3 .
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. m in { -J r t eM} + max{rt \zk eA/}
d cM ( c )  = ------------------------------ : ------------------------------ Equation 9 -3

The last defuzzification method discussed here is the center of maximum 

method. This method is not as fast computation wise as the mean o f the maximum. 

This is due to the fact that it requires computation of a greater number o f terms. Also in 

this method, the defuzzified value. dcvi(C). is defined as the average of the smallest 

value and the largest value of v. The formula for this method is formally defined in 

Equation 9 - 4 .

All of the previous methods are situation critical, meaning that the 

defuzzification methods may vary from one particular application to another. The 

application or system that is controlled will denote the type of method that bests suites 

its optimal operation. Considering all the previous aspects of a fuzzy controllers, there 

are three common attributes:

1. Base the controller on a human operator's experience and/or a control engineers 

knowledge.

2. Model the control actions of a human operator.

3. Base the control on a fuzzy model o f the process.

dsn ,  (C ) = Equation 9 - 4
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Another type of fuzzy system that has gained a lot o f attention in engineering 

science is neurofuzzy systems. The main components of neurofuzzy systems are neural 

networks. Neural networks have seen an explosion of interest over the last few years 

and are being successfully applied across an extraordinary range o f problem domains, in 

areas as diverse as finance, medicine, engineering, geology and physics. Anywhere that 

there are problems of prediction, classification or control, neural networks are being 

introduced.

Neural networks grew out o f research in artificial intelligence, specifically in 

attempts to mimic the fault-tolerance and capacity to learn of biological neural systems 

by modeling the low-level structure o f the brain. The main branch of artificial 

intelligence research in the 1960s -1980s produced expert systems. These are based 

upon a high-level model o f  reasoning processes. It became rapidly apparent that these 

systems, although very useful in some domains, failed to capture certain key aspects of 

human intelligence. According to one line of speculation, this was due to their failure 

to mimic the underlying structure of the brain. In order to reproduce intelligence, it 

would be necessary to build systems with a similar architecture.

The brain is principally composed of a very large number (circa 10,000.000.000) 

o f neurons, massively interconnected (with an average o f several thousand 

interconnects per neuron, although this varies enormously). Each neuron is a 

specialized cell, which can propagate an electrochemical signal. The neuron has a 

branching input structure (the dendrites), a cell body, and a branching output structure 

(the axon). The axons o f one cell connect to the dendrites of another via a synapse.
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When a neuron is activated, it fires an electrochemical signal along the axon. This 

signal crosses the synapses to other neurons, which may in turn fire. Neuron fires only 

if the total signal received at the cell body from the dendrites exceeds a certain level 

(the firing threshold). The strength of the signal received by a neuron (and therefore its 

chances o f firing) critically depends on the efficacy of the synapses. Each synapse 

actually contains a gap. with neurotransmitter chemicals poised to transmit a signal 

across the gap.

Output Signal

Figure 9 -  5 : Basic Structure of an Artificial Neural Network
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Thus, from a very large number of extremely simple processing units (each performing 

a weighted sum of its inputs, and then firing a binary signal if the total input exceeds a 

certain level) the brain manages to perform extremely complex tasks. Of course, there 

is a great deal of complexity in the brain which has not been discussed here, but it is 

interesting that artificial neural networks can achieve some remarkable results using a 

model not much more complex than the one in Figure 9 - 5 .  It receives a number of 

inputs (either from original data, or from the output of other neurons in the neural 

network). Each input comes via a connection, which has a strength (or weight); these 

weights correspond to synaptic efficacy in a biological neuron. Each neuron also has a 

single threshold value. The weighted sum of the inputs is formed, and the threshold 

subtracted, to compose the activation of the neuron (also known as the post-synaptic 

potential, or PSP. of the neuron).

The activation signal is passed through an activation function (also known as a 

transfer function) to produce the output o f the neuron. If the step activation function is 

used (i.e. the neuron's output is 0 if the input is less than zero, and 1 if the input is 

greater than or equal to 0), then the neuron acts just like the biological neuron described 

earlier (subtracting the threshold from the weighted sum and comparing with zero is 

equivalent to comparing the weighted sum to the threshold). Note also that weights 

may be negative, which implies that the synapse has an inhibitory rather than excitatory 

effect on the neuron: inhibitory neurons are found in the brain.

Neural nets are not often used in the way of applications for a number of 

reasons. First, neural net solutions remain a "black box” type of system, meaning that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169

the user cannot interpret what causes a certain behavior or modify the neural network to 

change that behavior. Secondly, neural networks require prohibitive computational 

effort for most commercial applications. Also, selection of the appropriate neural 

network model and parameters o f the learning algorithm is a science within itself. 

Considering all the former statements, the lack of an easy way to verify and optimize a 

neural network solution is the major limitation.[7]

There are several weakness and strengths of neural nets that were discussed 

previously. But it must be noted that there are weaknesses and strengths of fuzzy logic 

as well. These basic characteristics of fuzzy logic and neural nets are shown in Table 

9 -1 .

Table 9 -  1 : Basic Characteristics o f Fuzzy Logic and Neural Nets

Fuzzy Logic Neural Networks

Knowledge Representation Explicit, verification and 

optimization is easy and 

efficient

Implicit, the system can be 

easily interpreted or 

modified

Trainability None, the designer has to 

define everything explicitly

Trains itself by learning 

data sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

To obtain a clearer picture of neurofuzzy systems, a neurofuzzy controller is 

developed with the purpose of controlling a system. Any neurofuzzy controller must 

have the following four features:

1. Inputs are fuzzy numbers.

2. Outputs are fuzzy numbers.

3. Weights are fuzzy numbers.

4. Weighted inputs of each neuron are not aggregated by summation.

These features are representative o f the melding o f fuzzy logic and neural networks. As 

in Table 9 - 1 .  these two concepts complement each other in many ways. For instance, 

if an engineer would like to control a system, various measurements and other data are 

acquired. From these data sets the system is defined in great detail. To control this 

system conventionally, a mathematical model must be developed. To control this 

system by fuzzy logic, a rule set must be derived. This rule set can become extremely 

complex because of the enormous size of the rule base referring to the data sets. The 

neural network can train itself from these data sets. But if the engineer uses fuzzy logic 

he would have to derive the ”if-then" rules from the data sets manually. Therefore a 

neurofuzzy controller would allow the engineer the ease o f  modifying or tuning the 

system with the rule base generated by the neural network. This concept of a general 

neurofuzzy controller is shown in Figure 9 - 6 .
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Fuzzy Inference 
Engine

Defuzzification
module

Fuzzification
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Fuzzy Rule 
Base

Controlled
System

Neurofuzzy Controller

Figure 9 -  6 : Basic Structure of a Neurofuzzy Controller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER X

AN APPLICATION OF FUZZY LOGIC

A new concept, no matter how great it is to the scientific community, must 

contribute to mankind in some way to be considered an asset. Fuzzy logic is simply a 

design tool that allows engineers to design products and control processes with greater 

ease. This is not the only use o f fuzzy logic, but it is the focus of this chapter.

