
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 1999

Sonar three-dimensional image formation for
underwater vehicular collision avoidance
Gary Robert Boucher
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Boucher, Gary Robert, "" (1999). Dissertation. 748.
https://digitalcommons.latech.edu/dissertations/748

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/748?utm_source=digitalcommons.latech.edu%2Fdissertations%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to
order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct and/or slanted print Pages were microfilmed as

received.

This reproduction is the best copy available

UMI

R eproduced wild perm ission of the copyright"owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SONAR 3-D IMAGE FORMATION FOR
UNDERWATER VEHICULAR
COLLISION AVOIDANCE

by
Gary Robert Boucher, B.S., M.S., M.S.

A Dissertation Presented In Partial Fulfillment
of the Requirements for the Degree

Doctor of Engineering

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 1999

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 9918273

Copyright 1999 by
Boucher, Gary Robert

All rights reserved.

UMI Microform 9918273
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

___________ 2/18/99_______________________
Date

We hereby recommend that the thesis prepared under our supervision

by Gary Robert Boucher___

entitled Sonar 3-D Image Formation For Underwater Vehicular Collision Avoidance________

be accepted in partial fulfillment of the requirements for the Degree of Doctor of

Engineering__

Recqffiipendation.spncurred in:

Dr. Melvin Corley

Dr. Louifr'Roemer

(David Cowling)

Department

Electrical Engineering
Department

Advisory Committee

Dr. James Lowther

Approved:

of Graduate/StudiesDin

of the Collei

Approved:

Director of the Granuate School

GS Form 13
2/97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

The last ten years have shown a marked increase in
research into Autonomous Underwater Vehicles. A key component
of this research is . the ability to "look" ahead of the
vehicle's projected path and translate active sonar returns
into three-dimensional (3-D) computer data structures used to
navigate and avoid obstacles. This need to avoid obstacles is
also common to other underwater vehicles including
submersibles.

Of special interest to this research is the "Occupancy
Grid Framework." This technique divides the forward looking
sonar field into cells. These cells can be maintained either
in spherical or cartesian coordinate systems.

This research demonstrates a method of maintaining an
array-type data structure based on the cartesian coordinates
of returned sonar echoes. A volume of array elements are
colored to reflect the probability of potential obstacles.
Also, between sweeps of a scanning sonar transducer array, the
locations of these volumes of probability are both rotated and
translated inside the data structure as the vehicle turns
and/or moves forward.

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This research is different from prior research in two
respects. First, rotation and translation of target
probability spheres, located in a 3-D array, are accomplished
by rotating and translating the sphere centers rather than the
actual voxels comprising the spheres. In this way,
probability spheres are continuously being removed, and
regenerated at new locations inside the data structure. This
relocation can be done in real-time as the vehicle moves.

Secondly, this research shows a method of pre-processing
real-time data for increased speed using a series of two
microcontrollers located between the sonar transceiver and the
host computer, where the data is processed.

Programs used in this system consist of both assembly
language programs for the microcontrollers, and a C language
program for the host computer. These programs demonstrate a
software approach which can be used as a basis for future
research.

iv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

A B S T R A C T ..iii
LIST OF T A B L E S .. ix
LIST OF F I G U R E S ... x
ACKNOWLEDGEMENTS..xi
CHAPTER 1 - I N T R O D U C T I O N 1

Area of Research
Concept Background 1

Outline of Research Method 5
Sonar Data A c q u i s i t i o n 5
Sonar Data P r e - p r o c e s s i n g8
Speed and Turning Rate Measurement 9
Host Computer F u n c t i o n 10
Data Gathering and A n a l y s i s16

CHAPTER 2 - HARDWARE SYSTEM D E S I G N18
Hardware System Overview 18

General Considerations 18
External Systems 19
Internal Systems 21
Host Computer Specifications 22

Sonar Pod Hardware Theory of O p e r a t i o n23
Ping Generator M o d u l e 23
Ping Amplifier M o d u l e27
Scan Control M o d u l e 31
Analog Amplifier-Filter M o d u l e 33
Sonar Pod Microcontroller M o d u l e38
Power Supply M o d u l e 38

Pre-processor Hardware Theory of Operation . . . 39
Processor A .. 39
Processor B .. 42

Velocity and Heading Sensor Hardware 45
Velocity Sensor 45
Magnetic Compass Sensor and Microcontroller. . 4 6

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 3 - SOFTWARE SYSTEM THEORY OF OPERATION . . 49
Introduction to Software 49

Languages and T o o l s 4 9
Sonar Pod S o f t w a r e 50

Command Structure 50
Initial Software Considerations 52
The Main Line Program53
Rotation C o m m a n d s54
Ping Generation and R e c o r d i n g55
Gain and A t t e n u a t i o n 57

Processor A Software 59
Introduction to Processor A Software 59
Initial Start-Up of Software.................... 59
Main Line P r o g r a m60
Running the S o n a r63
Event F o r m a t i o n 66
Threshold Commands 66
Serial Peripheral Interface 68

Processor B Software 69
Initial Considerations 69
Main Line P r o g r a m70
Interrupt Service Routine 71
Other Communications S u b r o u t i n e s 73
Event H a n d l i n g 74
Other Event Handling Subroutines 75

Recording Host Software 75
Introduction 75
Hardware and Software Used for Recording . . 7 6

Processing Host Software 77
Introduction 77
Host Data S t r u c t u r e s 78
Host Computer Software Layout 82
Host Main Line P r o g r a m83
Host Computer F u n c t i o n s8S'

CHAPTER 4 - TESTING AND EV A L U A T I O N.................... 93
Testing Purposes and Objectives 93

Introduction to Testing Philosophy 93
Instrument Platform Development 94

Need for an Instrument P l a t f o r m 94
Design and Construction of Instrument Platform 95

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Testing Prior to Field Trials 97
Initial Systems Testing 97
Pool Testing of Sonar P o d 99
Initial Platform Checkout 102

Open Water Field Testing 103
Problems and Solutions in Field Testing . . . 103
Procedures for Field Testing 104
Testing of Host Computer P r o g r a m105

Field Test at Cypress Lake106
Available Locations and Facilities 1 0 6
Testing Procedure and Test Results 107
Modifications to Equipment and Procedures . . 109

Field Test at Gold P o i n t Ill
Available Locations and Facilities Ill
Equipment Considerations and Allowances . . . 114
Selection of Transducer and Head Position . . 115
Filtering of Data Prior to Processing . . . 116

CHAPTER 5 - C O N C L U S I O N S 118
Research Findings 118

Introduction 118
Usable Data File S e t s 118
Methods of Data P r e s e n t a t i o n 119
Approach to Dock C o m p l e x120
Zero Velocity T u r n i g 122
Comments on Results Presented 125

Strengths of Current Approach 125
General Considerations 125
Hardware Strengths 126
Software Strengths 127

Weaknesses and Methods of I m p r o v e m e n t 129
Threshold Adjustments 129
Underwater Currents 130
Turning Error Compensation 131
Sweep A n g l e 132
Pre-processing Versus High Speed Host . . . 132

Suggestions for Future Research 133
Visual Display Technology 133
Upgraded Transducer Capability 134
Z-Axis Rotation and Translation 134

APPENDIX A: MICROCONTROLLER SOFTWARE 137
APPENDIX B: PROCESSING HOST SOFTWARE................. 177

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX C: BASIC LANGUAGE SUPPORT SOFTWARE . . .192
APPENDIX D: DATA P L O T S 210
BIBLIOGRAPHY .. 227
V I T A .. 230

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

Table
1 Sonar Pod Comm a n d s.................... . 51
2 Gain and Attenuation Factors . 58
3 Processor A Commands 62
4 Event String Formatting 67
5 Point and Threshold Commands 00uo•

6 Processor A and B Connections . 72
7 Recording Host Data Samples 85

ix

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

Figure
1 Ping Generator Module (P G M)25
2 Ping Amplifier Module (P A M)28
3 Scan Control Module (S C M)32
4 Analog Amplifier-Filter Module (AAFM) . 34
5 Processor A41
6 Processor B44

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGMENTS

I would like to think everyone who helped me on this
dissertation. Also, much appreciation is extended to those
individuals that aided me in the field testing phase of this
sonar concept. These people include my wife Marie, Carl
Hennigan, Philip Slay, and Decker Moore. Without their help
it would not have been possible to obtain results from these
trials.

I would also like to extend my appreciation to Steve Culp
for the use of his lathe and milling machine. Without this
type of equipment, it would not have been possible to
construct the submersible components of this system.

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 1

INTRODUCTION

Area of Research

Concept Background
The last ten years have shown a marked increase in

research efforts to develop Autonomous Underwater Vehicles
(AUVs) . A key component of this research is the ability for
the vehicle to "look" ahead and translate incoming active
sonar information into three-dimensional (3-D) image data to
be stored in array-type data structures that can be processed
by a computer. Of special interest is the recent research
presenting the "Occupancy Grid Framework" [5]. This technique
divides the forward-looking sonar field into cells.

The occupancy grid cell is a volume element (voxel) that
is generated by sectioning space around the vehicle into
spherical coordinates. Each of these cells may be either
empty, or occupied by a return echo denoting an object at a
certain distance and angle, both in horizontal and vertical
angular coordinates [5].

The occupancy grid approach has been used to build
bathymetric maps of sea floor structures, and has served as a

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

general tool for AUV collision avoidance [2] . The use of the
occupancy grid approach to sonar data gathering and processing
for manned submersible operation did not appear in the
literature.

By maintaining the most current occupancy grids possible
the operation of the vehicle becomes safer. The risk of
collision and, in the case of the manned submersible, the
possibility of a fatality, is reduced.

Often water conditions and operating depth prevent a
submersible pilot from being able to rely solely on visual
perception for navigation to avoid collisions. Submersible
operations in lakes sometimes require the pilot to descend
through a low visibility layer existing from the surface down
to the first thermocline, where water clarity may permit
better visual navigation. In ocean operations submersibles
often penetrate to a depth where sufficient light is not
available. Also, some submersible operations occur at night.
In both the fields of AUV and manned submersible operation,
there is a clear need for better systems of sonar obstacle
avoidance.

This dissertation examines a method of scanning a space
above and below, and also left and right of the projected
heading of the vehicle, using low-resolution low-cost sonar
techniques to construct 3-D data structures within the memory
of a host computer. Much of the research into the area of
sonar 3-D image formation was done by P. G. Auran along with

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a number of associates at various universities in Norway and
Finland [2,3,4,5] .

There are several approaches to constructing memory data
structures for this type of application. Volume buffers,
Octrees, and Binary Space-Partitioned Trees can be used [30].
This research uses the volume buffer method, which is simply
a 3-D array of memory elements set to non-zero values to
represent occupancy.

This research demonstrates a data structure which is
actually an array of 3-D sonar echo information. This
information can be utilized by future researchers through
various methods to generate either true 3-D or quasi 3-D
visual displays, allowing the viewer to "see" objects in the
path of the submersible. Several innovative approaches to 3-D
viewing are suggested by Tsao and Chen [31] . The major
benefit to the AUV would be to have a 3-D cartesian coordinate
array of stored data to construct a computer generated
obstacle-free path.

Research in this area has yielded several techniques
whereby occupancy grids are constructed and then translated
into 3-D image arrays for building maps of sea floor features
and also identifying obstructions ahead of AUVs. In the past,
much of this information has been presented in maps drawn by
large pen plotters showing navigation and bathymetry contours
[4] . Various algorithmic techniques have also been developed
for connecting grid information in a logical manner so as to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4
fill in missing echo information and other grid cell
connectivity operations [3] .

One feature not reported in the literature is the ability
to predict the current location of obstructions previously
scanned as the submersible or AUV is translating forward
and/or turning using 3-D array structures. Suppose that an
underwater structure was located 16 degrees to the left of
course level with the vehicle. This feature depicted either
in the memory of an AUV or on a display of a manned
submersible would/ until the next scan refreshed the system,
remain at the original 16 degree position as the craft turned
to the left and speeded forward. Once refreshed the obstacle
could suddenly appear in the direct path of, and much closer
to the vehicle. Most conventional scanning sonar systems
operate at less than 2 meters/second forward velocity [8] .

Since the speed of sound in fresh water is 4,87 6 ft/sec
(1,486 m/s) and the speed of sound in sea water is only
slightly greater at 4,984 ft/sec (1,519) [13], a time limit is
placed on how long it will take to complete a ping cycle.
This is also affected by the maximum range of the sonar
system. When more resolution is required and longer ranges
needed, the scan time can be much longer [10]. It is easy to
see how obstacles "painted" ahead of the vehicle can make a
substantial change in position as a craft moves forward or
turns.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5
A method of estimating changes in target position using

linear algebra techniques could allow this object to be moved
in a 3-D array of data as the vehicle moves. This is a
logical extension of the research presented by Auran. Speed
and rate of turn can be measured easily using standard
techniques.

This research utilizes a Vector Model 2XG remote sensing
compass module utilizing magneto-inductive magnetometer
technology [22]. This compass module is interfaced to a
Motorola MC68HC811E9 microcontroller to continuously report
magnetic heading information to the host computer. In this
manner any turning will be instantly noted by the computer.

A solution to the speed sensing problem was suggested with
the use of a specially designed water velocity indicator.
This indicator generates digital pulses as a magnetized wheel
is rotated by a set of small turbine blades as water passes
the sensor. The pulses are sampled with the same
microcontroller used for heading information acquisition and
both are presented to the host computer for processing. Thus
heading and speed information can be used to facilitate
changes in the host's data structure.

Outline of Research Method

Sonar Data Acquisition
A low resolution scanning sonar system is used to take

measurements of the volumetric space ahead of the sonar

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6
system's path. Sonar "pings" are generated at 192KHz. The
pings measure the range for each cell in a 6 by 6 array. Each
array element will represent an 8-degree wide sonar cone (3dB
down points) . Six samples in both vertical and horizontal
directions are taken to yield a total of 36 different angular
distance measurements.

The sonar system developed has three transducers, each
with an 8-degree cone projection pattern. These three sensors
have been stacked one over the other looking 16 degrees apart
in the vertical plane and placed so as to be rotatable in a
left-right manner. The array can be rotated left or right of
the projected path of the submersible or AUV by 20 degrees,
thus giving a total of 4 8 degrees of horizontal viewing angle.
This is a relatively narrow scan angle for looking ahead of a
submersible or AUV. However, for the intended end-use
application, this angle should prove adequate due to the slow
turning rate of the specific submersible planned for the
installation.

The major advantage to using transducers operating at
192KHz to transmit the sonar pings is their ability to
transfer large amounts of energy in narrow beams with small
physical size [6] . This is important in developing a multi
beam sonar system especially if scanning is used.

In scanning from left to right, the array stops rotation
every 8 degrees and generate three pings, one ping for each of
the three sensors. Returning information for each separate

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

sensor is transferred to an Analog Amplifier-Filter Module
(AAFM) in the sonar pod- This submerged sonar pod contains
the front-end stages of the electronic processing chain. Here
the 192KHz analog signals representing returning echoes are
amplified and highly filtered before being detected and sent
to an analog to digital converter on an embedded
microcontroller located inside the sonar pod.

The Sonar Pod Microcontroller Module (SPMM) has built-in
8-bit resolution A/D conversion capability where the returning
analog signals are sensed and converted into a series of data
elements, each representing a signal level of one byte [19] .
Each ping will generate 300 such samples, with each sample
representing a total time of flight for the sonar signal equal
to one foot of range.

Each time a ping is generated a formatted packet of data
is transmitted from the SPMM in the sonar pod to a pipeline of
pre-processing stages for preliminary analysis. Once three
sets of data are recorded (one for each transducer)
representing the current left-right scan angle, the sonar
transducers move to their next angular position and another
set of data is taken. Once a scan from left to right is
completed, the sonar assembly is rotated vertically around a
horizontal axis some 8 degrees, returned to the leftmost
position, and another sweep is begun.

The echo from each sonar ping will be broken down into 300
separate voxels, each representing a vertical and horizontal

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

angular position along with the amplitude of each voxel
sample.

Sonar Data Pre-processing
The pre-processing chain uses two Motorola MC68HC711E9

microcontrollers for processing the voxel information as it
leaves the SPMM in the sonar pod and proceeds to the host
computer. The first microcontroller, "processor A,"
thresholds each voxel data element with a pre-loaded template
of memory information found in auxiliary RAM memory connected
to this microcontroller. Information returned by the sonar
will be compared against this threshold to see if there is a
leading edge of an echo occurring. A simple analog
thresholding technique was used by Auran and Malvig to
identify returning echoes [2]. If an over-the-threshold echo
is detected, processor A identifies it as an "event." Event
information is in-turn sent to a second microcontroller in the
pre-processor chain "processor B."

Processor B has at its disposal a look-up cable in EPROM
memory where the address of the table is a binary number
composed of X angle, Y angle, and range information. The
returned data from this EPROM look-up table gives pre
calculated numerical values for the echo edge in cartesian
coordinates (X,Y,Z). For amplitudes of returning echoes that
are continuously above the threshold level, the software
records a limited series of events spaced at a predetermined
distance. This look-up table approach has the major advantage

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9
of being fast and thus relieves much of the computational
burden on the host computer.

Speed and Turning Rate
Measurement

It is essential to furnish not only angle and range
information to the host computer but also information on
vehicle speed and changes in vehicle direction. Without this
information no estimating of target position between sweeps
can be made.

The need for velocity measurement was solved by the use of
a 3-inch diameter 7-blade turbine attached to a rotating
magnet with 6 poles. As the water flows over the turbine
outside of the submersible or AUV, the turbine blades rotate.
The rotation is approximately proportional to the velocity,
and thus the number of digital transitions per time period
measured by a digital magnetic proximity sensor increases as
velocity increases. The magnetic wheel and proximity sensor
were removed from an LEI model ST-TBK speed and temperature
instrument package sold as a boating accessory. The
temperature function was not used.

One unique feature of this turbine speed sensor is the
fact that since it must turn freely with almost no friction,
ball bearings are required. The problem with standard steel
ball bearings is that they must be sealed against the
elements. Often they are packed with grease to permanently
lubricate them. This causes friction that can have a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10
pronounced effect on the sensor. This design uses plastic
non-lubricated bearings that are open to the water. The
actual ball bearings themselves are constructed of glass.

The need for changes in heading to demonstrate left-right
turning is accomplished with a digital compass module located
outside of the sonar pod frame in the water at a position that
is minimally affected by the hard iron magnetic properties of
the sonar system and attached vehicle. The connection bracket
was fabricated from aluminum and stainless steel to have no
effect on the magnetic fields in the area of the compass.

Both the magnetic compass and speed sensor utilize the
same microcontroller located inside the compass module. This
controller is the same general type as the pre-processors, a
Motorola MC68HC811E9. Signals from this microcontroller enter
the host computer through a second serial port, separate from
the pre-processor information described earlier.

Host Computer Function
Generated events and sensor information flow to the host

computer, where they are received as coordinates for a
cartesian based occupancy grid along with rates of translation
and turning. Later, when the system is actually employed for
collision avoidance on a submersible, a Pentium-based computer
capable of fast numeric processing should be used along with
perhaps the LINUX (UNIX) operating system.

For this research the effectiveness of the entire approach
is studied on a non-real-time basis in a laboratory setting.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11
For this reason processor B and the sensors need only deliver
their data to a recording host, a much slower Dell 386-SX
computer, where each data element is time-stamped to indicate
when it arrived and was recorded with all necessary
information. This concept of recording data to be processed
later is described by Spitzak, Caress, and Miller [28] .

Once several runs of data are recorded, the data can be
taken back to a laboratory and processed through a faster
computer using host software that is almost identical to the
end-use version. In this way the performance of the overall
system can be evaluated.

This approach has several major advantages. First; it
allows the researcher to stop the flow of data into the host
at any time and take "cross sections" of the memory data
structure for evaluation of system performance. Another
advantage to non-real-time evaluation is the fact that the
amount of computer equipment necessary at the testing site is
greatly reduced. This can be especially true if the data is
going to be used for testing graphics displays in the future.
This approach also allows evaluation on Windows 95/98-based
operating systems, which in practice may prove difficult to
make portable and reliable for use in an actual AUV or
submersible.

It is believed by the author that the best approach to a
permanent on-board operating system for submarine or AUV
applications is the LINUX (UNIX)-based operating system. This

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

operating system was shown far superior to Microsoft Windows
NT in recent tests [25]. A recent Internet article in the
July 1998 publication "Cover Story" points to the strong
preference of engineers for LINUX over Windows NT [26] . This
approach was not implemented in this research, but could be
used in future efforts with little or no modification to the
source programs.

Although as mentioned earlier, the host computer employed
' in this research is less "embedded" than the final version to
be installed in the end application, the programs and their
functions would be virtually identical. The interim
"recording host" concept is useful in debugging the host
programs since the gathering of data and processing of data
can be done at two different times.

As mentioned earlier, the host computer is fed events in
their (X,Y, Z) coordinates along with associated range
information. The longitudinal axis of the vehicle will be
pointed in the direction of the positive X-axis. Left and
right will be represented by the Y-axis, and the vertical
direction will be represented by the Z-axis. A list of events
will be maintained in the host computer in this manner. Each
event will also be time-stamped to indicate when it was
received. Since events represent obstacles, new events will
enter an event table in memory even though they may represent
the same echo that occurred on a previous scan, generating a
previous event.

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13
As the vehicle proceeds forward and/or turns, the older

entries in the event table need to be updated. Since the
events are recorded in the separate event table, their
coordinate points can be both rotated and translated with
standard linear algebra techniques [14].

Rotation would be required when the vehicle turns left or
right or pitches up or down. Translation would be required
when the vehicle moves forward or backwards through the water
(along the X-axis) . This research will limit these
possibilities to only forward motion and turns left or right
at zero pitch angles. These would be the predominant movements
observed by either an AUV or submersible. It would be a
relatively easy task to extend pitch capability to the system
if appropriate sensing is provided.

The host computer maintains a 3-D array of memory
locations each represented by an integer value set to zero at
initialization. Events represented by table coordinates
update this 3-D spatial representation inside the host
computer. As new events are generated, they are mapped into
the array as a cluster of elements with the center of the
cluster at the tabled coordinates of that event. As events
move through translation and rotation, the array will have to
reflect the changes.

If an array element has no probability of representing an
obstacle, the value of the element is zero at that location.
When an event is processed from the event table, a cluster of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14
array elements will be "colored” by adding a fixed number to
each element. Viewing the array as 3-D information, the
cluster of now non-zero elements is centered at the X, Y, and
Z location of the event and is composed of a quasi-spherical
geometry.

The size of each sphere in radius will be related to the
range from which the echo returned. For this reason,
processor A also furnishes additional range information to the
host. Close echoes are represented by small spherical
volumes, and distant echoes have much larger volumes and
correspondingly more uncertainty. Machine vision techniques
offer one example of single-element numerical tagging using a
procedure called "blob coloring". Often each element in a 2-D
display is represented not as a bit but as a full byte of data
capable of holding a small integer number.

As events are generated, and also after events are
translated or rotated, a new sphere cluster is generated with
all elements tagged with necessary information. Spheres can
be removed by simply subtracting from each array element in
the sphere a total of the original amount added to it for
creation. Most of the time events will generate many
overlapping elements in this 3-D array structure. Overlapping
elements will have higher values than non-overlapping ones.
Both will be identified as a target based solely on the non
zero status of the element.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15
The advantage of this approach is that only the event

centers have to be translated and rotated and not array
elements. The method used to generate the cluster spheres is
quite simple and can be done quickly with look-up table
techniques. No algorithm was used for formation or removal of
sphere clusters. Samet suggests various methods for locating
adjacent nodes in an array by use of tree techniques [24].

Old events will continue to be represented for a period of
several seconds and then be removed based on age. Removal
will erase both the event from the event table and also its
effect on the 3-D grid elements attributed to the event. When
events are removed from the event table, the value for each
sphere element added in its last generation or regeneration
will be subtracted. Thus, if an element is overlapping,
subtraction will reduce the number present but it will not
return it to zero, the non-occupied state.

The reason for maintaining events past the subsequent scan
is that because of the uncertainty of sonar returns, valid
data may sometimes be missing [4] . It would be safer to
assume that the target is there and not being seen than
erasing it prematurely on the next subsequent scan.

Many of the techniques used to link generated echoes into
groups of cells can be employed on the final computer grid
structure. Missing cells can be dealt with in ways similar to
methods described by Auran et. al. [2,3,4,5]. A marked
increase in computer speed for the typical PC has been seen

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16
over the last two or three years since most of these articles
have been published. Computer speed should not be a problem
for implementing the described system in its end-use
application, especially since the generation of event
information is done in a pipeline manner using pre-processing.

The product of this proposed research is a method for
continuously updating an array type data structure of 3-D
information containing both estimated target position and
currently scanned target position. It will be up to the
reader to utilize this array in a way suited to the type of
underwater operation planned.

Data Gathering and Analysis
After the sonar system was constructed, data was recorded

with a computer. This recorded test data was the standard
output of processor B as would normally be transferred to the
host. A recording host computer temporarily takes the place
of the host as an interim step in the sonar evaluation. Test
data can be gathered once and replayed many times to process
events as they affect the memory array elements.

Real-time display of data on a visual screen requires a
capture mechanism to depict the image as it appeared when
displayed. Using this method, data can be maintained in the
data array and frozen in time by interrupting the process and
taking "slices" of the array elements to show the estimated
position of rotated and translated objects. The array can

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17
then be sliced later to show newly updated data for
comparison. This can be a useful analytical tool.

Observing the speed of data manipulation with no "stop and
look" data evaluations will assure the researcher that once
installed on the actual submersible or AUV, the system will
have sufficient capacity to handle the computational load and
thus be practical for the application.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 2

HARDWARE SYSTEM DESIGN

Hardware System Overview

General Considerations
The sonar equipment of this study was constructed with the

intent to use it later as a functional sonar system including
visual display for the one-person submersible "The
Vindicator." Construction of this submersible was finished in
the spring of 1997 by the author. With this intended use in
mind these sonar modules can be used both in controlled
laboratory experiments and later in an end-use application for
further field testing of research concepts.

This sonar design operates at 192KHz, which is a
relatively high frequency for most sonar signals. The higher
the frequency, the greater the detail obtained. However, the
down side for operation at this frequency is loss of range.
The high-frequency loss phenomena has been known by the
British since the 1920's [12].

Several related hardware modules were constructed. These
modules fall into two categories. First, the outside modules
were designed to withstand pressures to 200 feet of salt

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19
water. These are basically systems that will be placed
outside the hull of the submersible in later application.
Much care was taken in making these components pressure-and
corrosion-resistant.

The interior systems contain most of the computer and
microcontroller processing capability. These systems did not
have to be pressure-or water-resistant except for the
occasional splash encountered in normal submersible operation.
A through-hull interface is intended for later, but is not
necessary for this research.

External Systems
The external systems are mounted both inside and onto a

wedge shaped welded steel frame. This one-inch angle iron
frame was custom fabricated to fit onto the bow of The
Vindicator. This frame is used for protection of the sonar
modules that must be exposed to the rough environment of
submersible operation. The frame is designed to cradle a 6.5-
inch diameter pressure vessel referred to as the Sonar Pod.
This pod enclosure houses most of the non-computing electronic
systems along with the Sonar Pod Microcontroller Module
(SPMM).

At the end of the support frame, a pivotable and rotatable
sonar array of 3 transducers is mounted to send and receive
sonar pings to establish the occupancy grid. Similar sonar
approaches are used in robotics to establish "evidence grids"

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20
[32]. This array is pivoted by a pneumatic cylinder
controlled by a 4-way electric solenoid air valve.

In actual practice, the use of a pneumatic valve of this
type would result in constant off-gassing from a submersibles
pneumatic system, or else the release of exhaust air into the
submersible itself. Release of air in bursts could be
annoying to the submersible pilot. Release of air into the
submersible compartment is not tolerated as a safety hazard.
Therefore, in practice the pneumatic cylinder will most likely
be replaced with another method for sonar head positioning.

Rotation of the sonar array is done with a stepping motor
and gear system housed inside of a 4.5-inch outside diameter
PVC motor enclosure. The stepping motor rotates 1.8 degrees
per step and must be geared to provide smaller angular
movements per step while increasing available torque. This is
done with the aid of two separate Delrin/brass gear
combinations located inside the motor enclosure yielding a 4:1
gear reduction ratio. Outside of the enclosure, the output
shaft is linked via two nylon sprockets and stainless steel
chain to the actual sonar array, giving another 4:1 reduction
ratio. Thus, the gear system and sprocket/chain reduction
ratio is 16:1, yielding a 0.1125 degree movement in the sonar
head for each step of the motor.

The sonar pod consists of six sub-systems. The pod's
operation is controlled locally with the Motorola MC68HC711E9
microcontroller SPMM connected to the other modules and also

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21
to an RS-232C link back to the pre-processors and eventually
the host computer.

The SPMM is responsible for controlling the Ping Generator
Module (PGM) also located inside the pod. The rotation of the
sonar array is controlled with the Scan Control Module (SCM),
and the analog return signal is conditioned by the Analog
Amplifier-Filter Module (AAFM) , all under the control of the
SPMM.

The sonar pod must also have a power supply for producing
various voltages to the other modules as well as a high power
ping amplifier module (PAM) used to generate the 192KHz
pinging that drives the sonar transducer array. A
multiplexing/demultiplexing scheme is required for vectoring
the ping power and return signal to and from the selected
transducer. This is done with small SPST socket mounted DIP
relays located on the ping amplifier module.

Internal Systems
Hardware had to be developed to collect signals from the

sonar pod and then process these signals before passing them
on to the end-use application. Although the target signals
from the sonar pod could have been directed straight to the
host computer for processing, any pre-processing that can be
done by hardware prior to feeding the pod information to the
host would be beneficial in relieving the computational burden
on the host computer.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

22
A pipeline-type computing approach was used to do as much

pre-processing as possible external to the host computer
before supplying the signals to the host. This pre-processing
is done in two stages. First, the sonar pod returning echo
signals are fed to processor A, a MC68HC711E9 microcontroller,
where they are collected in a 32K by 8 RAM memory. These
signals are already formatted into ASCII strings by the SPMM
before the sonar pod sends them to processor A in the chain.
Here they are parsed and loaded into the RAM memory for
evaluation.

The RAM memory that holds the returning echo information
also holds pre-loaded threshold information that is used in
checking to see if any returning echo exceeds a minimal
threshold level and is thus considered an "event."

The two pre-processors, processors A and B, are housed
together in a single enclosure the "interface enclosure."
This enclosure links the sonar pod to the host computer, but
also serves several other functions such as power supply,
overcurrent protection, and pneumatic valve control.

Host Computer
Specifications

Almost any moderately fast computer capable of input data
buffering and support of either C or C++ language would meet
the requirements for the host computer. Due to the fact that
this research is being evaluated on a non-real-time basis the
requirements can specify both a recording host and a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23
processing host. The recording host must have the ability to
receive a continuous stream of input data from two
communications ports simultaneously, buffer the information,
and record the data to hard disk along with a time-stamp for
synchronization. The requirements for the processing host
computer for this evaluation dictate that the machine support
C or C++ platforms, have enough memory to build the data
structures, and have sufficient speed to facilitate user-
friendly operation.

Sonar Pod Hardware Theory of Operation

Ping Generator Module
The Ping Generator Module (PGM) is responsible for

generating the 192KHz ping signal, which is amplified and used
to drive the sonar transducers. The objective of the PGM
design was to produce a signal close in frequency to the
designated operating frequency of the transducers that could
be controlled in two respects. First, the modulated ping
pulse width in respect to the total number of cycles of the
192KHz signal generated is variable under SPMM control.
Second, the circuit must be triggerable from a pulse generated
by the SPMM.

The output of the PGM consists of two separate signals.
One is a continuous 192KHz square wave signal with 50 percent
duty cycle. This signal only generates a ping output from the
ping amplifier when enabled by a second signal from the PGM.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24
This enable signal is of a predefined width to allow only a
specific number of cycles of ping to be sent to the
transducers.

Figure 1 shows that the source of the 192KHz signal is a
5MHz crystal clock module capable of TTL/CMOS level output.
This oscillator feeds a divide by 13 counter consisting of 01
and U12A. A further divide by 2 stage, 02A, provides an
output at pin 12 that is a square wave with a frequency of
192,308 Hz. This 192KHz signal will be referred to as the
system clock.

Initially the system clock was allowed to furnish its
output to the ping amplifier module at all times waiting for
an enable signal to allow the ping to exit the transducers.
However, it was noticed that in the absence of a returning
ping echo, the analog section of the sonar pod was reporting
a base line signal of moderate strength. An AND gate, U10C,
was placed between the 5MHz oscillator and D1 utilizing an
enable signal from the SPMM line C 4 . After the ping has been
generated, this enable goes low to prevent any 192KHz signal
from being amplified other than that returning from the sonar
target.

A strobe pulse is needed for triggering U5A that begins
after the rising edge of the system clock, but finishes before
the completion of the system clock cycle. For this purpose a
dual-edge triggered monostable multivibrator 03, a 74HCT221,
is used. The first stage of 03 is triggered on the rising

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

o o
A6.

5888

« 8

a o

Ud CL

IO

o.

o

25

orH
xl” oQ S

w u
5 I

oc<DCD
0>c•H
04

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26
edge of the input waveform from the system clock. When the
output of U3A drops low, it triggers U3B, producing a pulse
beginning after the system clock’s rising edge but finishing
before the completion of the systems clock cycle.

In the RESET condition (SPMM pin A6 high), the Q outputs
of U4A, U4B, U2Bf and U5A are cleared. This disables U12B’s
output at pin 6. Thus, the system clock signal cannot trigger
U4B, making its Q output high. When the PING input is pulled
high (SPMM A5), this signal travels through the inverter U11A
and triggers U4A, producing a high output at Q. This output
from D4A enables 012B's output at pin 6, triggering 04B the
next time the system clock signal at U12B pin 3 goes from high
to low. This output of U4B (pin 9) is the TXP-ENABLE used to
enable the ping output.

When Q of U4B goes high, U10A becomes enabled via pin 1
and the system clock signal is fed to the D6-D7 counter chain,
two 4-bit 74HCT193 counters. These counters start counting
edges of the 192KHz signal until a count is reached that is
equal to the SPMM's port B value. When this occurs the
cascaded comparators U8 and U9 generate an A=B signal at pin
6 of U9 which causes the D input of U5A to become high. When
the delayed pulse output of U3B goes high, U5A is triggered
and the newly established D-equals-one input to U5 is
transferred to the Q output of U5A. This high signal takes
U2B out of its normal reset state so that on the next falling
edge of the system clock signal at pin 5 of U2B, the not-Q

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

27
output at pin 8 of U2B will go low. This disables U10B at pin
4, causing D4A and U4B to be cleared, ending the ping cycle on
the specific number of cycles dictated by the 8 bit SPMM port
B output.

RESET (SPMM A6) is used to clear the U6-U7 counter chain
and reset other devices to prepare for the next ping cycle.
This circuit works well and allows variations in pulse width
which inturn allows for variable energy pulses that can be
balanced against resolution in sensing.

Ping Amplifier Module
The Ping Amplifier Module (PAM) serves two purposes. It

contains the circuitry for ping power amplification prior to
sending the ping signal to the transducers and also acts as a
relay multiplexer to direct the ping and its return to the
amplifiers. Figure 2 illustrates the schematic for the PAM.

The heart of the PAM is a custom-wound toroidial
transformer, Tl, driven by two TIP-120 power transistors
(Darlington pairs), Q1 and Q2, in a push-pull configuration.
The transformer has a primary center tap that is attached to
the 12-volt source for the sonar pod through a 0.47 ohm 10-
watt current-limiting resistor Rl. With the collectors of
these transistors connected to each end of the primary
winding, and the emitters grounded, the transistors turn on,
alternately producing a square wave current signal in the
primary.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

< ♦I2VPWR J

< TXP-AMP |

0 47 Otvn fOW

WWW

RS > n

R4 5 R

H W l V

74HCT06 74HCT04

74HC104
U2A

- C ftnoEreMt)

. J . J -C * • C7 Nolo: All ICa have ground and power (Not Shown).
All unutod 74HOT Inpula ahould bo Hod high or grounded.

Figure 2
Ping Amplifier Module (PAM) N>GO

29
Due to the inductance of the transformer and the

capacitance of the transducer, adjusted by C4, a series lOOOpf
silver-mica capacitor, the waveform produced is very nearly
sinusoidal. No measurement of harmonic distortion was used.
However, observation using a 100MHz bandwidth oscilloscope
revealed no visible distortion. The 12 turns of the
transformer primary and the 235 turns of the number 30 kynar
insulated secondary yield pulses on the order of 200 volts
peak to peak at the transducer input under load.

The TIP-120 transistors have a minimum hcs gain of 1000 and
a power-handling capability of 65 watts [23]. Even with such
high current gain, these devices were not driven directly with
the signal from the ping generator. Two 2N3904 general
purpose NPN transistors, Q3 and Q4, were used in a pair of
amplifier circuits to furnish the drive signal. These
amplifiers were driven with two 74HCT08 AND gates, U1A and
U1B. These gates used an inverter to facilitate having one
gate on with the other off at all times as the 192KHz signal
is applied from the PGM. The Ping Enable line from the PGM is
connected to both AND gates so as to enable the 192KHz signal
only when the ping signal is to be transmitted.

It is important to note that merely terminating the 192KHz
drive without this enable/disable facility would cause one or
the other of the two TIP-120 transistors to be on
continuously, providing a high current DC path to ground
through one half of the primary winding, and producing a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30
nearly shorted circuit. The only current-limiting factor here
would be the resistor Rl, and the value of this resistor is
0.47 ohms.

Depending on the value of Rl, pings can draw as much as 5
amps or more. This places a tremendous demand on the
transient-handling capability of the power supply and can
cause severe fluctuations capable of disrupting the proper
operation of the SPMM. This problem is minimized with the use
of three 4,700uF electrolytic capacitors, Cl through C3 placed
in parallel across the power supply on the ping amplifier
module. Considering the duty cycle of the PAM, there is
little current drawn by the 12 volt source, usually less than
400mA on average.

Before a pulse from this amplifier is sent to one of the
sonar transducers, one of three relays is closed, Kl, K2, or
K3. These relays are controlled by sections of a 7405 open
collector driver device located in the Scan Control Module
(SCM). These relays would not be expected to maintain
reliability under repeated switching with the currents and
voltages present in the ping amplifier output pulses.
However, it should be noted that the relays never close or
open while voltage or current is present. Only after the
relay closes and has stopped bouncing will the amplifier pulse
be passed.

It should also be noted that the TXP-AMP connection is
directed to the Analog Amplifier-Filter Module for reception

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31
of the sonar echo pulse. The chosen relay is closed and
remains closed through the power output of the ping amplifier
as well as the recording phase when the echoes return to the
transducer. Only after 300 feet of echo return has been
recorded does the relay open.

