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ABSTRACT

This study, using the dynamic programming approach, has addressed the problem of 

optimally allocating a fixed advertising budget of a monopolistic firm over a planning 

horizon comprised of n equal periods to maximize two popular measures of advertising 

performance: (1) profits related to the advertising effort (discount factor r = 0), and (2) 

present value of profits related to the advertising effort (discount factor r > 0).

Two dynamic programming models that use the modified Vidale-Wolfe model to 

represent sales response to advertising are formulated with respect to whether the time 

value of money is considered. For a planning horizon comprised of four equal time 

periods, computing routines are developed to solve two sample problems with respect to 

the dynamic programming models. Sensitivity analyses are performed to assess the 

impacts of a change in some key model parameters upon the behavior patterns of the 

optimum dynamic programming advertising policy and the associated total return.

Four alternative types of traditional advertising pulsation policies are modeled for 

the purpose of comparing their performance with the optimum advertising policy 

determined by dynamic programming. For a planning horizon comprised of four equal 

time periods, computing routines are also developed to generate total returns under these 

traditional advertising pulsation policies. Computational results show that the 

performance under the optimal advertising policy determined by dynamic programming,

iii
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as expected, is at least as good as the maximum performance among the four traditional 

advertising pulsation policies.

The plausibility of the modified Vidale-Wolfe model is empirically examined using 

the well-known Lydia Pinkham vegetable compound annual data covering the period 

from 1907 to 1960. Model parameters have been estimated using the Gauss-Newton 

algorithm related to nonlinear regression. The model selected is one corrected for first- 

order autoregressive residuals. The empirical results indicate that the model parameters 

are statistically significant and of the expected signs. More important, it is found that the 

advertising response function is concave.

iv
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CHAPTER 1

INTRODUCTION

Advertising is a key factor in a firm’s marketing efforts, and significant amounts of 

resources are usually committed to it. For example, Procter & Gamble Company’s 

yearly advertising expenditure reached a level of 3.4 billion U.S. dollars in 1997, and 

during the period from 1991 to 1997 the company spent approximately one dollar in 

advertising for every 10 dollars of net sales (Proctor & Gamble Annual Reports 1991- 

97.) At the national level, the average advertising expenditure per year in the United 

States was approximately 93 billion dollars in the 1980s, and it rose to 139 billion 

dollars in the first six years of the 1990s. In the year 1996 alone, more than 173 billion 

dollars were spent on advertising in this country (Statistical Abstracts of the United 

States 1993-97.) Accordingly, the determination of an optimal adverting policy with 

respect to a certain performance measure over time is of central importance to 

professionals as well as academicians. While numerous previous studies have explored 

sales response to advertising, two questions of particular significance stand only partially 

answered. The first is concerned with what is the best way of allocating advertising 

funds over a number of equal consecutive time periods so that a certain performance 

measure is optimized? The second question asks if the optimal advertising policy differs
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from the best policy within the cyclic class o f advertising pulsation policies frequently 

discussed in the literature, and if so, how?

The advertising pulsation class includes the following four main alternative policies 

shown in Figure 1.1.

1. Blitz Policy (BP): This is a one-pulse policy in which the firm concentrates 

all advertising efforts in a single period.

2. Advertising Pulsing Policy (APP): This is a policy in which the firm 

alternates between high and zero levels of advertising.

3. Advertising Pulsing/Maintenance Policy (APMP): This is a policy in which 

the firm alternates between high and low levels of advertising.

4. Uniform Advertising Policy (UAP): According to this policy, the firm 

advertises at some constant level.

The average sales revenue or mean awareness related to the above advertising 

pulsation policies have often been compared with each other under the assumption that 

initial sales rate or awareness is zero as in the case of new products (e.g., Mahajan and 

Muller, 1986), infinite planning horizon (e.g.. Park and Hahn, 1991), or a zero discount 

rate (e.g. Hahn an Hyun, 1991). The above simplifying assumptions have resulted in the 

development of tractable models and the production of powerful results at the expense of 

ignoring important aspects of reality that often exist in the business environment. In 

addition, the best policy within the above narrow set of pulsation policies may not 

necessarily be the optimal policy within a broader class of advertising pulsation policies.
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4

Statement o f  the Problem 

In this study, it is assumed that the advertiser sells a single product in a monopolistic 

market and that advertising is the major element of the firm’s marketing efforts. The 

monopoly assumption may well represent one or more of the following situations: (i) 

the firm is granted a patent, (ii) the product is highly differentiated, and (iii) the firm has 

a dominant market share and faces competition from a fringe of many small suppliers, 

each too small to noticeably influence the market dynamics (Mesak, 1992). The problem 

that will be addressed in this dissertation can be briefly stated as follows:

"An advertising budget, I, of a firm in a monopolistic market is to be allocated over 

n equal periods over a planning horizon of length L. What is the optimal allocation of 

the advertising appropriations over time to maximize either one of the following two 

popular performance measures:

1. Profits related to the advertising effort (discount factor r = 0), and

2. Present value of profits related to advertising (discount factor r > 0)?”

For each of the above performance measures, both zero and positive initial sales 

rates are considered in the analysis. The advertising amplitude (advertising rate) is 

assumed to be constant over a given period in the planning horizon. The advertising 

rate, however, may differ for different periods. The duration of these equal time periods 

T and the advertising budget I are assumed to have been determined exogenously. The 

above problem will be formulated as a dynamic programming problem. Sales response 

to advertising is assumed to be explained by a modified version of the Vidale-Wolfe 

(1957) model proposed by Little (1979).
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5

Objectives o f  the Study 

This study has five main objectives. They are (1) the formulation of adynamic 

programming (DP) model that would represent the problem stated above, (2) the 

development of a computer routine to solve numerically the DP model for a given set of 

parameters, (3) the performing of a sensitivity analysis to assess the impact o f changes 

in certain parameters on the performance measures, (4) the comparison of the 

performance of the DP optimal policy with the pulsation policies of BP, APP, APMP, 

and UAP that cost the same, and (5) the conducting of an empirical analysis to assess 

the plausibility of the assumed dynamic model that relates advertising to sales and to 

assess the shape of the advertising response function. It is of course expected that the 

performance related to the DP optimal advertising policy would be at least as good as the 

maximum performance among the four pulsation policies depicted in Figure 1.1. To 

achieve the objectives stated above, the solution procedure will make use of a hybrid of 

analytical and numerical analyses.