For fuzzy logic to be an asset to society, it must improve or enhance the 

lifestyles of people. One way to achieve these goals is to make the machines that are 

used in everyday life more user-friendly and efficient. These previous tasks have 

evolved by conventional means over the course of history. Many strides in product 

design and advancements are attributed to microelectronics and low cost computer 

components. The low cost computer components allow fuzzy logic to be exploited in a 

wide range of products for consumers.

A user-friendly product is very important, but the product must also be efficient 

in its use of resources. The resources may range from electricity, natural gas. gasoline, 

and even water. Water is a resource that is abundant on the earth’s surface. Eighty 

percent o f the earth's surface is water, and ninety-seven percent of the earth's water is 

saltwater in oceans and seas. Of the three percent that is freshwater, only one percent is 

available for drinking -- the remaining two are frozen in the polar ice caps. To further
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stress the importance of water, it can be related to human existence because people need 

about 2.5 quarts of water a day (from drinking or eating) to maintain good health. A 

person can live without water for approximately one week, depending upon the 

conditions.

To conserve this precious commodity the Environmental Protection Agency 

enacted several product standards. These standards have one objective in mind, and that 

is to conserve water. Toilets, nozzles, and showers have been modified to become 

water misers. For instance, a 10-minute shower can take 25 - 50 gallons o f water. High 

flow shower heads spew water out at 6 - 10 gallons a minute. Low flow showerheads 

can cut the rate in half without reducing pressure.

About 60.000 public water systems across the United States process 34 billion 

gallons o f water per day for home and commercial use. Eighty-five percent o f the 

population is served by these facilities. The remaining 15 percent rely on private 

facilities. To help supply these facilities an average of 800,000 water wells are drilled 

each year in the United States. That's tapping into our underground water supplies at 

approximately 100 times each hour for domestic, farming, and commercial needs.

While water usage varies from community to community and person to person, 

on average. Americans use 183 gallons o f water a day for cooking, washing, flushing, 

and watering purposes. The average family turns on the tap between 70 and 100 times 

daily. About 74% of home water is in the bathroom, about 21% is for laundry and 

cleaning, and about 5% is in the kitchen. A clothes washer uses about 50 gallons of 

water (the permanent press cycle uses an additional 15 gallons).[33]
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Just by the percentages of water a family uses everyday, this is considered 

gluttonous by water usage over the previous centuries. But to accommodate the fast 

lives that Americans lead, it is not surprising that Americans use more water than they 

do. The largest percentage of water used is associated to the bathroom, which include 

toiletry and hygienic purposes. It is impossible to curtail these functions, but the second 

largest household water consumption, clothes washing, can be modified. This is where 

fuzzy logic can help to conserve water. Hence, this will conserve electricity and even 

precious time. But fuzzy logic does not require a mathematical model of the system to 

control the system. The requirement of fuzzy logic design is extensive knowledge of 

the system's operation. The system here is the washing machine found in a typical 

American household.

Today's washing machine is a far cry from the early wooden-tub devices that 

began it all. but the principles are not that different. Along with a few improvements 

that automate the washing process, the basic washing machine remains an electrically 

powered mechanical device that agitates clothes, soap, and water to remove the dirt. 

There are two types of washing machines in use today—the top loader and the front 

loader. The front-loading machine features a horizontal tub. After the machine is 

loaded with clothes and detergent, and the door is closed and locked, water enters the 

drum and the drum starts to turn. Agitation occurs as the clothes lift out o f the water 

and then fall back down while the tub rotates.

In the second type, the top loader, the tub is mounted vertically. Inside the tub is 

a basket, or perforated tub. and inside that is an agitator—a component with radial fins.
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In contrast to the front loader, the top loader cleans the wash through the back-and-forth 

rotation o f the agitator. This type of design is the more popular washing machine and is 

shown in Figure 10 -  1 .[34]

SWITCHWATER-LEVEL
TEMPERATURE DIAL

TIMER UD SWITCH
WATER RiLET

WATER-nWET 
MDONG VALVE

AK-
PRESSURE
TUBE

FLL ’ 
HOSES

TUB'

AIR-

TRANSMISSION
MOTOR

Figure 10 -  1 : Cut Away View o f a Top Loaded Washing Machine
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The brain o f every automatic washing machine is its timer. This 

electromechanical device is powered by a small electric motor. Like a clock, the timer 

motor turns a series of gears to move cams that activate switches. The switches, in turn, 

control the various functions—wash, spin and rinse, for example—that make up the entire 

washing process. In addition to controlling the various cycles by setting the timer, you 

set the water level to suit the size of the load at the water-level dial and control the 

water temperature—either hot. warm or cold—with the temperature dial.

To start the machine, you first select a program of cycles, the wash time and the 

water temperature. Pressing the timer knob starts the timer motor and completes a 

circuit through the water-temperature selector switch and the water-inlet-mixing valve. 

The temperature switch regulates the amount of cold and hot water that passes through 

the water-inlet-mixing valve. Once the mixing valve has opened, water flows into the 

tub from the hot and cold water valves attached to your home's plumbing system.

From here, the water fills the tub and the perforated basket that contains the 

dirty clothes and detergent. This fill process is shown in Figure 1 0 - 2 .  As the water 

level rises, it forces air into the air-pressure dome mounted on the side of the tub. A 

tube connected to the air-pressure dome carries the pressurized air to the water-level 

pressure switch in the console. When the air pressure reaches a point that corresponds 

to the water-level setting on the water-level dial, the switch shuts off the flow through 

the water-inlet mixing valve.

Next, the timer signals the washer motor to start turning. The motor is 

connected to the agitator and basket through a series o f gears, springs, cams and shafts
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that make up the transmission. Although transmission designs vary and have evolved 

over the years, the function of this assembly is the same: to convert the rotary motion of 

the motor shaft into the back-and-forth motion of the agitator, and. at the appropriate 

time, stop agitation and engage the basket for the spin cycle.

In the wash phase, the fins on the agitator slosh the water and detergent through

Figure 10 -2 : Fill Process of a Washing Machine
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the clothes to remove the dirt. As the dirt is loosened from the clothes, it becomes 

suspended in the water. At the same time that agitation begins, the water pump is 

engaged. The pump circulates water from the tub bottom to the top. and routes the 

water through a filter that catches lint and other particles. When the wash cycle is over, 

the motor stops momentarily and then starts in reverse. At this point, the agitator

DRAIN HOSE

FILTER ASSEMBUT

MANIFOLD

PUM P

Figure 10-3:  Drain Cycle o f Washing Machine
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disengages and the pump moves the water in the opposite direction, flushing the filter 

and sending the dirty water out the drain hose. This process is shown in Figure 10-3.