Scan Control Module
This circuit shown in Figure 3 drives both the relays

located in the PAM and also the stepping motor used to rotate
the sonar head. The stepping motor for sonar array left-right
rotation is driven by the SPMM microcontroller. Motor
stepping is straightforward. Although not illustrated by
figure, there are four motor phase wires (Phase-1 through
Phase-4) and two power wires. The phase wires are connected
inside the motor enclosure to four TIP-120 Darlington power
transistors. These transistors switch the phase wires to
ground, furnishing current through the respective motor coils.

The TIP-120 driver transistors are themselves driven by
four 2N3904 transistors, each in an amplifier circuit. This
drive array is shown in Figure 3. The input to these drivers
are 7405 open collector inverters, each with a 47K ohm pull-up
resistor. The input to these inverters comes from U2, a
74HCT175 4-bit latch. Another 74HCT175 latch, Ul, is used for
relay control of the ping amplifier's relay multiplixer. Both
of these latches are fed from lines CO through C3 of the SPMM.
Latch control is provided by SPMM pin D3 for Ul and pin D4 for
U2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

8 * 3

m

5 3
Q.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Sca
n

Co
nt
ro
l

Mo
du
le

(S
CM
)

33
Analog Amplifier-

Filter Module
The Analog Amplifier Circuit (AAFM) , shovm in Figure 4, is

housed inside the sonar pod and is used to amplify and detect
echoed signal returns. All stages up to the detector use the
LF356 wide-band operational amplifier. This amplifier is a
monolithic JFET internally compensated op-amp with an
approximate open loop gain of 24dB at the 192KHz operating
frequency of the sonar unit. Among the other features that
make this amplifier desirable for this application are
extremely high input impedance (1012 Ohms) and a high output
voltage swing at operating frequency [18K

One feature of the AAFM is its ability to change gain
settings through digital control signals from the SPMM. The
ability to set the AAFM to a very wide range of gains while
not overloading individual amplifier stages was important to
the initial design of the AAFM. This ability allows for a
very wide range of transducer combinations to be tested
without redesign of the basic circuitry of the AAFM.

The signal from the transducer comes through a multiplexer
which is part of the PAM discussed earlier. Similar to radar
systems, a sonar device using the same transducer for
transmission and reception needs to be able to withstand high
amplitude pulses and yet be sensitive to returning echoes.
The pulses generated for pinging can reach hundreds of volts
in amplitude. This would destroy the input to an op-amp on

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

I ix K u m p

C l R4 —1|—f-W

DAC1021

I29W8HHS?

8880
Note: All iCt have ground and power (Not shown)

All u n u ied 74HCT Inpula should b e lied high or grounded T

10 II 12
CO Cl C2 Cl

Sonar Pod Microcontroller Module (SPMM)
CON 1001-232 Module

Figure 4
Analog Amplifier-Filter Module (AAFM) >£>

35
the first ping if measures were not taken to attenuate this
signal before sending it to the amplifier.

The first stage of outgoing ping attenuation occurs at the
TXP-AMP input of the AAFM. Here a 47K-ohm resister R1 is
placed in series with the input. The amplifier side of this
resistor is attached to two high-speed silicon switching
diodes, D1 and D2, placed back to back to shunt any current
passing through the resistor to ground. The 47K-ohm
resistance will not affect the strength of the ping signal as
it is transmitted and will not create a substantial loss in
the returning ping signal as it is directed to an amplifier
stage with a 1012 ohms input impedance [18] . These diodes
limit voltage swings at their point of connection to
approximately 0.7 volts. This prevents damage to other solid
state components.

A DAC1021 multiplying digital-to-analog converter 02
along with an LF356 op-amp U3 were used as a gain control
stage [21] . One reason for placing a gain control stage this
close to the input was to accommodate large input signals if
necessary without overdriving any stage. Had this stage been
placed later after several more stages of general
amplification, larger signals could saturate one or more
amplifiers prior to reaching the gain control stage. This
would act much the same as a limiter in an FM radio receiver,
flattening signals over a certain threshold and resulting in
loss of linearity.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36
The value of the gain for this stage is set by the SPMM

latching output pins CO through C3 into U4 a 74HCT175 4-bit
latch. Clocking of this latch is accomplished with output C7
from the SPMM. The gain can be adjusted from 1.07 to 16 for
this stage [21] . The output of the gain control stage is at
pin 6 of U3. Due to feedback, the output impedance is low.
This is an important consideration for the filter Q of the
next stage.

The first filter stage is connected to the output of the
gain stage. Filtering is simply a series RLC circuit with the
output taken across the inductor. Unlike radio receivers that
must receive a broader band of frequencies, this sonar unit
must receive echoes from the transmitted signal at 192KHz with
only small deviations for doppler shift of the returned signal
due to forward motion of the vehicle [27] . For this reason a
simple single peak resonate response is adequate.

One major concern of the design was the ringing present in
high Q circuits. This could result in signals not decaying
rapidly enough to obtain the desired resolution from the
sonar. The solution was to lower the Q by placing a 47-ohm
resistor R4 in series with the resonate circuit. The closed
loop gain of this stage U5 is only 2 times the Q rise in
voltage across the inductor. However, the combined gain of
the amplifier U5 and the RLC circuit can be much greater in
practice. Two identical stages of filtering were used tuned
to the same frequency (192KHz).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37
Since little was known of the characteristics of the

transducers employed in this sonar application, or how much
return signal to expect from targets of varying density and
structure, it was thought prudent to design an amplifier-
filter stage with as much gain versatility as possible to
prevent the need for redesign. For this reason a stage of
attenuation was utilized.

This attenuation stage consisted of another DAC1021 06 and
a LF356 op-amp 07. This configuration has a overall gain
(attenuation) from 0.001 to 1 [21]. This stage is an
attenuator capable of limiting the signal being fed to the
second filter stage. Once again, the attenuator, like the
gain stage, has a very low output impedance due to the
feedback from 07.

The second filter stage 010 is identical to the previous
filter stage. The output of this stage is directed through a
diode D3 into both a capacitor C6 and a resistor Rll in
parallel. This combination represents the detector stage.
This circuit in effect rectifies the signal and places a small
barrier potential (0.3 volts) against the signal, which helps
to eliminate noise.

The final stage is a non-inverting amplifier Oil, a 741
general purpose op-amp with a low pass filter which takes the
output of the detector and filters the 192KHz component out,
leaving the echo envelope. This signal is directed to the
SPMM analog input EO where it is sampled and converted into a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

38
one-byte data element. Thus, sets of converted digital
information gathered from this output comprise the data packet
to be later transmitted to the processor A.

U8 and U9 are 74HCT175 4-bit latches used for latching and
supplying data to the attenuator stage. These latches are fed
by the low nibble of port C. U8 is the low order latch and U9
is the high order latch. 08 is latched by a pulse from the
SPMM's C5 and 09 is latched with a pulse from C6.

Sonar Pod Microcontroller
Module

The Sonar Pod Microcontroller Module (SPMM) contains the
MC68HC711E9 Motorola microcontroller that controls the
operation of the sonar pod. The microcontroller support
circuitry was installed as a prefabricated module. This
module, the CGN 1001-232 produced by CGN of Sunnyvale,
California, contains all of the necessary circuitry for clock,
mode selection, RS-232C interfacing, power on reset, pull-up
resistors, and power supply filtering [7] . Connections
between the SPMM module and the other circuits were made with
wire-wrap technology, IDC type sockets, and ribbon cabling.

Power Supply Module
Several circuit modules in the sonar pod require 5 volts

for their operation. For this reason a 78H05 regulator is
furnished in the power supply circuit. This regulator
supplies these circuit requirements and also powers the input
of a +12V, -12V converter module which furnishes these

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39
voltages to the op-amps and other analog devices. The power
supply is fused for protection.

Power supply circuitry is not depicted in this writing but
follows standard approaches to regulation and filtering and
can be reproduced by any competent electrical engineer.

Pre-processor Hardware Theory of Operation

Processor A
Processor A , a MC68HC711E9 microcontroller, is responsible

for sending and receiving information to and from the Sonar
Pod. In some cases this pre-processor originates commands
sent to the SPMM and at other times simply allows host
commands to pass through on their way directly to the sonar
pod. In either case the serial communications port (SCI) of
processor A is connected to the SCI port of the SPMM.

The program running in processor A sends a command to the
sonar pod to ping one of the three transducers. The
transducer selected transmits a ping pulse and then collects
returning data. This data is automatically routed to
processor A via an RS-232C serial interface connection. This
data from the sonar pod is sent not in pure binary, but rather
in ASCII hexadecimal format. In this way decimal signal
values of 0 to 255 units can be represented as hexadecimal, by
ASCII pairs of $00 to $FF in value.

These data pairs are sent one line at a time with each
line representing 20 one-byte values for a total of 40 hex

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

40
digits- A total of 15 lines represent the full 300 values of
data. As mentioned earlier, each value represents one foot in
distance from the vehicle to the target. Each line is
terminated with a Carriage Return and Line Feed (CR/LF)
character set. There are CR/LF sets also before the first
line and after the last. The final information sent is the
ASCII string "DONE" which represents the finished operation.

This bundle or "packet" of data is stored in processor A
as it is received. Figure 5 shows that the storage medium is
a 62256 32K x 8 static RAM memory. Processor A ’s software
determines the location for storing each packet. Enough room
is present to store all three returning data packets along
with a pre-loaded threshold level used as a comparison for
determining event generation.

Once data has been stored, it can be retrieved by
processor A by reading the RAM memory in a manner similar to
the way it was initially written. It should be noted here
that the RAM memory is not the main memory for processor A.
It is handled as a stand-alone memory accessed much the same
way that a microcontroller would access a peripheral device
attached to its ports.

Figure 5 shows processor A connected to two 74HCT273 octal
latches, U1 and U2, via port C. These two latches set up the
RAM address, which requires, 15 bits of address. The lower 8
address bits are latched into 02 and the upper 7 bits are
latched into Ul. Latching occurs by placing the address

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

CMn

saassaea sojf i Li u u~nr S 8 8 8 8 8 S 8

85Boi

S

IIII
I
1I*5 ̂!la §

3 5

if)

O
u
§»
fa

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Pr
oc

ea
so

r

42
information on port C and then strobing the appropriate latch
via the strobe line input CK. Latch U1 is strobed with A5 and
U2 is strobed with A6.

Write enable is furnished to the memory with pin A4 of
processor A and output enable is provided by pin A 7 . Chip
select (pin 18) is perpetually grounded to enable the memory
at all times. If write enable and output enable are in the
inactive state, the RAM device will neither read nor write
information.

Writing to the memory is straightforward. Once port C has
loaded the address information into 01 and U2, port C is left
in the output mode and the data is placed on port C. This
places the data at the RAM input pins DO through D7. Once the
write enable strobe goes active (low) the data are written to
the address present at the latches.

Reading is also straightforward. The address is loaded as
mentioned above. Once the correct address is present, port C
goes into the input mode for reading and the RAM memory output
is enabled. The data is read via port C and recorded in
software. Once this is accomplished the output is disabled
and the next RAM operation is ready for implementation.

Processor B
The hardware for processor B also consists of a Motorola

MC68HC711E9 microcontroller connected to processor A via the
Serial Peripheral Interface (SPI) provided on-chip. The SPI
system is explained in detail in section 8 of the M68HC11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43
Reference Manual [19] . This pre-processor is connected
directly to the host computer via an RS-232C interface running
at a 9600 baud rate.

Processor B exchanges data with processor A via the SPI
interface. This data represents events generated as processor
A compares incoming echo levels against the threshold level
present in its RAM memory.

Events arrive at processor B in the form of left-right
sonar array angle, transducer number, array up-down tilt
status, and range to target. These values are changed into a
binary number that is used as an address to look-up pre
calculated data in a large table of values located in EPROM
memory.

The EPROM used is a TMS27C040 512K x 8 configuration
having 19 total address lines. This is shown in Figure 6.
This large address is provided by three 74HCT273 octal
latches, U1 through U3, in a manner similar to the RAM memory
of processor A. These latches are fed portions of the total
EPROM address, one latch at a time, using port C configured as
an output. Processor B pins A6, A5, and A4 strobe Ul, U2, and
U3 respectively. The EPROM is enabled at all times by
grounding pin 22, the enable input. Only pin A7 is used to
enable the EPROM output lines. Once addresses have been fully
latched, port C goes into input mode and the EPROM output
lines are enabled allowing processor B to read the EPROM data
at the location indicated by the latches.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

COC1
C2 30

60 60
60 6Q 70 70
60 60
►CKCl

PROCESSOR B TMS27C040C7
A6< MiSOl-gap—

tPA-BO >

EHZ>
< PA-AO h-
<! PA-A1

CON 1001*232 Module EPROM MEMORY6CK
AO (Slava)

10 A3
30

■ - 60
> - 60 . - to JL eo MO

Ml
M2
M3

20 20
30 30
40 40
60 6Q

A16
M7M6I OK

•CK

CO Cl C2 C3 C4 C6 C6
07 06 08 D4 03 02 01 00

Nolo: All 1C* havo ground and powor (Nol Shown).
All unuaad 74HCT Input* should bo Hod high or groundod.

Figure 6
Processor B

45

Velocity and Heading Sensor Hardware

Velocity Sensor
It was the initial desire of the author to utilize a

readily available flow meter for velocity sensing. A number
of boating equipment manufactures supply speed and temperature
sensors along with their fish locator products. After
purchasing such a product from LEI, it was quickly noted that
for slow velocities through the water the device would not
function adequately. The sensing principle involved the use
of a small magnetically-polarized wheel that was placed on the
transom of a boat and subjected to water flowing across the
lower portion of the wheel. The water flow turned the wheel
where a digital magnetic sensor could count the pulses.

For slow operation of the unit, the coefficient of
friction of the wheel itself completely prevented it from
rotating. This problem was solved by totally redesigning the
mechanism. First, a small turbine was constructed which is 3
inches in diameter and has a total of 7 blades. The blades
and attached hub for this turbine were constructed from a
small cooling fan purchased at Radio Shack. The blade hub was
filled with epoxy to attach it to a stainless steel 0.25 inch
shaft that runs through a machined PVC housing. This housing
was equipped with non-metallic ball bearings. These bearings
are totally impervious to water and may be submerged without
fear of corrosion.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The shaft was attached to the original multi-poled magnet
so that when water flowed through the turbine the shaft was
rotated and the magnetic wheel caused the digital sensor to
switch its output between high and low. There are 6 pulses of
the digital level for every one revolution of the turbine.
The rotational speed of the turbine is related to the velocity
of water that flows through the turbine. This system
generated much more torque than the original wheel itself and
proved to be far more sensitive to lower water velocities.

Magnetic Compass Sensor
and Microcontroller

The main thrust of this research is centered around
changing the locations of echo targets as the sub or AUV moves
and turns. Therefore, it is essential to have a method to
sense turning of the vehicle. There are several methods for
doing this that were considered.

One approach considered was the use of a gyroscope.
However, position gyros (which are used to maintain heading
information) are extremely expensive. Rate gyros are far less
expensive and should work well for this application, but their
cost can range from $200 to over $2,500. Another
consideration for not using a rate gyro was their tendency to
drift, due to the integration of turning rate necessary to
obtain position.

One interesting concept was to use the direction sensor
not only for this research but for magnetic heading

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47
information in the submersible. This dual purpose dictated
the use of a remote-sensing compass module. The Vector^
electronic compass module manufactured by Precision
Navigation, Inc. was chosen. This device utilizes two gimbled
induction coils placed at 90 degrees to each other that have
variable permeability. This allows onboard electronics to
calculate a magnetic heading that has an accuracy within 2
degrees of the actual heading and a 1-degree resolution [22].

This device uses a Serial Peripheral Interface (SPI)
similar to the Motorola microcontroller product line. The
device has multiple control lines that must be manipulated.
A MC68HC811E9 Motorola microcontroller was used. It was
connected using the SPI port directly to the compass module.
Both the compass module and the microcontroller were placed in
a acrylic plastic tube 2.5 inches in outside diameter and 12
inches long.

The acrylic tube was sealed using machined PVC ends and
double 0-ring seals on each end. The clear plastic allows
easy inspection of the electronics. A desiccant was also
inserted into the tube and the system filled with dry air to
prevent condensation.

The microcontroller used to control the compass module
serves a dual purpose. The pulses generated by the velocity
sensor are fed to the *IRQ interrupt input of the
microcontroller. Both real-time interrupts and IRQ type
interrupts are generated. The real-time interrupts count time

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48
and the IRQ interrupts count magnetic sensor level change.
Software in the microcontroller continuously reports both
velocity and heading information. Software listings for this
microcontroller are provided in Appendix A.

The RS-232C output of the compass microcontroller is
directed to the interface box and then directly on to the host
computer on a second channel of serial input (COM2).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 3

SOFTWARE SYSTEM THEORY OF OPERATION

Introduction to Software

Languages and Tools
There are a total of four microcontrollers and two PC-

based computers that require programs to operate. The four
Motorola 68HC11 family microcontrollers are programmed in
assembly language. The recording host is programmed in
QuickBASIC version 4.5, and the processing host computer runs
programs compiled with a Microsoft C++ compiler.

Motorola offers not only the A S H assembler for their
microcontroller but also the PCBug debugging tool for aiding
the programmer in developing the software. The main problem
with using the debug capability of these software tools is
that when the microcontroller is embedded in an application
that is demanding of its resources, the debug tools cannot be
fully implemented. For this reason no debug capability was
used on any assembly language program written for this
application. The A S H Motorola assembler was used to create
the Motorola ".SI9" load modules and either the BUFFALO

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

50
monitor or PCBUG was used to load the programs into the
microcontroller memory [20].

Sonar Pod Software

Command Structure
The sonar pod is operated by a Motorola 68HC711E9

microcontroller. This sonar pod microcontroller is
responsible for controlling the sonar array scan stepping
motor, the analog gain settings, the ping generator and
several other related functions.

Communications with this device are provided through an
RS-232C connection with processor A. No sonar pod operation
is initiated in the SPMM. Rather, specific commands are sent
to the SPMM that are carried out one at a time with the SPMM
software. Table 1 lists the possible commands that can be
performed by the SPMM's microcontroller. Each command must be
properly formatted using a simple convention.

A colon ":" must be used as the first character in a
command string. The second character must be one of the
commands listed in Table 1 and must be in upper case only.
The next three characters necessary for most commands
represents a numeric field of three digits.

The purpose of these three digits depends on the command
itself. For example, the "W" command's numeric field
represents the pulse width of the sonar ping signal in cycles.
The range of this field is from 001 to 255, denoting 1 cycle

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51

Table 1
Sonar Pod Commands

SPMM Cmd Nbr Field (N) Purpose of Command
X Not Used Sends Execution to BUFFALO monitor
L Steps Rotates Sonar Array Left (N) Steps
R Steps Rotates Sonar Array Right (N) Steps
G Gain Code Sets the Gain of the Analog Amp.
A Attenuation Sets the Attenuation of AAFM Amp.
N Ping Width (N) = Number of Cycles of Pulse
P Transducer t (N) = 1, 2, or 4][(TX0, TX1, TX2)]
F (Dummy) Set for Fresh Water
S (Dummy) Set for Salt Water
B Baud Rate Converted to Byte for Baud Register

to 255 cycles in length. The Baud Rate "B" command field is
converted to a single byte representing the field’s value and
is loaded into the BAUD register in the SPMM. This allows a
wide range of setting for baud rate communications.

The command string is always terminated with a Carriage
Return character ($0D). If a mistake is encountered in the
string it is not executed; the program returns and looks for
a colon to start another string. When commands are executed
properly, the string "DONE" is sent out from the SPMM. This

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52
is important in certain commands because processor A looks for
this string before proceeding.

The Ping command "P" not only sets the transducer to be
used but also results in returning the echo data to processor
A. Processor A expects to receive a certain number of control
characters such as Carriage Returns ($0D) and Line Feeds ($0A)
before the data is received. The "DONE" string is important
here and must be transmitted by the SPMM. If it is not, then
a timeout occurs in processor B and an error condition is
recorded.

Initial Software
Considerations

The first part of the sonar pod program is the equates
section, which is standard for most assembly language
programs. Here addresses and constants are defined. This
program, located in Appendix A, defines each label being
equated.

The RAM variables section of this program defines the
address labels and the number of bytes that each occupies.
One buffer location, BUFFER, is defined for incoming commands
storage.

The START label points to the first byte in EEPROM located
at $B600. Here the stack is initialized and the MCU OPTION
register loaded. Also a subroutine INIT is called to
initialize certain values and conditions. This initialization
of the system is called only once. There are numerous memory

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53
locations, pointers, and control settings established here.
These can be easily identified by reference to the INIT
subroutine.

The Main Line Program
As in the other assembly programs written for this

research, the MAIN label reflects the beginning point for a
loop that is executed perpetually while performing the
operations required by the software. MAIN first points to the
BUFFER, a buffer storage location where incoming commands will
be stored. A CR/LF sequence is sent to processor A via the
SCI port. This practice of first establishing a new line goes
back to the debugging phase of this software, where only a
computer in terminal emulation mode was connected to the SPMM.
This cleared the line on the terminal before dummy commands
from the terminal were entered for testing.

Next in the main line sequence is the retrieval of a
single character using INCHAR. It is then checked to see if
it is an "X." If so, then the Motorola BUFFALO monitor
located at $E000 is summoned. Once again this is a debugging
feature not seen in run-time operation. If the first
character is a colon, then validity is established and the
next command character is sought. If a valid colon is not
found then a loop back to MAIN occurs.

Any new character is checked against a list of possible
commands as listed above. If the character is not a valid
command, then the program loops to MAIN. If a valid character

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

54
is obtained, then a string of 3 characters is read and
converted into a value, NUMBER, ranging from 0 to 255. This
numerical value is used with most commands, but if required
must be entered even if only a dummy field.

The main line program then branches over each program
segment until the correct segment representing that command is
located. At this point there are a number of different
actions that can be taken.

Rotation Commands
There are two rotation commands common to this systems

level. The sonar head can be rotated right or left. The
subroutines that accomplish this are RIGHT and LEFT. These
subroutines must establish a time delay for steps because the
SPMM can rotate electrically much faster than the stepping
motor can keep up with the stepping action. After
experimentation with the system, the fastest reliable speed
was established with a delay equivalent to 1332 loops in the
DELY subroutine. This equates to a 4mS delay. This delay
subroutine is called with this loop value located in the SDELY
RMB memory location.

Once RIGHT or LEFT has this delay value loaded in SDELY,
the subroutines load the previously established value of
NUMBER into accumulator B on the SPMM. A loop is established
and this number is counted down to zero while calling either
R_STEP or L_STEP. These subroutines use a Step Table,
STP_TABL, to look up the next sequence of phase values for the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55
stepping motor. A pointer points into this table that
constantly indicates where the current phase in use is
located.

One unique feature of the stepping motor system is the
fact that a much larger current than the rated value can be
used on the motor. Most of the time the motor is idle. This
occurs while the transducers are pinging and-recording. The
current to each phase can be turned off while the head is
stationary. At present, rated current is used on the motor,
but little is known about the rotational torque necessary when
a submersible carries the sonar system and strong water flow
is present. The KILL_I subroutine is used to kill the current
to all phases of the stepping motor while not rotating.

Before the motor is used for the first time the lines that
drive the motor have to be initialized. This is done with the
MOT_INIT subroutine. Not only does this establish a beginning
phase setting for the drive lines, but it also sets the STEP
variable to zero.

Ping Generation
and Recording

The pinging of the transducers is done by calling the
subroutine PING. This subroutine first resets the PGM circuit
by pulling the RESET high and then low (SPMM pin A6) . After
this is accomplished the PING_CT value in number of ping
cycles is loaded from EEPROM and stored in lines BO through

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56
B7. Next the PING bit A5 is strobed and the ping is
generated.

The PING subroutine is called from the main line program
after setting the transducer number (NUMBER) into the RELAY
variable and calling RLY_ON. The subroutine RLY_ON turns on
transducer multiplexer relay number 1, 2, or 3 with a RELAY
variable value of $01, $02, or $04 respectively. When the
program is finished with both the ping and echo recording the
RLY_OFF subroutine is called and these SPST relays are all
opened.

Once a ping is generated, data recording must be instantly
initiated. This sonar was designed to be operated in both
fresh and salt water. The problem here is that sound travels
slightly faster in the denser salt water. Two separate
recording programs were constructed in the software.

DATA_FW points to MCU RAM memory at location $0080, then
loads data for the 300 feet of range to store. An analog to
digital conversion is begun and readings are taken every 790
E-clock cycles of the SPMM. This elapsed time represents the
time of flight of a ping to and from a target for one foot of
range. Once 300 samples are taken the recording is finished.

DATA_SW is identical to DATA_FW but is the salt water
version that takes 775 E-clock cycles to complete one foot of
range. These two subroutines are selected from sonar pod
commands "F" and "S." The default setting is "F."

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57
Once data is recorded to the SPMM RAM, a segment of the

main line program following the location where the ping is
generated begins reading this data, and with calls to
PRT_PAIR, bytes are converted to hex representation and sent
to the output routine OUTPUT. Return characters and line feed
characters are used to format a packet of data into 15 rows of
20 sets of hex digits (40 characters per line) . Once the full
complement of data has been sent to processor A via the SCI
port, the SPMM sends the "DONE” terminating string by calling
the subroutine DONE.

Gain and Attenuation
Gain is controlled by taking the GAIN_VAL Gain Factor

value originally loaded from NUMBER in the main line segment
and placing it into the low nibble of port C in the SPMM after
being complimented. This is done with a call to the GAIN
subroutine. Once located at the output of bits 0 through 3 of
port C, the gain latch strobe for U4 is actuated by a high-
level signal on pin C7 of the SPMM. Since only the lower
nibble is used, the gain factors can only range from 0 through
15 (000 - 015) . The table of actual gain values versus the
gain factor used is shown in Table 2(a), along with
attenuation factors, Table 2(b).

Attenuation is controlled much the same way as gain. The
attenuation subroutine ATTENUATE is called with the
Attenuation Factor located in ATEN_VAL. Once again, the
location's value originated with the NUMBER value passed by

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

Table 2
Gain and Attenuation Factors

Gain Factors
Factor Gain Factor Gain
U0(T " 1.07 " O W " 2.29
001 1.14 009 2.67
002 1.23 010 3.20
003 1.33 011 4.00
004 1.45 012 5.23
005 1.60 013 8.00
006 1.78 014 16.00

(a)
Attenuation Factors

Factor Attenuation Factor Attenuation
'OOD "0.U0M ' ~I2F " " 0.5o0o
001 0.0039 144 0.5625
016 0.0625 160 0.6250
032 0.1250 176 0.6875
048 0.1875 192 0.7500
064 0.2500 208 0.8125
080 0.3125 224 0.8750
096 0.3750 240 0.9375
112 0.4375 255 0.9961

(b)

the command itself. Unlike GAIN this subroutine has to load
a full byte in port C and strobe two latches, one for U8 and
the other for U9. Values for 18 if the possible 256
attenuation levels are shown in Table 2 (b). The attenuation
is equal to the value (.0039063) times the attenuation factor.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59
Thus, for an attenuation factor of 80, the attenuation is
0.3125, which can be found in the table.

Processor A Software

Introduction to Processor
A Software

This processor is used to collect data from the sonar pod
SPMM and compare the data against a pre-loaded threshold of
values for each foot of range sampled. Since the threshold
information is in RAM rather than EPROM, it must be loaded
prior to use. Although the sonar pod can change its gain to
increase or decrease the received signal, the threshold loaded
can reflect much about how the signal is to be analyzed.

The threshold can be simply 300 bytes of the same value or
the threshold can be set in a non-linear manner so as to lower
the threshold values for distant targets that have lost much
of their energy by the time they travel the longer distances.
These are choices that can be made flexible by placing this
array in RAM memory. However, a mechanism for loading these
values into RAM must be provided.

Initial Start-Up
of Software

The listing found in Appendix A for the processor A
software shows a standard assembly language layout. First,
equates define values and address locations to be used in the
program. These mainly define locations in the control block

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60
where the Motorola 68HC11 family microcontrollers control all
of the various sub-systems [19].

Following the equates section the RAM memory allocation
begins. This area of the program defines variables and
buffers used by processor A. Two such buffers should be
noted. First, the SPR_BUF and its pointer, SPR_PTR, are used
for the SPI buffer system for receiving data from processor B.
The SPT_BUF and SPT_PTR represent the SPI transmit buffer
system.

Located at address $B600 in EEPROM, the program begins by
setting up the stack and OPTION register. Initialization is
performed as a single call to the subroutine INIT. This
subroutine sets up initial values, control information, and
pointers for the software.

Main Line Program
The MAIN location in the main line portion of this

software is an entry point to a loop. The first thing that
occurs in the main line program is an examination of line BO
(request to send from processor B) . If data is ready to be
received from processor B then the RECEIVE subroutine is
called to receive the data.

If no new data is available, the software checks the
FUNCTN variable for an "R" value. If there is an "R" in
FUNCTN, then the program continues running by calling RUN_SNR.
If no "R" is present, then the software loops back to MAIN and
begins again. If a new command comes in from processor B, or

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61
perhaps from the host computer via processor B, after
reception, it is analyzed to determine its nature and
destination.

Commands are of two basic types. Any command that starts
with a "<" character is intended for processor A. Any command
intended for the SPMM in the sonar pod begins with a
character. Colon-originated commands are defined under the
sonar pod software section. Table 3 shows a list of possible
commands that can be identified by the main line program.

Each command listed in Table 3 has a program segment
associated with it that carries out that function. These
segments are part of the main line of the program and are not
called as subroutines. The main line program tests the
command for each and if there is not a match then the next
program segment checks and so on. These segments are self-
explanatory by observing the program listing.

The CHK_COL segment of the main line program is executed
if the "<" character is not identified as the first character
in the command string. If there is a colon, then this segment
simply relays the command to the sonar pod SPMM.

The commands for head rotations right and left and also
ping generation must be sent to the sonar pod in an ASCII
string format. For the sonar pod to perform one of these
operations it is necessary to send the command string from
either the host (non-run-time mode) or from processor A (run
time-mode) . There is a need for processor A software to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

Table 3
Processor A Commands

Char Definition of Command
Vectors execution directly to the BUFFALO monitor system.
Runs the program. This sweeps the sonar head and
gathers returning echo data.
Performs an initialization on the sonar head.

C Performs an initialization then a centering of
the sonar head.

U Manually tilts the sonar head to the up position.

D Manually tilts the sonar head to the downposition.
B Boot BUFFALO Monitor (Not needed since program

modifications).
F Sets fast baud rate for Serial PeripheralInterface (SPI).
S Stops the head motion and recording of data from

the SPMM.
P Point to threshold area of RAM memory. (Before

loading threshold information.)
T Transfer threshold information in string form to

RAM memory.
e Generate error report. (Not used currently in

run-time operation.)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63
generate these commands. This is done with a subroutine
called MESSAGE. First the IX register is loaded with a
pointer to an ASCII string (command) . Then the MESSAGE
subroutine is called. This routine takes the pointer in IX
and starts transferring characters pointed to by IX to the
output device, the SCI port connected to the sonar pod.

A set of predefined Form Constant Character (FCC) strings
exist at the end of the source program that can be pointed to
and transferred to the sonar pod as commands.

Head rotation to the far left position is accomplished
through the ROT_STP subroutine. This subroutine tries to
rotate the head 500 steps to the left. This results in having
the head hit a mechanical stop. After hitting this limiting
device, no further motion to the left is possible. This
initializes the head position, since no limit switch is built
into the system to automatically stop the motion.

Head tilt is accomplished with calls to one of two
subroutines, HEAD_UP or HEAD_DN. These control line B7 of
processor A, making this line high for head up and low for
head down positioning. This bit controls a relay to supply 12
volts to the pneumatic valve if the bit is high and 0 volts if
the bit is low.

Running the Sonar
RUN_SNR pings the transducers, records and thresholds the

data, and sends event information to processor B. This
subroutine points to the RAM memory where returned data from

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64
echoes will be placed. The IX register is pointed to the
messages for generation of pings, and MESSAGE is called to
send the commands. Pings are then generated by the sonar pod.
The PRC_PING subroutine is where data is collected into the
RAM memory pointed to by the IX register as the data returns
from the sonar target.

The PRC_PING subroutine takes incoming data from the sonar
pod and places it into the memory of processor A. Here the
ping command selected is sent to the sonar pod SPMM and the
subroutine TO_MEM is called to collect data into the RAM
memory. Once a full collection of data has been made
representing the 300 values sampled, the PRC_PING subroutine
calls CHK_DONE to see if a "DONE" indication was received. If
this string is found, no error is generated.

The above-described process is repeated three separate
times, one for each sonar transducer. When this is
accomplished the ANGLE value is adjusted to represent a new
left right angle position and PRC_ROT is called to rotate the
head to the next position. If at this time the head is
already at its far right position, then the rotation is to the
far left starting position and the ANGLE value is cleared to
reflect the initial far left angle position (0).

The next step in the RUN_SNR sequence is the data
processing step. PROCESS is the location in the RUN_SNR
subroutine that takes the RAM data and compares it to a stored
threshold located inside the same RAM memory device. PROCESS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65
sets up pointers for a call to THRESH where the actual
threshold comparisons are made.

In THRESH the data elements still in hex form are compared
to stored threshold. The variable COUNT represents the range
count as the system starts at the closest range and looks
outward to the 300 foot limit. AB_CTR is a variable that
counts the number of feet of range that continually break the
threshold. Such an echo could be representing an object with
much more depth than a single probability sphere can
represent. In this case every few feet of constant over
threshold data return can generate a new event.

In some cases, repeated closely-spaced echoes could
generate multiple events. For this reason the CX_CTR keeps
repeated close crossings of the threshold from triggering
multiple events. This count is used to space the occurrence
of close events.

Since both stored echoes and stored threshold information
is in hex format and conversion takes extra time, the
comparisons are made in hex format directly. First, the high
order hex digits for the two values are compared. If there is
one clearly higher than the other there is no need to compare
the lower hex character. However, if the two high order
characters are identical then it becomes necessary for a
comparison of the low order characters. The threshold is not
considered crossed unless the echo data is greater than the
threshold value.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66
It should be noted that when a ping is generated the

outgoing ping signal is sent directly to the AAFM circuit
where it is clipped for protection of the first stage but
still possesses an extremely strong signal content at 192KHz.
The ping signal continues even after sampling begins in most
cases. This results in values of $FF being returned for the
first several samples. Even after the ping has finished
ringing in the RLC circuits, high level samples continue and
thus perpetuate this effect for a few more samples. For this
reason, thresholds should be set to $FF for the first 10 or
more samples.

Event Formation
Events are generated in this subroutine that are sent via

the SPI port to processor B. These events are in the form of
formatted strings. An example of this string is shown in
Table 4 along with a legend for decoding.

Threshold Commands
Commands coming from the host computer traveling through

the pre-processor chain such as "W" or "G" are intended for
the SPMM to set parameters or generate pings. These commands
begin with a colon ":". Any command traveling down the chain
with a less-than symbol (<) will not be sent to the SPMM, but
rather to processor A. There are two such commands. The "P"
command when issued by the host is echoed by processor B to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67
processor A and causes an internal pointer to locate to the
start of the threshold storage area in the RAM.

Table 4
Event String Formatting

Example: >E2030C4 <CR>

Character Description
> Identifies start of event string.
E Always present at this position.
2 Transducer number (0-2)
0 Head position (0=(JP, 1=DN)
3 Horizontal angle (0-5)

0C4 Hex Range (0C4 = 196 feet)
<CR> ($0D) RETURN character

The "T" command when issued, with ASCII hexadecimal data
following, instructs the software to load the RAM and advance
the threshold RAM storage pointer that was originally set by
the "P" command. An example of both of these commands is
shown in Table 5.

After the above commands are issued, the pointer has moved
from its initial position to a position 8 bytes higher in RAM
memory. Each recorded threshold value takes 2 bytes as the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68
information is stored in hex format. Without issuing another
"P" command, the "T" command can be issued over and over until
the RAM has its 300 values of threshold information. The
lower limit for the "T" command is one ASCII hex set.

Table 5
Point and Threshold Commands

P<CR> (Points to start of threshold
RAM)

TF3A4127E<CR> (Loads $F3 $A4 $12 $7E into
memory)

Serial Peripheral Interface
The communications between processor A and processor B

occurs via the Serial Peripheral Interface (SPI) . This
interface is used by many Motorola microprocessors and
microcontrollers to facilitate fast and effective serial
communications between a master and slave type device [19] .
Processor A was chosen to be the master and processor B the
slave. These devices were hard wired in this configuration.

It is necessary to provide handshaking between these two
microcontrollers. Several of the B output lines were
dedicated on each MCU and connected to corresponding input
lines on the opposite MCU. This system allowed either device

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69
to request data transfer. Care was taken to not allow "deadly
embraces" between the two units when both had requests at the
same time. This configuration, although somewhat complex,
proved more than adequate for communications in both
directions.

Processor B Software

Initial Considerations
The composition of the processor B software program begins

with the equates section. This section sets up values and
addresses for system reference. Following the equates,
originated at $0000, is the RAM variables section. This is
where buffers, variables, and pointers are located. In this
area of RAM memory the FIFO_Q buffer is located. This buffer
is a queue capable of buffering serial output to the host.
When events are being generated faster than they can be sent
at 9600 baud, this buffer takes the overflow and spools the
data until the system can catch up with the rate of incoming
data.

The initial start-up location in EEPROM begins at $B600.
At this location a one-time set-up of stack and OPTION
register is performed. Initialization occurs at this point.

The INIT subroutine is called before any data is
transferred. This is the initialization subroutine which is
responsible for setting all software parameters. This

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70
subroutine sets jump vectors for interrupts, pointers, initial
values, and control registers. It is called only one time.

Main Line Program
The MAIN Label in the processor B software identifies the

start of the main line Program. MAIN is the beginning of a
loop that is performed repetitively. The first action taken
in MAIN is to check the SCI_RDY flag for indication of an SCI
command pending from the host computer. Commands from the
host may be of two types. If the command has a colon as
the starting character the command from the host is a sonar
pod command that will be relayed through processor A to the
sonar pod. If the command begins with a "<" character then it
is intended for processor A as a processor A instruction.

If a command is present from the host, the software
branches to the SCI_IDR location for handling. If there is no
indication of a host command, then the MAIN routine checks
SCI_RDY, the status indicator for the SPI system, for any
information such as an event arriving from processor A. If
there is data from processor A, then GET_DAT is called and
data is retrieved. If no host data or processor A data is
available, then the MAIN loop repeats.

The GET_DAT program segment obtains data received from the
SPI and acts upon it. This segment looks for proper
formatting of the incoming stream and records an error if not
in the correct format. Two types of data are received from
the SPI port of processor A. Events are the normal element of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71
transmission. However/ upon request, processor A may send an
error report of its status to processor B for relay to the
host. This facility is included in the software but not
utilized at this time.