Contribution and Applicability 

To the best knowledge of the author, the study reported herein is the first attempt in 

the literature wherein DP is used to solve the finite-horizon advertising pulsation 

problem wherein both the initial sales and the discount rates are allowed to be different 

from zero. In addition, the modeling framework is significantly more flexible than the 

rigid ones already found in the literature. The intended research is thought to be 

applicable for frequently purchased unseasonal products in the mature stage of their 

product life cycle for which advertising is the main element of the marketing mix.
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Organization o f  the Dissertation 

The remaining chapters are organized as follows: Chapter 2 presents a review of the 

literature relevant to this study. Chapter 3 incorporates an analysis o f traditional 

pulsation policies. Chapter 4 contains the methodology to be employed in this study: 

the formulation of the DP model. Chapter 5 contains the solution methodology for 

solving some practical advertising pulsation problems. Chapter 6 includes a sensitivity 

analysis related to the impact of changes in the shaping parameter of the advertising 

response function and/or the value o f initial sales on the pattern of the DP optimal 

advertising policy and its associated return. In addition, the chapter incorporates a 

comparison between the DP optimal advertising policy return and its traditional 

advertising pulsation counterparts that cost the same. Chapter 7 includes a discussion of 

the findings of an empirical analysis conducted to validate the assumed dynamic 

relationship between advertising and sales together with an assessment of the shape of 

the advertising response function. Chapter 8 contains a summary of the main results, 

conclusions and implications for managerial practice and future research. In order to 

improve readability, derivation of key mathematical formulas, and documentation of 

detailed results are relegated to separate Appendices.
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CHAPTER 2

REVIEW OF RELATED LITERATURE AND 

POSITIONING OF PROPOSED RESEARCH

Relevant studies have been published with respect to three areas pertinent to this 

study: (1) studies related to advertising pulsation, (2) studies addressing the Vidale- 

Wolfe model, and (3) studies related to the applications of dynamic programming in 

marketing.

Review o f Advertising Pulsation Studies 

Whether it is best to adopt a cyclic policy of advertising or one of even spending 

that costs the same has been a fundamental research question in the literature. Several 

researchers have examined the optimal policy within the advertising pulsation class from 

various perspectives. Nerlove and Arrow (1962) and Sethi (1973, 1977) argued that a 

one-time pulse, followed by constant advertising in subsequent periods, constitutes the 

optimal policy under certain circumstances. Gould (1970) and Jacquemin (1973) 

illustrated that the optimal policy leads to a unique, stable, steady-state level of constant 

advertising spending. Sasieni (1971) found that, for a general class of sales response 

models incorporating a concave advertising response function, a cyclic advertising 

policy can never be superior, in the long run, to a uniform policy of advertising 

spending. Mahajan and Muller (1986) and Sasieni (1989) provided normative guidelines

7
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s

as to the number and timing of successive exposures in a given time period in the 

presence of an S-shaped advertising response function. After formulating the market 

share response to advertising as a first-order Markov process, Horsky (1977) found that 

the optimal policy consists of an advertising pulse to reach the optimal market share and 

constant advertising spending in the subsequent periods. Based on modeling Haley’s 

(1978) wearout phenomenon, Simon (1982) and later Mesak (1992) found that an 

advertising pulsing policy is optimal under either a constrained or unconstrained 

advertising budget. Mesak (1985) derived the conditions under which an advertising 

pulsing policy dominates a uniform advertising policy for both stationary and 

nonstationary markets. Hahn and Hyun (1991) analyzed the effect of different costs on 

the optimal advertising policy and found that a pulsing policy is optimal when the ratio 

of pulsation costs to fixed advertising costs is sufficiently large. Desai and Gupta (1996) 

employed a discrete-time Markov decision model to obtain optimal control limit policies 

and concluded that as the high-level advertising cost increases, pulsing becomes optimal. 

Feinberg (1992) found that a pulsation policy (other than chattering) is optimal if there is 

a gradual build-up in advertising goodwill in the presence of a convex advertising 

response function. Mesak and Darrat (1992) compared five alternative advertising 

policies that belong to the advertising pulsation class using a modified Vidale-Wolfe 

model (to be discussed shortly) and considered the impact of the shape of the 

advertising response function on the optimal policy. They found that for a concave or 

linear advertising response function, a policy of even spending is optimal, whereas for a 

convex response function, the best advertising policy is one of pulsing.
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The above literature review suggests that the shape o f the advertising response 

function plays an important role in determining the optimal advertising policy. To arrive 

at the optimal policy, researchers have mainly pursued one of the following two 

alternative methodologies: (1) proposing a few alternative advertising pulsation policies 

that cost the same and comparing their effectiveness with respect to a certain 

performance measure (e.g., Mahajan and Muller 1986, Mesak and Darrat 1992) or (2) 

optimizing a certain measure of performance using optimal control methods (e.g., 

Sasieni 1971, 1989). It appears that because of the rigidity of media, a certain 

advertising level must be applied for a certain time period. Therefore, the former 

approach seems to be more applicable in practice than the latter. The first approach 

employed in the current literature, however, suffers from a rigidity in its modeling 

framework and the limited number of advertising pulsation policies investigated. This 

dissertation will mitigate these shortcomings by allowing the modeling framework to be 

more flexible and by enlarging the number of alternative advertising pulsation policies 

considered using dynamic programming. Table 2.1 is self-explanatory and compares 

the proposed dissertation with the closely related studies of Mahajan and Muller (1986) 

and Mesak and Darrat (1992) along several dimensions.