Once the pump has removed most of the water, the timer advances to a spin 

cycle. The transmission now connects the motor to both the agitator and the basket, but 

disconnects the gears that control the agitation. As the rotating basket picks up speed, 

centrifugal force moves the water out o f the clothes and through the basket perforations 

to the tub where it’s pumped to the drain. As a safety feature, washers have a switch 

inside the lid that disconnects the motor if the lid is opened during the spin cycle.

When the spin cycle is finished, the timer advances to the rinse cycle. During 

this phase, the tub again fills with water to the predetermined level and temperature. 

The timer then begins another short agitation cycle to remove any dirt and detergent that 

may remain in the clothes.

Following this agitation, the timer drains the tub and signals the motor and 

transmission to begin a high-speed spin that removes most of the water from the 

clothes. During the final spin cycle, the timer opens and closes switches that control the 

water-inlet mixing valve. This sends bursts of water into the baskets that are called 

spray rinses. The spray rinse helps remove any remaining dirt or detergent in the 

clothes. When the final spin cycle is complete, the timer stops the motor and shuts itself 

off. [34]

Defining the system and how it operates is very important to the redesign of a 

commercial product. The description of system operation of a typical washing machine
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has been done adequately in previous paragraphs. But this is only one step to 

developing a redesigned product.

The other factors involved in product redesign are the cost of the product, 

demand of the product, and the minimization of resources which the product utilizes. 

The latter deals with conservation, and conservation is a factor of commodity 

economics. For a person to conserve energy or natural resources there must be an 

underlining benefit to that consumer in the way of cost reduction. People do not 

generally conserve anything unless it creates an undue monetary burden. In some areas 

of the country, water is extremely expensive, and therefore it is conserved. But in other 

areas water is fairly cheap so there is no reason for the consumer to conserve water. For 

a product to be designed strictly for the conservation of water is somewhat shortsighted 

by the designer. But. the product must be cost efficient and have comparable 

performance to other washing machines on the market.

Enhancing a washing machine with a multitude of sensors and other electronic 

components will drive the price of the product up so high that the majority of 

consumers will not purchase the product. This is a very elementary concept called the 

law of supply and demand. According to the theory, or law. of supply and demand, the 

market prices of commodities and services are determined by the relationship o f supply 

to demand. Theoretically, when supply exceeds demand, sellers must lower prices to 

stimulate sales; when demand exceeds supply, prices increase as buyers compete to buy 

goods. In economic theory, supply is the amount available for sale or the amount that 

sellers are willing to sell at a specified price, and demand is the amount purchasers are
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willing to buy at a specified price. This concept is depicted graphically in Figure 10 -

4. From this figure one can see that the point o f equilibrium is the most pleasing place 

for manufacturer to locate their product. The reason for this is that if demand is great 

and supply is not. present prices go up and a void in the market opens and competition 

fills in the gaps. But when supple is high and demand is low. prices drop and the 

manufacturer has a surplus of inventory causing an erosion of profits for the company.

Supply

U Point o f  Equilibrium

Demand

Quantity

Figure 10 -  4 : Supply and Demand Curves for a Product

From these facts a better washing machine can be developed that meets the 

needs o f consumers and also conserves water. There have been recent developments in 

other parts o f the world, such as Asia and Europe, where advancements in washing 

machines included fuzzy logic. These washing machines are very different than the 

washing machines in America. The foreign washing machines engage in washing
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cycles for more than 2 hours. This is unheard of in America where washing cycles take 

30 to 45 minutes. Also, these foreign washing machines heat the water and the 

American machines do not.

The main manufacturers of washing machine in America have not experimented 

with fuzzy logic control in washing machines as o f  yet. The reason for this is the 

acceptability of fuzzy logic in engineering fields. The concept of fuzzy logic control is 

just starting to emerge in consumer products in the United States, but we are far behind 

Europe and Asia in this area. These advancements can be seen in Table 1 0 - 1 .  where a 

fuzzy European washer is compared to three top American washers. It must be noted 

that the wash cycle is different, but this European machine is still cleaning clothes.

Table 10 -1 : Energy and Water Consumed by the Leading Washing Machines

Kasko Maytag GE Whirlpool

water used 28 gal 41 gal. 47 gal. 64 gal

power/ wash 260 WH 490 WH 550 WH 380 WH

There is significant savings of 13 gallons or more of water associated with the 

Kasko washing machine. So if fuzzy logic could be adapted to domestic washing 

machines, the water savings would be enormous. Water saving is a good benchmark 

but why stop there. With fuzzy logic control, the washing machine could also save time 

and only wash clothes as long as they need to be washed. This is also true with the 

rinse cycle - rinse clothes until the rinse water is clean. The rinse and wash cycles are
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two different control systems. But fuzzy logic is utilized in both systems to increase 

performance and efficiency.

Two different wash systems are considered. The first wash cycle incorporates 

only one sensor which distinguishes the dirtiness of the water. The sensor is of an 

optical origin and it measures the amount of light that passes through the water. This 

measurement happens right after the wash cycle starts. The reason for this is to get a 

good reading of the dirtiness o f the water once the clothes have absorbed the water and 

saturation is reached. From this point the fuzzy controller determines the length of the 

wash cycle. This fuzzy controller is very simple because it only has one input and one 

output. This could be accomplished by a conventional controller and the performance 

would be the same. But if other inputs were added, as in the next wash cycle, the 

program would become very complex. The block diagram of the system is shown in 

Figure 1 0 - 5  and a input vs. output graph for this wash cycle is shown in Graph 1 0 - 1 .

Optical Sensor

TimerFuzzy
Controller

Washing
Machine

Figure 10 - 5 : Basic Fuzzy Washing Machine Control for Wash Cycle
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Graph 10 - 1 : Wash Time vs. Water Dirt Level for Basic Wash Cycle for the 
Fuzzy Controller

This wash cycle is a closed loop control system with one feedback loop. There 

is not any actual feedback because the optical sensor only supplies one value to the 

fuzzy controller per cycle. This system has advantages and disadvantages:

Advantages

1. Prevents over washing, which saves electricity and prolongs clothes life

2. Prevents under-washing, which saves water that would be used in another wash 

cycle
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Disadvantages

1. Does not save any water in wash cycle

2. Does not conserve washing detergent

3. User must select water temperature

4. User must select load size

The wash cycle is half o f the design and the rinse cycle is the other half. There 

are two different types of rinse cycles that are used in washing machines. The first rinse

cycle fills the tub partly with water and agitates the clothes. The other rinse cycle

sprays the clothes with water and spins the clothes at the same time. The later type is 

more efficient and uses less water than the first rinse cycle. Therefore the second rinse 

cycle shall be included in this design.