The SCI_IDR program segment is responsible for retrieving
the commands sent from the host computer. Since no command is
processed in processor B but is simply relayed to processor A,
any data coming into this program from the host is
automatically relayed to processor B. This program segment is
responsible for taking data from the SCI_BUF buffer and
loading it into the SPI transmit buffer, SPT_BUF.

Interrupt Service Routines
The SCI receiver and transmitter use the same SPI

interrupt service vector. The SCI_INT interrupt service
routine first looks at the RDRF flag and then the TDRE flag in
the SCI system to see which operation is being requested. If
data is available then the SCI_ISR is serviced. This receives
the data and places it in the correct buffer location. When
finished, or if there is no received data available, then
transfer is made to the location that checks
SPOL_CT to see if the output system is sending data. If data
is to be sent back via the SCI to the host, then the program
waits until it can send data by checking the TDRE flag.

The SPI_ISR is the interrupt service routine for the SPI
system. This routine handles data coming in from processor A
by generating an interrupt every time processor A sends a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72
character. This routine will do one of two things. If output
BO from processor A is high (request Acknowledge) then
processor B has the attention of processor A for the purpose
of data transfer to processor A. This will continue until
processor B lowers its BO output line to release processor A
from its obligation. If no acknowledge is present, then the
SPI interrupt can only mean that processor A is sending a
command or data to processor B. If processor A pulls its line
B1 high during a character transfer, this routine resets the
SP_PTR to the location of the first position in the SPR_BUF
buffer.

Table 6 shows the basic connections between processor A
and processor B. Six pins are listed for both processors A
and B.

Table 6
Processors A and B Connections

Pr A I/O Pr B Definitions
BO 0 -> I AO Acknowledgement that P-B can send
B1 0 -> I Al Tells P-B to reset the rec. buf. ptr
B2 0 -> I A2 Not Applicable
AO I <- 0 BO Requests to send data to P-A.
Al I <- 0 B1 Not Applicable
A2 I <- 0 B2 Not Applicable

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73
The TRANSMIT subroutine is called by the main line program

after loading the SPT_BUF SPI buffer. This routine raises
line BO from processor B to processor A's AO input
pin. The purpose of this is to request that data be
transferred from processor B to processor A. This subroutine
will hang execution until processor A sends an acknowledge on
its line BO to processor B's AO line, along with SPI
rotations, until processor B releases the request for
transfer.

Other Communications
Subroutines

The PUT_SPOOL subroutine is used for placing characters of
data or other command information into the output buffer to be
spooled to the host computer. This routine is a virtual
output routine for all data going to the host. To assure that
no characters are sent out-of-turn, this routine is called
whenever any output information is to be sent to the host
computer.

The SPOOL subroutine when called sends a single byte found
in the output buffer (FIFO_Q) to the output SCI port. If
there is no data in the queue then this routine must not be
called. The SPOL_CT is changed each time a character leaves
the buffer. When this counter is zero there is no more data
to be sent to the host computer.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74
Event Handling

Subroutine MK_EVENT sends a string to the host computer
containing the X f Y, and Z locations of an event generated
from a threshold crossing which originated in processor A.
Along with this coordinate information the event also contains
the range information in hexadecimal necessary for the host to
determine the size of probability spheres to be generated in
the data structure.

The first thing that MK_EVENT does is to formulate an
address to be used to look-up the pre-calculated cartesian
coordinate information found in the EPROM connected to
processor B. The MAKE_ADR subroutine does this. This
subroutine looks at strings entering the SPR_BUF from
processor A. Once this buffer is loaded with a new event, a
two-byte address into EPROM contents is formed.

Once an EPROM address is formed based on the event
generated in processor A, the EPROM contents are read as ASCII
information. This information is loaded into the output buffer
in the proper order and transmitted along with range
information also in ASCII. Range information is formed
separately with the FIG_RNG subroutine which takes the hex
range information found in the event and converts it to a
three-byte ASCII decimal.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75
Other Event Handling

Subroutines
The subroutine OUT_XYZ sends five characters to the SCI

port from the EPROM. This subroutine is called by MK_EVENT
several times in the formation of a complete event string to
be sent to the host computer.

SET_ADR sets the medium and high bytes of the EPROM
address into the address latches. SET_LADR sets the third or
lowest order byte into its address latch. These routines are
basically latch drivers.

GET_MEM loads a byte from the EPROM after setting up the
address latches with SET_ADR and SET_LADR. A series of other
subroutines enable and disable functions on the EPROM and are
responsible for generating strobes etc. The subroutines can
be seen in the source listing for processor B in Appendix A.

Recording Host Software

Introduction
A computer was needed to ride on the surface platform

above the submersible portions of this sonar system to gather
data. This system does not require great speed or storage
capacity either in RAM memory or hard disk space. Its main
function is to create files of sonar data to be taken back to
the laboratory where the processing host can digest the data
and create data structures.

This computer should possess several attributes. First,
the system should be physically small. A laptop computer

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76
would have been ideal for this application; however, one was
not available to the author. The second choice was a small
light-weight PC capable of being mounted securely onto the
instrument platform.

The second attribute that the gathering host must have is
the ability to input and buffer serial input from two input
channels (C0M1 and COM2) . No data can be lost while the
operating system and data gathering applications programs
pause to write data to the hard disk file or complete other
functions.

The third attribute for the data gathering computer is
enough speed to keep up with the volume of data to be recorded
without generating buffer overflow errors which would both
corrupt data and halt the gathering operation.

Hardware and Software Used
for Recording

The choice of computer hardware for this application was
a Dell model 333s/L 386-SX desktop computer. This computer
was equipped with MS-DOS version 6.22, Microsoft QuickBASIC,
and data recording programs written in QuickBASIC. This
worked well in both preliminary tests and actual field trials.

The program source code for RECORD.EXE and LOGIT.EXE, the
two data recording programs, is furnished in the Appendix C.
These not only record sonar data but are menu-driven and allow
easy access to functions such as Gain, Attenuation, and Width
for control of the SPMM located inside the sonar pod. The

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77
ability to easily shift baud rate communications between
processor A and the SPMM was also facilitated. Featured in
this software is the ability to start and stop the sonar head
movement and data gathering commands originating in processor
A. The software is written to be as user-friendly as
possible, as the environment of use puts extra burdens on the
technicians operating the equipment.

Processing Host Software

Introduction
The host computer must be capable of fast operations

including floating point calculations. A 100MHz Intel
Pentium-based computer proved to be more than adequate for
meeting the necessary requirements for a non-real time
evaluation. Speed is not as important in this phase of the
system evaluation because the computer can take as long as
necessary to process the data once gathered. However, much
effort was undertaken to construct the host software to
optimize for speed so as to make the system more portable to
an actual end-use application which is planned for later.

Much consideration was given to the choice of languages
for use in the host processor. Both speed and
transportability to other operating system platforms entered
into the decision. Windows 95/98 by Microsoft is reported to
be a less stable system than UNIX and its derivatives such as
LINUX [9] . LINUX was ultimately chosen because the author

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78
believed it would be easier to implement in a submersible-
based sonar system.

Microsoft Visual C++ Version 5.0 was licensed to the
author. A compromise was made in regard to the use of C or
C++ as the host computer language. If the host software were
written in C++, and a C based UNIX/LINUX compiler was
available later for the end-use host, a large scale rewrite
would be required to transform the software to the smaller C
subset. This is especially true for converting structures
only present in C++ back into usable C code. Converting
classes and objects into C language would facilitate a major
rewrite.

Another major consideration was speed. In general, C
language code executes faster than the more complex C++ code
especially when objects are used [1,11] . A compromise between
the two approaches was made. The Visual C++ compiler was used
for the application. Although a few convenient features found
in the C++ language were used, mainly in the area of console
input and output, for the most part the code was written in a
form that could be easily modified for transporting to a C-
based machine platform. The Host.cpp program is listed in
Appendix B.

Host Data Structures
The space in the projected path of the AOV or submersible

was mapped in a 3-Dimensional "char” type array called
Water_Space. This occupancy grid array was dimensioned as 151

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79
elements along the positive X-axis, and 141 elements
comprising both the negative and positive portions of the Y-
axis and Z-axis. This gives a total space of 3,002,031 one-
byte character type locations. It is assumed that any element
of this array is empty (no sonar targets) if the element has
a value of zero. All locations in this array are initialized
to zero before events are entered into the host software.

To generate a sonar target representation in the
Water_Space array from an event the software must "color" an
area of array locations with non-zero values. It was decided
to use spherical shape colorings, although other geometric
shapes could be employed. The spherical shape facilitates
featureless rotations. Any other shape could not be rotated
without reference to orientations other than just its X, Y,
and Z location.

These spheres cannot all be generated to have the same
physical size in the occupancy grid array. Close ping returns
from short ranges indicate a volume of probability smaller
than that of distant returns. Highest resolution is obtained
at the shortest ranges [3] . This is because the sonar beam
fans out creating an 8 degree cone (3dB down points) . The
height of this cone is the target range, with the center of
the generated sphere located at the geometric center of the
cone base.

Since spheres are all solid (all inside volume colored)
small spheres color the same array elements as larger spheres

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80
with the same center coordinates. The only difference for
large spheres is that they have more array locations to color.
Thus, when constructing a sphere centered around its X, Y, and
Z location in the array, the array elements closest to the
center are colored first and then coloring can proceed
outward.

An algorithm could have been developed to generate the
coloring locations in much the same way that coloring is done
in 2-dimensional blob coloring of machine vision images.
However, algorithms can take large amounts of processor time
and this can seriously slow down the event entry and
relocation times. It was decided to pre-calculate the
locations of all affected elements and store these in a table
for look-up. This greatly speeds up the process of developing
these values on a real-time basis.

A straightforward approach was used to generate the sphere
coloring look-up table values. A program, VECTOR.BAS, written
in Microsoft QuickBASIC was used. This program iterated
nested FOR loops for X, Y, and Z variables from negative
values through zero into positive values. Each value (X, Y,
and Z) was considered the end point of a vector beginning at
the origin. The length of this vector was calculated and this
value along with the X, Y, and Z endpoint values, in that
order, were placed into an ASCII data file. Magnitudes for
vectors range to values larger than necessary for the largest
sphere to be generated.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

81
Once this data file of vector magnitude versus X, Y, and

Z coordinates was generated and stored, it was sorted using
the standard MS-DOS sort routine. This sort routine sorts
numerical values in the order of the ASCII character set [17] .
The sort file output contained a listing of magnitudes
(radii), along with X, Y, and Z endpoints. All are in ASCII
character form. This file contained all necessary information
to generate spheres of any required radius.

Sphere generation is based on coordinates of the sphere
center along with a radius. Thus, looking into this sorted
vector file table, starting with the first record, the host
program can begin coloring each array element until the
desired sphere size is obtained. All that is needed is a
method for stopping the sphere generation when the desired
uniform size is obtained. This is also done in tabular form.

The SCAN_S PH. BAS program was then used to create an index
file from the magnitude values of the Sphere. Program
FIND_SZ.BAS is used to generate the Entry.Dat file of endpoint
locations from the two previously generated files of data.
These QuickBASIC programs are included in Appendix C for a
better understanding of the process used.

The sphere build endpoint locations are maintained in the
host program as a single dimension array called RngPts. Once
range is determined, a look into the RngPts array will return
a number corresponding to the last location in the Spheres
array to be used in the sphere build operation. This method

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82
of constructing spheres is direct and can be altered by
changing the values in the Spheres and RngPts arrays. This is
accomplished simply by changing the data located in the
"Sphere.Dat" and "Entry.Dat" files.

Host Computer Software
Layout

The layout of components for the processing host software
is straightforward and typical for most C language programs.
First, the headers are declared, then the constants.
Following these declarations are the file declarations for
file types. The global variables are then declared.

It is easy to see that a large number of global variables
were used for this program. The main reason for the larger
use of global variables was to speed the processing by not
having to transfer data with function parameters every time a
function was called. This saves some time in the execution
and uses a minimum of additional memory.

The global array variables are declared including the
Water_Space array, the main array for the occupancy grid. The
Spheres array containing sphere generation values and the
RngPts array containing entry points to the Spheres array are
included in this section.

The events are maintained in a series of arrays. The X,
Y, and Z coordinate points are maintained in the X_Curr,
Y_Curr, and Z_Curr arrays. The SphRng is the event range
array. This array is used to redraw the spheres to scale with

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83
their original size. The Tm_Exit array keeps a numeric time
value which represents the event formation time plus the
EvLife constant value. This is used to eliminate old values
from the table. The EvLife constant is the number of seconds
that the event is to live starting from the event generation
time.

Next are found the function declaration sections of the
program. These functions are defined in the source listing in
the Appendix B. The definitions are found in comments
directly above each function definition.

Host Main Line Program
The main line program section of Host.cpp begins with

local variable definitions. Next, housekeeping operations do
things such as opening files with the Open_Files function, and
filling initial values into arrays with the Fill_Tables
function. Initialization of the Water_Space array elements to
zero is done with the Init_Array function.

The main line program then performs a "file
synchronization" where two types of data are synchronized so
that they can be read together- Since data is gathered and
then processed at two different times, the storage of the data
requires it to be in a file format. For input of the non-
real-time data the processing host needs only to open and read
data files.

Two files of data are required for input of gathered data.
The Events.Txt file contains event information from processor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84
B time-stamped and stored in the data gathering operation.
File DirSpd.Txt contains heading and velocity information
formulated and transmitted by the microcontroller located in
the compass housing. This data is also time-stamped by the
recording host computer.

The Events.Txt and DirSpd.Txt files are created under a
different set of names. This is because each time the
recording host program is executed it creates a new set of
files to hold the events and heading-velocity information.
This can occur many times in field testing on the same day.
To prevent overwriting of an existing file each time, the file
is opened and given a different program generated name. The
select file set is renamed before presentation of this data to
the processing host.

Table 7 (a) shows a short but typical listing of the ASCII
text to be found in the Events.Txt file. Table 7(b) shows
data that is typical to the heading and velocity file,
DirSpd.Txt. These two files must be read in a coordinated
manner so as to synchronize the timimg of both event
generation, and data indicating velocity and heading
information. The host software could not accurately process
information if these two files were being read with each
record representing a different time.

This synchronization is accomplished in the main module
after files are opened and basic initialization is performed.
Once synchronization is accomplished the host computer reports

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85
to the operator via the console output the current event time
and also the current heading and velocity time for
verification. At this point the program execution enters a
read and process phase. This is where data are read and
compiled second by second.

Table 7
Recording Host Data Samples

>E114036 C024
52.69 11.19-3.766R54 [02:14:39]
[02:14:39] C023
>E11004B [02:14:39]
70.30-25.58-5.231R75 C023
[02:14:40] [02:14:39]
>E1110A0 VIA
156.1-33.18-11.16R160 [02:14:39]
[02:14:44] C022
>E112053 [02:14:40]
82.59-5.775-5.789R83 C021
[02:14:45] [02:14:40]

(a) (b)

A function called Clock_Tick is used to create one-second
steps in the program execution. However, if data is being
logged for later plotting of echo structures, the logging
operation takes considerably longer than one second and
results in the loss of truly real-time operation. As
mentioned earlier however, this is not a problem since real
time operation is not needed for data evaluation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86
If the host software is executed without requiring it to

store plotting information, it uses a one-second loop that
performs an update on the event table on every iteration.
Several things happen in this loop. First, the boolean
variable MoreData is checked to see if more data is available
to be input. If more data is available, it is read. If not,
the event table continues to be updated but the reading stops.

Assuming that there is more data to be input, the program
enters a program segment that first does table maintenance.
The Maint_Table function is called and the event table is
updated. This function is performed only once per second,
even if there are more than one event in that time period.

Next, if there is a time match between current system time
(Tstr) and the last read event time, the Place_Sphere function
is called. This generates a sphere to represent the new data
that has just been read. The center of this sphere is X_Evnt,
Y_Evnt, and Z_Evnt. These variables along with Range_Evnt,
the range for the event, and the constant "1" representing the
number to be added to each sphere element are passed to the
function.

After the placement of a new event-generated sphere in the
data structure, the Table_Event function is called to log the
event into the event table. The parameters used here are the
same as for the Place_Sphere function with the exception that
event time must be recorded. Thus, Tstr is also passed to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87
identify current event time. An example of this string,
"09:04:38," would represent an event captured at 9:04:38 a.m.

After executing the above functions a slice through the
Water_Space array is generated on the console in rough
character graphics to give the operator a look at what is
located in, and slightly below, the Z-axis plane where Z is
equal to zero. The operator is then prompted as to whether a
slice should be made. If so, a detailed set of all sphere
colored points are logged to a data file for later plotting of
a scatter plot. This plot depicts the slice with much greater
detail than the rough character graphic shown on the console.

If the MoreData boolean variable is false, this would
indicate that there is no more data to be read. In such a
case, this main line program loop described above would do all
of the same functions with the exception of the Place_Sphere
and Table_Event calls. These are only needed for entering new
events and thus not applicable in this case.

When in the process of reading and processing new events,
an event is input whose time does not match the current time,
variable Time_Match becomes false. At this point the StrTmlnc
function is called to increment the string time variable used
to identify the next possible event time being read.

LinTime keeps what is called linear time which is a
computer integer value of time used for event aging. This is
done with the MkTimelnt function.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

88
At the point where time changes, the seconds variable is

updated and execution continues for the next second. The
functions and loops are inside a while loop constructed to be
perpetually enabled. Thus, the program continues to run until
terminated with a control-break entry from the console.

Host Computer Functions
Function Event returns event information from the events

file. It is called with the Tstr time variable equal to the
time of the event that the main line program is looking for.
The first time that Event is called the Tstr may be equal to
a null string in which Event will return the first time found
in the events file.

The Event function returns a boolean type that reflects
the availability of data. Global variables affected are
X_Evnt, Y_Evnt, Z,Evnt, and Range_Evnt. These variables
defined earlier represent the cartesian coordinates of the
event center along with its range.

HeadVel is a function that is called much the same way as
the Event function. However, it returns both vehicle velocity
and also vehicle heading. These variables are floating point
types. The heading is an average heading for the plurality of
heading samples taken in the specified second. The velocity
value (turbine sensor) is reported less frequently than
heading and thus the returned value will be the last reported
value for that seconds time interval. The returned value is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

89
boolean and reflects data availability like the Event
function.

The function Place_Sphere is used to either place an event
sphere in the Water_Space array or to remove a sphere from the
array. To place a sphere the function is called with a (1)
value passed to the character variable Incr. This adds one to
each sphere element. If called with this value equal to (-1),
then each array element is decremented, resulting in the
removal of the effects of previous sphere generation on the
array.

The function is also called with X_Pos, Y_Pos, Z_Pos, and
SpRng as parameters. These are X, Y, and Z positions for the
sphere center along with a range value to size the sphere.

Rotate_LR is a function that rotates points in the
cartesian coordinate system based on an angle in radians
passed as its single parameter. Since rotations are only
about the Z-axis the value of ZP is not effected. However the
function operates on the global X and Y values XP and YP.
This rotation is based on a linear algebra computer graphics
technique [14] .

The return value for Rotate_LR is boolean and represents
whether the rotation moved the points outside the boundary of
the Water_Space array.

Translate is a function that moves the vehicle forward in
the Water_Space array by moving all associated event sphere
locations closer to the vehicle (toward the negative X-axis).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90
This is a very simple function. It merely adds a variable
value called Feet to the XP variable. This effectively
translates the event spheres toward the submersible or AUV
assuming forward vehicular motion.

Most arithmetic operations carried out in the host
software involve only simple integer additions and
subtractions. However, once every second the event table must
be updated with both rotations and translations for each
entry. These operations are floating point operations and
must be done at high speed.

The sine and cosine functions come into play from a speed
standpoint also. Many times these are calculated by
evaluating a polynomial of degree five or higher [16] . If the
angle of rotation is handled as an integer by not averaging a
set of angular readings, this process can be reduced to a
look-up table for an increase in speed.

Table_Event is used to load a newly generated event into
the event table. It must be called with X, Y, and Z
coordinates, range, and a time string. The new event is
placed in a series of arrays that represent the event's
values. From this set of data locations future rotations can
occur. The Tm_Exit array element dictates the linear time
when the entry will be removed from the table.

The MkTimelnt functions receives a string in the form of
"09:03:38" and returns the value of the string based on hours
equaling 3600 seconds, minutes equaling 60 seconds and the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

91
string value Seconds being equal simply to seconds. These
values are then added to form linear time.

OpenXYfile creates the slice file for samples of the
Water_Space array. The first two characters of the file
created are always "XY." The second two characters represent
the hours in a two-character sub-string pulled out of the Tstr
time string. The third two characters represent the minutes,
and the last two represent the seconds. Naming a file in this
manner tags it as to exactly when the data was recorded. The
file extension is ".Txt" for viewing purposes. CloseXYfile is
the function that closes this file.

XY_Log is a function that scans the Water_Space array and
stores a set of X and Y points into the file opened with the
OpenXYfile function. There is no parameter returned. This
file is furnished a depth to begin the slice. This depth is
usually zero. However, as the slice is developed, each X-Y
location in the array is summed for 30 Z-values below the
stated depth. This results in the formation of a "thickened"
slice equivalent to 60 feet of water depth. This better
represents the Water_Space array structures through projection
onto the Z-equal-zero plane.

The Conv_Vl function is to take a string comprising
hexadecimal numbers from the velocity sensor and convert this
pulse information from the turbine wheel into actual velocity
in feet per second. This velocity value is to be returned to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92
the program. The value returned should represent the floating
point value of the velocity.

Currently no table of conversion values from pulses per
time interval to velocity has been constructed. Neither has
a constant been developed that represents a quasi-linear
relationship between these two values. Currently a "Forced
Velocity" is used while processing the event information.
Thus, known velocity is input into the processing host
software representing the steady velocity of the instrument
platform.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 4

TESTING AND EVALUATION

Testing Purposes and Objectives

Introduction to Testing
Philosophy

The major objective of this research is to obtain proof-
of-concept validation for a new approach to sonar obstacle
avoidance. This research is not intent on laying the ground
work for commercial production of these systems or creation of
a manufacturing model. This is a specialized sonar concept
with a limited number of end-use applications, but one that
when needed can possibly yield an ability not currently seen
in the field.

The evaluation of this research was conducted with the
intent to either point to more research into the basic concept
or to establish that the approach is lacking in merit. One
purpose of this research is to demonstrate a working model of
the overall system. Further research can and should refine
the quantitative analysis of the applied concept for
qualification in various roles in existing and emerging marine
technology.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94
For the most part, the evaluation of this concept is based

on graphical imagery which leans toward subjective evaluation.
This approach is much the same as it has been for evaluation
of most graphically-based sonar systems for many years.

Instrument Platform Development

Need for an Instrument
Platform
Much consideration was given to the field test phase of the

testing procedure. Many factors were considered in
configuring the testing scenario. The seemingly obvious test
would be to attach the sonar systems onto "The Vindicator," a
one-person submersible, for actual end-use testing. This
approach was ruled out for several reasons.

Operation of this submersible requires much support from
a crew of workers knowledgeable in the launch, operation, and
recovery procedures used. Although The Vindicator has made
approximately 15 dives, the launching and retrieval for this
3 ton submersible is still tedious at best. The extra
workload necessary for field testing the sonar while operating
the submersible could prove to be too large of a burden.
Later, after the sonar systems have been proven and refined,
the transition to the submersible application will require far
less effort.

Another factor involved in not using a submersible for
evaluation is that timing for such an actual end-use test
would cause the test to be performed in the coldest season of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95
the year. This would prove virtually impossible for the
launch crew with the seasonal water temperatures in Northern
Louisiana, Arkansas, or Texas where the vehicle would need to
be launched.

It was decided that the best approach to evaluating the
sonar system was to use a surface craft, either a boat where
the sonar would be attached below the water line, or a
specially created floatation system. The approach taken was
to construct a small boat, with as little water drag as
possible, to float the instruments needed.

It seemed logical to also include radio control as an
option, as the platform was given the capability of self
propulsion. In this way the platform could be controlled
remotely or attached to a surface boat with its own
propulsion.

Design and Construction of
Instrument Platform

This radio-controlled boat constructed specifically as an
instrument platform is slightly under 8 feet in length and 27
inches wide at the beam. A steel frame in the form of a
double "U" was constructed so as to attach to four mounting
points on the top of the instrument platform. This frame is
therefore not attached to the water-tight underside of the
platform, yet provides an undercarriage for mounting the
submerged portions of the sonar system. This frame was made

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96
easily detachable so as to allow convenient transportation to
testing sites.

A 14-pound thrust 12-volt trolling motor was obtained for
propulsion. A Whistler model PP300AC 300-watt voltage
inverter was installed to provide 120 VAC power to operate the
recording host computer and monitor. Radio control was
accomplished through a 1970’s era Citizens Band Radio Control
(R/C) transmitter and receiver combination coupled to a
controller and servo driver developed specifically for this
application. This system is based on pulse width modulation
(PWM) for servo position control.

The controller/driver uses an embedded microcontroller to
detect channel pulse width from the R/C receiver and provide
drive to a servo motor combination having far greater torque
than would be seen in a small radio control model servo. This
servo system utilizes digital sampling and feedback for proper
positioning of the trolling motor thrust. Relays were
employed to adjust the speed of the trolling motor. Available
speeds are stop, slow, medium, and fast.

A small scuba compressed air tank commonly referred to as
a "Pony Bottle" and a pneumatic 4-way air control valve were
located on-board for driving the sonar head tilt cylinder.
Much care had to be taken with the compressed air valve-
cylinder system so as not to jar the sonar head repeatedly as
the cylinder was actuated. It was a concern of the author to
limit the high acceleration impact that occurs when the sonar

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

head moves up and down. An exhaust restricter valve along
with a flow restricter were used to cushion the movement.
This worked well in and out of the water when tested.

The interface box containing processors A and B was
mounted and powered by the same 12-volt battery system used
for propulsion and steering. This box contained a relay used
to control the action of the 4-way pneumatic valve.

Below this instrument platform the submergible portion of
the sonar system was mounted. Cabling was routed through
clear vinyl tubing to maintain water-tight integrity. This
cabling was connected to the interface module and power
systems of the platform. Pneumatic lines consisted of 0.125
inch diameter nylon tubing. This tubing runs over the edge of
the platform and connects to the sonar head positioning
cylinder.

Testing Prior to Field Trials

Initial Systems Testing
No complete system of this size should be constructed and

placed in a field test environment without first having each
module evaluated as to its performance and fitness for system
inclusion. This sonar system consists of various smaller
systems and sub-systems of both hardware and software that
must work well together. If any component fails to meet its
standard, the final performance of the overall system produced
will be inadequate.

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

98
Testing a system of this size dictates testing of

individual modules prior to their connection into the final
product. This was accomplished, one sub-system at a time, in
most cases. The sonar pod systems were evaluated one at a
time and then as a whole by demonstrating that the sonar pod
responded to commands as required. Testing of this system was
performed by simple connection to a PC with terminal emulation
software. All commands were tested and results evaluated.

The initial testing for processor A and processor B was
not as simple as testing each section individually. These two
MCUs were connected via the SPI ports that exist on the
Motorola 68HC11 series microcontrollers. Much of the testing
of this pre-processing system was performed by connecting
separate computers, operating in terminal emulation mode, to
each MCU.

Data and commands were passed back and forth and error
conditions were observed. This was a formidable task in that
no debug software could be employed. It proved very difficult
to locate problems when this larger logical block of hardware
and software did not perform to expectations. Several
problems were found that took considerable time in the logical
probing of the system to isolate and correct.

Dummy data were collected by the recording host
representing both events and heading-velocity information to
insure that this data was being recorded correctly and that
the time stamp was working correctly. Initial testing of the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99
processing host software was done in small increments.
Functions were tested and linked together in a building
process common to software development.

Pool Testing of Sonar Pod
Many smaller system tests have been performed during the

development of the sonar hardware and software. Simulated
sonar signals were passed through the analog amplifier system
and recorded. Head scanning was observed and numerous other
tests validated sub-system performance. However, actual
underwater tests of the sonar module were not performed until
early January, 1999.

Initial sonar pod tests were performed in a swimming pool
located in the Health and Physical Education building on the
Louisiana State University in Shreveport campus. The purpose
behind this testing was not to record quantitative information
on the sonar pod, but to determine usability as designed for
later open water tests. As mentioned earlier, little
information on the sonar transducers used was obtainable.
Perhaps the reason for not making this information available
was that it was proprietary in nature based on the vendor1 s
company policy.

Since little was known about the sensitivity of the
transducers used, it was essential to obtain a subjective
evaluation of the usability of the sonar pod system. This
evaluation revealed several valuable pieces of information on
the operation of the sonar pod.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100
The necessary gain and attenuation settings were not known

until pool testing. The level of baseline noise at the best
gain and attenuation settings was assumed to be low but
unknown. The relative amplitudes of returns from smaller
targets compared to the "solid wall" pool echoes were also not
known.

This test began by locating the entire sonar pod assembly
including angle iron frame, head tilting mechanism, rotating
transducer array, and electronic enclosure in the pool. This
pool slopes very gradually in the shallow end but once a depth
of around 5 to 6 feet is obtained the slope of the pool
becomes abruptly steeper. This was the location where the
assembly was placed, roughly half of the distance between the
shallow and deep ends of the pool.

The assembly was placed on a plastic table 25 inches from
the pool bottom. This placed the sonar pod center
approximately 35 inches from the water’s surface. The
transducer array was pointed out into the deep end of the pool
such that no portion of the 8-degree beam projected from
transducer number 1 (center transducer) would hit either the
water's surface or the pool bottom.

The sonar pod was connected directly to an Intel 386-SX
based computer executing Kermit, a terminal emulation software
program. Power was supplied by two standard laboratory power
supplies: one supplied power for the rotation of the sonar
head, and the other supply was used for powering the sonar pod

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

101
electronics. The gain factor was set to 8 and the attenuation
was set to 180. A pulse width of 80 cycles was chosen.

The first ping was generated and sent to transducer number
1. The echo signal was observed for the entire 300 feet of
range. Much to the surprise of the author, a screen of $FF
values were displayed indicating that the signal had saturated
the amplifier system. The gain was lowered and again a ping
was generated. Virtually the same thing happened with signal
strength being so large that it overloaded the amplifier. A
pattern of lowering gain and raising attenuation continued
until a very well-defined series of echoes were observed with
$00 echo values displayed where there were no direct echo
returns.

Both the author and his assistant became submerged sonar
targets for ping returns at various positions in the deep end
of the pool. In every evaluation it was noted that strong
echoes, far above base-line noise values were observed. It
was also noted that the resolution of the system was good. It
was postulated that in the initial (high gain) trials, very
small signal values in the form of echoes from the waters
surface, pool surfaces, and scattering of the sonar beam from
various conditions resulted in overloading the amplifier.
There were no tests of the claimed 8 degree cone patterns
made.

The optimum settings for the pool dictated gains at the
extreme low end of the available range and attenuations in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

102
moderate to high range. There was no doubt that from this
preliminary evaluation the sonar pod would perform
satisfactorily with respect to base line noise levels,
adequate overall gain ability, and dynamic range of echo
signal return.

Initial Platform Checkout
Initial testing in a laboratory setting is mandatory for

success in the field. However, the concept of mounting
previously functional blocks of any system on a new testing
platform needs research prior to taking the platform into the
field. All major platform mounted systems were loaded into
and onto their designated positions. Power was furnished by
the on-board 12-volt lead-acid battery to operate all systems
including the voltage inverter furnishing 120VAC to the
computer and monitor.

Head position was checked and calibrated and preliminary
tests of the system were performed. Several problems were
identified and corrected. Radio control operation was
verified with all on-board systems powered and functional.
There was concern that the use of the Citizens Band Radio
carrier frequency in the 27 MHz range might allow the
introduction of interference from radiation generated by the
computer or microcontrollers. This had the potential of
causing problems with the platforms steering system. No such
problems were encountered and after a few minor modifications
all systems were ready for field testing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103
Open Water Field Testing

Problems and Solutions
in Field Testing

There are many lakes in the North Louisiana area where the
author is based. Since most of the terrain is relatively flat
in this area of Louisiana it becomes difficult to find a body
of water deep enough to echo in a true 3-dimensional manner.
Even in deeper open water using a surface mounted platform
rather than a true underwater vehicle will allow only sonar
observation in forward and downward directions.

Observations at the steeper downward angles can return
random sonar patterns pertaining to obstructions located at or
near the lake bottom. Such structures are of no known
geometric shape or pattern, thus making their echoes
indeterminate in evaluating performance.

It was believed that the best approach to evaluating this
sonar system was to choose a local lake with few obstacles
close to the water's surface that can return echoes. If more
than one field testing session was needed, the same lake could
be used without having to travel long distances transporting
equipment and personnel each time.

At such a location, the planned procedure was to allow the
sonar to scan in a normal manner. The platform was to be
moved in reference to a singular fixed obstacle while data
were recorded. The recording host would, in such a test, be
active in recording returning echoes due to bottom soundings

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104
and reflected surface scattering. This need not be a problem,
since the data are first recorded and later presented to the
processing host. The recorded data files can be "filtered" of
all echoes that do not pertain to the location and range of
the target object.

If only transducer number 1 in its lower tilt position has
an unrestricted echo from the selected target, the processing
host software can still identify the position and range of the
target and observe its motion in the Water_Space array. It
was assumed that if this approach worked well for a singular
transducer there is no reason that the other transducers would
not work in a true 3-D environment.

Procedures for Field Testing
The first criterion for a successful field test is the

choice of location. The location must have at least enough
water depth for one sonar beam to travel to the chosen target.
This could be done in as little as 15 feet of unobstructed
water. This would potentially give a range of greater than
100 feet to target. This should be enough range to keep the
events in the data structure for a period long enough for
evaluation.

Numerous passes on the target can be performed head-on,
turning left, and turning right. Various rates of turn can be
employed. The optimum target is a singular obstruction such
as a bridge piling, power line pole, or tree. These objects
for the most part represent vertical columns from the lake bed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105
up past the waters surface. Echoes from objects at greater
ranges may not be a problem.

Testing of Host Computer
Program

Since the host computer program is not required to run in
real-time operation for this study, the evaluation of
processed sonar data becomes much easier. In a real-time use
of this system, data cannot be both processed and evaluated
without the subjective evaluation of a visual display system
which is beyond the scope of this research.

As data are read inside the laboratory from a pre-recorded
set of files created on the instrument platform, sonar
structures are created inside the Water_Space array. These
structures cannot be evaluated without suspending operation of
the software to observe what is happening in the array. This
is accomplished with the use of the Slice function in the host
software.

First, data reading is suspended, then the user is
prompted. At this time the user enters a depth. This depth
figure is not the depth below the waterline where the data are
taken, but a Z-plane slice 60 feet thick through the
Water_Space array starting at the level specified for the
slice and extending downward. While normal operation of the
host program is repeatedly suspended, the operator may take
multiple slices of the array.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106
Rather than generating a raster graphic image of the

Water_Space array a file, previously described, is opened for
output that captures the Water_Space array as a series of X
and Y coordinate points. As the slice is created by scanning
the array, any array element that is non-zero generates an X-Y
pair of data for this file. Once the slice is finished this
file contains all of the points that are non-zero in that
slice. This file is later printed with the use of DataFit
Version 6.0.10, a plotting software package by Oakdale
Engineering, to generate a graphical depiction of the slice.

Field Test at Cypress Lake

Available Locations
and Facilities

A boat dock with power outlet, a jon boat with trolling
motor, and the assistance of three individuals was available
on-site for testing. This first open water test of the
instrument platform with sonar system was performed on January
24, 1999. The weather was mild and the maximum wind speed was
estimated at less than 10 miles per hour.

The equipment was transported to a location on the
Northeast shore of Cypress Lake, northeast of Shreveport,
Louisiana. This lake was once Cypress Bayou before the
damming of the bayou creating a man-made lake. Bathymetric
mapping of this lake reveals that most of the lake is shallow
with the exception of the old channel which can be deeper than
20 feet [29]. However, the channel is narrow and winding,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107
making the use of this deeper part of the lake difficult. The
lake region where the testing occurred was approximately 13 to
15 feet in depth.

Testing Procedure and
Test Results

The equipment was attached to the instrument platform
before launching in the shallow water of the pier. The
launching went smoothly, but after launching in this shallow
water, it was noticed that the sonar system was in contact
with a submerged object or else the silty lake bottom. The
platform was slowly maneuvered to a position where the radio
control system could operate safely. The propulsion was
initiated, and the platform was moved out into deeper water.

Recording was started and a series of passes were made on
an artificial target constructed from 4.5-inch outside
diameter PVC pipe. This pipe was weighted at one end and
placed in approximately 13 feet of water where it stood
upright resting on the bottom for the duration of testing.

Since the recorded values are time-stamped by the systems
computer clock, it was an easy matter to correlate the action
of the platform to the data gathered. An observer recorded
the beginning and ending of each pass, the angle relative to
the target, and any other information that was pertinent.

Although the radio control system worked well, it proved
to be less stable than expected in obtaining either straight
tracking or slow turning as the platform approached the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108
target. It is believed that as the trolling motor vectored
its thrust left and right of the center line, the stern was
free to rotate left and right while the platform was not as
free to move forward due to the high drag of the centrally
located sonar assembly. Later tests of the platform without
the underside drag of the sonar pod assembly proved much more
stable.

More stability and control was obtained by using the jon
boat to tow the platform at its side. The jon boat's trolling
motor provided more than enough forward velocity for the
trial. Numerous passes on the target were made. However, due
to the recording host software not indicating the number and
position of generated events, little was known at the time
about data taken.

Once this Cypress Lake trial was completed and the sonar
was being examined for leaks it was noticed that the sonar
head was not aligned as expected. Upon closer examination it
was noticed that the sonar head was perhaps 30 degrees further
left than normal. The presence of lake bottom silt indicated
contact with the lake bottom. It was surmised that this
contact must have occurred on initial launch of the platform
and was present during all data recording. There was no way
to visually inspect the sonar head during the testing due to
the opacity of the water.

Upon analysis of the data no identifiable echoes were
present for the approaches and turning that occurred in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tests. A wide ranging set of echoes were recorded that seemed
almost random in nature. Upon correlation of these echoes
with the recorded platform position at that time, echoes were
breaking the threshold, generating events that could not have
represented true obstacles.

After considerable thought as to the origin of these
echoes from locations void of obstructions, their source
became obvious. These were apparently reflections from fish
as seen by the sonar head pointing away from the actual
target. The threshold had been set to values lower than $10
which created crossings from the small echoes generated by
marine life.

Modifications to Equipment
and Procedures"

Several things were learned on this first attempt to
obtain data. It became obvious that thresholding is more
critical than at first thought. Thresholds must be set high
enough to avoid most fish and other marine life but low enough
to see obstacles that would present a problem for possible
collision with an AUV or submersible.

Along with the ability to adjust thresholds more
carefully, there is a decided need for a method of monitoring
returning echoes for frequency, range, and sonar head angle.
Simply knowing that events are being recorded by looking at
the file size of the files created is not enough. For this

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

110
reason a small modification was made in the recording software
written in QuickBASIC.