Review o f the Vidale-Wolfe Model

The Vidale-Wolfe model (1957) is one of the earliest and most intensively analyzed 

mathematical models of dynamic advertising response (e.g., Mahajan and Muller 1986, 

Sasieni 1989, Mesak and Darrat 1992). For that model, the instantaneous change in the 

sales rate is given by a first-order linear differential equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.1 

Comparison of Three Inquiries

10

Factor \ Study Mahajan and Muller 
(1986)

Mesak and Darrat 
(1992)

Proposed Dissertation

Model Employed Modified Vidale- 
Wofle model

Modified Vidale- 
Wofle model

Modified Vidale- 
Wofle model

Shape o f  Advertising 
Response Function 

Considered
S-Shaped Concave, linear, 

and convex
Concave, linear, 

and convex

Decision Variable Advertising Advertising Advertising

Market Structure Monopoly Monopoly Monopoly

Modeling Framework
Equal periods of 

alternating high and 
low advertising rates

Equal periods of 
alternating high and 
low advertising rates

Arbitrary levels o f 
advertising rates over 

equal time periods

Planning Horizon Finite Infinite Finite

Solution Concept Dominance concept of 
Game Theory

Dominance concept o f 
Game Theory

Deterministic
Dynamic

Programming

Performance Measure Average undiscounted 
awareness

Average undiscounted 
sales revenues

Average undiscounted 
and present value of 

discounted sales 
revenues

Initial Conditions Zero initial awareness Non-negative initial 
sales rate

Non-negative initial 
sales rate
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dS /  dt = (p  /  m ) x ( m - S ) -  aS. (2.1)

where S = sales rate ($/unit time), x = advertising rate ($/unit time), p = response 

constant, a = decay constant, and m = saturation sales. The advertising response 

function for the Vidale-Wolfe model is linear given by f(x) = (p/m)x. A modified 

version of the Vidale-Wolfe model has been proposed by Little (1979) for which fix) 

takes on a power function of the form

f ( x )  = bxd\  (2.2)

where b = measure of advertising effectiveness (Krishnan and Gupta, 1967). 8 = measure 

of the degree of convexity (concavity) of the advertising response function (Little, 1979). 

The function (2.2) is concave for 0 < 8 < I, linear for 8 = 1, and convex for 8 > 1. By 

using the more general form for fix) instead of (p/m)x, the modified version of the 

Vidale-Wolfe model takes the general form

dS /  dt = f ( x ) ( m - S ) - a S .  (2.3)

The steady-state sales response S(x) related to a constant level of advertising spending x 

is derived through setting dS/dt = 0. and solving equation (2.3) for S to obtain

S(x)  = mf(x)  /  (a + f ( x ) ) .  (2.4)

It is noted here that the steady-state sales response (2.4) is concave if fix) is linear or 

concave (that is 0 < 8 < I) whereas it is S-shaped if fix) is convex (that is 8 > I). Using 

(2.4), it can be easily shown that (2.3) may be rewritten as

dS /  dt = <f>(x )[S ( x ) - S J ,  (2.5)

where,

<p(x) = a + f ( x ) .  (2.6)
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The modified Vidale-Wolfe model has been used extensively in analyzing pulsation 

policies in monopolistic markets (e.g., Mahajan and Muller 1986; Sasieni 1989) and 

thoroughly analyzed in the marketing literature (e.g., Feichtinger et al. 1994). Mesak 

and Darrat (1992) provided empirical support for the modified Vidale-Wolfe model and 

offered a procedure based on OLS for assessing the shape of an advertising response 

function. Using the well-known Lydia Pinkham annual data, this dissertation will 

employ a nonlinear regression procedure to estimate and identify the shape of the 

advertising response function in the modified Vidale-Wolfe model.

Review o f  Dynamic Programming 
Applications in Marketing

Dynamic programming (DP) is a mathematical approach designed primarily to 

improve computational efficiency by decomposing a large problem into smaller, and 

hence computationally simpler, subproblems. Dynamic programming typically solves 

the problem in stages, with each stage involving a few decision variables and usually 

one state variable normally defined to reflect the status o f the constraints that bind all 

the stages together. The name dynamic programming probably evolved because of its 

use with applications involving decision-making over time. However, other situations in 

which time is not a factor are also solved by DP. For this reason a more apt name may 

be multistage programming, since the procedure typically determines the solution in 

stages (Taha, 1992). Notable studies that have used DP in solving problems related to 

different areas in marketing are briefly reviewed below.
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Marketing-Production Joint 
Decision Making

Thomas (1974) formulated a stochastic DP model to minimize the expected 

discounted cost of an inventory control system over a planning horizon of n periods. 

The decision variables for each period (stage) were the unit price and the quantity of the 

product to be produced. The state variable was the inventory level at the beginning of 

the period.

Lodish (1980) used a stochastic DP model to maximize the present value of profits 

over a multiperiod planning horizon. For each period (stage), the decision variables 

were the price to be charged and the units of the product to be added to the inventory 

during the period. The single-state variable stood for the inventory level at the 

beginning of the period.

Stokes et al. (1997) developed a scholastic DP model which captures the existence 

of a value-added, serial-stage production process with intra- and interyear dynamics of 

multiple nursery crops. The objective was to maximize the expected value of after-tax 

cash flows associated with the sale of two different categories of products (one- and 

three-gallon container-grown nursery crops.) The decision variable at either one of the 

two stages (Fall and Spring) represented the amount of one-gallon production to be 

marketed. A unique feature of this two-stage DP model was that the state variables 

varied by stages. The state variables used to characterize the system were acres of non- 

salable one-gallon production, acres of salable one-gallon production, acres of salable 

three-gallon production, carryover business loss, and Spring net income. For the Fall 

stage, the first three and the fifth state variables defined the status of the system, whereas
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for the Spring stage, the system was characterized by the first four stage variables 

mentioned above.

Market Segmentation

Blattberg et al. (1978) formulated a mathematical programming model of 

households’ purchasing processes to identify household characteristics that should affect 

deal proneness. Key factors influencing the household’s purchasing decisions were 

identified as transaction costs, holding costs, stockout costs, and price. Household 

characteristics were then related to these cost parameters to identify households likely to 

be deal prone. The problem was solved using a probabilistic DP approach for which the 

household aims at minimizing the expected product costs over a finite time horizon. In 

each time period (stage), the decision variables were the quantities of the product 

purchased from different stores. The state variable was the inventory on hand at the 

beginning of the period.