To improve upon the rinse cycle the same sensor used in the wash cycle is used 

in this cycle. The optical sensor is used to determine if the clothes are rinsed to a 

suitable degree. To determine how long to rinse the clothes, a rinse cycle is started that 

is of a small time frame. The water is drained and the optical sensor measures the 

dirtiness of the water. The fuzzy controller determines the time allowed for the rinse 

cycle. If necessary, other rinse cycles are done until the clothes are sufficiently clean. 

Also there is a preset limit of dirtiness, where the rinse cycle ends. The block diagram 

of the system is shown in Figure 1 0 - 6  and an input vs. output graph for this rinse cycle 

is shown in Graph 10 - 2 .
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Figure 10 - 6 : Basic Fuzzy Washing Machine Control for Rinse Cycle
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Graph 10 - 2 : Rinse Time vs. Water Dirt Level for Basic Rinse Cycle for the 
Fuzzy Controller

This wash cycle is also a closed loop control system, with one feedback loop. 

There is feedback in this system unlike the wash cycle. Just like the wash cycle this 

system has advantages and disadvantages, such as:
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Advantages

1. Prevents over rinsing, which saves electricity

2. Prevents under-rinsing, which saves water that would be used in another rinse cycle

Disadvantages

1. None

This type of basic fuzzy washing machine would be very competitive against 

other low cost washing machines. The washing machine developed here would not fit 

every consumer, but it does offer a low cost alternative which saves water. The water 

savings is estimated to be 5 to 7 percent, but fine tuning of the system could result in a 

greater savings. These savings are estimated from the average washing cycle compared 

to the different washing cycles generated by the fuzzy controller. It must be noted that 

in Graphs 10-1 and 10 - 2  the water dirtiness level is factored between 0 and 100. This 

range is arbitrary and was used to get a better resolution for the fuzzy' system. Any 

reasonable range could be used in place of this one. For a detailed look at the fuzzy 

logic system for the wash and rinse cycles, refer to Appendix 1 and 2. respectively.

Every consumer does not want a low budget washing machine. For those 

consumers, options, efficiency, and features are the selling points. Price is not 

necessarily a factor in the purchase decision.

The second type o f fuzzy washing machine design contains a variety of sensors 

and user-friendly features. A block diagram of this system is shown in Figure 10-7 .
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The output graphs for the deluxe wash cycles for a fuzzy controller are shown in Graphs 

10-3 through 10- 5 .

Water Level

Optical Sensor

Flow Meter

Detergent
Amount

Water Add 
Amount

Absorption
Speed

Timer
Washing
Machine
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Controller

Figure 10 - 7 : Deluxe Fuzzy Washing Machine Control for Wash Cycle
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Graph 1 0 - 4 :  Deluxe Fuzzy Washing Machine Control for Wash Time
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Graph 10 - 5 : Deluxe Fuzzy Washing Machine Control for Amount o f Detergent

The block diagram shown in Figure 1 0 - 6  shows the system flow of the deluxe wash 

cycle. From this block diagram one can ascertain the fuzzy controller’s inputs, and 

outputs. These inputs and outputs are as follows:

Inputs

1. Optical sensor or water dirtiness

2. Absorption speed
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Outputs

1. Wash time

2. Water amount

3. Detergent amount

The optical sensor input is the same as the one for the basic wash cycle. This 

sensor determines the water's dirtiness. The absorption speed is calculated from the 

water level sensor and the flow meter. A level sensor measures the height of water in 

the drum of the washing machine. The flow meter measures the amount of water that 

enters the drum of the washing machine. By dividing the amount of water entering the 

tub of the washing machine by the water level in the tub of the washing machine, a 

value of absorption is generated. This absorption value gives an accurate account of the 

water needs of clothes in the washing machine. But this value can determine the water 

needs of clothes with a fixed dirtiness. For the design to approach real world criteria, 

the optical input is used along with the absorption factor to calculate the water amount. 

This calculation is continued until the tub of the washing machine is filled to the needed 

capacity. A three dimensional plot o f water amount vs. water dirtiness and absorption is 

shown in a Graph 10-3.  The dirtier the water and the slower the absorption, the greater 

the water amount; the cleaner the clothes and the faster the absorption, the smaller the 

water amount. For the absorption to be fast, the amount of clothes is small or the types 

of clothes have a low absorption rate. There are also two situations for a slow 

absorption rate - there are a lot of clothes in the washer or some of the clothes in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



192

washer have a high absorption rate. A subprogram could be included to avert the tub 

from overflowing if too many clothes were put in the washer.

To compute the wash time for a specific load of laundry, the optical sensor input 

and absorption input are used for this calculation. These two inputs are the same as the 

ones used above in the water amount computation. To compute the wash time the tub 

must be filled with water. The absorption rate is used along with the dirtiness o f the 

water to compute a wash time. This is formally shown in Graph 10- 4 .  In this graph 

the dirtier the water and the slower the absorption, the greater the wash time: the cleaner 

the clothes and the faster the absorption, the smaller the wash time. But the clothes can 

be extremely dirty and if the absorption rate is low. the wash time will not be at 

maximum. The reason for this decision by the system is that clothes that do not absorb 

great amounts of water come cleaner faster. Clothes that do absorb great amounts of 

water come clean slower and. hence, there is a greater wash time.

The last output of the system is the detergent amount used in the wash cycle. 

This output is solely dependent on the optical sensor. If the water is dirty then more 

detergent is added to the wash cycle. The computation is only done once after the tub is 

filled with water and before the agitation begins. This is formally shown in Graph 

10-5.

The rinse cycle for the deluxe fuzzy washing machine is exactly like the rinse 

cycle for the basic fuzzy washing machine. There was no need for improvement of this 

rinse cycle and the system integration was extremely simple. For a detailed look at the
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fuzzy logic system for the wash cycle of the deluxe fuzzy washing machine, refer to 

Appendix 3.

In conclusion, washers can be needless water-guzzlers as well as watt-hogs. The 

advent of fuzzy logic controllers allows less water than is considered "normal" per 

washing cycle, giving far more "wash for the slosh." If these water saving methods 

were employed in major brands o f washing machines to their fullest, less water would 

be wasted on doing laundry.
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CONCLUSION

Fuzzy logic is truly a revolutionary concept that will no doubt become an 

integral part of engineering and design in the coming years. Designs that feature fuzzy 

logic are cropping up everywhere from toasters to automobiles. But these products are 

from Europe or Asia. The scientific community in the United States must make a 

concerted effort to catch up with the rest of the world in the area of fuzzy logic. If this 

does not happen soon, corporations in the United States that produce durable goods will 

see their market share dwindle right before their eyes. This is a very serious situation 

and must not be taken lightly.

The main focus in the development of this dissertation was to determine the 

usefulness of fuzzy logic and fuzzy control when applied to a commercial appliance. 