This software modification was simple, but potentially
valuable, in monitoring the echoes as they are generated. The
RECORD.BAS program was left intact, with the exception of
moving the actual recording function to a separate software
module. This module, called LOGIT.BAS, clears the screen of
the recording host and draws a line across the bottom and down
the middle of the screen. Left side echoes are depicted on
the left side of the screen with right side echoes depicted on
the right side of the screen.

Characters that range from 0 to 5 are placed on the screen
at locations that reflect the occurrence of target echoes.
Locations for these character placements start at the lower
middle of the screen, representing close targets, and fan out
as they get to the top of the screen in ray-type patterns.
The six rays that are generated represent the six horizontal
angles of the sonar head. The range is not given in the
length of these rays, but as the total Y-axis height above the
screen bottom.

This visual depiction is simple, but useful, to see where
objects are being sensed. The software filters all but the
low head position from transducer number 1. This is believed
to be the only usable combination for water as shallow as in
the test conditions. The screen can be cleared at any time by
striking the "C" key on the keyboard. Characters are placed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ill
directly over existing characters and must be removed
periodically to observe new information being reported.

Field Test at Gold Point

Available Locations
and Facilities

Gold Point is a peninsula surrounded by an oxbow lake of
the Red River located approximately 7 miles North of Downtown
Shreveport, Louisiana. The land encircled by the lake is
owned by the John David Crow family of Shreveport, whose
permission was obtained before using the facilities. There is
a recreational home, boat launch, boat house, and pier on the
property.

One measurement in the lake center at the southern end of
the oxbow showed approximately 15 feet of depth. As a former
portion of the Red River, this lake has no timber and few if
any underwater obstructions. The water was clear enough to
observe the action of the sonar head as it scanned. This was
an advantage over the Cypress Lake test, as it constantly
showed that the sonar head was aligned and functioning.

The instrument platform was transported to the site, along
with a 14 foot jon boat equipped with a 32-pound thrust
trolling motor. The sonar pod was mounted below the
instrument platform which inturn was connected to the side of
the jon boat for towing. Extension cords for power, CRT
monitor, and keyboard were employed to allow the monitor and
keyboard to be placed in the boat rather than on the platform.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

112
Initial testing was performed using the recording host

computer in terminal emulation mode. Several pings were
transmitted and echoes observed on the screen in the form of
hexadecimal return levels. The sonar pod worked without
problem. However, when the pre-processor chain was connected
and recording initiated there were too many echo returns
recorded. Various thresholds were attempted with few positive
results. Finally with the gain code set at 001, attenuation
set at 180, pulse width set at 40, and threshold G P U
formulated and installed on-site, the system began generating
echoes based on sub-surface features.

The first sets of recordings were made by motoring from
the lake center to the shore lines. In some cases, piers and
facilities were used and in other cases the opposite shore
line, with its gradual slope upward, was used. It was clear
that echoes were being recorded and being charted on the
screen in patterns reflecting underwater geometries.

A second set of tests were performed using the PVC pipe
target used on Cypress Lake. This 4.5-inch outside diameter
pipe rested upright on the lake bottom in approximately 15
feet of water. Although echoes were reflected by this target,
it did not perform as well as expected. Even at close ranges
the sonar would apparently not record all reflections.

It is believed that the smooth round shape offered a low
effective cross section to the sonar signal with most of the
pipe reflecting the signal either left or right. Most

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

113
probably an object with a rough surface such as a tree or
power line pole, would have scattered the signals making the
detection much easier.

Approaches to this pipe target were made head-on with slow
turning either left or right. Other tests were made by
stopping the motion of the platform and allowing the sonar
head to scan as the platform was rotated. This was done to
test event rotation.

Since the water velocity indicator had never been
calibrated, a procedure was performed to calibrate it. At the
end of the sonar target runs, the boat and platform were
steered into a path parallel to the boat docks to observe a
time and distance measurement set. The boat dock area has a
boat house supported by six large wooden pilings in a
rectangular configuration. By sighting down the two end
pilings, it is an easy matter to time the distance traveled
between the ends of the boat house. Distance between these
pilings was measured with a steel tape.

This procedure was performed with two passes in opposite
directions. Assuming that wind would make a small difference
in speed, the two times were averaged. These values for time
were divided into the distance between the pilings to give
velocity. This procedure was performed at both the slow and
fast speeds of the trolling motor. The resulting average
velocities were 1.25 feet per second for the slow speed
setting and 2.13 feet per second for the high speed setting.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

j
114

Some random and non-repeating echoes were noted at times
even when the sonar was pointed directly out into the lake
where no obstructions exist. It is believed that once again
echoes from fish create these spurious and unpredictable sonar
returns. A fish swimming perpendicular to the direction that
the sonar transducer is pointed could provide a moderate sonar
cross section. For the most part these echoes were not a
problem in analyzing performance.

Equipment Considerations
and Allowances"

No problems were encountered with the sonar pod or head
rotating assembly. The turbine water velocity indicator
worked well initially, sending its velocity information in the
form of counts per time interval back to the recording host
computer. On long straight runs at the target this indicator
provided stable constant level output. However, later analysis
of the data revealed that this indicator had suddenly stopped
turning roughly half-way through the testing period.

The cause of the water velocity indicator failure is
believed to be aquatic vegetation that collected on the sonar
pod and undercarriage. This turbine assembly was on the
opposite side of the instrument platform and not visible to
the operators. When the sonar system was later removed from
the platform, much debris had collected. There was no
apparent problem with the mechanism other than entanglement
with the vegetation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115
It was the intention of the author to use actual observed

velocity from the time and distance measurements and correlate
this with recorded turbine speed. In this way the recorded
velocity information could be automatically injected into the
data furnished to the recording host computer. Since this
could not be done due to the failure, the recording host
program was modified to allow the entry of velocity at the
beginning of each run. This velocity was calculated directly
from the time and distance measurements for the speed setting
used.

Selection of Transducer
and Head Position

It was decided that the center transducer in the head-down
position was the best choice for usable data. Since there was
enough wind at the site to cause small wave action, the head-
up position would have returned close echoes that would have
had to be filtered out before presentation to the processing
host computer.

Since every other sweep yields a head-up positioning and
thus contributes nothing to the data, it was decided to allow
the head to remain low and to use this data later with minor
modification. With this approach the sonar head can yield data
on each scan. The problem, however, is that the pre-processor
pipeline software believes that the head is tilting up and
down on every other pass.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

116
The solution to this problem is simple. The head-up

position is 4 degrees above the horizontal and the head down
position is 4 degrees below the horizontal. The transducer
used, sweep angle, and range is identical. When the look-up
table located in processor B is entered the X, Y, and range
values are identical for the target event. Only the Z value
is incorrect, but only by its sign. If the head is down
continuously but the software indicates a head-up position,
changing the sign of the Z value, as recorded, reflects an
accurate measurement and allows data on every sweep.

Filtering of Data Prior
to Processing

The data gathered from the Gold Point field trial
consisted of 13 file sets. Each set contained an event file
(SNl_XX.Txt) and a velocity and heading file (SN2_XX.Txt) .
The "XXn values contain a unique computer-generated number
used to keep one file from overwriting the other as data are
taken. These files represent raw data which must undergo
filtering before being renamed as Events.Txt and DirSpd.Txt
for processing by the host computer.

The first step in filtering the data is to modify the
carriage return and line feed character sequence to make the
data readable by the processing host program. Also, the time
stamps are made more concise by removing the word "TIME" from
the data strings and placing the time stamp in a more

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

117
accessible position for reading. No data is altered in any
way by this process.

The next step in the filtering process is to remove all
data not generated by the center transducer. Thus, the filter
programs written in QuickBASIC must look at each event and
remove events that do not have a "1" character in the
transducer location. This shortens the total event file size
considerably.

The last step in the filtering process is to search the
event file to find head-up events for conversion to head-down
events. Each event in the file that needs modification will
have its head position changed in the event string. Also, the
next sequential string containing the look-up table values
will have a space representing the sign of the Z value. This
is changed to a negative by insertion of a minus sign
This reflects the true head condition for all data recorded.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 5

CONCLUSIONS

Research Findings

Introduction
The system as a whole functions as intended. This

research effort validates the proof-of-concept for this
approach to sonar collision avoidance. Both hardware and
software designs create a functional system, that can be used
as a model for future development.

The only major limitations to this research were based on
available locations for testing. This resulted in a more
restricted approach to the testing of the full capabilities of
the system. Location constraints on testing prevented the
system from being evaluated in a true 3-D environment due to
water depth and target availability.

Usable Data File Sets
Of the 13 file sets taken at Gold Point, six .showed jirerit.

The others did not contain enough eoho information to
construct a usable pattern. In some cases the straight
forward approach to the sonar target placed one sonar beam to
the left and the other to the right of target with the low

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

119
cross-section geometry of the target itself located at the 3dB
down points for both beams. At large distances this resulted
in what is believed to be a mix of actual target and fish
echoes.

Two types of file data yielded the best results. The runs
made at low speed toward either bare shore line or dock
complexes resulted in the most echo returns and depicted
structure at range. The other type of basic test that yielded
good results was the stationary rotation test. This is where
the boat and platform have little or no velocity, except for
small amounts of wind drift. Here the platform was rotated
slowly facing the PCV pipe target.

Methods of Data
Presentation

Data runs lasted from less than one minute to several
minutes in length. The presentation of this data will be
based on a series of array slices taken during operation of
the processing host software. A small number of slices are
presented, taken at several second intervals. This allows the
depiction of probability spheres in the Water_Space array
created by incoming events.

When a slice is taken, the processing host software
creates a file and loads the contents of each non-zero array
sample as an X-Y pair separated by a TAB character. These
pairs are used to create a scatter plot using DataFit
software. All slices begin at the Z-equals-zero plane, but

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

120
actually represent any non-zero element as deep as 60 feet
below this Z-equals zero—plane. This allows for a Z-axis
projection which better defines the shape of all spheres below
the Z-equals-zero plane.

The time of recording is furnished with each slice
depicted. This time element is critical to the visualization
of the process. These times also provide an easy reference
for what each slice represents.

The plotted data requires numerous pages and thus is
located for reference in Appendix D. The reference to each
graph is given by type of observation and time.

Approach to Dock Complex
The first file set chosen for graphical presentation in

this paper represents a slow speed run toward the dock complex
consisting of the boat house and pier. This approach was not
made head-on but rather at an estimated 20 degrees to the
right of head-on relative to the shore line. The sonar
instrument platform was aimed directly at the large corner
piling of the boat house. Beyond this set of outer pilings,
the sonar signals can travel under the boat house and strike
the lake wall some 20 to 25 feet beyond.

This approach began at 02:27:39 with the starting of the
recording host computer, and the platform being turned to
heading. The event file, however, was set to start processing
at 2:30:14. This was accomplished by temporarily removing the
previous events from the file before the processing began. In

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

121
this way the events handled by the event table grow as time
progresses. This allows the reader to more clearly observe
the formation of the structures in the Water_Space array.

It should be noted that this depiction used a sphere
longevity constant (EvLife) of 36 seconds. This is relatively
long, but necessary to show movement of spheres in the
Water_Space array over longer periods of time. Longer
longevity of the spheres also is useful when some areas that
are being sounded do not return solid echoes each time. In
this way images can be constructed by integrating larger
amounts of data.

Observing the data in Appendix D, one can see that at the
02:30:16 slice, only one sphere was present on the graph.
This sphere was seen to have moved downward in the 02:30:21
slice by approximately 6 feet, about the distance traveled in
this 5 second interval at a 1.25 feet per second velocity.
Also, in this slice four more spheres have been generated
roughly in a horizontal line.

In the 02:30:26, slice several new spheres are shown. One
sphere in the upper left and another on the far right are
clearly visible. Once again the pre-existing spheres have
translated downward at a constant rate.

Slice 02:30:31 shows a very interesting development. At
least one more sphere has joined the original horizontal line,
but two new spheres can be seen forming a second horizontal

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

122
line of sonar echoes, roughly 20 feet beyond the first line.
Again, overall translation of existing spheres can be seen.

In slice 02:30:36, the left half of the original lower
line shows some development from new events. A "thicker"
characteristic can be easily seen in this region. Also, the
new line in the upper right shows at least one new event.

The last slice shown, taken at 02:30:41, shows a further
building in the top (newer) line along with continued
translation of the original (lower) line. This clearly shows
what looks to be two separate structural developments. This
was puzzling to the author before realizing the nature of the
dock and boat house complex.

It is believed that the first of the two separate
structures occur from the outer pilings of the boat house and
dock complex. As the platform closes on the dock complex, the
sonar at these closer ranges had the resolution to see beyond
the pilings and under the docks and boat house to the lake
wall.

Zero Velocity Turning
This test was initiated to test the turning of the

platform and its effect on sonar returns. This test was also
successful in that it showed the best set of echo returns from
the PVC pipe target. This test shows a gradual turning to the
left that slows toward the end of the samples. Again, this is
an excerpt taken from a larger file.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

123
The processing was started at 03:06:48, with the first

slice taken at 03:06:49. This slice shows a stationary event
located approximately 50 feet in front of the sonar array and
about 4 degrees to left of center. This was generated from
event E112033 generated at 03:06:49. Slice 03:06:57 shows a
slight rotation in a right hand direction to approximately the
center position (zero degrees). The range for this slice is
constant. No events occurred between these first two slices.

Slice 03:07:05 shows the next event, E112030, occurring at
03:06:58, and a third event, E11302F, occurring at 03:07:00.
By this time, the first event has been removed from the event
table. These two spheres were generated from events occurring
at a 2-second interval from two adjacent sonar head angular
positions.

Two more events occurred before the 03:07:13 slice was
taken. These events are the only ones left in the table when
this slice is taken. The two previous events have expired.
Another event (E114029) occurs at 03:07:20 and is the last
displayed event. When the last slice is taken at 03:07:21 two
events remain in the system.

It is interesting to note the position of the sonar head
when each of the events were recorded. Consider that the far
left-hand position of the sonar head is angle "0" and the far
right-hand position is angle "5" thus yielding 6 different
angular positions. The recorded events show a sequence as the
platform turns from right to left. This sequence is {2, 2, 3,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

124
3, 4, 4, 5, 5} including the next two events that were not
graphed. It is clear that each center transducer in the low
tilt position captured the target echo twice in the order of
the turning.

Although there are two examples of rotation in this
sequence, the easiest example to see is the comparison between
the slice at 03:06:49 and the next slice at 03:06:57. The
rotation values can be confirmed by observing the DirSpd.Txt
file for the times of these slices. At 03:06:49, the heading
information showed an average value of 94 degrees. At
03:06:57, the heading information showed 90.25 degrees. The
difference between these two angular positions is 3.75
degrees. Since rotation was toward the left, the array
spheres should rotate to the right.

To better demonstrate rotation, the events file for this
example was taken and truncated to represent only the first
event (E112033) occurring at 03:06:49. A very high longevity
was assigned to the processing host software and another run
generated from the same DirSpd.Txt file was begun. This
simply demonstrates the rotational process. A series of
slices were taken and provided in Appendix D.

One can observe the rotation by viewing the sequence of
slices. The amount of rotation averaged 17.4 degrees from the
DirSpd.Txt file data for this period. The rotation from the
graph measured with a simple protractor over the same period
was 18 degrees. The small (0.6 degree) error can easily be

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

125
explained as a combination of measurement error and
quantization error.

It should be remembered that the actual magnetic heading
is 180 degrees from this heading due to the deliberate
installation of the Vector Compass Module in its present
orientation. This has no effect on the changes in heading
important to this data.

Comments on Results
Presented
Although the data presented is a select sample of data

taken, the sonar system is seen to operate as intended and to
produce usable results. The processing host software serves
as a usable model in proving that the concept is useful.
Also, a software template for the processing host program has
been established showing a workable approach to processing of
collision avoidance sonar data.

Strengths of Current Approach

General Considerations
All aspects of the research findings demonstrate that this

approach has merit in providing another dimension to collision
avoidance for underwater vehicles. The goal of proof-of-
concept was realized. It is believed that this research can
lead the way to a much-improved system with higher resolution
and better processing capability.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

126
Hardware Strengths

The sonar pod proved to be a robust design. The equipment
remained water-tight and was shown to be rugged, except for
the fact that the sonar head became displaced by a collision
with an underwater structure during the Cypress Lake field
test. The rotation mechanism proved capable of accurate
transducer array positioning without the need for feedback,
using a stepping motor and a fixed rotation limiting device.
The sonar pod mounting frame physically was well-matched to
the submersible attachment locations proposed as a future
mounting point.

The relay multiplexer scheme had good utility. This was
a major concern of the author when deciding to use relays
rather than solid state switching. This approach proved to be
a good choice due to the low resistance in the ON state and
the almost infinite resistance in the OFF state. Relay life
should be greatly extended because the switching only occurs
with no voltage or current present. This was a good and
workable approach.

Gain control provided a range of gains that were more than
adequate for reception of week sonar return signals. The
approach of providing both gain control and also attenuation
allowed for a device that did not require re-design in any
form due to results obtained in later testing. At optimum
gain and attenuation settings, intrinsic noise levels were
low, many times less than typical return signal levels.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

127
The concept of using a microcontroller to control almost

all aspects of the sonar pod also worked well. Gain settings
could be controlled along with sonar pulse width in cycles.
Another strength of the sonar pod design was the fact that all
control over this system was maintained by a bi-directional
serial port. The only other pod connections necessary were
power. This self-contained modular design manifests a great
deal of versatility in that it is easy to connect to almost
any computer system.

The pre-processor system, consisting of processors A and
B, worked well together, generating events with accurate
information obtained from look-up table processes. The
interface box housing these components was small enough to
include in a submersible and used small amounts of power due
to the CMOS components of both the MCOs and the 74HCT logic
family employed.

The use of two separate host hardware systems proved to
be a good choice. Data gathered by the recording host
computer could be processed again and again with the
processing host computer. This was a strong approach to
evaluating the overall system.

Software Strengths
The entire software system from sonar pod through

processing host computer was based on modular design. Each
software sub-system performed a dedicated task, with the
exception of the pre-processing chain which used two separate

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

128
MCUs with programs closely associated by both hardware and
software.

The sonar pod used a primitive command structure with
simple instructions associated with numerical parameters to
facilitate all necessary pod operations. The simplicity of
the sonar pod's software is its major strength. This simple
command structure makes it easy to interface with almost any
system possessing the ability to generate strings and transmit
them using a serial interface channel.

The EPROM look-up table used in the pre-processor chain
proved to be a good approach to saving processor time for the
processing host computer. The interface between processor A
and processor B, although a complex one, proved to be reliable
in every test.

In regard to the host computer, the choice of C/C++
language was sound. It is not known how much execution speed
was gained by not developing objects. However, two
professionals queried supported the approach to obtaining
faster execution speed by not developing classes and objects
as found in C++ [1,11]. Also, the question of re-writing for
a C platform makes the author believe that the chosen approach
constitutes an overall strength for this system.

Using a Dell Dimension XPS Intel Pentium 100MHz computer
as the processing host proved more than adequate for
construction and mobility of probability spheres through the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

129
Water_Space array. Speed was no problem for this relatively
slow computer as viewed by current computer speed standards.

Weaknesses and Methods of Improvement

Threshold Adjustments
The most serious problem for this system is determining

the best threshold for a given water and terrain scenario.
This would have been a problem at the Cypress Lake test even
if the sonar head had not been misaligned. It was also a
major problem at the Gold Point test site.

In theory the use of a threshold look-up table is a sound
concept. In practice it is slow and cumbersome to try various
thresholds one at a time. The operator needs to see the sonar
return amplitudes for select pings to determine the threshold
levels needed. This requires a reorientation of the
electronics on the platform used and takes much time and
effort. When one is in a boat located in the middle of a lake
performing this re-arrangement, along with attempting new
threshold generation and installation, it becomes a formidable
task.

There are several approaches to solving this problem. One
approach conceived earlier but not researched would be to use
a capacitor and resistor to generate an exponential curve that
could be varied in both time constant, initial value, and
initial start time. The output of this circuit could be
triggered with software from processor A and placed on the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

t

130
input of one of the other analog to digital inputs of the
68HC711 MCU. This real time set of values following the
actual exponential loss in the sonar return could be adjusted
in real time and used to easily set threshold. There are many
ways of adjusting threshold that would prove easier than was
used for this research.

Underwater Currents
One weakness that has not been addressed previously is the

inability of the present system to deal with underwater
currents. These currents can be neglected in many cases due
to their low velocities. However, ocean currents measured in
the Gulf Stream can be as high as 2.5 meters/second [15] .
Even with smaller currents it is easy to see how large errors
in estimated position can occur.

The effects of underwater currents can be compensated for
with simple resources from the onboard host computer.
Currents can be represented by horizontal translations with no
turning. If both the direction and velocity of current are
known these can be easily factored into the computations by
treating them as translations with both an X and Y component.
Thus, at the time that translations are made to update the
event table, translational values for water currents can also
be introduced.

Unknown currents can be identified by comparing the
forward velocity of the vehicle, as measured by the velocity
sensor, with values obtained from doppler sonar which can

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

131
depict velocities relative to the floor of the lake or ocean.
This is somewhat similar to an airplane flying in windy
conditions. The pilot knows the aircraft heading and velocity
relative to the air itself. If a ground based radar operator
gives the plane's direction and speed relative to the ground
it is theoretically possible to calculate the velocity and
direction of the wind.

Turning Error Compensation
When an AUV or submersible turns, it has some lateral

motion. This can be considered as a velocity component
perpendicular to the longitudinal axis of the vehicle. This
effect can be small or pronounced depending on the many
factors to be considered for a given submersible or AUV
design. If this effect is not pronounced, there should be
little or no need for compensation in the computer software
processes. In many cases the sub can be considered as moving
in the direction that the sonar unit is pointed (forward) .

Turning error can be sensed by using a vane type water
direction sensor. This simple device, similar to a weather
vane, could be attached to an angular displacement sensor to
translate angular information back to the processing host
computer. Here simple procedures based on trigonometry could
take the velocity magnitude value and break it down into its
components for processing.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

132
Sweep Angle

It is believed by the author that a slightly wider sweep
angle could prove beneficial. Currently the sweep covers 48
degrees of total forward looking angle. A modification of
another 8 degrees of sweep would place the center position
looking straight forward with three positions on each side of
center. This modification would be easy to perform. However,
it would, along with other software and hardware modification,
require the recalculation of the EPROM data look-up table for
processor B.

The head tilting mechanism worked well but will prove to
be more difficult on a submersible installation, probably
requiring a hydraulic or pneumatic system for driving the head
tilt cylinder. An array of six rather than three transducers
would have been a better approach in eliminating the need for
the cylinder and its drive system. One reason this approach
was not used in the current design was that with each
transducer being 2.25 inches in diameter, the total array
height would have been 14 or more inches high. The
transducers could have been placed in a cluster with some
mounted side-by-side. The cluster could then be swept side to
side and data taken with no tilt axis.

Pre-processing Versus
High Speed Hos~t

Although the pre-processor pipeline worked well in this
research, it added some extra complexity in the form of two

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

133
embedded microcontrollers. These microcontrollers could be
replaced by a faster host computer. This would made the
overall installation smaller and less complicated. The look
up of X, Y, and Z coordinates can still be employed to insure
fast conversions. With computer speeds increasing each year
it would seem a logical approach to eliminating this extra
component of the system.

Another approach to system improvement would be to employ
dual processor computation. Many of these systems have two
separate Intel Pentium processors. Here speed would be
greatly increased as one processor could do the job of the
pre-processing chain and at the same time perhaps share its
resources with the second processor doing data structure
updating.

Suggestions for Future Research

Visual Display Technology
One logical extension of this research is the application

of the data structures generated by this approach to a 3-D or
quasi-3-D sonar collision avoidance display for a submersible.
It is obvious that this research ends when the data is located
inside the Water_Space array. But obstacles inside an array
are useless unless the submersible pilot can visualize the
objects with perception and understanding. Perception can
involve other senses as well. Audio in the form of a verbal

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

134
machine generated speech to warn of collision is a
possibility.

It has been suggested to the author that research into the
psychology of visual perception would be a logical extension
to this research. This is a formal area of expertise outside
the realm of the author's current knowledge.

Upgraded Transducer
Capability

More research can be pursued using more and higher
resolution sonar transceivers. However, higher resolution
requires larger quantities of memory to depict the data
structures. With increased data structure size, speed of
computation will decrease requiring a faster host computer.

Research aimed at pushing the limits of current technology
in this area would be expensive and require better laboratory
facilities than those available to the author. The ground
work has been laid for this type of research by establishing
proof-of-concept in the creation of a working model. Also, it
should be mentioned that the current level of resolution and
computational ability is sufficient for many current
applications.

Z-Axis Rotation and
Translation

This research utilized a single left-right rotation axis
and a forward translation capability to update events in the
data structure. The logical extension to this research is to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

135
include an up-down (Z-axis) rotation ability along with
translation in this axis. This should not prove to be a
difficult task, using the concepts currently put forth in the
host software.

It should be noted that there are some basic differences
between existing rotation and translation operations in the
current software compared to what would be necessary for
extending these operations to the Z-axis. From a vertical
angular frame of reference, submersibles seldom point in the
same direction as they move through the water. This can
cause more complex considerations for Z-axis inclusion in the
sonar calculation scenario.

Most submersibles use bow and/or stern planes. The
control surfaces push the submersible upward or downward as it
moves through the water. When the submersible is diving for
example, most subs tilt down-bubble but actually descend at an
angle steeper than the down-bubble angle. Some vehicles use
changes in ballast and keep a level bubble while ascending or
descending. Thus, the Z-axis considerations would have to
extend to both pitch considerations for rotation of data
elements and also vertical translation not directly related to
pitch.

Vertical translation information is very easy to obtain.
As the vehicle changes vertical position water pressure
changes with depth. Some submersibles and most AUVs have
electronic depth sensing built into their systems. There are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

136
also numerous sensors that are currently available for
indicating pitch angle. Little modification to the existing
software would be needed for these enhancements to facilitate
movement in the vertical plane.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX

MICROCONTROLLER SOFTWARE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* PROCESSOR (A)
*

OPT C
* Gary R. Boucher SONAR PRE-PROCESSOR A (Closest to SPMM)
*

* Written by Gary R. Boucher
*

* Equates Section
PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
PORTD EQU $1008
DDRC EQU $1007
DDRD EQU $1009PACTL EQU $1026
SPCR EQU $1028
SPSR EQU $1029
SPDR EQU $102A
BAUD EQU $102B
SCCR1 EQU $102CSCCR2 EQU $102D
SCSR EQU $102E
SCDR EQU $102FBPROT EQU $1035
OPTION EQU $1039
ADCTL EQU $1030
ADR1 EQU $1031STACK EQU $01FF
RAMST EQU $0000
FBTE EQU 10
CTBTW EQU 4
AB_MAX EQU 8

ORG $0000
* RAM Variables Section
SPR BUF: RMB 64
SPR PTR: RMB 2
SPT BUF: RMB 64
SPT PTR: RMB 2
SP DRDY: RMB 1
DELCYC: RMB 1
SDELY: RMB 2
TEMP: RMB 2
COUNT: RMB 2
FUNCTN: RMB 1
ANGLE: RMB 1
HEAD POS: RMB 1
ERR TYPE: RMB 1
ECHO H: RMB 1
EVEN CT: RMB 1
DN ERR: RMB 1
STOR PT: RMB 2
RETV PTR: RMB 2
AB CTR: RMB 1
CX CTR: RMB 1
LOW HI: RMB 1
TRAND: RMB 1
H POS: RMB 1
ANGL: RMB 1NBR EV: RMB 1

Port A
Port B
Port C
Port D
Data Direction for C
Data Direction for DFor A7 direction
SPI Control Register
SPI Status Register
SPI Data Register
SCI Baud Rate Register
SCI Control Register 1
SCI Control Register 2
SCI Status Register
SCI Data Register
Block Protect for EEPROM
Option Register
A/D Control Channel
A/D Byte 1
Stack Pointer
Start RAM Threshold Msk
Feet Spaced for Event Generation
Min Distance Between Pings
Time > Thresh Before Auto Event

SPI Receive Buffer
SPI Receive Buffer Pointer
SPI Transmit Buffer
SPI Transmit Buffer Pointer
SPI Data Rdy (Input Buf Loaded)
Size of Delay 1=1 OmS, 2=2OmS ETC.
333=lmS Delay Setup Variable
General Use Ram Space
Argument for Commands
What Function is Happening
0=Far Left, 1=8, 2=16,.. .
(0) = Up, (1) = Down
Error Type
(1) If Echo Has Been > Thresh
Count for Event Eligability
Done Error Flag
RAM Storage Pointer
RAM Retrevial Pointer
Time Above Threshold Count
Time Since Crossing Count
Last Threshold Lever Indicator
Transducer Number for Events
Recorded Head Position
Recorded Angle Information
Number of Events Occured / Thresh

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* Below are the Display Variables.VAR: RMB 1 Screen Line Counter VariableCl: RMB 1 Count Variable (2 Bytes Actually)C2: RMB 1 Lower Order Byte of Count VarLV: RMB 1 Sonar Echo Return Level VariableTH: RMB 1 Threshold VariableEVL: RMB 1 ’ '=No Event, 'E' is Event

ORG SB600

START: LDS iSTACK Set Stack Top
LDAA #$93 Bit to turn on ADPU Bit (Pump)STAA OPTION Store it
LDAA #$00 For EEPROM Block Protect
STAA BPROT Make EEPROM Writable from BUFFALO
JSR INIT Init the SystemJMP MAIN Start Looking at Commands

*** A I N L I N E P R O G R A M **
ORG $B630

* EEPROM ConstantsTOT CNT: FDB #636 How Many Char Before Check DNDAT CNT: FDB #600 Count of Total Ping Data Hex
SCR TST: FCB 0 l=Display Scrn Test Info, 0=NoEVNT PP: FCB 4 Events Per Ping (Maximum Number)SH DEL: FDB 333 DELY Value = lmS Used as SDELY
PING: FCB 1 0=No Ping Test, l=Normal OperateFAST BR: FCB $01 62.5K Baud Rate (Fast Mode)

ORG $B640

* [HEAD UP]
* Sets PB7 High to engage relay and send 12 volt power to
* pneumatic control valve. This raises the sonar head.HEAD UP: CLR HEAD_POS Current Head Position Indicator

PSHA Save Register A
LDAA PORTB Get PORT B
ORAA #$80 Make PB7 = 1
STAA PORTB Store Back in A
PULA Restore A
RTS

* [HEAD DN]
* Clears PB7 so as to disengage the relay and kill 12 volt power
* to the control valve. This lowers the head.HEAD DN: CLR HEAD POS Current Head Position Indicator

INC HEAD_POS Make Indicator = 1
PSHA Save Register A
LDAA PORTB Get PORT B
ANDA #$7F Mask to Make PB7 =0
STAA PORTB Store Back in Port B
PULA Restore A
RTS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

140
* *

* * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * * * * * *
* *

ORG SD000 EPROM Memory
* [INIT]
* This routine does
* called only once
INIT:

an initialization of the system,
upon RESET or POR. It is

LDAA #$90 Initial Byte for Port ASTAA PORTA Disables *WE and *OE
LDAA PACTL Get Control Register
ORAA #$80 Make A7 Output (Initially = 1)STAA PACTL Store Back
CLR PORTB Make ALL PB Outputs ZeroCLR PORTC Zero Before Setting Direction
LDAA #$3A Set Up Data Direct for SPI, SCI
STAA DDRD Store Data Direction RegisterLDAA #$54 SPE=1,MSTR=1,COPL=0,CPHA=1,E/2
STAA SPCR Set Up SPI ChannelCLR ANGLE Make Angle ZeroCLR ECHO H Start with Echo has Been < ThreshLDD #SPR BUF Address Fst Byte of SPI ReceiverSTD SPR PTR Store in Pointer Location
LDD #SPT BUF Address Fst Byte of SPI Trans BufSTD SPT PTR Store in Pointer Location
CLR SP DRDY SPI Data Ready ClearedLDAA #$Io Code for 9600 Baud RateSTAA BAUD Place in Baud RegisterCLR SCCR1 8 Bit Data, No Bit 8 Etc.LDAA #$0C Enable Transmitter/ReceiverSTAA SCCR2 SCI Control Register IICLR ANGLE Clear Angle Position
JSR HEAD UP Start With Head UpwardCLR ERR TYPE Type of Error Flag
CLR DN ERR Clear Done Error Flag
LDAA #'S’ (S)top is Default Condition
STAA FUNCTN Store it in Function
LDAA #20 Get Ready for 0.2 Second Delay
STAA DELCYC Delay Variable (DELCYC * lOmS)
JSR DELAY Go DelayRTS

* This is the MAIN body of the program for Processor A.
* MAIN is NOT a subroutine. Once Initialization is acheived
* this main-line program is vectored to where execution remains
* until the system is shut down.
MAIN:

TST RDY:

LDAA PORTAANDA #$01BEQ TST RDY
JSR RECEIVE
TST SP DRDY
BNE NW DATA
LDAA FUNCTN
CMPA #'R'
BNE MAIN
JSR RUN SNR
BRA MAIN

Get Handshaking Bits
Look at PBO (RTS From P_B)
Branch if Not High
Go Get it!
(1) if New Data String, (0) if Not
New Data if SP_DRDY = 1
Get Existing Function
Is it a (R)un Condition?
If Not 'R' Then Go MAIN

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

NW_DATA: CLR SP_DRDY Reset the RDA Flag
LDX #SPR_BUF There was New Data. Point to it
LDAA 0,X Look at First Character of Data
CMPA #’X ’ Exit to BUFFALO Character
BNE NOT BUF If Not 'X' Then Not BUFFALO
JMP SEOUO Bit User Fast Friendly Aid :-)

NOT_BUF: CMPA #'<r (<)=Proc A Cnid, (:)=Sonar Control
BEQ LSTHAN
JMP CHK_COL If Not P_A Cmd - Check for Colon

LSTHAN: LDAA 1,X Look at Strings Second Character
CMPA #’I’ Is it an INIT Command?
BEQ LEGAL Branch if 'I*
CMPA #'C' Is it a CENTER Command?
BEQ LEGAL Branch if ?C*
CMPA #'U' Is it an UP HEAD Command?
BEQ LEGAL Branch if ’U ’
CMPA #'D' Is it a DOWN HEAD Command?
BEQ LEGAL Branch if ’D'
CMPA #’B' Is it an BOOT BUFFALO Command?
BEQ LEGAL Branch if 'Bf
CMPA #’F* Is it Fast Baud Rate?
BEQ LEGAL Branch if 'F'
CMPA #'R* Is it a RUN Command?
BEQ LEGAL Branch if 'R'
CMPA #'S' STOP?
BEQ LEGAL Branch if ’S'
CMPA #'P’ Point to AUX RAM?
BEQ LEGAL Branch if 'P'
CMPA #rT' Transfer to RAM?
BEQ LEGAL Branch if ’T ’
CMPA #'e' Error Report
BEQ LEGAL Branch if 'e'
JSR LCM_ERR Legal Command Error Handler
BRA MAIN Branch to MAIN

* If at legal function we have a good FUNCTN code.
LEGAL: STAA FUNCTN It was "One of the Above"

CMPA #'R' If 'R' then Run Just GoTo Main
BEQ MAIN Main Continues Running if 'R'
CMPA #'S* Could it be a (S)top Command?
BEQ MAIN If Stop then Main

* At this point there is a NEW Function other than ’R'. This
* function will be executed only once. The below tests will
* determine which function is to be executed and how.
* Test for Initialize
TRY_I: CMPA #'I* INITIALIZE?

BNE TRY_C Try Center Command
* Initialize the system here. Rotates to extreme left
* position, angle=0, head up, and stops action.

JSR ROT_STP Rotate Fully Left
JSR HEAD_UP Point Head to UP Position
CLR ANGLE Make Angle Zero (Far Left)
JSR STOP Put in Stop Mode
JMP MAIN Continue

* Test for Center.
TRY_C: CMPA #'C' Was it a CENTER?

BNE TRY_U Try UP Command
* Center the Sonar Head. Rotates to extreme left then
* rotates right 20 degrees to center position. Head raised
* and system stopped

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

142
JSR ROT STP Rotate Till Stopped at LeftLDX #CS? Right 8 Degrees
JSR MESSAGE Send it
JSR CHK DONE Check for CompletionLDX #CS? Right 8 Degrees Again
JSR MESSAGE Do it
JSR CHK DONE Check Completion
LDX #CS4 Right 4 degrees
JSR MESSAGE Send it
JSR CHK DONE Check for Completion
JSR HEAD UP Point Sonar Head Upward
JSR STOP Stop All Actions
JMP MAIN Continue

* Test for raise: head position to UP.
TRY_U: CMPA #*U’ Head UP?BNE TRY D Try Head Down
* Raise head position to UP here. All action stopped.

JSR STOP Stop All Actions
JSR HEAD UP Point Head Upward
JMP MAIN Continue

* Test for lower head position to DOWN.TRY_D: CMPA #* D* Head DOWN?BNE TRY B Try Boot System
* Lower head position to down. All action stopped.

JSR STOP Stop All Actions
JSR HEAD DN Point Head Downward
JMP MAIN Continue

* Test for Boot BUFFALO.
TRY_B: CMPA #?B' BOOT System?

BNE TRY F Try New Baud Rate
* Boot BUFFALO here. CR and LF Sent after which a delay
* of lOmS is used before the G B600 message is sent.

LDAA #50D Get RETURN Character
JSR OUTPUT Send it Out
JSR DELAY Delay lOmS
LDX #CS9 ’G B600* Message
JSR MESSAGE Send Message
JSR STOP Stop All Actions
JMP MAIN Continue (No Error Check)

* Test for Fast Baud Rate.TRY_F: CMPA #'F* Fast Baud Rate?
BNE TRY_P Try Point Command

This is Fast Baud Rate entry point. This changes the
* P A to Sonar Pod Baud Rate to be increased to the value* 61 FAST_BR located in EEPROM.

LDAA FAST_BR Get the New Baud Rate
STAA BAUD Store in Baud Register
JSR STOP Stop All Operations
JMP MAIN Continue (No Error Checking)

* Test for point to Threshold Memory (RAM)
TRY_P: CMPA #'P' Threshold Point Command?

BNE TRY_T Try a 'T'
* Point STOR_PT to start of RAM containing Threshold. This
* is for the purpose of loading the Threshold RAM with new
* values using the (T)ransfer command.

LDX #53000 Point to RAM Area
STX STOR PT Store RAM Thresh Pointer

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

143
JSR STOP Stop Operations
JMP MAIN Continue (No Error Checking)

* Test for Transfer to Threshold Memory.
TRYJT: CMPA #'T' Tramsfer to Thresh Mem?

BNE TRY_e Try an (e)rror report
* Transfer is made to Threshold Memory (RAM) .