Pricing

Robinson and Lakhani (1975) proposed a deterministic DP model for maximizing 

the present value of profits of a new product produced and sold by a monopolistic firm 

over a planning horizon of 20 periods. For each period (stage), the decision variable 

represented the price to be set, whereas the state variable was the cumulative sales 

volume at the beginning of the period.

Ladany (1996) applied a deterministic DP model to maximize the daily profits of a 

hotel. Each market segment for which a certain price per room prevails was treated as a 

stage. For each stage, the decision variable was referred to as the number of rooms to be
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assigned to the segment. The single state variable considered was the number of rooms 

available for assignment.

Distribution

Zufryden (1986) employed a deterministic DP model to allocate a certain available 

integer shelf-space units among a set of products in a supermarket with the objective of 

maximizing net profits. Within the DP formulation, each product was considered as a 

stage. For each stage, the decision variable was the space to be allocated to the product. 

The related state variable was the amount of space available for allocation.

Boronico and Bland (1996) used a stochastic DP model to explore the issue of 

procuring adequate stocks of seasonal food products. More specifically, their study 

focused on a distribution system which typifies operations for a major food producer 

where the major retail outlets must determine optimal order quantities for products 

received from vendors, subject to uncertainty in the distribution channel. Demand was 

assumed to be known while the receipt quantity from the supplier was probabilistic. The 

overall objective was to minimize the total expected delivery and holding costs over a 

multiperiod planning horizon. The decision variable for each stage (period) was defined 

as the lot size ordered. The state variable was the equilibrium quantity of the product at 

which the quantity received from vendors equals that demanded by customers.

Salesforce

A mathematical model was developed by Beswick (1977), for allocating selling 

efforts and setting sales force size, which explicitly takes into account interactions with 

territorial design, forecasting, and performance evaluation. The objective was defined as
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maximizing the total profits of the firm. The problem was cast into a deterministic DP 

formulation where all the control units (individual customers) were treated as a sequence 

of interrelated stages. The decision variable at each stage was referred to as the selling 

time to be allocated to the corresponding control unit, whereas the single state variable 

considered represented the selling time available for allocation.

Gaucherand et al. (1995) modeled the situation where the productivity of members 

of a salesforce was evaluated in each period over a finite time horizon. Those members 

with a performance measure (accumulated expected sales) lower than a threshold value 

were replaced by new members. The firm’s objective was to maximize the average 

productivity by choosing an optimal threshold value for each period of evaluation. A 

stochastic DP model was developed where each period was defined to be a stage. At 

each stage, the decision variable was the threshold value, while the state variable was 

referred to as the accumulated sales level achieved by the salesperson.

Consumer behavior

Gonul and Srinivasan (1996). from the perspective of a household, developed a 

stochastic DP model with the objective of minimizing the expected expenditures over a 

finite multiperiod time horizon. For each period (stage), the decision variable was 

binary: to buy or not to buy. The state vector at each stage was composed of the 

inventory level and the coupons available from preceding stages.
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Advertising

Little and Lodish (1966) introduced a mathematical programming model for media 

selection which takes into account market segmentation, sales potential, and forgetting 

patterns of the audience. The objective of maximizing the total sales over the planning 

horizon was subject to a set of constraints, where the exposure value constraints 

contained probabilistic components. The problem was cast into a DP formulation, where 

each stage was referred to as a particular medium. The decision variable at each stage 

represented the number of advertising insertions, and the state variable considered stood 

for the budget available for allocation.

Zufryden (1974) employed DP in optimizing the reach of local radio advertising. A 

mathematical programming model was put forward where the objective was to minimize 

the uncovered audience proportion subject to a budget constraint. The model was 

translated into a deterministic DP model where each decision stage corresponded to a 

radio station. At each stage, the decision variable stood for the number of spots to be 

inserted in the corresponding station, and the state variable was defined as the budget 

available for allocation.

A nonlinear integer programming model was developed by Zufryden (1975) to 

explore the impact of the dual objectives of maximizing media reach and frequency in 

relation to a problem of media selection. The problem was cast into a deterministic DP 

formulation where each stage corresponded to a radio station. The decision variable at 

each stage was referred to as the number of spots to be inserted in the corresponding 

station, and the state vector at each stage contained two elements: the budget available 

at the end of the current stage and the frequency resulting from the current decision.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

As discussed above, both stochastic and deterministic DP models have been applied 

to solve a variety of decision problems in marketing. It is observed that deterministic 

dynamic programming formulations in the current literature mainly contain a single state 

variable. However, to the author’s knowledge, the use of dynamic programming to solve 

the advertising pulsation problem has not yet been addressed in the literature. This 

dissertation applies a two-state deterministic dynamic programming approach to solve 

the advertising pulsation problem. This approach will be illustrated in more details in 

Chapter 4. Analysis of traditional advertising pulsation policies is discussed next.
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CHAPTER 3

ANALYSIS OF TRADITIONAL ADVERTISING 

PULSATION POLICIES

In this chapter, four traditional alternative advertising policies that belong to the 

advertising pulsation class are analyzed using the modified version of the Vidale-Wolfe 

model introduced in Chapter 2. These are the BP, APMP, APP, and (JAP policies 

depicted schematically in Figure 1.1. First, we discuss the response of sales to 

rectangular advertising pulses. Performance measures of both BP and APMP are then 

analytically derived in two cases: (I) the time value of money is not considered (r = 0) 

and (2) the time value of money is taken into account (r > 0). where r stands for the 

discount factor. Finally, two advertising policy parameters are defined and discussed for 

the characterization of APMP. APP. and UAP.

Sales Response to Advertising 

The finite planning horizon under consideration consists of n equal time periods and 

the length of each period equals T (see Figure 3.1.) Beginning from the starting point of 

the planning horizon, the n periods are successively denoted as period i (i = 1 ,2 ,.... n). 

Since the firm is not going out of business by the end of the nth period, the infinite 

period immediately following the planning horizon must also be considered to assess the

19
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effect of advertising spending in previous periods. For convenience of discussion, this 

infinite period is denoted as period n+1. For comparison purposes only, it is assumed 

that the firm does not advertise after time L = nT. That is, the sales rate level at time nT 

decays indefinitely according to equations (2.2) and (2.3) with f(x) = 0 corresponding to 

x = 0 (for further discussion on end effects, see Little and Lodish 1969.)