But since fuzzy logic is extremely new in the country by the way of applications, 

journal papers, and other literature, there was a need to develop background concerning 

fuzzy logic. This background was divided into two different areas, set theory and fuzzy 

set theory. The second part presented fuzzy sets, fuzzy systems, fuzzy mathematics, 

and fuzzy control, with the model example conveying the use of all of the previous 

subjects. The model example also parallels and contrasts the two different concepts, 

fuzzy set and classical sets.

194
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The last major part o f this dissertation was fuzzy control of a consumer product. 

This part demonstrates that the use of fuzzy systems makes a viable addition to the field 

of engineering and. perhaps, more generally to the application of other consumer 

products to reduce energy consumption and increase the ease of operation. The 

consumer product considered was a typical washing machine found in any residential 

home. Two ways to improve this device were implemented by a fuzzy logic controller. 

The first improvement was water savings and the second wras electrical energy savings. 

Two different types o f washers were designed to meet the different needs of different 

consumers. One washer was a basic model, with few enhancements and a low price as 

well. The second type o f washer had many sensors, which allowed several features on 

the machine.

The design of the washer's control system is very difficult to model in the 

conventional sense. But fuzzy logic is a structured, model-free estimator that 

approximates a function through linguistic input/output associations. Fuzzy rule-based 

systems apply these methods to solve many types of "real-world" problems, especially 

where a system is difficult to model. The fuzzy logic toolbox of the program 

MATLAB™ developed by The Mathworks Corporation was used to build and test the 

fuzzy logic systems for the model example and the washing machines. This toolbox 

was very straightforward but there were several bugs in the toolbox. It is not 

uncommon with a first version of any program, but none the less it was very annoying 

in the design stage. After using the program for many weeks, these bugs were
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anticipated and did not impede progress, but it is good to know that the new version of 

the software has fixed these bugs and other problems.

Again, in this dissertation the concept of fuzzy logic was explored fully. 

Background and theoretical information was derived to provide a good base for a 

variety of applications. Classical logic, crisp sets, fuzzy sets, and operations on fuzzy 

sets were explained in order to cover a wide spectrum of applications. Fuzzy logic 

allows many household goods to be manufactured more quickly and with more options, 

and also be energy efficient, user friendly, and cost effective. The washing machine is 

only one example where fuzzy logic can be applied. The savings in water and 

electricity make this design very attractive to many consumers. It will be interesting to 

see if the major U.S. appliance manufactures embrace fuzzy logic or continue on the 

path of conventional control.
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APPENDIX 1 

Basic Fuzzy Wash Cycle Control

WASH1

(marrujam)

Figure A1 - 1 : FIS Editor for Basic Wash Cycle
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Figure A1 - 2 : Membership Function Editor for Water Input o f Basic Wash Cycle
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Figure A1 - 3 : Membership Function Editor for Wash Time Output o f Basic 
Wash Cycle
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; [ j  Rule E d i t o r :  WA S HI

h j g a , : - i =  = > ' / - . a  .

h  1. If (water is somewhat_dirty) then (washjim e is short) (1)
[ i 2. If (water is somewhatjlirty) then (w ashjim e is medium) (0)

e 3. If (water is somewhat_dirty) then (washjim e is long) (0)
I ; 4. If (water is dirty) then (wash_trme is short) (0.75)

. 5. If (water is dirty) then (wash_tmie is medium] (0.1) 
r 6. If (water is dirty) then (wash_time is long) (0.1)
i 7. If (water is very_dirty) then (wash_tnne is short) (0.1)
i 8. If (water is very_dhty) then (wash_time is medium) (0.5)

| ;• 9. If [water is veiy_dirty) then (w ashjim e is long) (0.7)
■ 10. If (water is extremely_dirty) then (washjim e is short) (0.1)

• | 11. If (water is extremely_dirty) then (wash_time is medium) (0.1) 
i 12. If (water is extremely_dirty) then (wash_time is long) (1)

Figure A1 - 4 : Rule Editor for Basic Wash Cycle
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[System]
Name='WASHl'
Type-mamdani'
Numlnputs=l
NumOutputs=l
NumRu!es=12
AndMethod='min'
OrMethod='max'
lmpMethod='min’
AggMethod-max'
DefiizzMethod-centroid'

[Input!]
Name='water'
Range=[0 100]
NumMFs=4
MFI-somewhat_dirty':'trapmf.[-6.5 0 20 47.5] 
MF2=’dirty':'trimf.[20 50 75]
MF3-very_dirty':'trimf,[50 75 100] 
MF4=’extremely_dirty':'trimf,[75 100 125]

[Output 1 ]
Name-wash_time'
Range=[-5 60]
NumMFs=3
M Fl=’short':'trimf,[-37.5 -5 27.5]
M F2-medium’:'trimf.[-5 27.5 60]
MF3='long’:'trimf,[27.5 60 92.5]

[Rules]
1. 1 ( 1) :  1 
1 . 2 ( 0 ) :  1
1 .3 (0 ) :  1
2. I (0.75) : 1
2.  2 ( 0 . 1 ) :  I
2. 3 (0.1): 1
3. 1 (0.1): 1
3. 2 (0.5): 1
3. 3 (0.7): 1
4. 1 (0 .1): 1 
4. 2(0.1) :  1 
4 . 3  (1): I

Listing A1 - 1 : Program Listing for Basic Wash Cycle
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Figure A1 - 5 : MATLAB Output for Model Height Input
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Figure A1 - 6 : MATLAB Output for Wash Time Output
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Figure A1 - 7 : Rule View for Basic Wash Cycle
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System  WASH1: 1 inputs, 1 outputs, 12 rules 

Figure A1 - 8 : System Plot for Basic Wash Cycle
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Figure A1 - 9 : Surface View for Basic Wash Cycle
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APPENDIX 2 

Basic Fuzzy Rinse Cycle Control

eiN̂e:

PiNSEt

(mamdam)

Figure A2 - 1 : FIS Editor for Basic Rinse Cycle
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Figure A2 - 2 : Membership Function Editor for Water Input of Basic Rinse Cycle
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Figure A2 - 3 : Membership Function Editor for Rinse Time Output of Basic 
Rinse Cycle
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Rule E d i t o r .  R I N S E l

1 - If (water is extremely_dean) then (rinse_time is short) (1)
2. If (water is extremely_dean) then (rinse_time is medhjm) (0) 

' 3. If (water is extremely_clean) then (rinse_dme is long) (0)
4. If (water is clean) then (rinse_time is short) (0.5)

' 5. If (water is clean) then (rinse_time is medium) (0.2)
f B. If (water is clean) then (rinse_time is long) (0.1)
i; 7. If (water is almost_clean) then (rinse_time is short) (0.1)

8. If (water is almost_dean) then (rinse_time is medium) (0.5)
9. If (water is almost_clean) then (rinse_time is long) (0.7)