PSHX Store X
LDX #SPR_BUF+2 Point to First Data

TT1: LDAA 0,X Get Threshold Byte
CMPA #$0D Is it a RETURN
BEQ TT2 If RETURN Finish
JSR STORE Store Data Byte
INX Bump Storage Pointer
BRA TT1 Get Another Byte

TT2: PULX Restore X
JSR STOP Stop All Operations
JMP MAIN Continue (No Error Checking)

* Test for (e)rror Report.
TRY_e: CMPA #'e' Is it an Error Report?

BNE EXPAND Room for Expamsion in Comds
* Error reporting routine. When this routine is called it
* sends to P_B the contents of ERR_TYPE. This is done by
* sending an ' e (' followed by 8 zeros or ones and then
* '] *<CRXLF> Example: e [01010010] <CRXLF>.

PSHA Save A
PSHB Save B
LDX #SPT_BUF Point to Transmit Buffer
LDAA # * >'
STAA 0,X
INX
LDAA #'e’ Identify as (e)rror Rpt
STAA 0,X Store ' e ’ in Trans Buffer
INX Bump Buffer Pointer
LDAA #' [' Get Hard Bracket
STAA 0,X Send to Buffer
INX Bump Buffer Pointer
LDAB #8 Get Ready for 8 Rotations

ROT_ET: ROL ERRJTYPE Rotate Error Type Variable
BCS BITJ0NE If Carry=l Send a
LDAA #'0' If Carry=0 Send a '0*
BRA RT AGN Look at Rotation Count

BITJJNE: LDAA ff'T’ Must Have Carry=l
RT_AGN: STAA 0,X Place in Transmit Buffer

INX Bump Buffer Pointer
DECB Bump Down the Rot Count
BNE ROT_ET If Not Finished Rot Again
ROL ERRJTYPE Rotate Back to Origional
LDAA #'] ' Finish with Hard Bracket
STAA 0,X Place into Buffer
INX Bump Buffer Pointer
LDAA #$0D RETURN Character
STAA 0,X Place Last Character in Buff
JSR TRANSMIT Send Buffer Contents
PULB Restore B
PULA Restore A
JSR STOP Stop All Operations

* This section resets the PB3 output that represents an
* error. Also all error flags are cleared.

LDAA PORTB Get Port B

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ANDA #$F7 Mask Off PB3STAA PORTB Store PB3=0
CLR DN ERR Clear Error
CLR ERR TYPE Clear Error TypeJMP MAIN Loop At Main

* Location for future expansion. If no more commands then
* just loop to MAIN.
EXPAND: JMP MAIN Loop Again
* CHK_COL is a segment of the MAIN program that is vectored
* to if the '<’ command is not found. This area of the
* program checks to see if a Colon denoting a :XXXXXX type
* command is present.
CHK_COL: CMPA Maybe First Char was a Colon

BEQ COLON Branch if Colon
JSR BFC ERR Bad First Character Error
JMP MAIN

COLON: LDAA 0,X Get One Char of String
JSR OUTPUT Send it to Output
INX Bump String Pointer
CPX #SPR BUF+62 Compare to Extreme End
BEQ ADCR If Extreme End - Add RETURNCMPA #$0D Was the Last Char a RETURN?BNE COLON If Not Finished - Loop
BRA ADLF Just Add a Line Feed Character

ADCR: LDAA #$0D Add RETURN or Another RETURN
JSR OUTPUT Send RETURN Char to OutputADLF: LDAA #$0A Line Feed Character
JSR OUTPUT Send LF to Output
JSR CHK DONE Check for Completion
BEQ CON1 If No Error - ContinueJSR COS ERR Colon Type Statement Error

CON1: JMP MAIN Error! Jump MAIN
* This subroutine loads an 'S' as New Function to Perform.
STOP: LDAA #'S' Sets Stop FunctionSTAA FUNCTN Store Function

RTS

* [ROT_STP]
* Rotate to Stop Subroutine. Rotates to Left Stop.
ROT STP: LDAB #5 Set Up for 500 Left RotationsRTSU: LDX #CS1 Point to LI00 Command

JSR MESSAGE :L100 Command
JSR CHK_DONE Are We Done?

RTS1: DECB Lower 100's Count
BNE RTSO LI00 Again
RTS

*• Legal Command Error Sub Entry Point.
LCM_ERR: PSHA Save Register A

LDAA #$01 Bit 0 = Command Error
BRA ERR HNDL Handle the Error

* Bad First Character Sub Entry Point.
BFC_ERR: PSHA Save Register A

LDAA #$02 Bit 1 = Bad First Char Error
BRA ERR HNDL Handle the Error

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

145
* Receiver Overrun Error Sub Entry Point.
ROR ERR: PSHA Save Register A

LDAA #$04 Bit 2 = Receiver Overrun Err
BRA ERR_HNDL Handle the Error

* Done Error Handler Sub Entry Point.
DON ERR: PSHA Save Register A

LDAA #$80 Bit 7 = Done Error Flag
BRA ERR_HNDL Handle the Error

* Colon Statement Error Sub Entry Point.
COS ERR: PSHA Save Register A

LDAA #$08 Bit 3 = Colon Statement Flag
BRA ERR HNDL Handle the Error

* Sets Error condition and stores type of error in ERR TYPI
ERR HNDL: ORAA ERR TYPE Set Correct Error Bit in ET

STAA ERR TYPE Store Back in Error Type Var
LDAA PORTB Load Control LinesORAA #$08 Make Error Indicator High
STAA PORTB Store Back in Port B
PULA Restore A
RTS

* [RON_SNR I
* This RUNS the Sonar System. Entering here takes up where we left off
* previously. One Cycle here Pings (3) times, records, and thresholds
* the data. Events are sent to Processor (B) . If the head is at the
* far Right position then it is moved back to Left most position.
RUN_SNR: LDX #50000 Point to First Block in RAM Memory

STX STOR_PT Storage Pointer
LDX #CS5 Ping Command for Top Sonar Module (501)
JSR PRC PING Process the Ping Info
LDX #5lU00 Point to Second Block in RAM Memory
STX STOR_PT Storage Pointer
LDX #CS6 Ping Command for Mid Sonar Module ($02)
JSR PRC PING Process the Ping Info
LDX #$2TT00 Point to Third Block in Memory
STX STOR_PT Storage Pointer
LDX #CS7 Ping Command for Bot Sonar Module ($04)
JSR PRC_PING Process the Ping Info (Move Head)
LDAA HEAD_POS Get Head Position for Recording
STAA H_POS Save the Current Head Position
LDAA ANGLE Look at Current Angle
STAA ANGL Record for Later
INCA Increment Angular Position
STAA ANGLE Store Back in Memory
CMPA #6 Far Right Position?
BEQ SWG HD
LDX SCS? Rotate Right 8 Degrees (71 Steps)
JSR PRC_ROT Complete the Rotate
BRA PROCESS Continue

* Swing the head fully left.
SWG_HD: LDAB #5 Needs to Rotate (5) Times Left
ROT_L: LDX #CS3 L100 Command (Rotates 8 Degrees Left)

JSR MESSAGE Send Command to Sonar
JSR CHK_DONE Check To See if Complete

ROT_AGN: DECB Count Down Rotation Number
BNE ROT_L Branch if Not Yet Finished
CLR ANGLE Reset Angle Variable to Zero
TST HEAD POS Head Position (0=Up, l=Dn)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Branch if Current Pos is Down
Current Pos is Dp. Move Down
Finished Now
Move Head Dp

BNE HEAD_U
JSR HEAD_DN
BRA PROCESS

HEAD_U: JSR HEAD_DP
* Process takes data stored in memory for all three pings and
* compares it against a threshold template also contained in
* RAM memory. Events are generated and transferred to P_B
* where the event information is obtained from an EPROM look-
* up table.
PROCESS: LDX #$0000 Point X to Ping (l's) DataLDY #53000 Point Y to RAM Stored ThresholdLDAA #'0' Label Transducer

STAA TRAND Transducer #0LDAA EVNT PP Get Max Nbr of Events/ThreshSTAA NBR EV Store for Counting Down to 0
JSR THRESH Go Check Against Threshold
LDX #51000 Point X to Ping (2's) Data
LDY #53000 Point Y to RAM Stored Threshold
LDAA #'1* Label Transducer
STAA TRAND Transducer #1
LDAA EVNT PP Get Max Nbr of Events/Thresh
STAA NBR EV Store for Counting Down to 0
JSR THRESH Go Check Against Threshold
LDX #52000 Point X to Ping (3's) Data
LDY #53000 Point Y to RAM Stored Threshold
LDAA #’2 ’ Label Transducer
STAA TRAND Transducer #2
LDAA EVNT PP Get Max Nbr of Events/Thresh
STAA NBR EV Store for Counting Down to 0
JSR THRESH Go Check Against Threshold
RTS

* [THRESH]
* This is the subroutine where the data elements and threshold
* elements are compared to see if and when the data is greater
* than the threshold. The variable COONT represents the Range
* count. The AB_CTR is a variable that counts the number of
* feet of range that are continiously above the threshold.
* Multiple Events are generated if echo data values remain avove
* the threshold level. The CX_CTR keeps repeated close crossings
* from triggering a multitude of Events. This count spaces the
* occurance of Events where frequent crossings are seen.
THRESH:

AGAN:

THRESH1:

CLR CODNT Range Count High Byte
CLRA Make A Zero
INCA Make A (1)
STAA CODNT+1 Range Count Low Byte (1 to Start)
CLR AB CTR Above Threshold Counter Var
CLR CX CTR Threshold Crossing Count
CLR LOW HI Last Level Indicator
TST SCR TST Display Scrn Info? l=Yes
BEQ THRESH1 If 0 Then Branch Around
LDAA #22 Lines of Display Before Rest
STAA VAR Counts Lines of Display -> 0
JSR INCHAR Console Input Routine
CMPA S’- ’ Hard-To-Hit Char to Continue
BNE AGAN Keep Looking Till Character
LDAA #’ ’ No Event Tag - Default
STAA EVL Store Tag
PSHX Save X Temporarily
LDX CODNT Get Count in X

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SAME:

LOWER:

HIGHER:

NOT_MAX:

N0TMX2:

NOT_RDY:
CHG CNT:

STX Cl Save in Display VariablePULX Restore XJSR GET MEM Get a Byte From MemorySTAA LV Level Value - For DisplayTAB New Byte Goes to (B)JSR XCHG Swap X <— > YJSR GET MEM Get Threshold ByteSTAA TH Threshold Byte - For DisplayJSR XCHG Swap Back X <— > YINX Point to Next Data ElementINX Two Hex Char = 1 ByteINY Point to Next Thr ElementINY Two Hex Char + 1 ByteCBA Compare Data to ThresholdBEQ SAME If Equal - Go SameBPL LOWER Branch if Data < ThresholdBRA HIGHER Branch Cause Data > ThreshDEX If Same Look Back One HexDEY Look Back One Hex DigitJSR GET_MEM Get Data LO Byte.TAB Put LO Byte in BJSR XCHG Exchange X and YJSR GET MEM Get Threshold LO ByteJSR XCHG Switch Back X and YINX Bump Hex Data PointerINY Bump Hex Thresh PointerCBA Compare Data to ThresholdBEQ LOWER If Data = Threshold BranchBPL LOWER If Data < Threshold BranchBRA HIGHER Here Data > ThresholdCLR AB CTR Clear Data-Above_Thr CtrCLR LOW HI Make Low-Hi Indicator LowTST CX CTR Look at Thresh Crossing CtrBEQ CHG CNT If Crossing Ctr = 0 BranchDEC CX CTR Ctr >0, So DecrementBRA CHG CNT Continue OnLDAA AB_CTR Get Above CounterINCA Increment Counter ValueSTAA AB CTR Store Count BackCMPA #AB MAX Is Above Cnt > Max Cnt?BNE NOT MAX If Not Yet Max - BranchJSR EVENT We Have an Event GenertedCLR AB CTR After Event, Clear Above CtrLDAA #CTBTW Load Counts Before Next EvntSTAA CX CTR Store Into Crossing CntrSTAA LOW HI Store Any Non-Zero ValueBRA CHG CNT ContinueTST LOW HI Not Max Count Yet Hi or Low?BEQ NOTMX2 If Zero BranchBRA CHG CNT ContinueTST CX CTR Test Crossing CounterBNE NOT RDY Not Ready for Next EventJSR EVENT CX_CTR=0, Generate EventLDAA #CTBTW Load Counts Between EventsSTAA CX CTR Store Again in Cross CtrINC LOW HI Make LOW HI > ZeroDEC CX CTR Lower Counter Toward ZeroTST SCR TST Are we Displaying?BEQ CONT Branch if Not Displaying
LDAA Cl High Order Value of CountJSR HI NIB Display Upper NibbleJSR LO NIB Display Lower Nibble

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LDAA C2 Low Order Value of Count
JSR HI_NIB Display High Nibble
JSR LO_NIB Display Low Order Nibble
LDAA #' ' Space for Spacing Fields
JSR OUTPUT Send Space Character
LDAA LV Get Level of Sonar Echo
JSR HI_NIB Display Upper Nibble
JSR LO_NIB Display Lower Nibble
LDAA #' ' Space Char for Spacing Fields
JSR OUTPUT Send Space Character
LDAA TH Get Threshold Value
JSR HI_NIB Send High Nibble of Thresh
JSR LO_NIB Display Low Nibble of Thresh
LDAA #’ 1 Space Character
JSR OUTPUT Send Space Character
LDAA EVL Get ’ ’ or ’E ’ for Events
JSR OUTPUT Send it Out
LDAA #S0D Get a RETURN Character
JSR OUTPUT Send RETURN Character
LDAA #S0A Get a LF
JSR OUTPUT Send LF
DEC VAR Decrement Page Line Counter
BNE CONT If Not Finished Branch
LDAA #22 Reload Page Line Counter
STAA VAR Store Page Line Counter
JSR INCHAR (Hit Any Character) Hangs'.

CONT: PSHX Save X (Level Pointer)
LDX COUNT Look at Count
INX Bump Count in X
STX COUNT Store Count Back into COUNT
CPX #301 Is the COUNT Terminal?
PULX Restore Level Pointer
BEQ TH_FIN If COUNT=300 Then Finished
JMP THRESH1 Do Again

TH_FIN: RTS
* Swaps X and Y registers using the stack.
XCHG: PSHX Push X

PSHY Push Y
PULX Pull X as Y
PULY Pull Y as X
RTS

* This subroutine Displays Higher Order Nibble of A.
* A register preserved.
HI_NIB: PSHA Save A for Later

LSRA Shift Right 4 Times
LSRA
LSRA
LSRA
ORAA #$30
CMPA #$39 '9' ASCII Character
BLS HI_N $30 -> $39 (0-9) OK
ADDA #7 Correction for Hex

HI_N: JSR OUTPUT Send It To SCI Output
PULA
RTS

* This subroutine Displays Lower Order Nibble of A.
* Register A NOT SAVED!
LO_NIB: ANDA #$0F

ORAA #$30
CMPA #$39 '9* ASCII Character
BLS LO_N $30 -> $39 (0-9) OK
ADDA #7 Correction for Hex

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LO_N: JSR OUTPUT Send It To SCI OutputRTS
* [GET_MEM]
* This subroutine obtains either Data or Threshold information
* from the RAM area. It returns with the data in (A) -GET_MEM: PSHX

PSHB
XGDX
STAA PORTC
JSR PC_OUT
JSR STB_HOL
STAB PORTC
JSR STB_LOL
JSR PC_INP
JSR OUT_ENAB
LDAA PORTC
JSR OUT DSBLPULB
PULX
RTS

* [EVENT 1
* This is where Events are generated for sending to Proc_B
* An Event represents a sonar target location. Normally they
* occur at the crossing of the return echo across the thresh-
* hold value. Event information is sent to P B.
EVENT: LDAA NBR_EV

TSTA
BEQ FIN_EVDECA
STAA NBR_EV

DO_EVNT: LDAA #'E' Display Variable 'E'=Event
STAA EVL Record that this Was Event
PSHX Save X
LDX #SPT_BUF Point X to Transmit Buffer
LDAA #’>' *>* Is First Char of Event
STAA 0,X Store the ’> ' in Buffer
LDAA #'E' Load ’E' for (E)vent
STAA 1,X Store the *E’
LDAA TRAND Transducer Number
STAA 2,X Store After ’E ’
LDAA H POS Head Position
ORAA #$30 Make Head Position into ASCII
STAA 3,X Store It
LDAA ANGL Get Angle (0-5) Horizontal
ORAA #$30 Make into ASCII
STAA 4,X Store Angle
LDAA COUNT Range Only (1-300) COUNT (0-1)
ORAA #$30 Make Into ASCII
STAA 5,X Store It Into Buffer
LDAA COUNT+1 Load Lower Byte of Total Range
LSRA Shift 4 Times to the Right
LSRA High Nibble — > Low NibbleLSRA
LSRA
ORAA #$30 Make Into ASCII
CMPA #$39 Is Char (0-9)?
BLS ASC_OK If '9' or Below - Branch
ADDA #7 if > 9 - Add 7 to Adjust Hex

ASC_OK: STAA 6,X Store Middle Char of Range
LDAA COUNT+1 Get Lower Byte of Range Again

Save X
Save B
Exchange X with AB (D)
High X is in A - Send Out On C
Set Port C as Output
Store Byte Into High Order Latch
Low X is in B - Send Out On C
Strobe Low Order
Put Port C Into Input Mode
Set RAM Output Low-Z
Get Data Via Port C Input
Disable RAM Output
Pull B
Pull X

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

150

ASC 0K2:

FIN EV:

ANDA #$0F Mask Off Upper Nibble
ORAA #$30 Add $30 to Make ASCIICMPA #$39 Is ASCII (0-9)?
BLS ASC OK2 If (0-9) Branch
ADDA #7 " Add 7 to Adjust for Hex
STAA 7,X Store in Buffer
LDAA #$0D Get a RETURN CharacterSTAA 8,X Store it in Buffer
JSR TRANSMIT Send the EVENT!PULX Restore X
RTS

* [MESSAGE]
* This subroutine is called with (X) Pointing to the first
* character of a string. The last character of this string
* will have to be SFF. It sends this string to the OUTPUT
* of the system (RS-232 to Sonar Module)MESSAGE: PSHA Save AMESS1: LDAA 0,X Get a Message (Command) CharacterCMPA #$FF Is it the EOR Character?

BEQ MESSRT If EOR Char then Finished
JSR OUTPUT Send the Character to Sonar ModuleINX Point to Next Char in StringBRA MESS1 Get Another Character

MESSRT: LDAA #$0D RETURN Character
JSR OUTPUT Send It
LDAA #$0A Line Feed Character
JSR OUTPUT Send It
PULA Restore A
RTS

* [CHK_DONE]
* CHECK FOR ' DONE'. This routine is set up to look for the message
* 'DONE' that appears after each SUCCESSFUL Sonar Module Command.
* Because this message may not be echoed back it does its checking
* by looping and looking at the serial data's register SCDR. It
* looks for first an 'N' as in DO(N)E. If it cannot find an 'N'
* in the time allotted it will give an error. If it finds an 'N'
* then it looks for the RETURN that must follow in a few characters.
* Once again if it does not find this char then it returns an error.
* Errors are returned by placing a $01 in (A) on return. $00 denotes
* no errors were found.CHK_DONE: PSHX Saves XPSHB Saves B

LDAB #6 (3) Seconds of Looking for 'N'LDX #$FFFF $FFFF x 15 cycles @ 2MHz is 0.5 sec.CDONE_l: LDAA SCSR Read Status Register
LDAA SCDR Go read the SCDR Over and Over
CMPA #'N' Can it be an 'N'?BEQ CDONE_2 If 'N' Found then go to Next Step
DEX Lower the (X) Count
BNE CDONE_l If not X=0 then Do AgainDECB Lower B From a Starting PointBNE CDONE 1 If (B) is Not Zero them Do AgainBRA D ERROR Timed out and No Char FoundCDONE 2: LDX #1000 Look for RETURN in Next 15mS (#2000)CDONE_3: LDAA SCSR Read Status Register
LDAA SCDR Read SCI Data Register for Data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CMPA
BEQ
DEX
BNE
BRA.

CD0NE_4: CLRA
BRA

D_ERROR: CLRA
INCA
STAA
JSR

DONE_RET: TSTA
PULB
PULX
JSR
RTS

* [TO_MEM]
* Captures Incoming Data from Sonar Pod.
TO_MEM: LDX #0 Counter for Total Characters

LDY #0 Counter for Hex Characters
CHK_RDY: LDAA SCSR Look at SCI Status Register

ANDA #$20 Look at RDRF Flag (Rec Dat Rdy)
BEQ CHK_RDY If No Character Try Again
INX Bump Total Character Counter
CPX TOT_CNT Should be 638
BEQ IS_FIN Finished if Terminal Count
LDAA SCDR Get the Actual Data
CMPA #$0D Don't Need RETURNS
BEQ CHK_RDY Go Get Another Character
CMPA #$0A Don't Need Line Feeds
BEQ CHK_RDY Go Get Another
INY Valid Character - Count It
JSR STORE Store Character In Memory
BRA CHK_RDY Loop Back - Get Another Char

IS_FIN: CPY DAT_CNT Should be 600 Exactly
BEQ IS_RET If 600 Then Branch to Return
LDAA PORTB Error Has Occurred Here!
ORAA #$08 Get Hardware Error Flag
STAA PORTB Store Error Bit

IS RET: RTS

* [STORE]
* Subroutine that stores a character in RAM memory. This
* program Places the value of the A Register in the memory
* (RAM) pointed to by the STOR_PT pointer. This pointer is
* auto incremented.
STORE: PSHX Save X

PSHB Save B
PSHA Save A
BSR OUT_DSBL Disable the RAM Output Lines
LDX STOR_PT Get Storage Pointer
INX Bump Pointer Just for Storage
STX STOR_PT Store Incremented Pointer
DEX Decrement Pointer Back
XGDX Exchange (X) <— > (AB)
STAA PORTC Store Hi-H for Output to RAM
BSR PC_OUT Put on Output Lines
BSR STB_HOL Strobe Hi Order Latch
STAB PORTC Store Lo-H for Output to RAM

#$0A Is it a LF Character?
CDONE_4 Branch if RETURN

Lower the 2000-0 Count
CDONE_3 If Not Finished then Again
D_ERROR Error Occured (Time Out)

$00 Here Represents NO Error
DONE RET Finished

DN_ERR
DON ERR

Set Flags to Indicate Error
Restore Registers

DLY3 3mS Delay for Sonar Pod CRLF

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

152
BSR STB_LOL Strobe Lo Order Latch
PULA Get the Data Byte
STAA PORTC Store Port C
BSR WRTE_STB Write to RAM Strobe
BSR PC_INP Change Port C to Input
PULB Restore B
PULX Restore X
RTS

* Set PORTC to Output (Usually an Input Port)
PC_OUT: PSHA Save A

LDAA #$FF All Bits High
STAA DDRC Store in Data Direction Reg
PULA Restore A
RTS

* Change PORTC to Input (Normal State)
PC_INP: CLR DDRC All Bits (0) in Data Direction

RTS
* Strobe Low Order Latch

LDAA PORTA Get Port A (Has Strobe Lines)
ORAA #$40 Lower Order Strobe Bit High
STAA PORTA Store High Bit in Port A
ANDA #$BF Mask Strobe Bit to Zero
STAA PORTA Store Back in A
RTS

* Strobe High Order Latch
STB_HOL: LDAA PORTA Get Port A (Has Strobe Lines)

ORAA #$20 High Order Strobe Bit Low
STAA PORTA Store High Bit in Port A
ANDA #$DF Mask Strobe Bit to Zero
STAA PORTA Store Back in A
RTS

* Lowers write strobe and then raises it for writing to RAMWRTE STB: PSHA Save A
LDAA PORTA Get Port A (Control Lines)
ANDA #$EF Mask Off Write Stb (PD4)
STAA PORTA Store Active Strobe Port A
ORAA #$10 Make Strobe Inactive
STAA PORTA Store Inactive StrobePULA Restore A
RTS

* Output Enable.
OUT_ENAB: LDAA

ANDA
STAA
RTS

Takes RAM output lines out of Tri-State
PORTA Get Strobe Port (A)
#$7F Make PA7 Low
PORTA Put Back in Port A

* Output Disable. Disables RAM output lines.OUT DSBL: PSHA
LDAA PORTA Get Strobe Port
ORAA #$80 Make PA7 High
STAA PORTA Store in Port A
PULA
RTS

* Reads from Memory starting at location RETV_PTR.
FROM MEM: PSHX Save X

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

153
PSHB
BSR
LDX
INX
STX
DEX
XGDX
STAA
BSR
BSR
STAB
BSR
BSR
BSR
LDAA
BSR
PULB
PULX
RTS

* [PRC_PING]
* PROCESS PING. Ping will be generated. This routine take incomming
* data from the Sonar Module and places it into the memory of P_A.
* There it thresholds it with a stored template. Values rising above
* the template create "EVENTS" that are fed to PROC_B where they are
* in-turn sent to the Host Computer.
PRC_PING: TST PING 0=Test Mode (No Ping), l=Normal Operate

BEQ PRC_P1 Return if Ping Not Going to Happen
JSR MESSAGE Sends Ping Selected by CS Command Pointed
JSR TO_MEM Loads Incoming DataJSR CHK_DONE

PRC PI: RTS

* [PRC_ROT]
* PROCESS ROTATE. (X) points to the R071 CS String that rotates the
* head some 8 degrees to the right.
PRC_ROT: JSR MESSAGE Sends Rotate Message for 8 Degrees

JSR CHK_DONE Checks for 'DONE' Message
PRC R1: RTS

* [TRANSMIT]
* This subroutine sends 5 zeros, followed by up to 64 characters
* of data, followed by a RETURN character, followed by another
* 5 zeros to the SPI.
* Proc_A output line PB1 is an indicator to Proc_B that the first
* actual char of data is being sent. This is used to reset the
* receiving buffer pointer so as not to have picked up stray in-
* -the-pipeline characters. It is only held active (H) for one
* character duration. Proc_B senses this line only when it is
* servicing an SPI interrupt.

PSHA Save All RegistersPSHB
PSHX
LDD #333 Set Up Delay for ImSSTD SDELY Place This in Delay VariableLDX #SPT BUF Load Value of Start of Trans BufferBSR FLUSH Flush SPI With 5 $00’s

PC_INP
RETV_PTR
RETV PTR

PORTC
PC_OUT
STB_HOL
PORTC
STB_LOL
PC_INPOUT_ENAB
PORTC
OUT DSBL

Save B
Make Port C Input
Get Memory Retrieve Pointer
Increment This Pointer
Store Incremented Pointer
Decrement Ptr to Org Value
Exchange (H) <— > (AB)
Store Hi-H to Output Lines
Make Port C Output
Strobe High Order Latch
Store Lo-H to Output Lines
Strobe Low Order Latch
Make Port C Input
Output Enable RAM
Read RAM Output Via Port C
Disable RAM Output Lines
Restore B
Restore X

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

154
LDAB
ORAB
STAB
BSR
LDAA
INX
STAA
JSR
LDAB
ANDB
STAB
BRA
BSR
LDAA
INX
STAA
CMPA
BEQ
CPX
BEQ
BRA
BSR
LDAA
STAA
BSR
PULX
PULB
PULA
RTS

* Clears the SPDR Flag
CLRFLAG: JSR DELY

LDAA SPSR
LDAA SPDR
RTS

TRAN2:

INPROG:

ADDCR:

FINTRAN:

PORTB
#502
PORTB
CLRFLAG
0,X
SPDR
DELY
PORTB
#$FD
PORTB
INPROG
CLRFLAG
0,X
SPDR
#$0D
FINTRAN
#SPT_PTR
ADDCR
TRAN2
CLRFLAG
#$0D
SPDR
FLUSH

Look at Port B (Control Outputs)
Make PB1 High
Set First Char Identifier Active
Get Ready to Send First Real Char
Get First Actual Character
Increment X as Usual
Store it to SPI
Delay Before Dropping Active Line
Get Port B for Control
Make PB2 Low By Masking
Store it at Port B
Jump into the Regular Loop
Do Housekeeping Functions
Get An Actual Character
Bump Buffer Pointer
Send Character to SPI System
Was the Char a RETURN?
If it Was a RETURN then Finish
Are We Past End of Buffer?
If Past EOB then Branch
Not Finished, Do Again
Housekeeping...
Get a RETURN Character
Send to SPI
Flush Buffer With 5 Zeros
Restore All Registers

Delay for Standard Delay
Load Status Register
Get Data (Dummy Get)

* [FLUSH]
* Flush is used to send 5 Zeros ($00) to the SPI device.
* This is to Flush out any old data prior to actual transfers.
* All Registers Preserved
FLUSH: PSHA Save A and B. Only Registers Used

FL1:

PSHA
PSHB
LDAB
BSR
CLR
DECB
BNE
PULB
PULA
RTS

#5 Prepare to Write 5 Zeros
CLRFLAG Read SPSR, Read SPDR to Reset Syst
SPDR Write $00 to SPI

Count the Number of Times
FL1 Do Again if Not Finished Flushing

Restore A and B

* [RECEIVE]
* This routine is responsible for reading information sent from
* P_A into the SPR_BUF input buffer. Handshaking is used to
* coordinate the transfer between P_A and P_B- When this routine
* is called, there is already a Request from Processor B to
* Service.
RECEIVE: LDAA PORTB Output Bit (Control) Port

ORAA #$01 Acknowledge Bit

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

STAA PORTB Sent Committed Now!
LDD SH_DEL Short Delay
STD SDELY Set Op Delay
CLR TEMP 0=Discard Leading Zeros, l=Don't
LDAA SPSR Clear SPIF Flag
LDAA SPDR Dummy Read
LDX #SPR_BUF Point to Receive Buffer First Char
CLR SPDR Flush out SPI Byte (IMPORTANT!)
JSR DELY Delay for 1.5mS
LDAA SPSR Read Status Register for RESET
LDAA SPDR Read SPI Data for Clearing

R0T1: CLR SPDR Send a Zero Byte to Rotate SR's
JSR DELY Give it Time to Complete
LDAA SPSR Clear SPIF Flag
LDAA SPDR Getting Real Data
TST TEMP 0=Discard Leading Zeros, l=Don't
BNE R0T2 Through Looking for Leading Zeros
TSTA Was Data Byte a Zero?
BEQ R0T3 Just Loop Again If Zero
INC TEMP Don’t Discard Zeros Anymore

ROT2: STAA 0,X Store in Buffer
INX Increment Buffer Pointer
CPX #SPR_BUF+64 Check for End Of Buffer EOB
BNE R0T3 Branch if Not End of Buffer
DEX Set Pointer Back at End - EOB
JSR ROR_ERR Receiver Overrun Error

R0T3: LDAA PORTA Get Request To Send Flag Byte
ANDA #$01 Look at Request To Send (RTS)
BNE ROT1 Go Do Again if Not Finished
LDAA PORTB Get Ready to Clear Error Bit
ANDA #$FE Mask for Error Bit Clearing
STAA PORTB Store in Port B
INC SP_DRDY Indicates Data Input Buf FullRTS

* [INCHAR]
* Subroutine to input one character from the SCI and echos* it back.

LDAA SCSR Look at SCI Status RegisterANDA #$20 Look at RDRF Flag
BEQ INCHAR If RDRF Flag = 0 then No DataLDAA SCDR Load Character - It is Ready
JSR OUTPUT Send it Back
RTS

* [OUTPUT]
* Called with Byte to output
* All registers preserved.
OUTPUT: PSHA
0_WAIT: LDAA SCSR

ANDA #$80
BEQ 0_WAITPULA
STAA SCDR
RTS

in Register A.
Save Byte to Output in A
Load SCI Status Register
Look at Bit 7
If TDRE=0 Loop, TrDatRegEmpty
Get Byte to Output
Send Byte Out

* [DELAY]
* Variable delay loop. Called with a preset value of lOmS delays* in DELCYC. All registers perserved.
* Ex: If DELCYC=30 then delay is 30xl0mS or 0.3 Seconds.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DELAY: PSHA Save A
LDAA DELCYC Load Preset Num of Cycles

DELI: JSR DLY10 Call BUFFALO'S lOmS Delay
DECA Bump down count
BNE DELI Jump if not finshed
PULA Restore ARTS

* [DLY3]
* This subroutine when called delays for 3mS and returns
* No registers are effected.
DLY3: PSHX Save X

LDX #1000 Count for 3mS
DLY3LP: DEX Decrement Count

BNE DLYLP If not Finished Loop
PULX Restore X
RTS

* { DLY10]
* This subroutine when called delays for lOmS and returns
* No registers are effected.
DLY10: PSHX Save X

LDX #$0D06 Count for lOmS
DLYLP: DEX Decrement Count

BNE DLYLP If not Finished Loop
PULX Restore X
RTS

* [DELY]
* Variable Short Delay. SDELY must be set prior to calling
* Every Count in SDELY is 1/333 mS. 333=lmS
* All registers perserved.
DELY: PSHX Save X

LDX SDELY Variable Delay 333=lmSDLYLP: DEX Bump Down
BNE DLYLP If not finished do againPULX Restore XRTS

* Command Strings for Sonar ModuleCS1: FCC ':L100' Rotate Left 100 StepsFCB $FFCS2: FCC ':R071' Step of 8 Degrees (Right)
FCB $FFCS3: FCC ':L071' Step of 8 Degrees (Left)
FCB $FFCS4: FCC ':R035' Half Center String
FCB $FF

CS5: FCC ':P001' Ping Head #1
FCB $FF

CS6: FCC ' :P002' Ping Head #2
FCB $FFCS7: FCC ':P004' Ping Head #3

CS8: FCB $FF Just Sends CRLFCS9: FCC 'G B600' Start User Program
FCB $FF

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

157

OPT c
* Gary R. Boucher SONAR PRE-PROCESSOR B (Closest to Host Comp)
Written by Gary R. Boucher

PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
PORTD EQU $1008
DDRC EQU $1007
DDRD EQU $1009
PACTL EQU $1026
SPCR EQU $1028
SPSR EQU $1029
SPDR EQU $102A
BAUD EQU S102B
SCCR1 EQU $102C
SCCR2 EQU S102D
SCSR EQU S102E
SCDR EQU S102F
OPTION EQU $1039
ADCTL EQU $1030
VSCI EQU $00C4
VSPI EQU S00C7
ADR1 EQU $1031
STACK EQU $01FF

ORG $0000
* RAM Variables Section
SCI BUF RMB 32
SCI PTR RMB 2
SPR BUF RMB 64
SPR PTR RMB 2
SPT BUF RMB 64
SPT PTR RMB 2
SCI RDY RMB 1
ERR TYPE: RMB 1
PADING: RMB 1
SP SENT RMB 1
SPI RDY RMB 1
DELCYC: RMB 1
SDELY: RMBTEMP: RMB
HOST IT RMB 1
HI BYTE RMB 1
MD BYTE RMB 1
LO BYTE RMB 1
PS NG1: RMB 1
PS NG2: RMB 1
PS_NG3: RMB 1
Q WRT: RMB
Q RD: RMB
SPOL CT: RMB 1
H RNG: RMB 1
L RNG: RMB 1
H R: RMB 1M R: RMB 1
L R: RMB 1

Port A
Port B
Port
Port

c
D

Data Direction for C
Data Direction for D
For A7 direction
SPI Control Register
SPI Status Register
SPI Data Register
Baud Rate Register
SCI Control Register
SCI Control Register
SCI Status Register
SCI Data Register
Option Register
A/D Control Channel
SCI Vector Location
SPI Vector Location
A/D Byte 1
Stack Pointer
Start of RAM Memory

SCI Buffer Area for Commands
SCI Buffer Pointer
SPI Receive Buffer (Events)
SPI Receive Buffer Pointer
SPI Transmit Buffer
SPI Transmit Buffer Pointer
0=No CR, 1=CR
Error Flag Byte
Flag for $00 Padding Characters
Transmit Complete Flag
$01=Command Received, $00=No Comnd
Size of Delay l=10mS, 2=2OmS ETC.
333=ImS
General Use Ram Space
l=Send to Host, 0=Don’t Send
High Byte of Address for EPROM
Medium Byte of Address for EPROM
Low Byte of Address for EPROM
Sign Bit for (X) Value
Sign Bit for (Y) Value
Sign Bit for (Z) Value
Front End Pointer for Queue
Rear End Pointer for Queue
Byte Counter for Spooler
High Binary Value of Range
Low Binary Value of Range
High Order ASCII Char of Range
Middle Ord ASCII Char of Range
Low Order ASCII Char of Range

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* FIFO_Q
FIFO Q:

START:

ORG S00D0 Location for FIFO_Q
Ls the queue used for spooling the output data.RMB 256 Queue for Serial Output
ORG $B600 EEPROM Starting Location
Start-Up location for EEPROM location.
LDS #STACK Set Stack TopLDAA OPTION Option Register $1039ORAA #$90 Bit to turn on ADPU Bit (Pump)STAA OPTION Store it
JSR INIT Init the SystemBRA MAIN Start Looking at Commands

* EEPROM Constants
STRTD: FCB 30
DSP_ES: FCB 1
HANG: FCB 0
ECHO: FCB 0

Delay Timer (0.3 Seconds)
l=Display SPI Event, 0=Do Not
l=Hang on Transmission, 0=Don't
l=Echo Host Commands, 0=Don't

***** M A I N L I N E P R O G R A M ****

ORG $B630 Secondary EEPROM Locat for MAIN

* MAIN is the Main Line Program for Processor B. This program
* tests the interrupt driven SCI sytem for a complete command.
* If a command is present from the Host then it is serviced.
* Then the SPI buffer is checked for Data/Command Ready and
* serviced if needed.
MAIN: TST SCI_RDY Check SCI Command Ready

BNE SCI_IDR SCI Command Rdy Causes a Branch
TST SPI_RDY Check SPI Command Ready
BNE GET_DAT If Command Ready Branch
BRA MAIN Loop Again

* SCI Interrupt System Data Service Segment
SCI_IDR: LDY #SPT_BUF Y=Start of SPI Transmit Buffer

LDX #SCI_BUF X=Start of SCI Receive Buffer
STX SCI_PTR Store SCI Pointer to SCI_PTR
CLR SCI_RDY Make SCI_RDY False

SCIO: LDAA 0,X Get a Byte from SCI Receive Buf
STAA 0,Y Store in SPI Transmit Buffer
TST ECHO l=Echo Com to Host, 0=Don't Echo
BEQ SCI1
JSR OUTPUT Send Command Back to Host

SCI1: INX Point to Next SCI Byte
INY Point to Next SPI Buffer Location
CMPA #$0D Was the Byte a RETURN?
BEQ SCI FIN If RETURN Then Finished
BRA SClff Loop to Move Another Byte

SCI_FIN: TST ECHO Test for Echo Back to Host
BEQ SCFO If ECHO=0 then Branch (No Echo)
LDAA #$0D Load RETURN
JSR OUTPUT Send it
LDAA #$0A Load Line Feed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

JSR OUTPUT Send itSCFO: JSR TRANSMIT Call SPI Transmit To PA RoutineTST ECHO Test for Echo Back to Host
BEQ SCF1 If ECHO=0 then Branch (No Echo)LDAA #$0D Load RETURN Character
JSR OUTPUT Send itLDAA #$0A Load Line Feed CharacterJSR OUTPUT Send itSCF1: JMP MAIN Complete the Loop

GET_DAT is a program segment that takes received information
from the SPI and acts upon it. If the information is an error
indication requested from the Host, the information will always
be delivered back to the host.