At first, the following variables are defined:

Si = the sales rate at the beginning of period i (i = 1,2,..., n+l);

I = the total advertising budget if r = 0, or the present value of the total 

advertising budget if r > 0.

Now the sales rate curve q;(t) in Figure 3.1 over period i (i = I, 2 .  n) in which

advertising funds are assumed to be evenly spent at rate Xj is considered. Upon solving 

the differential equation of the modified version of the Vidale-Wolfe model (Equation 

(2.5)), the sales rate curve over this time period takes the following form:

Sj = the sales rate at the beginning of period i;

x , = the rate of advertising spending over period i (If the time value of money is 

considered, Xj stands for the advertising rate measured in current dollars); 

S(Xj) = the steady state sales rate defined by (2.4);

<(>(xj) is defined by (2.6).

+ S ( x , ) ( l - e

(i-l)T < t <iT, (3.1)

where.
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Referring to Figure 1.1, since it is assumed that the firm does not advertise in period 

n+1, the sales rate decreases exponentially as time elapses, as a result of solving (2.5) 

when x = 0. The sales rate curve for this case takes on the form shown below:

= t> nT.  (3.2)

Equation (3.2) may also be derived from (3.1) by replacing Sj with Sn+i and substituting 

S(Xn+i = 0) = 0. It is worth mentioning that for a set of alternative advertising policies 

that cost the same, regardless of whether they are BP, APMP, APP. or UAP, maximizing 

sales revenue (or its present value) is equivalent to maximizing profit (or its present 

value), given that the ratio of cost (other than advertising expenditure) to sales revenue is 

constant over time and independent of these policies (See Mesak 1992 for a detailed 

discussion.)

Blitz Policy (BP)

It has been mentioned in Chapter 1 that the firm, by adopting a blitz policy, 

concentrates its advertising efforts only in a single time period over the planning 

horizon. Without loss in generality, assume that the single advertising pulse coincides 

with period i where i e { l. 2, ..., n}, as shown in Figure 3.2. Governed by (3.1) and

(3.2), the sales rate curves depicted in Figure 3.2 take the following forms:

q ,( t)  = S,e-m , 0 <t < ( i -  l ) T ; (3.3)

q3(t)  = S,e-*(x><l-('-l)T> + S ( x ) ( l - e -* 'XJ,,-<‘-,,T>),

(i-l)T <t <iT; (3.4)

q3(t)  = Sl+le-a(,-'r>. iT <t <<x>; (3.5)
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where, Si is given, Si = qi((i-l)T), SH-i=q2 (iT), and x is the rate of advertising spending 

(measured in current dollars if r > 0) over period i.

The performance measure of an advertising policy when the time value of money is 

not considered is different from that when the time value is taken into account. The two 

cases are separately addressed in the ensuing discussions.

Case 1: r = 0

In this case, the time value of money is not considered, and the performance of 

advertising is measured by the sales revenue over the planning horizon and the 

succeeding infinite period given by

( i - I ) T  T  «

R = \q ,( t)d t+  \q 2(t)dt+ \q 3(t)dt. (3.6)
0 0 0

Notice that in the above formulations a change in the time variable has been employed,

so that time is set equal to zero at the beginning of each time period (from here on, this 

method of changing the time variable will be used unless stated otherwise.) Substituting 

qi(t), q2 (t) and q3(t) from (3.3) —  (3.5) produces, after carrying out the integrations.

R = — (I - e -°~l>aT)+ S‘ J  S(X) (I -  e~*<x>T) + S(x)T  + — , (3.7)
a f ( x )  a

where the advertising spending over period i equals the advertising budget available at

the beginning of the planning horizon, or xT = I. as the advertising funds are

exhaustively committed in this single period.
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Case 2: r > 0

When the time value of money is taken into consideration, the performance of 

advertising is measured by the present value of sales revenue over the planning horizon 

and the succeeding infinite period. In this case, R is given by

f i - h T  T  »

R=  J  ql (t)e-rldt + e-(,- l)rT \q 2(t)e-r,d t+ e-,rT \q 3(t)e-r‘dt. (3.8)
0 0 0

Substituting for qi(t) (i = 1, 2, 3) from (3.3) —  (3.5) and carrying out the integrations

yield

R  _  S l. , l  _  - f i - I K a + r / T  . - ( , - H r T  f f j V / /  _  e ~ f # x i + r , T  ,
a + r 1 0(x) + r

+ ̂ - ( l - e ~ rT)] + e-,rT ^ d~. (3.9)
r a + r

As shown in Appendix A, the relationship between the current and the present values of

advertising spending over period i (note that the Blitz policy requires all the advertising

efforts to be concentrated within a single time period only) is portrayed by

X = e -° - ,)rT( l - e - rT ) L  (3J0)

where x is the advertising rate measured in current value, whereas I stands for the

present value of the advertising budget available for allocation at time t = 0 (note that 

this budget is exhaustively spent over period i.)
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Advertising Pulsing/Maintenance Policy (APMP)

APMP is an advertising policy in which the firm alternates between two different 

levels of advertising spending as shown in Figure 3.3. As in the discussion of BP, the 

two cases where r = 0 and r > 0 are also addressed with respect to APMP. The n-period 

planning horizon may be composed of an even or odd number of equal time periods. 

These two situations are considered in both cases as well.

Case 1: r = 0

The time value of money is not considered in this case, and the performance of 

advertising efforts is measured by the sales revenue generated over the planning horizon 

and the ensuing infinite time period. For illustrative purposes, let us consider the 

following terms:

X| = the rate of advertising spending over period i given that i is an odd integer;

X2 = the rate of advertising spending over period i given that i is an even integer; 

where i = 1,2,.... n. Derived from the solution of (2.5), the sales rate curve over period i 

is given by

q,(t)  = S,e-« x‘-" + S(x, )(1 -  e~«-x>" J ,

0 < t <T  if i is odd; (3.11) 

q,(t) = S,e~«X2H + S(.x, ) ( I - e -« x2" ) .