. 10. If (water is not_clean) then (rinse_time is short) (0)
11. If (water is not_clean) then (rinse_time is medium) (0)
12. If (water is not_clean) then (rinse_time is long) (1)

m m m

Figure A2 -4 : Rule Editor for Basic Rinse Cycle
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[System]
Nam e-RINSE I ’
Type='mamdani'
Numlnputs=l
NumOutputs=l
NumRules=I2
AndMethod='min'
OrMethod-max'
ImpMethod=,min'
AggM ethod-m ax’
DefuzzMethod-centroid’

[Input I]
Name='water’
Range=[0 100]
NumMFs=4
MFl='extremeIy_ciean':'trapmf.[-47.5 -20 20 47.5] 
MF2='clean':'trimf.[20 50 75]
MF3=’almost_clean’:'trimf,[50 75 100]
MF4-not_clean':'trimf.[75 100 125]

[Output 1 ]
Name-rinse_time’
Range=[-2 22]
NumMFs=3
MF1-shortVtrapmf.[-24.79 -14 -2 4]
MF2-medium':'trimf,[-2 10 22]
MF3-long'r’trimf.[ 15.99 22 34]

[Rules]
1. I (1):  1 
1. 2 (0 ) :  1 
1 . 3 ( 0 ) :  1
2. 1 (0 .5): I
2. 2 (0 .2 ):  1
2. 3(0 . 1) :  I
3. 1 (0.1): 1
3. 2 (0 .5): 1
3. 3 (0 .7): 1
4. 1 (0):  1 
4, 2 ( 0 ) :  1 
4 . 3 ( 1 ) :  I

Listing A2 - 1 : Program Listing for Basic Rinse Cycle
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Figure A2 - 5 : MATLAB Output for Basic Rinse Cycle Input
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Figure A2 - 6 : MATLAB Output for Basic Rinse Cycle Output
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Figure A2 - 7 : Rule View for Basic Rinse Cycle
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Figure A2 - 9 : Surface View for Basic Rinse Cycle
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APPENDIX 3

Deluxe Fuzzy Wash Cycle Control
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Figure A3 - 1 : FIS Editor for Deluxe Wash Cycle
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Figure A3 - 2 : Membership Function Editor for Water Input of Deluxe Wash 
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Figure A3 - 3 : Membership Function Editor for Absorption Input of Deluxe 
Wash Cycle
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Figure A3 - 4 : Membership Function Editor for Water Input of Deluxe Wash 
Cycle
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Membership function plots

w*ih_tn*

Figure A3 - 5 : Membership Function Editor for Wash Time Output o f Deluxe 
Wash Cycle
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Membership function plots
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Figure A3 - 6 : Membership Function Editor for Amount of Detergent Output of 
Deluxe Wash Cycle
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Figure A3 - 7 : Membership Function Editor for Water Amount Output of 
Deluxe Wash Cycle
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1. If
2. If
3. If
4. If
5. If
6. If
7. If
8. If
9. If
10. I
11. I
12. I
13. I
14. I
15. I
16. I
17. I
18. I
19. I
20. I
21. I
22 . 1
23. I
24. 1
25. I
26. I
27. I
28. I
29. I
30. I
31. I
32. I
33. I
34. I
35. I
36. I
37. I
38. I
39. I
40. I
41. I
42. I
4 3 .1
44. I
45. I
4 6 .1
47. I
48. I
49. I
5 0 .1 
51. I
5 2 .1 
53. I

water is somewhatdirty) and (absorption is slow) then (wash_time is short) (1) 
water is somewhat dirty) and (absorption is slow) then (wash_time is medium) (1)
water is somewhat dirty) and (absorption is slow) then (wash_time is long) (0)
water is somewhat dirty) and (absorption is average) then (wash time is short) (1)
water is somewhat dirty) and (absorption is average) then (wash time is medium) (0)
water is somewhat dirty) and (absorption is average) then (wash time is long) (0)
water is somewhat dirty) and (absorption is fast) then (wash time is short) (1)
water is somewhat dirty) and (absorption is fast) then (wash_time is medium) (0)
water is somewhat dirty) and (absorption is fast) then (wash_time is long) (0)
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2 
(water_2

s dirty) and (absorption is slow) then (wash_time is short) (0) 
s dirty) and (absorption is slow) then (wash_time is medium) (1) 
s dirty) and (absorption is slow) then (wash_time is long) (0) 
s dirty) and (absorption is average) then (wash time is short) (1) 
s dirty) and (absorption is average) then (wash time is medium) ( I) 
s dirty) and (absorption is average) then (wash time is long) (0) 
s dirty) and (absorption is fast) then (wash time is short) (1) 
s dirty) and (absorption is fast) then (wash time is medium) (0) 
s dirty) and (absorption is fast) then (wash time is long) (0) 
s verydirty) and (absorption is slow) then (wash time is short) (0) 
s very dirty) and (absorption is slow) then (wash time is medium) (0) 
s very dirty) and (absorption is slow) then (wash_time is long) (1) 
s very dirty) and (absorption is average) then (wash time is short) (0) 
s very_dirty) and (absorption is average) then (wash time is medium) (1) 
s very dirty) and (absorption is average) then (wash_time is long) (0) 
s very_dirty) and (absorption is fast) then (wash time is short) (0) 
s very dirty) and (absorption is fast) then (wash time is medium) (1) 
s very dirty) and (absorption is fast) then (wash time is long) (0) 
s extremelydirty) and (absorption is slow) then (wash time is short) (0) 
s extremely dirty) and (absorption is slow) then (wash time is medium) (0) 
s extremely dirty) and (absorption is slow) then (wash time is long) (1) 
s extremely dirty) and (absorption is average) then (wash time is short) (0) 
s extremely dirty) and (absorption is average) then (wash time is medium) (0) 
s extremely dirty) and (absorption is average) then (wash time is long) (1) 
s extremely dirty) and (absorption is fast) then (wash_time is short) (0) 
s extremely dirty) and (absorption is fast) then (wash_time is medium) (1) 
s extremely dirty) and (absorption is fast) then (wash_time is long) (0) 