GET DAT:

REC LP:

RECLPO:

RECLP1:

NOEVENT:

ROT ET:

BIT_ONE:
RT AGN:

CLRA
INCA
STAA HOST IT
LDX #SPR BUFLDAA 0,X
CMPA #'>'
BNE CLR FG
LDAA i,x
CMPA #’E ’
BNE REC LP
TST DSP ES
BNE REC LP
CLR HOST IT
LDAA 0,X
INX
TST HOST IT
BEQ RECLPO
JSR OUTPUT
CMPA #$0D
BNE REC LP
TST HOST IT
BEQ RECLP1
LDAA #$0D
JSR OUTPUT
LDAA #$0A
JSR OUTPUT
LDX #SPR BUF
LDAA 1,X
CMPA #' E '
BNE NOEVENT
JSR MK EVENT
LDAA i,x
CMPA # ’e'
BNE CLR FG
LDAA #'B'
JSR OUTPUT
LDAA #'e'
JSR OUTPUT
LDAA #'{'
JSR OUTPUT
LDAB #8
ROL ERR TYPE
BCS BIT ONE
LDAA #’0~
BRA RT AGN
LDAA #'1'JSR OUTPUT

Make a Zero
Make a (1) From (0) (Set up to Send)
0=Do Not Send to Host, l=Send
Point X to SPI Receive Buffer
Get First Character
Is it a Legal Command?

Is it an Event?
If Not 'Event' Go Display
Test Display Event String

Get SPI Byte From PA
Point to Next Buffer Position
Does Host Need to See it?
If HOST_IT=0 Do Not Output
Send it To Host
Is it the Last (RETURN) Char?
If Not Last Character Branch
Send to Host?
If Zero Host Does Not See it
Get a RETURN Character
Send RETURN to Host
Get a Line Feed Character
Send LF to Host
Point to Start of SPI Rec Buffer
Get Identifier Byte (E,e, Etc)
Is it an Event?
If Not an Event .then Loop MAIN
Service the Event
Get Type Character
Was it an Error Report?
If Not Err Rpt then Finish
ID as B Type Origion
Send the B for Origion
Get (e)rror Reporting Byte
Send it
Get Squiggly Bracket
Send it
Set Up to Rotate 8 Times
Rotate Error Type into CY
If CY=1 then (1) Goes to Host
Get the Default (0)
Send it and Rotate Again
Carry Was a (1)
Send it

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DECB
BNE ROT ET Lower B Count (Started at 8)

If Not Finished then RotateROL ERR TYPE Restore to OrigionalLDAA #' }' Get a Closing BracketJSR OUTPUT Send the Bracket
LDAA #$0D Get a RETURN CharacterJSR OUTPUT Send it
LDAA #$0A Get a Line Feed Character
JSR OUTPUT Send itCLR ERR TYPE Auto Clear Error Flags on DisplayCLR SPI RDY Reset the SPI Ready FlagJMP MAIN

* *

* * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * * * * * *
* *

ORG SD000 EPROM Area

* [INIT 1
* This routine does an initialization of the system. It is
* called only once upon RESET or POR.
INIT: LDAA #$80 Initial Setting for PORTA

STAA PORTA A7= (1), All Other Strobes Low
LDAA PACTL Byte has A7 Data Direction
ORAA #$80 Bit to Set for A7 as Output
STAA PACTL A7 Set as Output
CLR PORTB Zero (B) Port
CLR PORTC Zero Before Setting Direction
CLR DDRC Make All C Pins Input
LDAA #$06 Set Up for Slave SPI
STAA DDRD Get Data Direction for Port D
LDAA #$7E The $7E is the JMP Opcode
STAA VSPI Set Up Vector for SPI (JMP)
STAA VSCI Set Up Vector for SCI (JMP)
LDD #SPI_ISR D = Address of SPI Service Rout
STD VSPI+1 Store at VSPI Jump Vector
LDD #SCI_INT D = Address of SCI Service Rout
STD VSCI+1 Store at VSCI Jump Vector
LDAA #$C4 Intr,Enabl, Slave, CPOL=0,CPHA=1
STAA SPCR SPI Control Register
LDAA #$30 9600 Baud Rate (Host Baud)
STAA BAUD Store Baud Register
CLR SCCR1 8 Bit Data, No Bit 8 Etc.
LDAA #$2C Enables Receive Int ONLY
STAA SCCR2 SCI Control Register 2
LDD #SCI_BUF Location of First Buf Position
STD SCI_PTR Store First Position in Pointer
LDD #SPR_BUF Start Location of Rec Buffer
STD SPR_PTR Store in Buffer Pointer
LDD #SPT_BUF First Position in Trans Buffer
STD SPT_PTR Store as Pointer
CLR SCI_RDY SCI (SOD) Indicator
CLR SPI_RDY Received Command Indicator
CLR PADING Clears Padding Variable
LDD #FIFO_Q Spool Buffer
STD Q_WRT Write Buffer Pointer
STD Q~RD Read Buffer Pointer
CLR SPOL_CT No Elements in Spooler
CLR ERR_TYPE Error Reporting Flag

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

161
LDAA
STAA
JSR
CLI
RTS

STRTD Starting Delay out of Reset
DELCYC Store in Delay Variable
DELAY Go Delay for lOmS x STRTD

Clear Interrupt Mask

[SCI_INT]
The SCI Receiver and Transmitter use the same SPI
Interrupt Vector. For this reason only one vector
location is used for both operations. This routine
is called each time either Interrupt is generated.
This sub first looks at the receiver RDRF Flag and

Look at SCI Status
Look at RDRF Flag
Branch if No Rec Data Avail
Service the SCI Input Rout
In Process of Sending??
Finished if Nothing to Send
Look at SCI Status Again
Look at TDRE Flag Status
(0)=Not Ready to Xmit Yet
Go Transmit a Char from Buf

* then the TDRE Flag.
SCI INT: LDAA SCSR

ANDA #$20
BEQ SCINT2
JSR SCI ISRSCINT2: TST SPOL CT
BEQ FIN SCI
LDAA SCSRANDA #$80
BEQ FIN SCI
JSR SPOOL

FIN SCI: RTI

* [SPOOL]
* When called, this routine sends a single byte found in
* the FIFO_Q buffer to the output. This routine should
* not be called if there is no data in queue- The SPOL_CT
* byte counter is decremented automatically.LDX Q RD Get Queue Pointer in XLDAA 0,X Get Read ByteSTAA SCDR Send it to Output DeviceI NX Bump Pointer to Next ByteCPX #FIFO Q+256 Check for End of QueueBNE GSP2 Branch if Not End of QueLDX #FIFO Q Point Y to Start of QueueSTX Q RD Store Pointer Till Next Tm

DEC SPOL CT Lower Buffer Count
TST SPOL CT Is it Time to Stop Sending?BNE GSP3 If Not Time - ContinueLDAA SCCR2 SCI Control Register IIANDA #$7F Make TIE Low (OFF)
STAA SCCR2 SCI Control Register
RTS

* [OUTPUT]
* Called with Byte to output in Register A. Sends to Spooler.
OUTPUT: BRA PUT_SPOL PUT_SPOL Handles All Output

* [PUT_SPOL]
* This subroutine is called anytime there is a need to send
* data to the Host Computer. The data is passed to this
* subroutine via the (A) register.
PUT_SPOL: PSHX Save X Register

PSHB Save B Register
PSHA Save A Register
SEI Stop ALL Maskable Interrupts

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LDAB SPOL_CT Load Byte Counter for SpoolerINCB Bump Up Byte CountSTAB SPOL CT Store Spool Byte CounterLDX Q WRT Load X With Queue Write PtrSTAA 0,X Place Byte in QueueINX Bump Queue Write PointerCPX #FIFO Q+256 Compare to EOQBNE PTSP1 Branch if Not End of Queue
LDX #FIFO Q Point to Beginning of QueueSTX Q WRT Store Write Pointer BackLDAA SCCR2 Get Control Register IIORAA #$80 Make TIE=1
STAA SCCR2 Put Back in Register
CLI Allow Interrupts AgainPULA Restore APULB Restore BPULX Restore X
RTS

* [SCI_ISR]
* SCI Interrupt Service Routine.
* character comes in.
SCI ISR:

Called every time a new SCI

OVR ERR:

ONF ERR:

SCI RET:

LDAA SCSR Load SCI Status Register
ANDA #$0F Look Only at Flags OR,NF,FE
BNE ONF ERR If Not Zero then Error Occured
LDX SCI PTR Get Rec Buffer Pointer in X
CPX #SCI PTR Is Pointer Past Buffer?
BEQ OVR ERR EOR Error! Go Figure!
LDAA SCDR Load Data Character
STAA 0,X Place Data Character in A
INX Point to Next Buffer Location
STX SCI PTR Store Bumped Pointer
CMPA #$0D Is Byte Stored a RETURN Char?
BNE SCI RET If Not RETURN then Finished
LDAA #1 At This Point it WAS a RETURN
STAA SCI RDY Store a $01 In RETURN Location
BRA SCI RET Finished Return
LDAA #$01 OverRun Err Posit in ERR_TYPE
ORAA ERR TYPE Combine with Errors
STAA ERR TYPE Store Back
BRA SCI RET Finish
LDAA #$02 OR,NF,FE Err Position
ORAA ERR TYPE Combine with Errors
STAA ERR TYPE Store Back in Type
RTS

* [SPI_ISR]
* SPI Service Routine. This services Interrupts for SPIs coming
* into the system from Proc_A. This routine will do one of
* two things. If PBO from Proc_A is High (Request Acknowledge)
* then Proc_B has the attention of Proc_A for the purpose of
* data transfer to P_A. This will continue until P_B lowers
* its PBO line to release P_A from its obligation.
* If No Acknowledge is present, then the SPI Interrupt can only
* mean that P_A is to sending a command or data to P_B.
* If P_A pulls its line B1 high during a character transfer this
* routine resets the SPR_PTR to the first position in the
* SPR_BUF.
* These are the connections between the two processors:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

*
* Proc_A I/O Proc_B
* PBO 0<— >1 PAO* PB1 0<— >1 PA1★ PB2 0<— >1 PA2* PAO I<— >0 PBO★ PA1 K — >0 PB1★ PA2 I<— >0 PB2

Definitions
Acknowledgement that P_B can send
Tells P_B to reset rec buffer ptr N/A
Requests to Send Data to P A
N/A
N/A

SPI ISR:

SPI 1:

SPI 2:

SPI_3:
* Note:
*
*
TR TO A:

HAS PAD:

LDAA SPSR Read SPIF Flag to ResetLDAA PORTA Bit AO is from Proc_A BOANDA #$01 Look at Acknowledge BitBNE TR TO A If Ack then it is Transfer to P ALDAA PORTA Not Transfer, (Data Moving A->B)ANDA #$02 Is it a Buffer ResetBEQ SPI 1 If Not a Reset Buffer Go to NextLDD #SPR BUF Was a Reset Buffer CommandSTD SPR PTR Store Initial Location in PointerLDX SPR PTR Look at Buffer Pointer AddressLDAA SPSR Read Status Register for ClearingLDAA SPDR Get Data from Proc_ACLR SPDR Clear Data Going Back to P A
STAA 0,X Store Data in SBUFFER LocationINX Point to Next Buffer LocationCPX #SPR BUF+64 End of Buffer?
BNE SPI 2 Not at End of Buffer
LDAA #$04 Error Posit for SPI Overrun
ORAA ERR TYPE Combine Error
STAA ERR TYPE Store Error BackBRA RET SPI Finished if Error
CMPA #$0D Is it a RETURN?
BNE SPI 3 Are We Finished?LDAA #1 If Finished Load a ($01)
STAA SPI RDY Store as FlagSTX SPR PTR Store Pointer Back in Pointer LocBRA RET SPI Finished

This section is only accessed when P_B has issued a request
for transfer and the acknowledge has been granted. Thus,
this section moves a command or data to Proc A.

FIN PAD:

LDAA SPSR Read Status for Flag Clearing
LDAA SPDR Get Dummy Byte and Throw AwayTST PADING Are We in the Padding Phase?
BNE HAS PAD Branch if PADING > ZeroLDX SPT PTR Point to Current Buff LocationLDAA 0,X Get a Byte from SPT_BUF
LDAB SPSR
STAA SPDR Put Byte in SPDR for ShipmentINX Bump SPT_PTR Pointer
STX SPT PTR Store New Pointer Information
CMPA #$0D Was SBUFFER Character a RETURN?
BNE RET SPI Branch if NOT a Return
INC PADING Make PADING > ZeroBRA RET SPI FinishedLDAA PADING Find Out How Many Padding Char Sent
CMPA #5 Is it Up to (5) ?
BEQ FIN_PAD If Up to (5) Do NothingINCA Not Up to (5) . Increment Padding
STAA PADING Store New Padding Value
LDAA SPSR Clear By Reading SPSR
CLR SPDR Store Padding Character ($00)BRA RET SPI FinishedLDAA #$0D RETURN Character (Something to Wrt)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

RET SPI:

LDAB SPSR
STAA SPDR
LDAA PORTB
ANDA #$FE
STAA PORTB
INC SP SENTRTI

Read Status Register
Make Sure We Always Write to SPDR
Padding Finished Here
Mask to Make PBO Low
PBO is Now Low (Request)
Signal that Transfer Complete
All Done I

* [MK_EVENT]
* This subroutine sends a string to the Host computer containing
* (X,Y, Z) information followed by a CR and LF. The format for
* this string is shown inside the hard brackets:*•

(43.67-182.3 . 1294<CRXLF>1* <-X— X - Y — X - Z — >*
* This will represent values of:*
* X = +43.67

Y = -182.3
* Z = +0.1294
*

* It is the responsibility of the Host Computer to Parse this
* serial input string into these three values. Each value is a
* total of 6 characters including sign. Positive values will
* always have a leading space and not a ' + ’.
MK_EVENT: JSR MAKE_ADR Makes Hi and Med Address for EPROM

JSR SET_ADR Loads Hi and Med Addr into Latches
CLRA Clear A to Point to First Byte
JSR SET_LADR Set the Zero into Latch (Low Addr)
LDAA #' ' A Space is Same as Positive
STAA PS_NG1 Store in (X) Pos/Neg Sign Locations
STAA PS_NG2 Same for (Y)
STAA PS_NG3 Same for (Z)
LDAB #'-' Get the Negative Sign in B
JSR GET_MEM Get Byte (0) from EPROM
STAA TEMP Store in Temp Location to Parse
ANDA #$04 Look at Bit #2
BEQ MKE1 If Zero Leave ' ' In Place
STAB PS_NG1 If the Bit was '!' X is Negative

MKE1: LDAA TEMP Load Byte (0) Again
ANDA #$02 Look at Bit #1
BEQ MKE2 If Zero it is Positive
STAB PS_NG2 Wasn't Zero Place a Sign

MKE2: LDAA TEMP Once Again Get Byte (0)
ANDA #$01 Look at Bit #0
BEQ MKE3 If Positive then Branch
STAB PS_NG3 Negative - Store a Minus Sign

MKE3: LDAA PS_NG1 Get X's Sign
JSR OUTPUT Send it to Host
LDAA #$01 Point to First Byte of X Value
BSR OUT_XYZ Send to Output 5 Bytes of ASCII
LDAA PS_NG2 Look at Y’s Sign
JSR OUTPUT Send Y's Sign
LDAA #$06 Point to Y Value in EPROM
BSR OUT_XYZ Send Y's 5 Bytes to Host
LDAA PS_NG3 Look at Z's Sign
JSR OUTPUT Send Z's Sign to Host
LDAA #$0B Point to Z's Value
BSR OUT_XYZ Send Z's 5 Bytes to Host
LDAA #'R* Identify Range with 'R'

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

JSR OUTPUT Send the *R* Out
LDAA H_R Get High ASCII Range ByteCMPA #’0’ Is it Zero?
BEQ MKE4 If Zero then. Do not Display
JSR OUTPUT Send it to Output

MKE4: LDAA M_R Get Second ASCII Byte
CMPA #’0’ Is it a Zero?
BEQ MKE5 If Zero Do Not Display it
JSR OUTPUT Send Out

MKE5: LDAA L_R Get Last LSD of Range (ASCII)
JSR OUTPUT Send to Output
LDAA #$0D Finish with a RETURN Character
JSR OUTPUT Send Return
LDAA #$0A Load Also A Line Feed Character
JSR OUTPUT Send Line Feed to Host
RTS

* Called with (A) loaded with starting LO Address
* Sends five characters to SCI Port.
OUT_XYZ: LDAB #5

STAB TEMP
OXYZ1: PSHA

JSR SET_LADR
JSR GET_MEM
JSR OUTPUT
PULA
INCA
DEC TEMP
BNE OXYZ1
RTS

Load B For Five Outputs
Preserve Count in Temp
(A) Has Current EPROM L Ptr
Put In EPROM Latch (Low)
Get a Byte from EPROM
Send it to Host
A is Low Addr Pointer
Bump Low Addr Pointer
Lower Count
If Not Finished Do Again

* [MAKE_ADR]
* This subroutine acts on new strings entering the SPI
* system receive buffer (SPR_BUF). Once this buffer is
* loaded with a new Event Sting this subroutine is called
* which forms a two-byte address used to look up the data
* stored in EPROM. The remainder of the full address has
* to be loaded in the LO_BYTE location. This portion of the
* address is used for accessing the separate elements of
* each unit of information. QO of u6 (pin 2) is not
* connected to the memory address lines.
MAKE_ADR: LDX #SPR_BUF Point X to SPI Rec Buffer

LDAA 2,X Transd Head ASCII "0"->"2"
LSLA Bits 0 & 1 —^ Bits 6 & 7
LSLALSLA
LSLA
LSLA
LSLA
STAA HI_BYTE Start New Adr Byte in Mem
LDAA 3,X Get Head Position "0"-"l"
LSLA Shift 0 or 1 into Bit B5
LSLA
LSLA
LSLA
LSLA
ORAA HI_BYTE Combine with HB from Memory
STAA HI_BYTE Store Back in Memory
LDAA 4,X Get Angle ASCII 0-5
ANDA #$0F Strip off 3 Hex

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

166
LSLA
LSLA
ORAA HI BYTE Combine with HB in MemorySTAA HI BYTE Store Back in MemoryLDAA 5,X Get Hi Range ByteANDA #$0F Strip Off the 3 HexLSLA Move to Bit B1ORAA HI BYTE Combine with MemorySTAA HI BYTE Put Back in MemoryLDAA 6,X Get Middle Range ByteBSR ADJUST Adjust for ASCII - HexANDA #$08 Look Only at Bit 3LSRA Shift B3 into BOLSRA
LSRA
ORAA HI BYTE Set Bit in HBSTAA HI BYTE High Adr Byte is PackedILDAA 6,X Get Range Byte AgainBSR ADJUST Adjust for ASCII - HexANDA #$0F Strip Off Lower NibbleLSLA Low 3 bits to B7,B6,B5LSLA
LSLA
LSLA
LSLA
STAA MD BYTE Start Medium Byte of AdrLDAA 7, X Get Last Range ByteJSR ADJUST Adjust for ASCII - HexANDA #$0F Strip Off 3 HexLSLA Move to BO -> B5ORAA MD BYTE Combine with Memory ByteSTAA MD BYTE Place Back in MemoryBSR FIG RNG Figure Range in DecimalRTS

* This subroutine
* legal ASCII 0-9
* then it adjusts
* nibble.
ADJUST: CMPA

BLS
SUBA

BYTE OK: RTS

looks at register A and if the value is
then it returns. If a hex value (A-F)
for the gap to make a true binary lower

#$39 ($39) Is ’9’
BYTE_OK If 0-9 Then OK
#7 Otherwise Adjust For Hex

* [FIG_RNG 1
* This subroutine takes the HEX Range information round in
* the Event and converts it to a three-byte ASCII decimal
* value. This value is then stored in H_R, M_R, and L_R.
These are used later when sending the Event to Host.

FIG RNG: LDAA 5, XANDA #$0FSTAA H RNGLDAA 6,X
BSR ADJUST
ANDA #$0F
LSLA
LSLA
LSLA
LSLA
STAA L RNG
LDAA 7 / XBSR ADJUST

Get High Range Hex Character
Strip Off ASCII $30
High Hex Can Only Be 0 or 1
Get Middle Hex Character
Hex to Binary
Strip Off ASCII $3
Rotate to Higher Nibble

Store As Lower Range Binary
Get Low Order Range Hex Char
Adjust for Binary from ASCII

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ANDA #$0F Strip Off ASCII $3ORAA L RNG Combine with Existing L RNGSTAA L RNG Store Back in L RNG
LDD H RNG H RNG + L RNG — > (AB)LDX #100 How Many 100's?IDIV Divide (AB)/ (X)XGDX Remainder Now in X
ORAB #$30 How Many Times Did it Go?
STAB H_R Store As ASCII
XGDX Remainder Now in (AB)
LDX #10 How Many 10’ s?IDIV Divide (AB)/ (X)
XGDX Remainder Now in XORAB #$30 ASCII Nbr of 10'sSTAB M_R Store Middle Character
XGDX Remainder now in (AB)ORAB #$30 Make Remainder ASCII (0-9)
STAB L_R Store in Low Position
RTS

* [SET_ADR]
* This subroutine takes the HI_BYTE and MD_BYTE locations
* and loads them into the address latches (74HCT273's)
* that supply address line information to the TMS27C040.
SET_ADR: BSR OOT_DSBL Make Sure PROM Outp is Hi-Z

BSR C_OUTPUT Make PORTC Output
LDAA MD_BYTE Get Medium Address Byte
STAA PORTC Send MAB to PORTC
BSR STB_MD Strobe Medium Byte to Latch
LDAA HI_BYTE Get High Byte from Memory
STAA PORTC Send Out on PORTC
BSR STB_HI Strob High Byte to Latch
BSR C_INPUT Make PORTC Input Mode
RTS

* [SET_LADR]
* This subroutine loads (A) into the low byte of address
* information and sets the latch (u7).
SET_LADR: PSHA Save Low Addr Byte for Later

BSR OUT_DSBL Make Sure EPROM is Not Out Mode
BSR C_OUTPUT Make PORTC an Output
PULA Get Low Byte of Address
STAA PORTC Send Low Byte to PORTC
BSR STB_LO Strobe Low Byte
BSR C_INPUT Set PORTC Into Input Mode
RTS

* [GET_MEM]
* This subroutine loads a byte from memory pointed to by the
* full address after calling SET ADR and SET_LADR.
GET_MEM: BSR C_INPUT Malce PORTC an Input

BSR OUT_ENAB Set EPROM to Output Mode
LDAA PORTC Capture Data From EPROM
PSHA Push Captured Data onto Stack
BSR OUT_DSBL Disable the Output of EPROM
PULA Get Data Byte Back
RTS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

168
* Puts PORTC into Output Mode.
C_OUTPUT: LDAA #$FF All PC Pins Output

STAA DDRC Data Direction Register for C
RTS

* Puts PORTC into Input Mode
C_INPUT: CLR DDRC Clear DDRC. All P<RTS
* Strobe address into Hi Address Latch.STBJHI: LDAA PORTA Get Strobe LinesORAA #$10 Set PA4 High

STAA PORTA Make it Go HighANDA #$EF Mask Out PA4
STAA PORTA Store PA4=0RTS

* Strobe address into Medium Address Latch.
STB_MD: LDAA PORTA Get Strobe LinesORAA #$20 Set PA5 High

STAA PORTA Make it Go HighANDA #$DF Mask Out PA5STAA PORTA Store PA5=0RTS
* Strobe address into Low Address Latch.
STB_LO: LDAA PORTA Get Strobe LinesORAA #$40 Set PA6 HighSTAA PORTA Make it Go HighANDA #$BF Mask Out PA6STAA PORTA Store PA6=0RTS
* Disable: the EPROM output: lines.OUT_DSBL: LDAA PORTA Get Strobe/EnableORAA #$80 Make PA7 High

STAA PORTA Store PA7 High
RTS

* Enable the EPROM output lines.OUT_ENAB: LDAA PORTA Get Strobe/EnableANDA #$7F Mask Out PA7
STAA PORTA PA7 = 0
RTS

[TRANSMIT]
Called by the main line program after loading the SPT_BUF
SPI Transmit buffer. This routine raises Bit PBO from P_B
to P_A's PAO input pin. This requests data be transfered
from P_B to P_A. Execution hangs in this subroutine until
P_A sends an acknowledge on its like PBO and is received on
P_B's PAO along with SPI rotations until P_B releases the
request for transfer. This will occur at the end of the
data movement as sensed by P_B. Make sense???

Get Control Byte Port B
Make PB0=1
Set Bit High
Get Starting Address of Buffer
Store Starting Addr in Pointer
Clear Done Flag
Should we Hang on Transmit?
Finished if No Hanging
Check Done Flag
If Not Finished Loop

TRANSMIT: LDAA PORTB
ORAA #$01STAA PORTB
CLR PADINGLDX #SPT BUF
STX SPT PTR
CLR SP SENT
TST HANGBEQ TRN RET

TRANS1: TST SP SENT
BEQ TRANS 1TRN RET: RTS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* [DELAY]
* Variable delay loop. Called with a preset value of 10ms delays* in DELCYC. All registers perserved.* Ex: If DELCYC=30 then delay is 30xl0mS or 0.3 SecondsDELAY: PSHA Save A

LDAA DELCYC Load Preset Num of CyclesDELI: JSR
DECA

DLY10 Call BUFFALO'S lOmS Delay Bump down count
BNE DELI Jump if not finshedPULA Restore ARTS

* [DLY10]
* This subroutine when called
* No registers are effected.
DLY10: PSHX

LDX #$0D06DLYLP: DEX
BNE DLYLPPULX
RTS

delays for lOmS and returns
Save X
Count for lOmS
Decrement Count
If not Finished Loop
Restore X

* [DELY]
* Variable Short Delay. SDELY must be set prior to calling

Every Count in SDELY is 1/333 mS. 333=lmS
* All registers perserved.
DELY: PSHX Save X

LDX SDELY Variable Delay 333=lmSDLYLP: DEX Bump Down
BNE DLYLP If not finished do again
PULX Restore X
RTS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* COMPASS AND SPEED PROCESSOR*
OPT C

* Gary R. Boucher (c)
*

* Written by Gary R. Boucher
*

* Equates Section
PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
PORTD EQU $1008
DDRC EQU $1007
DDRD EQU $1009
TMSK2 EQU $1024
TFLG2 EQU $1025
PACTL EQU $1026
SPCR EQU $1028
SPSR EQU $1029
SPDR EQU $102A
BAUD EQU $102B
SCCR1 EQU $102C
SCCR2 EQU $102D
SCSR EQU $102E
SCDR EQU $102F
OPTION EQU $1039
ADCTL EQU $1030
ADR1 EQU $1031
STACK EQU $00FF
RAM EQU $0000
EEPROM EQU $F800

ORG RAM
* RAM Variables Section
HO BYTE: RMB 1
LO BYTE: RMB 1
DT 100: RMB 1
DT 10: RMB 1
DT 1: RMB 1
SDELY: RMB 2
DELCYC: RMB 1
RTI CNT: RMB 2
WHL CNT: RMB 1
VEL RDY: RMB 1
VELOC1: RMB 1
VELOC2: RMB 1

Port A
Port B
Port C
Port D
Data Direction for C
Data Direction for D
Timing Mask Register
Timing Flag Register
For A7 direction
SPI Control Register
SPI Status Register
SPI Data Register
SCI Baud Rate Register
SCI Control Register 1
SCI Control Register 2
SCI Status Register
SCI Data Register
Option Register
A/D Control Channel
A/D Byte 1
Stack Pointer
Ram Memory $0000-$00FF
EEPRQM Memory $F800-$FFFF
RAM Memory Start

Most Significant Bits from SPI
Lst Significant Bits from SPI
BCD 100's Location
BCD 10's Location
BCD 1's Location
Value for DELY (333 = lmS)
Nbr of lOmS Delays for DELAY
Number of RTI's
Water Wheel Lobe Count
0=Velocity Not Ready, l=Ready
Holds ASCII First Velocity Char
Holds ASCII Second Velocity Chr

ORG EEPROM EEPROM Area for 68HC811F2
* Start of program area. Option Register must be set early.
START: LDS #STACK Set Stack Top

LDAA #$30 IRQ Negative Edge Triggered
STAA OPTION Store it
JSR INIT Init the System
BRA MAIN Start Looking at Commands

* EEPROM Constants Section
RTI CTS: FDB 732 About 3 seconds

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

171
* *

* * * * * M A I N L I N E P R O G R A M ****
* *

ORG $F840 Leaves Gap for Constants
* This is the Main Line Program for reporting both the compass
heading and submarine velocity information to the host
computer. The compass heading is reported with a 'C' before
the value. The velocity is reported with a 'V' as char one.
The velocity value is reported in "Clicks". A click is a
count representing 1/6 of a revolution of the water wheel.
The time interval that is used for collecting these clicks is
predetermined by a certin number of RTI cycles. This number
is reloaded from RTI CTS represented as an EEPROM constant.

MAIN: “ - -

COMPASS:

TST VEL RDY Is There a New Velocity Ready?BEQ COMPASS If No New Velocity then Branch
CLR VEL RDY Clear the Velocity Ready FlagLDAA #'V' Get a 'V' for Velocity
JSR OUTPUT Send Out the 'V'LDAA VELOC1 Load Velocity ASCII Char #1JSR OUTPUT Send First Velocity CharacterLDAA VELOC2 Get Second Velocity CharacterJSR OUTPUT Send Second Velocity Char
JSR CRLF Send RETURN and Line Feed Chars
JSR MEASURE Get a New Compass Heading
LDAA #'C' Get the (C)ompass CharacterJSR OUTPUT Send a ' C' to OutputLDAA DT 100 Get 100's ASCII Character
JSR OUTPUT Send the 100's CharacterLDAA DT 10 Get 10's ASCII Character
JSR OUTPUT Send the 10's CharacterLDAA DT 1 Get I's Character
JSR OUTPUT Sena the I's Character
JSR CRLF RETURN and Line Feed Char
BRA MAIN

* * * * * * * * * * * S U B R O U T I N E S * * * * * * * * * * * * * *

* [INIT]
* This routine does an initialization of the system. It is
* called only once upon RESET or POR.

LDAA #$3A Set Up Data Direct for SPI, SCISTAA DDRD Store Data Direction RegisterLDAA #$5D SPE=1,MSTR=1, COPL=l,CPHA=1,E/4
STAA SPCR Set Up SPI ChannelLDAA #$30 Code for 9600 Baud RateSTAA BAUD Place in Baud RegisterCLR SCCR1 8 Bit Data, No Bit 8 Etc.LDAA #$0C Enable Transmitter/Receiver
STAA SCCR2 SCI Control Register II
LDAA #$0F Set All Control Lines HighSTAA PORTC Store in Port CSTAA DDRC Make C0->C3 Output LinesLDAA TMSK2 Get RTII BitORAA #$40 Make RTII High - Enable RTISTAA TMSK2 Store it Back in RegisterLDAA TFLG2 Load Flag Register

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ORAA #$40 Make RTIF Bit HighSTAA TFLG2 Reset RTIF FlagLDAA PACTL RTI Rate Register
ANDA #$FC Mask off RTR1 and RTR0
STAA PACTL Store to make 4.096mS Irpt
LDX #$0001 $0001 Minus First Call=$0000STX RTI_CNT Clear RTI Counter
DEX Make X=$0000
STX WHL CNT Clear Water Wheel Counter
LDAA #20“ Set Up for 20 x lOmS
STAA DELCYC Ready for 0.2 Second Delay
JSR DELAY Go Do the Delay
JSR RESET Reset the Compass ModuleCLI Clear Interrupt Mask
RTS

* [RESET]
* This subroutine simply resets the Vector Compas Module.
* Normally this is done only once at the time of
* initialization.
RESET: LDAA PORTC Load Control Bits

ORAA #$0F Set All Lines High
STAA PORTC Store to Make All Lines High
JSR DLY10 Delay for lOmS
ANDA #$0E Make CO Low
STAA PORTC Place the CO (Reset) on Line
LDAB #10 Set Up for 10 x lOmS
STAB DELCYC Store in Delay Counter Variable
JSR DELAY Go Delay for lOOmS
ORAA #$0F Make Reset Line High With Others
STAA PORTC Store Back in Port C
JSR DELAY Delay for Another 0.1 Seconds
RTS

* [MEASURE]
* This subroutine is used to sample the Vector Compass Module
* to determine the compass heading. This routine follows the
* Vector slave timing diagram on page 13 of the application
* notes (Version 1.08). The final product of this subroutine is
* the three ASCII heading bytes (DT_100, DT_10, and DT_1). For
* example these three values might be "3", "5", and "1". This
* would represent the heading 351 degrees.
MEASURE: PSHA Save A Register

PSHB Save B Register
PSHX Save X Register
LDAA PORTC Get Port C (Control Bits)
ORAA #$0F Make Sure All Line Are High
STAA PORTC All Lines High
LDAB #2 20mS Delay Interval
STAB DELCYC Store it to Delay Variable
JSR DELAY Go and Delay 20mSANDA #$F7 P/C Goes Low (0)
STAA PORTC Take P/C Low
JSR DELAY Delay for 20mS
ORAA #$0F Raise All Lines High
STAA PORTC Bring Lines High Now

MLOOP: LDAB PORTA Check End of Conversion (EOC)
ANDB #$01 Look at PAO
BEQ MLOOP Branch Till PA0=1
JSR DELAY Delay for 20mS After EOC=l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ANDA #$FD Mask for SS=0
STAA PORTC Store to Make SS=0
JSR DELAY Wait Before Shifting Data
LDX #33 O.lmS Delay Value
STX SDELY Delay Variable = O.lmS Delay
LDX #HO_BYTE Point to Most Sig Byte
LDAB #2 Set Up to Do this 2 Times
LDAA SPSR Clear Flags Etc.
LDAA SPDR Dummy Data Fetch

GET_DAT: CLR SPDR Rotate Data
JSR DELY Delay for 0. lmS
LDAA SPSR Reset SPIF Flag
LDAA SPDR Get Data in (A)
STAA 0,X Store Data in Memory
INX Point to Next Memory Location
DECB Lower Number of Reads Left
BNE GET_DAT If Not Finished - Read Again
JSR DELAY Delay for 20mS
LDAA #$0F Get Ready for All Lines High
STAA PORTC Make All Control Lines High
LDAA HO BYTE Get High Order of 16 SPI Bits
ANDA #$7JF Look at 100's BCD Only
ORAA #$30 Make 100's BCD Code into ASCII
STAA DT_100 Store into 100's Location
LDAA LO_BYTE Get Lower 8 of 16 SPI Bits
LSRA Shift High Nibble into Low Nib
LSRA
LSRA
LSRA
ORAA #$30 Make High Nibble into ASCII
STAA DT_10 Store in 10's Location
LDAA LO BYTE Get Low Byte Again
ANDA #$ZTf Strip Off High Nibble
ORAA #$30 Make into ASCII
STAA DT_1 Store in I's Location
PULX Restore X
PULB Restore B
PULA Restore ARTS

* [RTI_SER]
* This is the RTI service routine. This routine is called
* every 4.096mS where it decrements the RTI_CNT. If this
* decrementation does not result in a Zero the routine just
* returns. If the RTI_CNT goes to zero it is reloaded with
* a constant value (RTI_CTS) located in EEPROM. This RTI CTS
* count represents a certain number of RTI cycles at 4.09'SmS.
* This time interval is used to count Water Wheel Lobes in
* WHL_CNT. Once the interval is complete velocity is
* determined.

LDAA TFLG2 Get RTI Flag (RTIF)ORAA #$40 Make RTIF Location (1)STAA TFLG2 Clear RTIF Flag by Writing (1)LDX RTI_CNT Load the RTI Counter Variable
DEX Decrement the RTI CountSTX RTI CNT Store it Back into Count VarsBNE RTI RET If Not Zero then ReturnLDX RTI CTS Count=0 - Reload with RTI_CTSSTX RTI CNT Store Back in CountLDAA WHL CNT # of Lobes in Last RTI SeriesLSRA Shift High Nibble into Low Nib

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

174

BYTE2:

NQADD:

RTI RET:

LSRA
LSRA
LSRA
ADDA #$30 Make ASCII
CMPA #$39 Is the ASCII 'O’ to '9'?
BLS BYTE2 If 0-9 then Branch (No Add)
ADDA #7 Add 7 to Adjust
STAA VELOC1 Store First Velocity Byte
LDAA WHL CNT Load Wheel Velocity Byte Again
ANDA #$0F Strip Off Upper Nibble
ADDA #$30 Make Into ASCII
CMPA #$39 Is the ASCII 'O' to '9'?
BLS NOADD If 0-9 then Branch (No Add)
ADDA #7 Add 7 to Adjust
STAA VELOC2 Store Second Velocity Byte
CLR WHL CNT Clear Wheel Lobe Rotations
LDAA #1 " Get $01 for Ready Indication
STAA VEL RDY Store - Make it ReadyRTI

* [IRQ_SER]
* This is the IRQ Service routine. Every time a falling edge
* results from sensing the water wheel this routine is called.
* This service routine increments the wheel count and returns.
* The wheel count values continue to increment until the RTI
* service routine clears the count and calculates the velocity.
IRQ_SER: INC WHL CNT Load the Wheel CountRTI

* [INCHAR]
* Subroutine to input one character from the SCI and echos* it back.