0 <  t <T  if i is even; (3.12)

1 = /, 2,..., n;

qn+l( 0  = Sn+le-at, t >0; (3.13)
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where Si is given and Sj = qi-i(T) for i = 2, 3 , n+l .  It is noted that the sales rate at the 

beginning of each period (except period 1) is determined by the rate of advertising 

spending in the preceding period together with its beginning sales rate.

The following two situations are considered:

Situation A: 2m = n. The planning horizon is composed of an even number of 

equal time periods in this situation (note that m is a positive integer.) The sales revenue 

over the planning horizon and the ensuing infinite time period is determined by

m  T  T  co

R = H f  \<l2k-l(t )d t + \ Cl2k( t )d t ] +  U n +l ( n d t .  (3.14)
k=l 0 0 0

Substituting q2 k-i(t), q2k(t), and qn+i(t) from (3.11) —  (3.13) and carrying out the 

integrations, it can be shown that (3.14) may be rewritten as

* = £  15-*-' ~ S fx > \ i - e - « ’i ‘TJ + s a -  S fx :
S

s„+/
+ [S(XjJ + S ( x2) ] T }  +  —— . (3.15)

The advertising expenditures over the entire planning horizon altogether are constrained 

by the equation m(xi + X2 )T = I where I is the advertising budget available for allocation 

at the beginning of the planning horizon.

Situation B: 2m+l = n. In this situation, the planning horizon comprises an 

odd number of equal time periods and the total sales revenue now is given by

m r  r T

* = Z [ J ? 2 * - |( 0 * +  f<?2* (')<*]+ J?2«*.(0<*+ jV „ . |(0 ^  (3.16)
4 = 1 0 0 0 0
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where all the integrations are the same as those included in (3.15) except

T

\q  2^ i ( t ) d t  = S[X ,)d  -e -* (x' jT ) + S(x, )T. (3.17)

The advertising expenditures over the entire planning horizon are constrained by 

[(m+l)xi + 0 1 x2 ] T = I.

Case 2: r > 0

Since the time value of money is now taken into consideration, the performance of 

advertising is measured by the present value of the sales revenue generated over periods 

1 through n+ l. For the purpose of illustration, let us consider the following terms: 

yi = the present value of advertising spending over period i given that i is odd; 

yi = the present value of advertising spending over period i given that i is even;

Xi = the rate of advertising spending measured in current dollars over period i for 

i = 1. 2,..., n.

The relationship between the advertising rate in current value and the present value 

of adverting spending over each period of the planning horizon is depicted by

r
X> = e - ( l - l , r T ( 1 _ e - r T  ^  l  ’ S1̂ 11 1 >S °ddi (3-18)

r
x< = e -n-nrY( f _ e - r f ) y :  • §lven that 1 is even: (3-19)

i = /. 2 n.

The two alternative levels of advertising spending inherent in APMP here are stated in 

terms of their present values. The present value of the total sales revenue is given by
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g  = £ e-* -W  j q ( l )e -„dl + e-„T l qn l ( l)e -r>d, , (3.20)
< = /  0  0

where the sales rate curves q;(t) (i = 1 , 2 , n) are governed by (3.1) and qn̂ -i(t) by (3.2). 

Substituting for qi(t) (i = 1,2,..., n+l) and carrying out the integrations in (3.20) yield

R = Y e - “ - l>rT [ - ' - ~ S( Xt ) ( l  -  e -(*(x' )+n T) +  ( I - e - rT)]
,=/ <t>(xt) + r r

+  e - n r T ^ n ± L  ( 3 2 1 )
a + r

where the advertising rate stated in current dollars, Xj, depending on whether i is odd or 

even, is determined by (3.18) or (3.19).

In the situation where the planning horizon consists of an even number of equal time 

periods (2m = n). the present values of advertising spending over the entire horizon are 

restricted by the budget constraint m(yi + V2 ) = I, which indirectly confines the current 

value of the advertising rate Xj (i = 1, 2, ..., n) through (3.18) and (3.19). When the 

planning horizon is composed of an odd number of equal time periods (2m+l = n), the 

present values of advertising spending as a whole are confined by (m+l)yi + my2 = I, 

which, along with (3.18) and (3.19), restricts the sequence of Xj (i = 1, 2,..., n).

Advertising Policy Parameters 

Under APMP, the firm alternates between high and low levels of advertising 

spending over the planning horizon, and two different patterns of this policy can be 

identified: (1) the high level of advertising starts first, and (2) the low level of

advertising starts first. For illustrative purposes, these two policy patterns are denoted as 

APMP-I and APMP-II respectively. It will be shown shortly that both APMP-I and
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APMP-n are closely related to APP and UAP. Mesak and Darrat (1992) introduced the

concept of policy sets and treated APMP, APP, and UAP each as such a set. In their

study, each policy set is characterized by a certain value (or a range o f values) of a policy

parameter. Following their approach, two advertising policy parameters are defined

next, both of which account for APMP, APP, and UAP.

For convenience of exposition, let us restate the notations considered previously:

Xi = the rate of advertising spending over period i given that i is odd;

X2 = the rate of advertising spending over period i given that i is even;

yi = the present value of advertising spending over period i given that i is odd;

y2 = the present value of advertising spending over period i given that i is even.

Definition. The advertising policy parameter of APMP-I, A.|, is a numerical value such 
that

1. A., e  [0,1];

2. Dj = (2-A.OD and Di = A.iD, where Dj (i =1, 2) stands for X* given r = 0 and y* 

given r > 0 and D is a common factor greater than zero. D stands for the mean 

advertising rate over the planning horizon for r = 0, or the average present 

value of advertising expenditures in a period of length T over the planning 

horizon for r > 0.

3. the relevant budget constraint is maintained.