s somewhat_dirty) then (am ountofdetergent is verysm all) (1) 
s somewhat dirty) then (amount o f  detergent is small) (0) 
s somewhat dirty) then (amount_of_detergent is average) (0) 
s somewhat dirty) then (amount o f  detergent is large) (0) 
s somewhat dirty) then (amount o f detergent is very large) (0) 
s dirty) then (amount_of_detergent is very_small) (0) 
s dirty) then (amount_of_detergent is small) (1) 
s dirty) then (amount_of_detergent is average) (0) 
s dirty) then (amount_of_detergent is large) (0) 
s dirty) then (amount_of_detergent is very large) (0) 
s very dirty) then (amount_of_detergent is very small) (1) 
s very dirty) then (amount o f  detergent is smali) (0) 
s very dirty) then (amount_of_detergent is average) (0) 
s very dirty) then (amount_of_detergent is large) (1) 
s very dirty) then (amount o f  detergent is very_large) (0) 
s extremely dirty) then (amount_of_detergent is very small) (0) 
s extremely dirty) then (amount o f detergent is small) (0)
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54. If (water_2 is extremely dirty) then (amount o f  detergent is average) (0)
55. If (water_2 is extremely dirty) then (amount o f  detergent is large) (0)
56. If (water_2 is extremely dirty) then (amount o f  detergent is very_Iarge) (1)
57. If (water is somewhatdirty) and (absorption is slow) then (wateramount is very small) (0)
58. If (water is some\vhat_dirty) and (absorption is slow) then (water_amount is small) (0)
59. If (water is somewhat dirty) and (absorption is slow) then (water amount is average) (1)
60. If (water is somewhatdirty) and (absorption is slow) then (water_amount is large) (0)
61. If (water is somewhatdirty') and (absorption is slow) then (wateramount is very large) (0)
62. If (water is somewhat dirty) and (absorption is average) then (water amount is very small) (0)
63. If (water is somewhatdirty) and (absorption is average) then (water_amount is small) (1)
64. If (water is somewhat dirty) and (absorption is average) then (water amount is average) (0)
65. If (water is somewhat dirty) and (absorption is average) then (water amount is large) (0)
66. If (water is somewhat_dirty) and (absorption is average) then (wateramount is veryjarge) (0)
67. If (water is somewhatdirty) and (absorption is fast) then (wateramount is verysm all) (I)
68. If (water is somewhat dirty) and (absorption is fast) then (water amount is small) (0)
69. If (water is somewhat dirty) and (absorption is fast) then (water amount is average) (0)
70. If (water is somewhatdirty) and (absorption is fast) then (water_amount is large) (0)
71. If (water is somewhat dirty) and (absorption is fast) then (water_amount is very large) (0)
72. If (water is dirty) and (absorption is slow) then (wateramount is verysm all) (0)
73. If (water is dirty) and (absorption is slow) then (wateramount is small) (0)
74. If (water is dirty) and (absorption is slow) then (water amount is average) ( I)
75. If (water is dirty) and (absorption is slow) then (water amount is large) (0)
76. If (water is dirty) and (absorption is slow) then (water amount is very ja rg e) (0)
77. If (water is dirty) and (absorption is average) then (water_amount is very_small) (0)
78. If (water is dirty) and (absorption is average) then (water amount is small) (0)
79. If (water is dirty) and (absorption is average) then (water_amount is average) (1)
80. If (water is dirty) and (absorption is average) then (water amount is large) (0)
81. If (water is dirty) and (absorption is average) then (water_amount is very large) (0)
82. If (water is dirty) and (absorption is fast) then (water amount is very small) (0)
83. If (water is dirty) and (absorption is fast) then (water amount is small) (1)
84. If (water is dirty) and (absorption is fast) then (water amount is average) (0)
85. If (water is dirty) and (absorption is fast) then (water amount is large) (0)
86. If (water is dirty) and (absorption is fast) then (water amount is very large) (0)
87. If (water is very dirty) and (absorption is slow) then (water amount is very small) (0)
88. If (water is very dirty) and (absorption is slow) then (water amount is small) (0)
89. If (water is very dirty) and (absorption is slow) then (water amount is average) (0)
90. If (water is very dirty) and (absorption is slow) then (water amount is large) ( I)
91. If (water is verydirty) and (absorption is slow) then (wateramount is very large) (0)
92. If (water is very_dirty) and (absorption is average) then (water_amount is very small) (0)
93. If (water is vety dirty) and (absorption is average) then (water amount is small) (0)
94. If (water is verydirty) and (absorption is average) then (wateramount is average) (0)
95. If (water is very dirty) and (absorption is average) then (water amount is large) (1)
96. If (water is verydirty) and (absorption is average) then (wateramount is very large) (0)
97. If (water is very dirty) and (absorption is fast) then (water_amount is very_small) (0)
98. If (water is very dirty) and (absorption is fast) then (water_amount is small) (0)
99. If (water is very dirty) and (absorption is fast) then (water amount is average) ( I)
100. If (water is very dirty) and (absorption is fast) then (wateramount is large) (0)
101. If (water is very_dirty) and (absorption is fast) then (water_amount is very large) (0)
102. If (water is extremely dirty) and (absorption is slow) then (wateramount is very small) (0)
103. If (water is extremely_dirty) and (absorption is slow) then (water amount is small) (0)
104. If (water is extremely_dirty) and (absorption is slow) then (water amount is average) (0)
105. If (water is extremelydirty) and (absorption is slow) then (wateramount is large) (0)
106. If (water is extremely dirty) and (absorption is slow) then (water amount is very large) (1)
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107. If (water is extremely dirty) and (absorption is
108. If (water is extremely dirty) and (absorption is
109. If (water is extremely dirty) and (absorption is
110. If (water is extrem elydirty) and (absorption is
111. If (water is extremely dirty) and (absorption is
112. If (water is extrem elydirty) and (absorption is
113. If (water is extremely_dirty) and (absorption is
114. If (water is extrem elydirty) and (absorption is
115. If (water is extremely dirty) and (absorption is
116. If (water is extrem elydirty) and (absorption is

average) then (water amount is very small) (0) 
average) then (water amount is small) (0) 
average) then (water amount is average) (0) 
average) then (water amount is large) (1) 
average) then (water amount is very large) (0) 
fast) then (water amount is very small) (0) 
fast) then (water_amount is small) (0) 
fast) then (water amount is average) (1) 
fast) then (water_amount is large) (0) 
fast) then (water amount is very large) (0)

Listing A3 - 1 : Rule List for Deluxe Wash Cycle
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[System]
Name='WASH3’
Type-mamdani'
Numlnputs=3 
NumOutputs=3 
NumRules=l 16 
AndMethod-min'
OrMethod-max'
ImpMethod-min'
AggMethod=’max’
DefuzzMethod-centroid'

[Input 1]
Name='water'
Range=[0 100]
NumMFs=4
MFl-somewhat_dirty':'trapmf,[-20 0 20 50] 
MF2-dirty':’trimf.[20 50 75] 
MF3='very_dirty':'trimf.[50 75 100] 
MF4-extremely_dirty':'trapmf.[75 100 110 120]

[Input2]
Name='absorption'
Range=[0 1]
NumMFs=3
MFl='average’:'trimf,[0 0.5 1]
MF2='slow,:7trimf.[-0.5 0 0.5]
MFS-fast'r'trimf.fO.S I 1.5]

[Input3]
Name='water_2’
Range=[0 100]
NumMFs=4
MFl='somewhat_dirty':'trimf.[-33.33 4.441e-016 33.33] 
MF2='dirty':'trimf,[0 33.33 66.67]
M F3-very_dirty’:'trimf.[33.33 66.67 100] 
MF4='extremely_dirty,:,trimf.[66.67 100 133.3]