LDAA SCSR Look at SCI Status Register
ANDA #$20 Look at RDRF Flag
BEQ INCHAR If RDRF Flag = 0 then No Data
LDAA SCDR Load Character - It is Ready
JSR OUTPUT Send it BackRTS

* [OUTPUT]
* Called with Byte to output
* All registers preserved.
OUTPUT: PSHA
0_WAIT: LDAA SCSR

ANDA #$80
BEQ 0 WAIT
PULA
STAA SCDR
RTS

in Register A.
Save Byte to Output in A
Load SCI Status Register
Look at Bit 7
If TDRE=0 Loop, TrDatRegEmpty
Get Byte to Output
Send Byte Out

[CRLF]
Carriage Return and Line Feed.
No Registers Preserved.CRLF: LDAA

JSR
LDAA
JSR
RTS

#$0D Load a RETURN Character
OUTPUT Send the RETURN Character
#$0A Load a Line Feed Character
OUTPUT Send it to Output

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

* [DELAY]
* Variable delay loop. Called with a preset value of lOmS delays
* in DELCYC. All registers perserved.
* Ex: If DELCYC=30 then delay is 30xl0mS or 0.3 Seconds.
DELAY:
DELI:

PSHA
LDAA
JSR
DECA
BNE
PULA
RTS

Save A
DELCYC Load Preset Num of Cycles
DLY10 Call BUFFALO'S lOmS Delay

Bump down count
DELI Jump if not finshed

Restore A

* [DLY10]
* This subroutine when called delays for lOmS and returns
* No registers are effected.
DLY10: PSHX Save X

LDX #$0D06 Count for lOmS
DLYLP: DEX Decrement Count

BNE DLYLP If not Finished Loop
PULX Restore XRTS

* [DELY]
* Variable Short Delay. SDELY must be set prior to calling
* Every Count in SDELY is 1/333 mS. 333=lmS
* All registers perserved.
DELY: PSHX Save X

LDX SDELY Variable Delay 333=lmS
DLYLP: DEX Bump Down

BNE DLYLP If not finished do again
PULX Restore X
RTS

* Interrupt Vector Table. Unused locations are represented
* by 'VECTOR'. This VECTOR location points to an RTI in
* case they are accidentally called.
VECTOR: RTI

ORG SFFD6
VSCI: FDB VECTOR
VSPI: FDB VECTORVPAIE FDB VECTOR
VPAO: FDB VECTOR
VTOF: FDB VECTOR
VTOC5 FDB VECTOR
VTOC4 FDB VECTOR
VTOC3 FDB VECTOR
VTOC2 FDB VECTOR
VTOC1 FDB VECTOR
VTIC3 FDB VECTOR
VTIC2 FDB VECTOR
VTIC1 FDB VECTOR
VRTI: FDB RTI SERVIRQ: FDB IRQ SER
VXIRQ. FDB VECTORVSWI: FDB VECTOR
VILLOP: FDB VECTOR

Just Return from Interrupt
Interrupt Vector Table
SCI Interrupt Vector
SPI Vector

Real Time Interrupt Vector
IRQ Interrupt Vector

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

176
VCOP: FDB VECTORVCLM: FDB VECTORVRST: FDB $F800 RESETRESET (Power On) Vector

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX

PROCESSING HOST

B

SOFTWARE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

178
SONAR - HOST COMPUTER PROGRAM

Written by: Gary R. Boucher
430 N. Dresden Cir.Shreveport, LA 7X115

This program is used to evaluate the operations of the scanning sonar system. It takes data collected in real time from the sonar pod mounted below the floating instrument platform. This previously recorded data is in a special file format that this host software reads and evaluates.

// Headers
#include <stdio.h>#include <ctype.h>#include <iostream.h> #include <math.h> tinclude <string.h>
#include <stdlib.h>#include <time.h>#include <conio.h>

// Placed here only to use cout for debugging

// Constant Decloration
const int LmX = 151 const int T.mv = 141
const int LmZ = 141; const int CnY =70; const int CnZ = 70; const int EvSze = 200;
const int EvLife = 36;

// Total number of array elements in X-axxx// Total number of array elements in Y-axis// Total number of array elements in Z-axis// Y position in center of array elements // Z position in center of array elements // Number of Events that the system can handle. // Longivity of an Event, aged in seconds

1/ File Variable Declorations
FILE ‘EvntFl;FILE *HdVel;FILE *Sphr;FILE *Pnts;FILE ‘Printer;FILE ‘XYfile;

// Event file created by Processor B // Heading and Velocity file (Created by Probe!// Sphere points used to create spheres // Entry points vs range for ending of Sphere data // Printer file for outputting slices // XY Plotting file

// Global Variable Declarations
float X_Evnt, Y_Evnt, Z_Evnt; int Range_Evnt; char Time EvntflOJ; char TstrJlO]; int LinTime;
float X_Last, Y Last,Z_Last;int Range_Last;~
char Time_Last £10];bool Last_Full = false;bool Time Match;char String£40];
float Head_Sum = 0;char Head_Last £10];char Vel Last[10];int NrHd-Lst = 0;float VeXocity = 0;float Heading;float Old_Heading;bool LastCV Full = false;float XP, Yf, ZP;
char NextJTstr[10] ;
bool Flip Flop = false;
float Boat_Vel = (01; time t Time;

// Event X, Y, Z// Actual range / 2 to scale to WS array
// Time Event occurred// Time String Variable for function input // Seconds, Minitues, Hours — > int LinTime
// Holding variables for times ahead of clock // Holding variable for Range ahead of clockTime variable for reading ahead of systems clock If true data has been read ahead of system time Indicates whether or not time same as last // General purpose global string // Sum of Heading values for a single time // Last Heading value for reads ahead of system time
// Last Velocity value for reads ahead of system time // Last count value for averaging heading (> system time)// Returned vehicle raw velocity value // Returned vehicle heading value // Heading one second ago//Is there values beyond system time variable // Global X, Y, Z location variables for rotations // Returns next sequential file time from Events U and HdVel()

Flip_Flops (Translate First <-- > Rotate First)Boat Velocity - If not entered then obtained from Turbine

//////

//
//
//// Time variable for making one-second ticks

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

179
// Global ARRAY Variables Declarations
char Hater Space[LmX][LmY][LmZ]; char Spheres[41852][3];Int RngPts[300I;
// Event Table Arrays int Active[EvSze] = {0}; float X Curr[EvSze]; float Y~Curr[EvSzej; float Z Curr[EvSzej; int SphKng[EvSze] ;
int Tm Exit[EvSze] = {0};

// 3-D Array for Occupancy Grid//X, Y, Z Delta Values for forming Spheres// Element# = Range, Value is pointer into WS Array

// '0' If location empty, '1' If location full // Current Values for Events in X, Y, and Z

// Range of initial target
// Time Event is to be removed from system (Seconds)

// Function Decloration Area (See functions for explainstions)
void Place_Sphere(int X_Pos, int Y_Pos, int Z Pos, int SpRg, char Incr);void Init_Array(void); ~bool Rotate_LR(float Radians);bool Translate(float Feet);void Slice(int Depth);void Pslice(int Depth);
void Table Event(float X, float Y, float Z, int Rnge, char TimeStr[10]);bool EventTvoid);bool HeadVel(void);void Open_Files(void);bool Fill Tables (void) ;void ClocIE Tick(void);void StrTmlnc(void);int MkTimelnt (char T String [10]),-
void Maint Table(voidT;void OpenXYfile(void);
void CloseXYfile(void);void XY Log(void);float Conv VI Str(cbar Str[10]);

// Main Line Program void main()
{ bool Data; // General Data Available flagbool DaEvnt; // Data available flag variable for Eventsbool DaHdVl; // Data available flag variable for Heading and Velocitybool MbreData = (true);// More data to be read indicatorchar FrTmEvnt[10]; // First Event time after starting synchronizationchar FrTmHdVl[10j; // First Heading and Velocity time after sychronizationchar LstMnTm[I0] = (NULL); // Last Maint Time. Keeps from over rotating and// translatingint I = 0;

int Seconds =0; // Seconds counter for main line looping
// Housekeeping Operations
Open_Files(); // Open all necessary files. If error exit program.Data = Fill Tables(); // Place data file table information into arrays.
Init_Array(T; // Make Water_Space Array elements equal zero.

// Events file and Heading and Velocity file synchronization// This program section assures that both of these data input files begin at a // common time. Often this data does not. Some data is wasted but usually only // a few elements.
strcpy(Tstr, ""); // Make Tstr 0 length to find starting time in events,do(DaEvnt = Event (); // Get first Event with time.
1while (Time_Match); // When finished Next Tstr has the NEXT time.strcpy(FrTmEvnt, Next_Tstr); // Store next event time in FrTmEvnt.strcpy(Tstr, ; // Make Tstr zero length to find starting time for HdVlsDaHdVl = HeadVelO; // Get the first HdVel with time.strcpy(FrTmHdVl, Next_Tstr) ; // Store NEXT HdVel time in FrTmVl.while (strcmp(FrTmEvnt, FrTmHdVl) < 0) // Loops only if Event time < HdVel{ strcpy(Tstr, FrTmEvnt); // Store Event time in Tstrdo // Loop till Event caught up with HdVel{ DaEvnt = Event () ; // Go get an event

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

180
}while (Time_Match); // There are more eventsstrcpy(FrTmEvnt, Next Tstr); // Load Next Event time into FrTmEvnt}// Finishes loop when two times are equal

while tstrcmp(FrTmEvnt, FrTmHdVl) >0) // Loops only if Event time > HdVel
strcpy (Tstr, FrTmHdVl); // store HdVel time in FrTmHdVlDaHdVl = HeadVel {) ; // Get next time SETstrcpy (FrTmHdVl, Next Tstr); // New Tstr is the new time}strcpy(Tstr, Next_Tstr) ;

// End of file synchronization section.// The variable Tstr contains the next to read.
cout « "Current Event time: " « FrTmEvnt « endl;cout « "Current HDVEL time: " « FrTmHdVl « endl;cout « "Enter Boat Velocity > ";cin » Boat_Vel;
Old_Heading = Heading; // Set heading initially for Angle variable
Data * true; do(Clock_Ticlc(); // Hang till the current second finisheschar Cmd;

cout « Seconds « endl; // Show elapsed seconds
if (MoreData) // Get Head - Vel only if still reading data

DaHdVl => HeadVel(); // Heading and velocity fetch
)do // Do until finished with processing

if (MoreData) // Get Event only if still reading data
DaEvnt = Event () ; // Event readiif ('.DaHdVl || '.DaEvnt) // If either false - finished reading
MoreData = false; // MoreData false - never true again

///////////////// I T E R A T I V E C O R E O F P R O G R A M /////////////////////if (MoreData) // Continue entering events if more data available
{

)else{

if (strcmp(LstMnTm, Tstr) != 0){ Maint_Table(); // Update table information
strcpy(LstMnTm, Tstr);>if (Time Match)

{ Place Sphere (floor (X_Evnt+. 5), floor (Y_Evnt+. 5), floorTz_Evnt+. 5), Range Evnt, 1);Table_Event(X_Evnt, Y_Evnt, Z_Evnt, Range_Evnt, TstrT; // Put event xnto table)Slice(-2); // Rough graphic to consoleprintf(”L = Log X,Y Points > "); // Print Log prompt.Cmd = getchar () ; // Get one character with <CR>if ((Cmd — ’L’) || (Cmd — '1')) // Was it a Log?{ XY_Log () ; // If Log then logit)

if (strcmp(LstMnTm, Tstr) != 0){ Maint Tabled; // No more data - just maint table strcpy(LstMnTm, Tstr);
!Time_Match = false; // Continue loopSlice(-2); // Rough graphic to consoleprintf("L = Log X,Y Points > "); // Print Log prompt

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

181
Cad = getchar () ; // Get one character with <CR>if ((Cad = 'L') || (Cmd = 'I')) // Was it a Log?

XY_Log() ; // If Log then logit

//
}

}while (Data);
)// End of Main Line

while (Time_Match);
StrTmTnc();LinTiae = MkTiaelnt (Tstr); Seconds++;

//If matching time for Events continue / / reading// Increment Ex: 09:03:38 — > 09:03:39// Linear Time from string time (aging)
// Elapsed time incrementation
// When false program is finished

// Maint_Tahle() is used to update every entry in the Event Table one at a time.// If an entry is out of bounds such as having a negative X value, or over 30 units // from the Y-axis, the entry is removed, void Maint Table (void)
{ int I;

bool OutBndl, 0utBnd2; double Angle; float Degrees;
cout « "Maint Table" « endl; Degrees = Heading - 01d_Heading; if (Degrees > 180)
(

else(

// Incrementation variable // Out of Bounds boolean variables
// Angle of turn over the last second (-+) // Holds delta heading.

// Find Delta angle// 359 <— 0 crossing Case I
Degrees = -(Degrees - 360); // Obstruction turning opposite vehicle

if (Degrees < -180)I
else
{

// 359 — > crossing Case II
Degrees = - (Degrees + 360); // Adjust by adding 360

Degrees = -Degrees; // No adjustment necessary // just make negative
Old Heading = Heading;
Angle = Degrees / 57.296;
if (Flip_Flop)

Flip_Flop = false;
else(Flip_Flop = true;
for (I = 0; I < EvSze; I++)
{ if (Active[I] = 1)

{

// Record Heading one second ago.
// Convert degrees to radians
/ / Flip Flop changes each time this function is
// called to translate then rotate, then rotate // then translate.

If Change order to true
If Iterate through each entry in the event cable
// If there is an entry at this position

// Get current X, Y, and 2 valuesXP = X Curr[I];YP = Y Curr[I];ZP = Z_Curr[I];// Remove the previously placed sphere with a (-1). Place Sphere(floor(XP + .5), floor(YP + .5), floorTZP + .5), SphRngCI], -1); if (Boat Vel != 0)
(Velocity = Boat_Vel / 2; // Scales Velocity to WS Array
if (Tm Exit[I] > (LinTime + 1))
(if (Flip_Flop) // If true - Rotate then Translate

OutBndl = Rotate_LR (Angle) ; // R then TOutBnd2 = Translate(Velocity);

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

182

}else(
}

else
// If false - Translate then Rotate
{ 0utBnd2 = Translate (Velocity); // T then ROutBndl = Rotate_LR (Angle);
if ((OutBndl) I 1 (0utBnd2)) // Was T or R out of bounds?
{ Active [I] = 0; // O of B - Remove the entry
else
// Else NOT O of B - Place at new location { " ~Place Sphere(floor(XP + .5), floor(YP + .5), floorTZP + .5), SphRng[I], 1);
// Update values in event table X Curr[I] = XP;
Y_Curr[I] = YP Z Curr[I] = ZP

Active [I] =0; // Time limit exceeded - remove

// Functions Definitions Area
// EVENT() returns event information from the events file. It is called with // Tstr="" returns the first time recorded with all global variables filled.// The current value of Tstr must be used until there is a false returned by // the function itself at which time the Tstr can be incremented to the next // second and so forth. Global variables returned with data are:// X Evnt, Y Evnt, Z Evnt, and Range Evnt
//// Time is sent to this function via the Tstr global string.// Function itself returns a boolean variable reflecting file data available, bool Event(void)
(bool DataAvail = (true); // Data Available flagchar Buffer[40]; // String storage bufferchar R, I; // Iteration and working char variableschar Temp_X[10] = Temp Y[10] = Temp Z[10] = // Working string varschar Temp_Range[10J = Temp_Time[10] =

Time_Match = false; // Assume no time match to start withif (Last Full) // One event value pre-read so use it(if (strcmp(Tstr, Time_Last) = 0) // Compare current time to last time
X_Evnt = X_Last; //If same time then use pre-stored varsY_Evnt = Y_Last;Z_Evnt = Z_Last;Range_Evnt = Range_Last;
strcpy(Time_Evnt, Time_Last) ;Time_Match= true; "7/ This time = previous time flag
Last Full = false; //No last read vars waiting}

)else
(// Was no previously read variables to loaddo { DataAvail = (f gets (Buffer, 40, EvntFl) != NULL); // Get Event}while ((DataAvail) && (BufferfO] != char(32))>; Ifif (DataAvail)

{ ford = 0; I < 18; I++)// Scan Buffer to parse { if (I < 6)// First value (X) string {

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

183
Temp_X[I] = Buffer[I];// Temp X is string X value}else{ // Was not first(Second? Third?) if (I < 12)
{ Temp_Y[I-6] = Buffer[I];// Second number (Y) in string
elseI // Must be third number (Z) if (I < 18)

{ Temp_Z(1-12] = Buffer[I];// Transfer to Temp Z
))}}for (I = 19; I < 22; I++) // Skip "R" for range go to Rnge Val

R = Buffer[I]; // Get each character of rangeif (isdigit(R)) //Is character in R a digit?{ Temp_Range[I-19] = R; // Form Temporary Range string
)DataAvail = (fgets(Buffer, 40, EvntFl) != NULL);// Get date part of event if (DataAvail){ for (I = 1; I < 9; I++) // Scan date string just read(Temp_Time[1-1] = Buffer[I];// Create Temp Time - Time string)X_Evnt = atof(Temp_X) / 2; // Divided by 2 to Scale to WSY_Evnt = atof (Temp_Y) / 2; // 300 feet is 150th X elementZ_Evnt = atof(Temp_Z) / 2;

Range_Evnt = atoi (Temp Range) / 2; //Do same with rangestrcpy (Time Evnt, Temp~Time); // Last time stringif (strlen(Tstr) = 0) // First time called?
(strcpy(Tstr, Temp Time); // Tstr = current time1if (strcmp(Tstr, Temp_Time) != 0) // Tstrocurrent time

)else
(

1

X_Last = X_Evnt; // Load 'Last'Y_Last = Y_Evnt;Z_Last = Z_Evnt;Range_Last = Range Evnt; strcpy(Time_Last, Time_Evnt);Last_Full = true; // Indicate 'Last' variablesTime_Match = false; // Indicate time did NOT matchstrcpy(Neact_Tstr, Temp Time) ;
// The next Tstr is indicated by Next Tstr

// Still same time - No last variables Last_Full = false;Time Match = true; // Time match with old time
111return DataAvail; //DataAvail - true means not EOF yet

// HEADVEL () called with Tstr='"’ returns the first time recorded with all // global variables filled. After the first call to this function the// variable Tstr must be loaded with the next sequential time in the form// 09:03:38 and following 09:03:39 etc.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

184
Global variables returned with data are:(Velocity) and (Heading)
Heading and Velocity are floating point data type.
Time is sent to this function via the Tstr global string.Function itself returns a boolean variable reflecting file data available, bool HeadVel(void){ bool HV_Avail; // Data available flagbool STm;char Buffer [40]; // Working buffer for readschar Temp_Head[10] = // Temp Heading stringchar Tentp^VeKlO] = // Temp Velocity string
char HV Time[10] = // Time string for heading and velocityint NrH3 =“ 0, T_NrHd = 0; // Beading received counters for average

if (LastCV Full) // Was there a last valid reading?f Head_Sum = atof (Head_Last) ; // Start new sum from Last-Head valueif (strlen(Vel_Last) > 0) // If there was a velocity reading...
Velocity = Conv VI Str(Temp Vel) ;) _ _ _

NrHd = NrHd Lst; // Heading counter1
do
(

«t *f
ft ft

do{ HV Avail = (f gets (Buffer, 40, HdVel) != NULL);/f~Read Heading and Velocity
} //while ((HV_Avail) 44 (Buffer [0] != char(67)) && (Buffer[0] != char(86))) ; // Avail,C,V if (HV Avail)
{ strcpy (String, Buffer); // Buffer into String - Check laterHV Avail = (fgets(Buffer, 40, HdVel) != NULL);/ /“Get second read from file

strcpy(Temp_Head, "") ; // Clear Temp Heading string tostrcpy (Temp-Vel, ""); // Clear Temp Velocity string toif (HV Avail) // Was there data read?{ for (int 1 = 1 ; I < 9 ; I++) // Parse the time portion
HV Time[I - 1] = Buffer[I];//“Reconstruct time for HV}if (String[0] = char(67)) // Is Strmg[0] a 'C'?i String[0] = ' '; // Clear out the 'C'strcpy (Temp Head, String); // Copy to Temp StringT NrHd = 1;1else(IJ Must be a 'V'
String[0] = ' '; // Clear out the 'V'strcpy (Temp Vel, String); // Copy to Temp String

}if (strlen(Tstr) = 0)// If Tsrt-"" then Tsrt=First Record Time
{ // Normal usage (First call to function) strcpy (Tstr, HV Time);1if (strcmp(Tstr, HV_Time) = 0)// Compare current time with read time
{ if (strlen(Temp_Head) > 0)// Don't consider if not new

(Head Sum = Head Sum + atof (Temp Head) ;NrHd“= NrHd + T~NrHd;// Number of entries for average
}if (strlen(Temp_Vel) > 0)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

185

}else
{

// Don’t consider if not new
{ Velocity = Conv_Vl Str(Temp_Vel); ̂ // Take Velocity from Turbine
STm = true,* // Same time flag

// Finished with a Seconds Time Interval if (NrHd)
{ Heading = Head_Sum / NrHd;// Calculate Average Heading
HeadJSum =0; // Zero Head SumNrHd-= 0; // Set element count for average = 0NrHd_Lst = T NrHd;
strcpy(Head_East, Temp_Head) ;// Currently good Temp Heading strcpy (Vel_Last, Temp_Vel) ;// Load possibly new values for later LastCV_Full * true;
// LastCV_Full will never be false again.STm = false; // Exit we are finishedstrcpy (Next_Tstr, HV_Time);

)
)while ((HV Avail) && (STm)); // While data is available and Same Timereturn HV Svail; //To determine if more data is to be read

// Init__Array() clears out all Water_Space array elements to zero, void Init Array (void){ for (int X = 0; X < LmX; X++) // Iterate X values through range
for (int Y = 0; Y < LmY; Y++) // Iterate Y values through range
{ for (int Z = 0; Z < LmZ; Z++) // Iterate Z values through range

Water_Space[X][Y][Z] = 0;// Put them all in Water_Space array

/ / Place_Sphere () both places a sphere in Water_Space and also removes a sphere // from Water_Space. When placing a sphere set value passed to Incr to (+ 1) .// This adds one to all sphere elements in the array. When moving toward removal // of a sphere place (-1) in increment. This subtracts the same amount added but
If does not clear out the element if another sphere is co-located using the same// elements. Y_Pos and Z_Pos are referenced to the Y and X axis, not 0 element of// the WS array. ~
void Place_Sphere(int X_Pos, int Y_Pos, int Z_Pos, int SpRg, char Incr)
{ int EndPoint; // End point of look-up into Sphere arrayint I; // Iteration variableint X, Y, Z; // Temporary X, Y, and Z variables

Y_Pos = Y_Pos + CnY; // Far left Y is zero, so correct YZ_Pos = Z_Pos + CnZ; // Correct Z as well. (X needs no correction)EndPoint = RngPts [SpRg]; // Get EndPoint from Range Points arrayfor (I = 1; I <= EndPoint; I++) // Color sphere elements till Endpoint.(X = X_Pos + Spheres [I] [0]; // X_Pos has Delta X added from Sphere array.Y = Y_Pos + Spheres [l] [1]; // Y_Pos has Delta Y added from Sphere array.Z = Z_Pos + Spheres [I] [2]; // Z_Pos has Delta Z added from Sphere array.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

if ((X >= 0) && (X <= LmX)) // Check X for limits of WS array.
{ if ((Y >* 0) && (Y <= LmY)) // Check Y for limits of WS array.I if ((Z >= 0) SS (Z <= LmZ)) // Do same for Z

(//If limit checks passed - Place in WS. Water_Space [X] [Y] [Z] = Water_Space[X] [Y] [Z] + Incr
)

}

// Rotate_LR() rotates X, Y, and Z variables around the (Z) axix. These variables // reference the Water Space array. Returned global variables are XP, YP, and ZP bool Rotate LR(float Radians){ float X_01d, Y_01d;
X Old = XP;Y_01d = YP;
XP = X_01d * cos (Radians) - Y Old * sin (Radians); // Rotate XYP = X_01d * sin (Radians) + Y_01d * cos (Radians); // Rotate Y// ZP Zs unchanged
if ((XP < 0) II (YP < -100) || (YP > 100)) // Check for Out of Bounds(return true; // Yes, Out of Bounds)else{
) return false; // No, Not Out of Bounds

// Translate() translates vehicle forward by floating point variavle Feet, bool Translate(float Feet)(XP = XP - Feet; // Global XP variable changed by Feet.return (XP < 0); //If XP still positive then no 0_of_B condition

// Table_Event () is used to load a newly generated event into the event table.//It must be called with X, Y, and Z coordinates, range, and a time string, void Table Event (float X, float Y, float Z, int Rnge, char TimeStr [10]){ int I;
char T_Hr[4] = (NULL); // Temp Hours stringchar T_Mn[4] = (NULL); // Temp Minutes stringchar T_Sc[4] = (NULL); // Temp Seconds string
I = 0;while((Active[I] != 0) && (I < EvSze))// Keep going till vacancy or end of table
(
)iJ
(// Make table locations active // Place X, Y, and Z into of Event Table

// Store range)Tm_Exit[I] = MkTimelnt(TimeStr) + EvLife; // Make linear ending time integer

// Open_Files () opens all necessary files at once including the printer file for output. //If any file does not exist the program is terminated by exitO . void Open Files (void)

I++;
EvSze)
Active[I] = 1;X Curr[I] = X;Y Curr[I] = Y;Z Curr[I] = Z;SphRngfl] = Rnge;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

187
if ((Spbr = fopenCSphere.Dat", "r")! = NULL) // Data to form spheres

print! ("UNABLE TO OPEN FILE <Sphere.DAT>\n") ; exit(2);1if ((Pnts = fopen("Entry.Dat", "r*|) == NULL) // Table for entry into 'Sphr'
printf ("UNABLE TO OPEN FILE <Entry.DAT>\n") ; exit(2);1if ((EvntFl = fopen("Events.txt", "r")) = NULL) // Events file{ printf ("UNABLE TO OPEN FILE <Events.txt>") ; exit(2);)if ((HdVel = fopen("DirSpd.txt", "r")) = NULL) // Direction and Speed data
printf("UNABLE TO OPEN FILE <DirSpd.txt>"); exit(2);))

/ / Fill_Tables () fills the Sphere Table and also the Range Point Table.// This is done so as to be able to read directly frost array and not disk file, bool Fill Tables(void)I int I; // Incrementation variableint Rp = 1; // Array pointerbool SDAval, RDAval; // Data Available variableschar Buffer[40],- // String storage variableschar TempChr(10]; do 1 SDAval = (fgets(Buffer, 40, Sphr) != NULL); // Read a Sphere value if (SDAval)
// Do IF only if data is available
(TempChr [0] = NULL; // Init string to ""for (I = 5; I < 10; I++) // Parse out X value

(TempChr [I - 5] = Buffer [I]; // X goes into TempChr []
Spheres [Rp] [0] = char (atoi (TempChr)) ;// Place X value into Sphere arrayTempChr [0] = NULL; // Init stringfor (I = 10; I < IS; I++) // Parse out Y value(TempChr [I - 10] = Buffer [I]; // Y goes into TesipChr []
Spheres[Rp][1] = char(atoi(TempChr));// Place Y value into Sphere arrayTempChr [0] = NULL; // Init string
for (I = 15; I < 20; I++) // Parse out Z value{ TempChr [I - 15] = Buffer [I]; // Z goes into TempChr []
Spheres[Rp][2] = char(atoi(TempChr)) ;// Place Z value into Sphere arrayTempChr[0] = NULL; // Init stringRp++; // Bump array pointer variable

})while (SDAval); //As long as Data is available// Fill Range Points array
Rp = 1;// Start with array pointer = 1
do //Do while data available(RDAval = (fgets(Buffer, 40, Pnts) != NULL); // Get Range Points from file if (RDAval) // If data is available still (for (I = 0; I < 6; I++) // ASCII Range Points are 6 charsI TempChr[I] = Buffer[I];// Build all six charactors for RPs

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

188
RngPts [Rp] = atoi (TempChr) Rp++; // Load RPs into array as conv int's // Point to next array element

}
while (RDAval);
return RDAval; // Keep going till no more data.

// Clock_Tick() is used to end a one second interval. When called it reads // time~during a second and loops until the second is completed, void Clock Tick(void){ Time = time(NULL); while (Time = time (NULL))
{)

// Read current seconds time / / Dummy loop till second ends

// StrTmlncO is a function that takes Tstr and increments it to the next second. // The function returns the global variable Tstr incremented, void StrTmlnc (void)
{ int Sec, Min, Hr;

int I;
char SI[4] = {NULL}; char S2[4] = {NULL}; char S3[4] = {NULL};
ford = 0; I < 9; I++){

// Temporary variables for time
ft Incrementing variable
// Temporary storage strings

// Look through string
if (I<2){
else
{

SI[II = Tstr[I];

if ((I > 2) 44 (I < S))
{ S2[I - 3] = Tstr [13;)else{ if ((I > 5) 44 (I < 8))

{ S3 (I - 6} = Tstr [I] j

// Make Hrs string

// Make Minutes string

// Make Seconds string

)
}Hr = atoi(SI);Min = atoi(S2);Sec = atoi(S3) + 1; if (Sec > 59){ Sec = 0; Min++;

if (Min > 59){ Min = 0; Hr++;if (Hr > 23){ Hr = 0;
}}Hr = Hr + 100;

Min = Min + 100;Sec = Sec + 100; itoa(Hr, SI, 10); ltoa(Min, S2, 10); itoa(Sec, S3, 10); for (I = 0; I < 8; I++) t

/ / Convert Hours string to numeric // Convert Minutes string to numeric
// Convert Seconds string to numeric // Correct Seconds for rollover
// Reset Seconds to zero // Increment Minutes
// Correct Minutes for rollover
// Reset Minutes to zero // Increase Hours because of rollover // Correct for 12 midnight
// Early in the morning

// Make sure Hours are at least 2 digits // Do same for Minutes // Do same for Seconds// Convert to string (Ex: 2 hours — > "102") // Same for Minutes // Same for Seconds
// Scan the result string as we construct it

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

189
if (I < 2) // Hours portion of Tstr

Tstr [I] = SI [I + 1]; // Take only right 2 digits for Hours
else
(// Not first 2 digitsif ((I > 2) £& (I < 5)) // Minutes portion of Tstr string

Tstr [I] = S2[I - 2J; // Use only right 2 digits of S2
else
{ // Not Hours or Minutes - Seconds nowif (I > 5){ Tstr [I] = S3 [I - 5]? // Right 2 digits of Seconds

// MkTimelntO receives a string in the form of '09:03:38' and returns the value // of the string based on hours equal 3600 seconds, minutes equal 60 seconds, and // seconds being equal to seconds, int MkTimelnt(char T Stg[10]i
int I;char T_Hr[4] = {NULL} char T Mn[4] = (NULL} char T~Sc[4] = {NULL}

// Incrementing variable // Temporary time string storage

for {I = 0; I < 8; I++) // Scan time string{ if (I < 2) //If Hours portion
(T_Hr{IJ = T_Stg[I]; // Load Hours string into temp storage
else
{ if ({I > 2) S& {I < 5)){

Ielse(
T_Mn[I - 3] = T_Stg[I];

// Was not Hours location
//If Minutes portion of string

// Load Minutes string

// Was not Hours or Minutes if ({I > 5) ii {I < 8}}
{

}

// Seconds portion of string
T Sc [I - 61 = T_Stg[I] ;
H Load Seconds string into temp storage

ireturn atoi(T_Hr) * 3600 + atoi(T_Mn) * 60 + atoi(T_Sc); // Make time integer

// Sliced takes a cross section of the Water Space array at a given depth in the
// Z axix. This Z plane is then printed to tKe screen for observation. This is an // extremely low resolution depiction of what is in the WS array. It is only for // identifying the presents and general configuration of data as the program runs, void Slice(int Depth} f int A; // Sample of WS arraychar J, K; // Temporary variables

cout « Tstr « endl;
for (int X = 75; X >= 5; X = X - 5) // Scan X values from high to low

printf CNn");for (int Y = 0; Y <= LmY - 1; Y = Y + 2) // Scan Y values left to right{ A = 0;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

190
for (J = 0; J > -5; J = J - 1){ for(K = 0; K > -21; K—){

)

A = A + Wafer Space [X + J] [Y] [Depth + CnZ + K] j // Look Into the array
}if (A = 0) //If nothing there print
{ p r i n t f // Nothing at that locationIelse1 printf("O"); // Something at that location (A => 1)i

printf("\n");printf ("End of SliceXn") ; // New line
II Identify the end of a slice.

// OpenXYfileO opens the slice file for samples of the WS array. 'Fname1 is the // file name string used to name the opened file. The first two characters of this // name is always ’XY’. The second two characters are the Hrs from the Tstr string.
// The third two characters are Mins from Tstr and the last two characters are Secs.// This automatically labels the file for later reference as to the time it was // recorded. The file extension is '.TXT' for reasons of ease of display for debugging // purposes, void OpenXYfile(void){ int I;int J = [01;char Fstrg[20] = {"XY"};char Fname [20] = {NULL) ;

streat(Fstrg, Tstr); strcattFstrg, ".txt"); ford = 0; I < 14; I++){ if ((I != 4) £& (I != 7)) II Locations for{ Fname[J] = Fstrg[I];// Reconstruct Fname from Fstrg with no colons J++; // Pointer variable to Fname}}if ((XYfile = fopen (Fname, "w")) = NULL) // Open file Fname

// Incrementing variable // String pointer // Working string in making Fname // Final string for Name of file
// String now is 'XYhr:mn:sc'// String now is 'XYhr:mn:sc.txt' // Scan the whole string

are left out

printf ("UNABLE TO OPEN FILE <"); fputs(Fname, stdout);
printf(">\n"); exit(3);

// Error message if not opened // Labels file not opened // Finish with error reporting // Quit everything

// CloseXYfilef) closes the file that the WS array slice was stored into, void CloseXYfile(void)I fclose(XYfile); // XYfile is current slice file.)
11 XY_Log() is a function that stores a set of X,Y points into a file opened for this // purpose. This function inputs from the console a value for Depth with defines the // Z plane level for a cross-section slice of the Water_Space Array. This array is // scanned and non-zero elements are defined as to their X and Y coordinates. These // coordinates are then loaded into a file with TAB delimiters and CRLF end of line // characters. This file is read by plottig software and graphed for observation of // sonar targets, void XY Log(void)(int A; // Element variable for testingint Z; // Variable to take "Dig" into Z directionint Depth; // Depth of slice through WS arraychar Temp[10] = {NULL}; // Temporary string for manipulation of input data

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

191
printf ("\n");printf ("Enter Depth > ") ;gets(Temp);gets(Temp) ;
Depth = atoi (Temp) ; OpenXYfileO;for (int X = LmX - 1; X >= 0;
{

// Hew Line// Prompt for depth of slice// Dummy gets to purge new line character// Real gets to load temp with Depth string// Depth of slice taken in WS array// Open new file with 'Tstr' embedded in nameX = X - 1) // Seem through all X's
for (rnt Y = 0; Y <= LmY - 1; Y = Y + 1){ // Scan through all Y's

A = 0; // Init A to Zero each X, Y, Positionfor(Z = 0; Z > -30; Z—)

if (A > 0) (

A = A + Water_Space[X] [Y] [Depth + CnZ + Z]; // Read element of WS array
// If A=0 then NOT an XY point set

itoa((Y - CnY) * 2, Temp, fputs(Temp, XYfile); putc(9, XYfile); itoa(X * 2, Temp, 10); fputsITemp, XYfile);
putc(13, XYfile); putc(10, XYfile);

10) ; // Y is displayed as X // Put into file // Delimited by a TAB // X is displayed as Y // Put into file
// Return into file // Line Feed into file

printf("\n") ; CloseXYfile(); // New line// Finished so close XYfile

// Conv_Vl_Str () takes a string[10] comprised of hexidecimal numbers from the velocity // sensor converts these to clicks and then converts the clicks to actual velocity in // feet per second. This value is then returned to the program, float Conv VI Str(char Str[10J)
(int I;int J;int Digit;int Weight = (1} ;char L;float Value = {0) ;char "Hexdig = "0123456789ABCDEF"

// Iteration variable // String array pointer // Holds value of Hex digit in decimal // Progressive weighting of Hex digits // Used for string length determination // Number of clicks
// Hex string for conversion purposes

L = strlen(Str); ford = L; I >= 0; I--)if (isxdigit(Str[I]))
{

// Length of velocity string // Iterate through string back to front // Returns > 1 if character is a Hex
for (J = 0; J < 16; J++) // Look at each Hex character in order{ if (Hexdig[J] = Str[IJ)

(// Is there a match?
Digit = J; // Digit is value in decimal of H Value = Value + Digit * Weight;
If Accumulate the value in (Value)Weight = Weight * 16; // Weights are 1, 16, 256__
continue; // Break execution of loop if finished

))// Currently (Value) contains the number of clicks per 3 second interval. This // figure needs to be used as a look-up into a table of velocities. However, at // this time no such table exists. Therefore this variable returns the number of // rotations per 3 second time interval times 6. return Value;

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX C

BASIC LANGUAGE SUPPORT SOFTWARE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

193
1000 REM Program EPROM-BAS

REM Program To Make 512k x 8 Eprom Memory For Processor A
REM Make File Area and Fill with SFF's
OPEN "R", 1, "BINARY", 1
FIELD 1, 1 AS F$
LSET F$ = CHR$(255)
FOR I = 1 TO 524288 POT 1, I
NEXT I

1050 REM Nexted Loops for EEPROM Address Calculation
REM Transponder Number
FOR TXP# = 0 TO 2
REM Head Position
FOR HP# = 0 TO 1
REM Horizontal Angle
FOR ANG# = 0 TO 5
REM Range Value
FOR RANGE# = 1 TO 300
REM Actual EPROM Address Calculation
ADDRESS# = TXP#*131072# + HP#*65536# + ANG#*8192# + RANGE#* 16# + 1
PRINT "AD: ADDRESS#
IF ANG# <2 . 5 THEN YS = (-1) ELSE YS = (1) : REM Sign of X value
IF ANG# = 0 OR ANG# = 5 THEN XANGLE = .3490659# : REM Abs Val Angls
IF ANG# = 1 OR ANG# = 4 THEN XANGLE = .2094395#
IF ANG# = 2 OR ANG# = 3 THEN XANGLE = 6.981320000000001D-02
ANBR = TXP# * 2 + HP# : REM Vertical Angle
IF ANBR < 2 . 5 THEN ZS = (1) ELSE ZS = (-1) : REM Sign of Y value
IF ANBR = 0 OR ANBR = 5 THEN YANGLE = .3490659# : REM Abs Val Angls
IF ANBR = 1 OR ANBR = 4 THEN YANGLE = .2094395#
IF ANBR = 2 OR ANBR = 3 THEN YANGLE = 6.981320000000001D-02
Z# = RANGE# * SIN (YANGLE) * ZS : REM Z Axis Value
SPAN# = RANGE# * COS (YANGLE) : REM Projection on Z=0 Plane
Y# = SPAN# * SIN (XANGLE) * YS : REM Y Axis Value
X# = SPAN# * COS (XANGLE) : REM X Axis Value
BYTE0 = 0 : REM First Byte has Code Representing Sign of YS/ZS
IF YS < 0 THEN BYTE0 = BYTE0 + 2
IF ZS < 0 THEN BYTE0 = BYTE0 + 1
SIS = MID$ (STRS (X#) + SPACES (20), 2, 5) : REM Make Stgs for X,Y, Z
S2S = MID$(STR$(Y#) + SPACES(20), 2, 5)
S3$ = MIDS(STRS(Z#) + SPACES(20), 2, 5)
W$ = SIS + S2$ + S3S : REM Combine into Larger String
LSET F$ = CHRS (BYTE0) : REM Place Code in Memory
PUT 1, ADDRESS#
ADDRESS# = ADDRESS# + 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

REM Place String into memory FOR I = 1 TO 15
G$ = MID${W$, I, 1)
LSET F$ = G$
PUT 1, ADDRESS#
ADDRESS# = ADDRESS# + 1 NEXT I
NEXT RANGE#
NEXT ANG#
NEXT HP#
NEXT TXP#