The advertising policy parameter of APMP-H, A2, can be similarly defined by 

letting Di = A.2 D and D2 = (2-A.2)D.
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The common factor D assumes various specifications under different conditions. It 

can be shown that given APMP-I,

1. D = I/(2mT), when 2m = n and r = 0.

2. D = I/{[2(m+l)- Xi]T}, when 2m+l = n and r = 0.

3. D = I/(2m), when 2m = n and r > 0.

4. D = I/[2(m+l)- A.|], when 2m+l = n and r > 0.

It can be similarly verified that, under APMP-II,

1. D = I/(2mT), when 2m = n and r = 0.

2. D = I/[(2m+A.2)T], when 2m+l = n and r = 0.

3. D = I/(2m), when 2m = n and r > 0.

4. D = I/(2m+A.2), when 2m+l = n and r > 0.

The three different advertising policies, APMP, APP, and UAP, are characterized by 

different values of the policy parameters. More specifically,

1. When A.i s  (0,1). Di = (2-A.i)D and Dt = k|D. indicating an APMP-I policy.

2. When >-i = 0, D| = 2D and Dt = 0. indicating an APP-I policy.

3. When A.| = 1. Di = D2 = D, indicating a UAP policy.

4. When X.2 e (0,1), Di = Â D and D2  = (2-A.2)D, indicating an APMP-II policy.

5. When A.2  = 0, Di = 0 and D2 = 2D, indicating an APP-II policy.

6. When X2  = 1, Di = D2 = D, indicating a UAP policy.

Having shed light on the performance of traditional advertising pulsation policies, 

Dynamic Programming (DP) is introduced in the next chapter to solve two specific 

maximization problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

FORMULATION OF THE DYNAMIC 

PROGRAMMING MODELS

The primary objective of this study is to determine the optimal advertising policy 

over a finite planning horizon within an enlarged advertising pulsation policy class to 

maximize either the total or the present value of profits for a given budget available at 

the beginning of the planning horizon. This chapter consists of two major topics: (1) 

the formulation of the mathematical programming models of two maximization 

problems, and (2) the introduction of a dynamic programming approach to solve the 

above formulated problems.

Formulation o f the Maximization Problems 

Here advertising policies within an enlarged pulsation class are considered to have a 

finite planning horizon of n equal time periods. The advertising rate is assumed to be 

constant over each period. Unlike the BP, APMP, APP, and UAP policies examined in 

Chapter 3, however, the advertising rate is allowed to vary from period to period. Figure

3.1 delineates schematically sales response to an advertising policy within the enlarged 

pulsation class. Clearly, the traditional advertising pulsation policies shown in Figure

1.1 and discussed in Chapter 3 are special cases o f the advertising policy depicted in

33
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Figure 3.1. For convenience of illustration, in this regard, let us restate the sales rate 

curve over period i for i = 1,2,..., n+l depic:ed in Figure 3.1 as follows:

where Xi = the advertising rate (measured in current dollars if the time value of money is 

considered) during period i.

It is worth mentioning at this point that qj(t) does not only depend on x„ but also on

the advertising rates in the previous time periods. In other words, the advertising rate in 

a given period influences the sales rate in the same period together with the sales rates in 

subsequent periods. Accordingly, for an advertising budget I available at time t = 0. the 

maximization problem for which the time value of money is not considered, MP1, and 

the maximization problem for which the time value of money is considered, MP2. may 

be formulated as follows:

MPl: Find x i \  x2’.......x„* to

ql( t)  = Sie-*(Xi)‘ + S ( x , ) ( l - e - * (XiJt); 0 < t < T r i = l,2 n ; (4.1)

(4.2)

1=1 0 0

s.t.

n

2 > , r = /

and x, > 0, / = 1,2,..., n. (4.3)

MP2: Find yi \  y2\  ..., yn* to

n T x
M a x ^ e  (‘ ,JrT \q ,( t)e  rtdt+e nrT \q n+,(t)e  r,dt

0 0
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S .t.
n

Y . y , = i
i=l

and y, > 0. / = 1,2__   n. (4.4)

It is noticed in the above formulations that the change in the time variable 

introduced in Chapter 3 is used: that is, the time variable is set equal to zero at the 

beginning of each time period. Confirming earlier ideas, it is reiterated here that since 

all alternative feasible advertising policies cost the same from (4.3) and (4.4), 

maximizing profit (or its present value) is equivalent to maximizing sales revenue (or its 

present value), provided that the ratio of cost (other than advertising expenditure) to 

sales revenue is constant over time and independent of the alternative advertising 

policies. In addition, it should be noted that in MP2. the decision variables y, (i = 1.2. 

.... n) stand for the present value of advertising spending over period i. If the current

values of advertising rates over period i (i = I. 2 n) are denoted as x„ then the

relationship between yj and Xj is dictated by

T

y t = e -<‘-i>'T \ x , e - r,dt = e - (‘- ,,rT( I - e - rT) X ' / r .  (4.5)
o

Once the solution to MP2, y / ,  y2 * ,..., yn\  are found, the optimum series of the current 

values of advertising rates, Xi*, X2 *. .... x„*, can be determined through equation (4.5). 

The optimal advertising policy, therefore, may be stated by either the series of 

advertising rates measured in current dollars for different periods or the series of 

associated present-value advertising expenditures for different periods.

The complex nonlinear structure of the objective functions of the mathematical 

programming models, MP1 and MP2, are tremendously difficult to model and solve
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using ordinary nonlinear programming methods such as those based on the well-known 

Karush-Kuhn-Tucker conditions and gradient search, since the equations related to the 

KKT conditions are difficult, if not impossible, to solve analytically for the decision 

variables. Thanks to the principle of decomposition inherent in dynamic programming, 

it appears to provide an effective solution technique that meets the requirements of the 

maximization problems. As Zufryden (1986) pointed out, one of the advantages of 

dynamic programming is that it can easily handle arbitrary objective function 

specifications, as long as they are separable in the decision variables. For solution 

purposes, each of the mathematical programming problems MP1 and MP2 can be cast in 

a dynamic programming formulation. The dynamic programming formulation of 

problem MP1 is discussed first.

The Dynamic Programming Model for MP1 

In general, the components of a dynamic programming model are (1) the sequence 

of decision stages, (2) input state vector, (3) decision vector, (4) transition function, (5) 

stage return, and (6) recursive relationship. With respect to the optimization problem of 

MP1 at hand, these components, shown in Figure 4.1, are identified and discussed 

below.

The Sequence o f Decision Stages

The entire planning horizon is divided into a sequence of consecutive decision 

stages and each time period stands for a stage. The stages are indexed corresponding to 

the indices of the time periods defined earlier in Chapter 3. The n+l stages provide a
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X  i X  j X n+ !