[Output 1 ]
Name-wash_time'
Range=[-10 50]
NumMFs=3
MF1 -  short’:'trimf,[-33.08 -5.385 22.32] 
MF2='medium’:'trimf.[-5.385 22.32 50] 
VtF3='long':'trimf,[22.32 50 77.66]

[Output2]
Name='amount_of_detergent'
Range=[0 32]
NumMFs=5
M Fl=’very_smair:'trimf.[-8 0 8]
M F2-sm all’:'trimf,[0 8 16]
MF3=’average':'trimf,[8 16 24]
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MF4-large'i'trimf,[ 16 24 32] 
MF5='very_large’:'trimf,[24 32 40]

[Output3]
Name='water_amount'
Range=[0 25]
NumMFs=5
MF1 -very  smaU’r'trimf.[-6.25 0 6.25] 
MF2=,small’:'trimf.[0 6.25 12.5] 
MF3=’average':’trimf.[6.25 12.5 18.75] 
MF4='large':'trimf,[I2.5 18.75 25] 
MFS-very^argeVtrimf.f 18.75 25 3 1 -25]

[Rules]
1 2 0 . 1 0 0 ( 1) :  1 
1 2 0 . 2 0 0 ( 1) :  1 
1 2 0. 3 0 0 (0):  1 
1 1 0 . 1 0 0 ( 1) :  1 
1 1 0. 2 0 0 (0 ) :  1 
I 1 0. 3 0 0 ( 0 ) :  1 
I 3 0. 1 0 0 ( 1 ) :  1 
1 3 0. 2 0 0 (0):  1
1 3 0. 3 0 0 (0):  1
2 2 0. 1 0 0 (0): I 
2 2 0 . 2 0 0 ( 1) :  1 
2 2 0. 3 0 0 (0):  1 
2 1 0 . 1 0 0  ( 1 ) : 1 
2 1 0 . 2 0 0  ( 1) :  1 
2 1 0, 3 0 0 (0):  1 
2 3 0. 1 0 0 (1):  1 
2 3 0. 2 0 0 (0):  1
2 3 0. 3 0 0 (0):  1
3 2 0, I 0 0 (0):  1 
3 2 0. 2 0 0 (0):  1 
3 2 0 . 3  0 0 ( 1 ) :  1 
3 1 0. 1 0 0 (0):  1 
3 I 0 . 2 0 0 ( 1 ) :  1 
3 1 0.3 0 0 ( 0 ) :  1 
3 3 0. 1 0 0 (0):  1 
3 3 0.2 0 0  (1):  1
3 3 0. 3 0 0 (0):  1
4 2 0. 1 0 0 (0):  1 
4 2 0. 2 0 0 (0):  1 
4 2 0 . 3 0 0 ( 1 ) :  1 
4 1 0. 1 0 0 (0):  I 
4 1 0. 2 0 0 (0):  1 
4 1 0.3 0 0 ( 1 ) :  I 
4 3 0. I 0 0 (0):  1 
4 3  0 . 2 0 0 ( 1 ) :  1 
4 3 0. 3 0 0 (0):  1 
0 0  1. 0 1 0 ( 1) :  1 
0 0 1. 0 2 0 (0 ) :  1 
0 0 1.0 3 0 ( 0 ) :  1
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0 0  1 . 0 4 0  
0 0  1.0 5 0  
0 0 2 . 0  I 0 
0 0 2. 0 2 0 
0 0 2 . 0  3 0 
0 0 2. 0 4 0 
0 0 2 . 0  5 0 
0 0 3 , 0  1 0 
0 0 3 . 0  2 0  
0 0 3 . 0 3 0  
0 0 3.0 4 0  
0 0 3.0 5 0  
0 0 4. 0 1 0 
0 0 4. 0 2 0 
0 0 4 . 0  3 0 
0 0 4. 0 4 0
0 0 4. 0 5 0
1 2 0. 0 0 1 
1 2 0.0  0 2 
1 2 0 , 0  0 3 
1 2 0, 0 0 4 
1 2 0, 0 0 5 
1 1 0 . 0  0 1 
1 1 0.0 0 2 
1 1 0. 0 0 3 
1 1 0. 0 0 4 
1 1 0 . 0  0 5 
1 3 0 . 0  0 1 
1 3 0.0 0 2 
1 3 0.0 0 3 
1 3 0. 0 0 4
1 3 0. 0 0 5
2 2 0,0 0 1 
2 2 0.0 0 2 
2 2 0. 0 0 3 
2 2 0. 0 0 4 
2 2 0. 0 0 5 
2 1 0, 0  0 1 
2 1 0.0 0 2 
2 1 0.0 0 3 
2 1 0. 0  0 4 
2 I 0 . 0  0 5 
2 3 0.0 0 1 
2 3 0, 0 0 2 
2 3 0 . 0  0 3 
2 3 0 . 0  0 4
2 3 0,0 0 5
3 2 0. 0 0 1 
3 2 0 . 0  0 2 
3 2 0 , 0  0 3 
3 2 0. 0 0 4 
3 2 0. 0 0 5 
3 1 0 . 0  0 1

0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
I
0
0
0
1
0
0
0
0
0
0
1
0
0
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3 1 0. 0 0 2 (0): 1 
3 I 0. 0 0 3 (0):  1 
3 I 0 . 0  0 4 ( 1 ) :  I 
3 I 0 . 0  0 5 (0): I 
3 3 0. 0 0 1 (0): 1 
3 3 0. 0 0 2 (0): 1 
3 3 0 , 0  0 3  (1): 1 
3 3 0 . 0  0 4 (0):  I
3 3 0. 0 0 5 (0): I
4 2 0 , 0  0 I (0): 1 
4 2 0. 0 0 2 (0): 1 
4 2 0. 0 0 3 (0):  I 
4 2 0. 0 0 4 (0):  1 
4 2 0 , 0 0 5  (1): 1 
4 1 0, 0 0 1 (0): 1 
4 1 0, 0 0 2 (0):  1 
4 I 0. 0 0 3 (0): 1 
4 1 0 . 0 0 4 ( 1 ) :  1 
4 1 0. 0 0 5 (0):  I 
4 3 0. 0 0 1 (0): 1 
4 3 0. 0 0 2 (0): 1 
4 3  0 . 0 0 3  (1):  1 
4 3 0 . 0  0 4 ( 0 ) :  1 
4 3 0. 0 0 5 (0): 1

Listing A3 - 2 : Program Listing for Deluxe Wash Cycle
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Figure A3 - 8 : MATLAB Output For Deluxe Wash Input, Water
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Figure A3 - 9 : MATLAB Output For Deluxe Wash Cycle Input, Absorption
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