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

195
1000 REM Program VECTOR.BAS

REM Program to Create Sphere Prototype
REM Open Temporary File
OPEN ”R", 1, "SPHERE-INT", 27
FIELD 1, 5 AS DISTS, 5 AS FXS, 5 AS FY$, 5 AS FZ$, 5 AS RG$, 2 AS CRLF$
LSET CRLFS = CHRS(13) + CHR$ (10) : REM Will Not SORT Without CR/LF RP = 1
REM Iterate through all Possible Values of X, Y, and Z.
FOR X = -22 TO 22
FOR Y = -22 TO 22
FOR Z = -22 TO 22
REM Calculate Range Section
BSE = SQR(X * X + Y * Y) : REM Projection on Z=0 Plane (Base)
DIST = SQR (BSE * BSE + Z * Z) : REM Actual Distance to Endpoint
DIST = FIX (DIST + .5) : REM Round DIST to nearest Integer
REM Load into Record
RSET DIST$ = STRS (DIST) : REM Place Values into File Field
RSET FX$ = STRS (X)
RSET FYS = STRS (Y)
RSET FZ$ = STRS(Z)
RG = DIST / (.0699268) : REM Not Used for Later Calculations
RG = FIX (RG) : REM Not Used for Later Range Calculations
RSET RGS = STRS (RG)
REM Put Record into File
PUT 1, RP : REM Place into File
RP = RP + 1 : REM Increment Storage Pointer
CNT = CNT + 1 : REM Just for Observation
TRY = TRY + 1
IF TRY = 500 THEN PRINT CNT: TRY = 0
NEXT Z
NEXT Y
NEXT X

REM Note: After creation of file SPHERE.INT the MS-DOS SORT
REM utility is used to create SPHERE.DAT file. This
REM file is used by the Host Computer.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

196
1000 REM Program SCAN_SPH.BAS

REM Scans the Sphere.Dat file for the first field containing
REM range information then stores it in an Index file named
REM INDEX.TSH which is used later in creation of Endpoints for
REM the sphere build operation.
OPEN "I", 1, "SPHERE.DAT"
OPEN "R", 2, "INDEX.TSH"
FIELD 2, 4 AS F$LR = 1
REM Loop Till Finished

1100 IF EOF (1) THEN PRINT LR - 1: END
INPUT #1, L$
S$ = LEFTS(L$, 4)
LSET F$ = S$
PUT 2, LR
LR = LR + 1
PRINT S$
GOTO 1100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

197
1000 REM Program FIND_SZ.BAS

REM Determines the Max Radius for a Sphere at a given range.
REM Then it searches the Sphere.Dat file to find the EndPoints
REM for the Sphere Build Process.REM
REM This program is SLOW due to its use of a sequential search
REM rather than more elegant means. However, it should only haveREM to run once.
REM Let N = Max Radius of a Sphere
REM Let D = Actual Diameter of affected Water Space SphereREM D = 2 * N + 1
REM Let RANGE = Actual (OR) Scaled Range to Target
REM Tan (4 Degrees) = D / Range
REM N = Range * Tan (4deg) +1
OPEN "R", 1, "INDEX.TSH": REM Radius Information from Sphere.Dat
FIELD 1, 4 AS FS
OPEN "R", 2, "ENTRY.DAT", 8: REM File to be used by Host.cpp
FIELD 2, 6 AS RPTS, 2 AS CRLFS: REM To be read by Host Program
LSET CRLFS = CHR$(13) + CHR$(10)
REM Loop through ranges
FOR RANGE = 1 TO 300
N = .07 * RANGE - .5 : REM Calculate N values
N = FIX (N + .999999) : REM Round N values
IF N = 0 THEN N = 1 : REM No N=0's
REM Loop and search for Endpoints
1 = 1

1500 GET 1, I
IF (VAL(F$) > N) OR (I = 41851) THEN 2000
1 = 1 + 1
GOTO 1500
REM Create Endpoint file 2000 V = I - 1
LSET RPTS = STRS(V)
PUT 2, RANGE
PRINT RANGE
NEXT RANGE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1000 REM Program RECORDER.BAS (RECORDER.EXE)
REM Data Recorder Program
CLS
REM Open files
OPEN "R", 5, "FILEINFO.DAT”, 10
FIELD 5, 10 AS F$
IF LOF(5) > 0 THEN 1050
LSET F$ = "000" : REM If first time then create
FOR I = 1 TO 9
PUT 5, I
NEXT I
LSET FS = "1"
PUT 5, 6

1050 DISP = 0: REM DO NOT SHOW CALLS TO 9800
REM Get Gain, Attenuation, Width from stored values GET 5, 1
GAINS = LEFTS(F$, 3)
GET 5, 2
ATTNS = LEFTS(F$, 3)
GET 5, 3
WIDTHS = LEFTS(F$, 3)
GET 5, 6
FILE = VAL(FS) : REM Next file starting number
GOSUB 9500: REM STOP SYSTEM
REM Set initial conditions.
S$ = ":G” + GAINSGOSUB 9800
S$ = ":A" + ATTNS
GOSUB 9800
S$ = ":W" + WIDTHS
GOSUB 9800
S$ = ":B001" : REM Baud Rate
GOSUB 9800
S$ = "<F" : REM Fast baud rate
GOSUB 9800
REM Screen drawing section
LOCATE 1, 1
PRINT CHR$(201);
PRINT STRINGS(78, 205);PRINT CHR$(187);
FOR Y = 2 TO 23
LOCATE Y, 1, 1, 0, 7
PRINT CHR$(186);
NEXT Y
FOR Y = 2 TO 22
LOCATE Y, 80
PRINT CHRS(186);
NEXT Y
LOCATE 23, 1
PRINT CHRS(200);
PRINT STRINGS(78, 205);
PRINT CHRS(188);
REM Print current settings on screen and options
X = 10: Y = 3
LOCATE Y, X
PRINT "Gain: "; GAINS;
Y = Y + 2
LOCATE Y, X

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

199
PRINT "Atten: ATTNS;
Y = Y + 2T-Oranr v Y
PRINT "Width: WIDTHS;
Y = Y + 3
LOCATE Y, X
PRINT "Thres: "; TNS;
X = 1: Y = 21
GOSUB 9700: REM DRAW HORIZONTAL LINE
X = 40: Y = 6
LOCATE Y, X
PRINT " COMMANDS
Y = Y + H
LOCATE Y, X
PRINT "S = STOP SYSTEM"
Y = Y + 1
LOCATE Y X
PRINT "R/= RUN AND RECORD"
Y = Y + 1
LOCATE Y, X
PRINT "C = CENTER HEAD"
Y = Y + 1
LOCATE Y, X
PRINT "I = INITIALIZE HEAD"
Y = Y + 1
LOCATE Y X
PRINT "T* = THRESHOLD INSTALL"
Y = Y + 1
LOCATE Y, X
PRINT "M = MAKE THRESH TABLE"
LOCATE 22, 40
PRINT "STATUS: ";
REM Enter commands section

2000 REM ENTER COMMAND
DISP = 1: REM DISPLAY FROM NOW ON
GOSUB 9650: REM CLEAR STATUS
X = 10: Y = 22
LOCATE Y, X, 1
PRINT "COMMAND (E=END) >
LOCATE Y, X + 18
CS = INPUTS(1)2100 IF CS = "E" OR CS = "e" THEN ENDIF CS = "G" OR CS = "g" THEN 3000IF CS = "A" OR CS = "a" THEN 3100
IF CS = "W" OR CS = "w" THEN 3200IF CS = « jit OR CS = ft ̂ If THEN 3300IF CS = "C” OR cs = "c" THEN 3400IF CS = npit OR CS = n £tv THEN 3500
IF CS = "R” OR CS = n^n THEN 3600IF CS = ”S” OR CS = "s" THEN 3700IF CS = If ̂lf OR cs = n £ n THEN 3800IF CS = "M"
CMS = ""
GOTO 2000

OR CS "m" THEN CLOSE : CHAIN "TABLE

3000 REM GAIN
LOCATE 3, 18
PRINT SPACES(5);
LOCATE 3, 18
GOSUB 9400: GS = IIS
IF GS = CHRS(27) THEN 3020

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

200
IF LEN(GS) <> 3 THEN 3000 BAD = 0
FOR I = 1 TO 3
IF INSTR("0123456789", MID$ (G$, I, 1)) = 0 THEN BAD = 1 NEXT I
IF BAD = 1 THEN PRINT CHRS (7) : GOTO 3000

3010 ST$ = "SETTING GAIN..."
GOSXJB 9600: REM DISPLAY STATUS
GOSUB 9500: REM STOP
S$ = "<G" + G$
DISP = 0: GOSUB 9800
GAINS = G$

3020 LOCATE 3, 18
PRINT GAINS
LSET F$ = GAINS
PUT 5, 1
GOTO 2000

3100 REM ATTENUATION
LOCATE 5, 18
PRINT SPACES(5);
LOCATE 5, 18
GOSUB 9400: AS = 11$
IF AS = CHRS(27) THEN 3120
IF LEN (AS) <> 3 THEN 3100
BAD = 0
FOR I = 1 TO 3
IF INSTR("0123456789", MID$(A$, I, 1)) = 0 THEN BAD = 1 NEXT I
IF BAD = 1 THEN PRINT CHRS (7) : GOTO 3100

3110 STS = "SETTING ATTENUATION..."
GOSUB 9600
GOSUB 9500: REM STOP
S $ = "<A" + AS
DISP = 0: GOSUB 9800
ATTNS = AS

3120 LOCATE 5, 18
PRINT ATTNS
LSET F$ = ATTNS
PUT 5, 2
GOTO 2000

3200 REM WIDTH
LOCATE 7, 18
PRINT SPACES(5);
LOCATE 7, 18
GOSUB 9400: W$ = 11$
IF W$ = CHRS(27) THEN 3220
IF LEN(W$) <> 3 THEN 3200
BAD = 0
FOR I = 1 TO 3
IF INSTR("0123456789", MID$(W$, I, 1)) = 0 THEN BAD = 1 NEXT I
IF BAD = 1 THEN PRINT CHRS(7): GOTO 3200

3210 STS = "SET PULSE WIDTH..."
GOSUB 9600: REM DISPLAY STATUS
GOSUB 9500: REM STOP S$ = "<W" + w$
DISP = 0: GOSUB 9800
WIDTHS = W$

3220 LOCATE 7, 18
PRINT WIDTHS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

201
LSET FS = WIDTHS
PUT 5, 3
GOTO 2000

3300 REM INITIALIZE
STS = "INITIALIZING..."
GOSUB 9600
GOSUB 9500
SS = "<I"
DISP = 0: GOSUB 9800
TM = 10: GOSUB 9900
GOTO 2000

3400 REM CENTER SONAR HEAD
STS = "CENTERING HEAD..."
GOSUB 9600
GOSUB 9500
SS = "<C"
DISP = 0: GOSUB 9800
TM = 10: GOSUB 9900
GOTO 2000

3500 REM FAST BAUD RATE
STS = "SET FAST BAUD RATE..."GOSUB 9600
GOSUB 9500
SS = ":B001"
DISP = 0: GOSUB 9800
TM = 4: GOSUB 9900
SS = "<F"
DISP = 0: GOSUB 9800
TM = 2: GOSUB 9900
GOTO 2000

3600 REM RUN SONAR RECORDER
STS = "SETTING UP TO RUN..."
GOSUB 9600: REM DISPLAY STATUS
GOSUB 9500: REM STOP
SS = "<I"
DISP = 0: GOSUB 9800: REM SEND COMMAND SS = "<R"
DISP = 0: GOSUB 9800: REM SEND COMMAND
TM = 4: GOSUB 9900
GOSUB 9000: REM DO RECORDINGC$ = CMS
GOTO 2100

3700 REM STOP
STS = "STOPPING SYSTEM..."
GOSUB 9600: REM DISPLAY STATUS
GOSUB 9500: REM STOP SYSTEM
GOTO 2000

3800 REM THRESHOLD
LOCATE 10, 18
PRINT SPACES(5);
LOCATE 10, 18
LINE INPUT TFNS
IF TFNS = "" THEN 3820

3810 STS = "INSTALL THRESHOLD..."
GOSUB 9600: REM DISPLAY STATUS GOSUB 9500: REM STOP

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3820 LOCATE 10, 18
PRINT TFNS
CLOSE 6
OPEN "R", 6, TFNS, 1
FIELD 6, 1 AS FTHS
GOSUB 9500: REM STOP SYSTEM
S$ = "<P"; REM POINT TO START OF THRESHOLD AREA
DISP = 0: GOSUB 9800: REM SENDIT
TM = 4: GOSUB 9900: REM TIMER
CNT = 0: LNE = 0 S$ = "<T"
LOCATE 3, 40
BINS = 0
PRINT "Bytes Installed: ";
LOCATE 3, 57, 0
PRINT USING "###"; 0
LF = LOF(6)
FOR RP = 1 TO LF
GET 6, RP
IF INSTR("0123456789ABCDEF", FTHS) = 0 THEN 3840
S$ = SS + FTHS
CNT = CNT + 1
IF CNT < 20 THEN 3840
CNT = 0
BINS = BINS + 1 0
LOCATE 3, 57, 0
PRINT USING "###"; BINS;
DISP = 0: GOSUB 9800: REM SENDIT TM = 2: GOSUB 9900
S$ = "<T"

3840 NEXT RP
GOSUB 9650
LOCATE 3, 40
PRINT SPACES(38);
LOCATE 3, 40
PRINT "Threshold = "; TFNS;
CLOSE 6
GOTO 2000

9000 REM DO RECORDING
STS = "OPENING RECORDER FILES..."
GOSUB 9600: REM DISPLAY STATUS CMS = ""
CLOSE 1: CLOSE 2: CLOSE 3: CLOSE 4
OPEN "CQM1: 9600,N, 8,1" FOR RANDOM AS #1
OPEN "COM2:9600,N, 8,1" FOR RANDOM AS #2
FILE = FILE + 1
FILES = STRS (FILE)
FILES = MIDS(FILES, 2, 10)
LSET F$ = STRS (FILE)
PUT 5 6
OPEN "O", 3, "SN1_" + FILES + ".SON"
OPEN "O", 4, "SN2_" + FILES + ".SON"
STS = "RECORDING DATA...
GOSUB 9600: REM DISPLAY STATUS
LFS = CHRS(10)

9010 CMS = INKEYS
IF CMS <> ”" THEN 9030
IF EOF(1) THEN 9020
Nl$ = INPUTS (1, #1)
PRINT #3, N1S;
IF Nl$ <> LFS THEN 9020

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

203
PRINT #3, "[" + TIMES + "]"9020 CM$ = INKEY$
IF CM$ <> THEN 9030
IF EOF(2) THEN 9010
N2$ = INPUT$ (1, W2)
PRINT #4, N2S;
IF N2$ <> LF$ THEN 9010
PRINT #4, "[" + TIME$ + "]"
GOTO 9010

9030 CLOSE 1
CLOSE 2
CLOSE 3
CLOSE 4
GOSUB 9650: REM REMOVE DISPLAY FROM STATUS RETURN

9400 REM LINE INPUT ROUTINE
CCNT = 0 11$ = ""

9410 1$ = INPUTS(1)
IF ASC (1$) = 27 THEN RETURN
IF ASC(1$) = 13 THEN RETURN
IF ASC(I$) <> 8 THEN 9420
IF CCNT = 0 THEN 9420
LOCATE CSRLIN, POS(0) - 1
PRINT "
LOCATE CSRLIN, POS(0) - 1
CCNT = CCNT - 1
J = LEN(11$)
11$ = LEFTS(11$, J - 1)
GOTO 9410

9420 IF INSTR(" 0123456789", 1$) = 0 THEN 9410 11$ = 11$ + 1$
CCNT = CCNT + 1
PRINT 1$;
GOTO 9410

9500 REM STOP
S$ = "<S"
DISP = 0: GOSUB 9800
TM = 6: GOSUB 9900 RETURN

9600 REM DISPLAY STATUS
STS = ST$ + SPACE$(40)
STS = LEFTS(STS, 31)
LOCATE 22, 48, 0
PRINT STS;
RETURN

9650 REM REMOVE DISPLAY FROM STATUS
LOCATE 22, 48
PRINT SPACES(31);
LOCATE 22, 48
RETURN

9700 REM DRAW HORIZONTAL LINE
LOCATE Y, X
PRINT CHRS(199);
PRINT STRINGS(78, 196);

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PRINT CHRS(182);
RETURN

9800 REM SEND IT
CLOSE 1: CLOSE 2: CLOSE 3: CLOSE 4
IF DISP = 0 THEN 9810 STS = SS
DISP = 1: GOSUB 9600

9810 OPEN "COMl:9600,N,8,1" FOR RANDOM AS #1 L = LEN(SS)
FOR I = 1 TO L
PRINT #1, MIDS(SS, I, 1);
NEXT I
PRINT #1, CHRS(13);

9820 TM = 1: GOSUB 9900
IF DISP = 1 THEN GOSUB 9650
CLOSE 1

9830 RETURN
9900 REM TIMER (TM=1 FOR 1/2 SECOND DELAY)

FOR T = 1 TO TM
FOR ZZ = 1 TO 1237
NEXT ZZ
NEXT T
RETURN

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

205
1000 REM Program LOGIT.BAS (LOGIT.EXE)

REM Does logging of sonar data and displays to screen.
CLS
PRINT "OPENING RECORDER FILES... "
OPEN "C0M1:9600,N, 8,1" FOR RANDOM AS #1
OPEN "COM2:9600,N, 8,1" FOR RANDOM AS #2
HD$ = "1": REM HEAD DOWN POSITION
OPEN "R", 5, "FILENO.DAT", 10
FIELD 5, 10 AS F$
IF LOF(5) = 0 THEN LSET F$ = STR$(1): PUT 5, 1
GET 5, 1
FILE = VAL(F$)
FILES = STR$(FILE)
LG = LEN(FILES)
FILES = MID$(FILES, 2, LG - 1)
LSET FS = STRS(FILE + 1)
PUT 5, 1
CLOSE 5
OPEN "O", 3, "SN1_" + FILES + ".TXT"
OPEN "O", 4, "SN2_" + FILES + ".TXT"
LOCATE 22, 48
PRINT "RECORDING.
CLS
GOSUB 9280: REM PRINT LINE
REM Recording loop
CRS = CHRS(13)

9010 CMS = INKEYS
IF CMS = "" THEN 9015
IF CMS = "C" OR CMS = "c" THEN GOSUB 9280
IF CMS = "S" OR CMS = "s" THEN CLOSE : CHAIN "RECORD"

9015 IF EOF(1) THEN 9020
N1S = INPUTS (1, #1)
CMSS = CMSS + N1S
PRINT #3, N1S;
IF Nl$ <> CRS THEN 9020
GOSUB 9100: REM DISPLAY
CMSS = ""
PRINT #3, "[TIME]" -r TIMES : REM Time Stamp 9020 CMS = INKEYS
IF CMS = "" THEN 9025
IF CMS = "C" OR CMS = "c" THEN GOSUB 9280
IF CMS = "S" OR CMS = "s" THEN CLOSE : CHAIN "RECORD"9025 IF EOF(2) THEN 9010
N2S = INPUTS (1, #2)
PRINT #4, N2S;
IF N2S <> CRS THEN 9010
PRINT #4, "[TIME]" + TIMES : REM Time StampGOTO 9010

9030 LOCATE 22, 48
PRINT SPACES(51);
LOCATE 22, 48
RETURN

9100 REM DISPLAY
PSN = INSTR(CMS$, ">E") : REM Find starting location
IF PSN = 0 THEN RETURN : REM If no starting location exit
IF MID$ (CMSS, PSN + 2, 1) <> "1" THEN RETURN: REM Check For TXP #
HD$ = MIDS(CMSS, PSN + 3, 1)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

206
IF HD$ = "1" THEN RETURN
PRINT CHRS (7); : REM Bell Character
REM Locate event angle
ANGL = VAL (MID$ (CMSS, PSN +4, 1)) + 1
REM Range information
LO$ = MID$(CMS$, PSN + 7, 1)
MD$ = MID$(CMS$, PSN + 6, 1)
HIS = MID$(CMS$, PSN + 5, 1)
LO = INSTR ("0123456789ABCDEF", LOS) - 1
MD = INSTR("0123456789ABCDEF", MD$) - 1
HI = INSTR("0123456789ABCDEF", HIS) - 1
RANGE = HI * 256 + MD * 16 + LO
RNG = FIX (RANGE / 6) + 1 : REM Scale for screen display
IF RNG > 24 THEN RNG = 24
Y = 25 - RNG
ON ANGL GOTO 9150, 9175, 9200, 9225, 9250, 9275 : REM Ray location

9150 REM 20 DEGREES LEFT
X = 26 + FIX ((Y - 1) / 2)
LOCATE Y, X, 0 PRINT "0";
RETURN

9175 REM 12 DEGREES LEFT
X = 33 + FIX((Y - 1) / 4)
LOCATE Y, X, 0 PRINT "1";
RETURN

9200 REM 4 DEGREES LEFT
X = 38
IF Y > 12 THEN X = 39
LOCATE Y, X, 0
PRINT "2";
RETURN

9225 REM 4 DEGREES RIGHT
X = 42
IF Y > 12 THEN X = 41
LOCATE Y, X, 0
PRINT "3";RETURN

9250 REM 12 DEGREES RIGHT
X = 47 - FIX((Y - 1) / 4)
LOCATE Y, X, 0
PRINT "4";
RETURN

9275 REM 20 DEGREES RIGHT
X = 54 - FIX({Y - 1) / 2)
LOCATE Y, X, 0
PRINT "5";
RETURN

9280 REM Set up screen
P T ^

LOCATE 1, 1
PRINT "C=Clear Screen"
PRINT "S=Stop-GOTO RECORD MENU"
REM PRINT ’I' LINE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

FOR Y = 1 TO 24
LOCATE Y, 40
PRINT
NEXT Y
LOCATE 25, 20
PRINT STRING?(41, ”=");VALU = 0
FOR Y = 24 TO 1 STEP -1
LOCATE Y, 60
PRINT USING "###"; VALU; PRINT
PRINT USING "###"; VALU + 5;
VALU = VALU + 6
NEXT Y
RETURN

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

208
1000 REM Program TABLE.BAS (TABLE.EXE)

REM Program to create threshold tables under a file name
CLS
CLOSE
DIM VLU(300) : REM One value for each of 300 feet
REM Screen header
PRINT "P=Print Report > ";
P$ = INPUT$ (1)
IF P$ = "P" OR PS = "p" THEN CLS : PRINT "Print Option: ON": GOTO1003
PRINT "Print Option: OFF"

1003 IF P$ = "p" THEN PS = "P"
PRINT "E=Expo, L=Linear, R=Recorder, Q=Quit > ";
CMS = INPUTS(1)
IF CMS = "E" OR CMS = "e" THEN 1005
IF CMS = "L" OR CMS = "1" THEN 2000
IF CMS = "Q” OR CMS = "q" THEN END
IF CMS = ”R" OR CMS = "r” THEN CLOSE : CHAIN "RECORD"
GOTO 1000

1005 REM Exponential method of threshold generation
CLSPRINT "+*+**** EXPONENTIAL **★**+**"
PRINT
E = 2.7183
INPUT "ENTER INITIAL > "; IT : REM Initial value of curve
INPUT "ENTER FINAL > ”; FL : REM Final value of curve
INPUT "ENTER TIME CT > "; T : REM Time constant
INPUT "ENTER FT DELAY> DL : REM Ft of $FF (255) values at start
INPUT "ENTER FILE NM > "; FILES : REM Name of file
PRINT

1010 OPEN "0", 1, FILES
REM Calculate constants
CNTS = 300 - DL
FVAL = FL
FOR I = 1 TO 10
RANGE = IT - FLFV = RANGE * E * (-CNTS / T) + FL
REM PRINT FV
FL = FL - (FV - FVAL)
NEXT I
REM Print Threshold values to file and screen/printer
FOR I = 1 TO DL
PRINT "FF ";
IF PS = "P" THEN LPRINT "FF ";
PRINT #1, "FF ";
CNT = CNT + 1
NEXT I
FOR I = 1 TO (300 - DL)
V = RANGE * E ~ (-1 / T) + FL
V = FIX(V + .5)
H = FIX(V / 16)
L = V - H * 16
H$ = MIDS("0123456789ABCDEF", H + 1, 1)
L$ = MIDS("0123456789ABCDEF", L + 1, 1)
PRINT H$; L$; "
IF P$ = "P" THEN LPRINT H$; L$; "
PRINT #1, H$; L$; " ";
CNT = CNT + 1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IF CNT = 20 THEN PRINT : PRINT #1, GOSUB 1500: CNTNEXT I
PRINT
PRINT #1, ""
IF P$ = "P" THEN LPRINT
PRINT "Hit Any Key >
CM$ = INPUTS(1)
GOTO 1000

1500 IF P$ = "P" THEN LPRINT
RETURN

2000 REM Linear Table Generation
CLS
PRINT "******* LINEAR TABLE ********"
PRINT
INPUT "ENTER FILE NAME > n; FILES
OPEN "O", 1, FILES
PRINT
PT = 1: CV = 255

2010 INPUT "ENTER (FEET) , (ENDING VALUE) > FT, VL
IF FT > 300 THEN FT = 300
DELTA = (VL - CV) / (FT - PT)
FOR I = PT TO FT - 1
VLU(I) = FIX(CV + .5)
CV = CV + DELTA
NEXT I
VLU(FT) = FIX(CV + .5)
PT = FT
IF FT >= 300 THEN 2100
GOTO 2010

2100 REM Print values and log
PRINT
CNT = 0
FOR I = 1 TO 300
H = FIX(VLU(I) / 16)
L = VLU(I) - H * 16
H$ = MIDS("0123456789ABCDEF", H + 1, 1)
L$ = MIDS("0123456789ABCDEF", L + 1, 1)
PRINT H$; L$; "
PRINT #1, H$; L$; "
CNT = CNT + 1
IF CNT = 20 THEN PRINT : PRINT #1, CNT = 0NEXT I
PRINT
PRINT "Hit Any Key >
CMS = INPUTS(1)GOTO 1000

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPENDIX D

DATA PLOTS

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

211

100
Run on Boat Dock and Pier Complex

Time of Slice: 02:30:16

75

©©

I «
ooooooooooooooooooooo

25

-I I I L_
-50 -25 25 50

Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
cti

on

(F
ee

t)

212

100

Run on Boat Dock and Pier Complex

Time of Slice: 02:30:21

75

50 OOO OOO
O OO OOOOO OOO

o o o o o o o o o o o o
o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o

OOO OOO OOO
o o o

25

-50 -25 25 50
Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

213

100

Run on Boat Dock and Pier Complex

Time of Slice: 02:30:26

75

a>
<Dit
c
8 5002Q

1
X

OOO
o o o o o
o o o o o o o o o o
o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o
OOO OOOOO OOOOOOOOOOO

OOO OOOOOOOO
OOO

25

-50 -25 25 50
Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
ct

io
n

(F
ee

t)

214

-

Run on Boat Dock and Pier Complex

-

Time of Slice: 02:30:31

-

OOOOOO
— OOO OOOOO

OO OOOOOO
OOO OOOOO

OOOOOO
- OOO

OOOOOOO o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o

- OOOOOOO OO O OOOOOOOO
OOO OOO OOOOO

-

OOO

_1 . p J - - - - - 1 . i 1 I - 1 - — 1— J — t 1 — 1 1 — . i 1 — 1 1 _1__
-50 -25 0 25 50

Y - Direction (Feet)

»

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
ct

io
n

(F
ee

t)

215

Run on Boat Dock and Pier Complex

-

Time of Slice: 02:30:36

-

OOOOOO
o o o o o o o o o o

OOOOOOOOOOO
- OOOOOOOOOOO

o o o o o o o o o o
o o o

o o oooooo oooo
- o o o o o o o o o o o o

o o o o o o o o o o o oo o o ooooooooo ooo
o o o o o o o o o o o o o o o o o o o oOOOOOO ooooooooo

-

OOOOOO

1 _ 1 L_. _ l 1 . 1 I L _ 1 I J ----- I 1 1 1 . ! _ _ L I 1_

-50 -25 0 25 50
Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

- D
ire

ct
io

n
(F

ee
t)

216

- Run on Boat Dock and Pier Complex

-

Time of Slice: 02:30:41

i
ooooooooOOOOOO

- OOOOOOOoo
- ooo ooooooooooo ooooooooooooooooooooooooooo
- oooooooooooo ooooooooooooooooooooooOOOOOO OOOOOOOOOOOOOO

1 1 J - - - - - 1- - - - - 1_ _ _ _ _ L I_ _ _ _ _ I_ _ _ _ _ !_ _ _ _ _ I_ _ _ _ _ I_ _ _ _ _ I ' l l ' 1_ _ _ _ _ _ 1_ _ _ _ _ 1_ _ _ _ _
-50 -25 0 25 50

Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
Po

sit
io

n
(F

ee
t)

100

75

Turning - Zero Velocity

Time of Slice: 03:06:49

OOO
cn |_ O O O O O50 o o o o o

o o o o o
o o o

-25 o 25
Y - Position (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
cti

on

(F
ee

t)

100

Turning - Zero Velocity

Time of Slice: 03:06:57

75

OOO
cn i OOOOO30 *“ OOOOO

OOOOO
OOO

25

-50 -25 0 25
Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
ct

io
n

(F
ee

t)

219

Turning - Zero Velocity

-

Time of Slice: 03:07:05

-
- OOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
- OOO

:
_

-

i i . i ± 1 i l I I 1 I L . l I 1 I i l r

-50 -25 0 25 50
Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

- D
ire

ct
io

n
(F

ee
t)

220

100

Turning - Zero Velocity

Time of Slice: 03:07:13

75 h

o o o
OOOOOOO
OOOOOOOO
OOOOOOOO

OOOOOOOO
OOOOOOOO

OOOOOOO
o o o

-25
Y - Direction (Feet)

25 50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
Di

re
cti

on

(F
ee

t)

221

100

75

50

25

Turning - Zero Velocity

Time of Slice: 03:07:21

—
OOOOOO

OOOOOOOO
OOOOOOOO
OOOOOOOO

-

OOOOOO

---1---!___I___I___---‘--- '---1---1---1-----1-----1---- 1___1___1
-50 -25 25 50

Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

- D
ire

cti
on

(F

ee
t)

222

100

75 -

Rotation Demonstration - Zero Velocity

Time of Slice: 03:06:49

50 -
OOOOOOOO

o o o o o
o o o o o

o o o

25 -

_l____ I____ L. J 1 U -1 I I L.
-50 -25 25

Y - Direction (Feet)
50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
D

ire
ct

io
n

(F
ee

t)

223

100

75 -

Rotation Demonstration - Zero Velocity

Time of Slice: 03:06:57

50 -
OOOOOOOOOOOOOOOOOOOOO

25 -

-J_____I____ L. -I I I !_ -I I L_
-50 -25 25 50

Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

-
Di

re
cti

on

(F
ee

t)

224

100

75

Rotation Demonstration - Zero Velocity

Time of Slice: 03:07:05

50
OOO

OOOOO
OOOOO
OOOOO

o o o

25

1 I I L - I I I L_ -I___ I___ ' i
-50 -25 25

Y - Direction (Feet)
50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

225

100

75

Rotation Demonstration - Zero Velocity

Time of Slice: 03:07:13

<D©

a so
o o o

o o o o o
o o o o o
o o o o o

o o o

25

- J i L . ' I l_ -I ' I
-50 -25 25 50

Y - Direction (Feet)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

- D
ire

ct
io

n
(F

ee
t)

226

100

75

Rotation Demonstration - Zero Velocity

Time of Slice: 03:07:21

50
OOO

OOOOO
o o o o o
o o o o o

o o o

25

-i i ■ » _i i u
-50 -25 25

Y - Direction (Feet)
50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BIBLIOGRAPHY

[1] Agarwal, Krishna, Quote on C/C++ Computer Language
Comparisons, Professor and Chair of Computer Science Dept.,
Louisiana State University in Shreveport, January, 1999.

[2] Auran, Per G. and Malvig, Kjell E., "Clustering and Feature
Extraction in a 3D Real-Time Echo Management Framework", IEEE
Symposium on Autonomous UnderwaterVehicle Technology, Ocean
Engineering Society of the IEEE, June 2-6 1996, Monterey, CA.

[3] Auran, P. G., and Silven, 0., "Ideas for Underwater 3D Sonar
Range Sensing and Environmental Modeling", Modeling,
Identification and Control, Vol. 17, No. 1, p63-67, January
1996.

[4] Auran, Per G. and Malvig, Kjell E., "Real-time Extraction of
Connected Components in 3-D Sonar Range Images", IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[5] Auran, P.G. and Silven, 0., "Underwater Sonar Range Sensing
and 3D Image Formation", Control Engineering Practice, Vol.
4, No. 3, pp. 393-400, March 1996.

[6] Azhazha, V. G., and Shishkova, E. V., Fish Location by
Hydroacoustic Devices, Israel Program for Scientific
Translations Ltd, 1967.

[7] CGN, Drawing No. CGN1001-232 Rev. A, CGN, Sunnyvale, CA.,
1998.

[8] Clarke, John E. Hughes, "Detecting Small Seabed Targets Using
High Frequency Multibeam Sonar", Sea Technology, pp 87-90,
June 1998.

[9] Cringely, Robert X., "A Fight to the Finish" The Pulpit, PBS
Online, September 10, 1998.

[10] Cuschieri, J. M., LeBlank, L., Singer, M., Beaujean, P.P.,
"Development of a 3D Forward Look Electronically Scanned Sonar
System", Oceans’96 MTS/IEEE Conference Proceedings, pp. 778-
783.

227

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

228
[11] Davis, Paul, Quotation on C/C++ Computer Language Comparisons,

UNIX Software Developer for BMC Corporation, Houston, Texas,
January 22, 1999.

[12] Hackmann, William, Seek and Strike - Sonar, Anti-submarine
Warfare and the Royal Navy 1914-54, Her Majesty's Stationary
Office, London, England, 1984.

[13] Halliday, David and Resnick, Robert, Fundamentals of Physics
Second Edition, John Wiley and Sons, New York, NY, 1981*

[14] Hearn, Donald and Baker, Pauline, Computer Graphics, Prentice
Hall, 1986.

[15] Hsieh, W., "Atlantic Circulation", http://www.science._ubc.ca/
~ocgy308/chapl4/chl4_b.html, Earth and Ocean Sciences,
University of British Columbia, Feb. 1999.

[16] Knuth, Donald E-, The Art of Computer Programming, Volume 2 -
Seminumerical Algorithms, Addison-Wesley Publishing Company,
New York, NY, 1969.

[17] Microsoft Corporation, Microsoft MS-DOS User's Guide and
Reference, Microsoft Corporation, 1991.

[18] Motorola, Inc., Linear and Interface Integrated Circuits,
Motoroll, Inc., 1983.

[19] Motorola, Inc., M68HC11 Reference Manual, Motorola, Inc.,
1991.

[20] Motorola, Inc., MC68HC11EVBU Universal Evaluation Board User's
Manual, Motorola^ Inc., 1990.

[21] National Semiconductor Corporation, Linear Databook, National
Semiconductor Corporation, 1982.

[22] Precision Navigation, Inc., Vector Electronic Modules
Application Notes, Version 1.08, Precision Naviqation, Inc.,
r m z — --------

[23] Radio Corporation of America, RCA Power Devices, RCA
corporation, 1978.

[24] Samet, Hanan, Applications of Spatial Data Structures,
Addison-Wesley Publishing Company, New York, NY, 1990.

[25] Shankland, Stephen, "Unix Trounces Windows NT in Testing",
CNET News.com, December 1, 1998, 9:15 p.m. PT.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.science._ubc.ca/

229
[26] Shohat, Murry, "Engineers Speak Out: LINUX vs Windows NT, Part

1", Cover Story, July 1998.
[27] Smith, Ferrel C., Introduction to Communications Systems,

Third Edition, Addison Wesley Publishing Company, Inc.,
Reading MA, 1990.

[28] Spitzak, Sharon E., Caress, David W., and Miller, Stephen P.,
"Advances in Realtime Multibeam SurveyVisuaiization and
Quality Control", Oceans’98 MTS/IEEE Conference Proceedings,
Vol. 2, pp. 975-977, Sept 1996.

[29] State of Louisiana Cypress-Black Bayou Recreation and Water
Conservation District, Site No. 1 Reservoir Coutour Map, June
1972.

[30] Stevenson, Alexander, "Voxels and Volumetric Representation",
University of British Columbia, Vancouver, BC,
http://www. intergate -be. ca/sagax/ voxels/voxels, htm, Feb.
1999.

[31] Tsao, Che-Chih, and Chen, Jyhshing, "Moving Screen Projection:
A New Approach for Volumetric Three-Dimensional Display",
SPIE, Vol. 2650, pp 254-264.

[32] United States Navy, "Frontier-Based Exploration - Detecting
Frontiers ", http: //www. aic. nrl.navy.mil/-schultz/research/
frontier/detect.html, Feb. 1999.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www

VITA

Gary R. Boucher was born on April 25, 1950 and grew up in
the town of Springhill, Louisiana. He was from an early age
interested in technology and the physical sciences.
Throughout his school years he continued his interest in
science as he developed skills to support his home-made
engineering efforts. In middle school he was interested in
chemistry and in high school his primary interest was
electronics.

In 1972 he obtained a B.S. degree in Electronic
Engineering Technology from Northwestern State University in
Natchitoches, Louisiana. Four years later he earned a masters
degree in the same field of study. In graduate school he
studied math and computer programming to augment his main
course of study.

In 197 6 Boucher moved to Houston, Texas where he founded
a business, Microtex, Inc., involved in the sales, service,
and programming of early microcomputers. After four years and
much knowledge gained in this field, he returned to North
Louisiana and operated Data Tech, Inc., a small computer
consulting firm, while also managing the family clothing
business. Both businesses did well under his management
through the 1980s.

230

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

231
In 1984 Boucher took a position at Northwestern State

University, where he worked for two years teaching in the
Industrial Technology Department. In 1987, he took a position
with Louisiana State University in Shreveport. There he
currently works in the departments of Chemistry-Physics,
Computer Science, and Math. His main teaching
responsibilities are sophomore level physics, five electronics
courses, and two computer architecture courses.

A masters degree in Electrical Engineering was awarded to
Boucher in 1995 from Louisiana Tech University in Ruston,
Louisiana. Currently he is finishing the dissertation for the
Doctor of Engineering Degree from Louisiana Tech.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IMAGE EVALUATION
TEST TARGET (Q A -3)

✓

/.0

J L
* %

150mm

IIVM GE. I n c
1653 East Main Street Rochester. NY 14609 USA Phone: 716/482-0300 Fax: 716/288-5989

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 1999

	Sonar three-dimensional image formation for underwater vehicular collision avoidance
	Gary Robert Boucher
	Recommended Citation

	tmp.1564067231.pdf.urgvw