5m A
Stage n+1 

(period n+1)
Stage i 

(period i)
Stage I 

(period 1)

Rl R-i Rn+l

Figure 4.1

The Components of the Dynamic Programming Model for MP1
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framework to decompose the problem represented by MP1 into a sequence of smaller 

and simpler subproblems.

The State Vector (£;)

Each stage has an input state vector as well as an output vector with which it is 

associated. The input state vector of stage i ( i = I, 2, ..., n+I), 4« , contains two 

elements, the sales rate. Si, and the advertising budget available, h, at the beginning of 

the stage. Obviously, as shown in Figure 5, each stage’s output state vector serves as the 

input state vector to the next stage. The state vectors contain information about the 

conditions of the system at various stages, and convey the variation of these conditions 

from one stage to the next. In particular, §n+i stands for the output state vector of the last 

stage of the planning horizon, which contains the sales rate and zero advertising budget 

available at the end of the planning horizon (notice that the total advertising budget. I, 

must be exhausted over the planning horizon.) The input state vector for stage i. ^ , is a 

key factor in determining the return associated with that stage.

The Decision Vector (x;)

The decision vector of each stage, in general, consists of a number of elements 

called decision variables and represents the decision alternatives available at the stage. 

Given the input state vector, each decision alternative will determine a possible value of 

the stage return (to be discussed shortly) for the particular stage. In our case, the 

decision vector of each stage contains only one decision variable, i.e., the rate of 

advertising spending in the stage, and thus, the decision vectors, x* , (i = 1.2, ..., n+1)
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reduce to scalar variables. It is noted that x„+i = 0 due to the assumption that no 

advertising occurs in period n+1. It should be also noted that all the other decision 

variables are constrained by the budget constraint depicted in (4.3).

The Transition Function

The process in a dynamic programming problem passes from stage to stage. As it 

does so, it moves through one state vector to the next. As a result of the decision

making at each stage, the transition function describes how the stages of a dynamic 

programming model are interconnected. The transition function specifies the

relationship between the output state vector of a stage to its input state vector and the 

decision made in the stage. Recalling Sj and I, to be the sales rate and the advertising 

budget available for allocation at the beginning of stage i. then the transition function 

may be expressed as follows:

£  = (4.6)

where.
6  = (S„ I / ;  = (S’,./, A.//;

Si is given;

S, = + S (x ,_ ,)(I-e -* (x- l,T) , i  = 2, 3.......*+ /; Sn. : = 0. (4.7)

((>(xt_, ) = a + f ( x ,_ , ), and 5(x(_/ ) = m f (x,_,) /  <f>(x,_,);

I, = / (given); I, = I,_, - x t_,T, i = 2, 3 n; I„./ = In. 2 = 0. (4.8)

The Stage Return (R;)

The return for stage i, Rj(4i, X j ) ,  is a function of the input state vector = (S„ Ij)T 

and the stage decision X j .  For stage n+1, for example, Rn+i is given by
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00 90
(4.9)

0 0

In general for I < i < n,

(4.10)

The Recursive Relationship

The solution of a dynamic programming problem having the characteristics 

mentioned above is based upon Bellman’s (1957) principle of optimality.

Principle o f  Optimality. An optimal policy must have the property that, regardless

of the decision made to enter a particular state, the remaining decisions must constitute 

an optimal policy for leaving that state.

To solve a dynamic programming problem, we begin by first solving a one-stage 

problem, and then we sequentially add a series of one-stage problems that are solvable 

until the overall optimum is found. Usually, this solution procedure is based on a 

backward induction process, in which the first stage analyzed is the final stage of the 

problem, and the solution o f the problem proceeds by moving back one stage at a time 

until all stages in the problem are included. The solution procedure for dynamic 

programming problems generally begins by finding the optimal policy for each state of 

the last stage of the process.

A final characteristic o f dynamic programming problems is the following. The 

solution proceeds in a fashion that identifies the optimal policy for each state with i
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stages remaining, given the optimal policy for each state with i -I stages remaining, 

using a recursive relationship. The recursive relationship for the problem at hand takes 

the form

F'(%j = Max { F,(^b x j}  subject to x,T < I; and x, > 0.
*i

The function X j )  is the value associated with the best overall policy for the 

remaining stages of the problem, given that the system is in state ^  with i stages to go 

and the decision variable x, is selected. The function F,(^, x,) is written in terms of ̂ i, 

x„ and f,;.(•). For our problem, this recursive relationship can be written as:

F*(4i) = Max { R/&  x j  + (& 0  } (4.11)
x i

subject to

XjT < h,

X; > 0.

We notice that in maximizing (4.11), ^h-i is expressed in terms of i|i and x, using the 

transition fiinctions (4.7) and (4.8). The dynamic programming model formulated above 

may be solved numerically upon discretizing the state variable related to the advertising 

budget available at the beginning of each stage, Ii.

The Dynamic Programming Model for MP2 

The dynamic programming model for MP2 can be similarly formulated by following 

the same procedure for MP1 presented above. However, several adjustments must be 

made to account for the time value of money as follows: first, the element Ij of the state 

vector now represents the present value of the advertising budget available at the
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beginning of period i. Second, the transition function links the sequence {I*} as follows:

/ ,  = / (given); /, = / , _ / - y t. t , i = 2,3 n; In+l = 0. (4.12)

Third, the recursive relationship is given by

F '(&  = Max { R /&  x j  + F;+x (& ,) } (4.11 )
xi

subject to
T

e-“- l)rT \x ,e-rtd t< I ,  
o

Xj >  0 ,

and R,(^i, Xi) is given by

r  = e - U- l >r T ( S < ] + S ( X 1l ( 1 _ e - r T ) }

tp(xt) + r r

i = 1, 2, n.

/ ( “ + r). (4.14)

Expressions (4.13) and (4.14) are derived in Appendix A.

Given the above discussion, the components of the dynamic programming model of 

MP2 are represented in exactly the same way as in Figure 4 .1, except that Xj is replaced 

in this case with y,; i = 1 , 2 ,..., n+1 .

In the next chapter, we explicitly illustrate how to implement the dynamic 

programming approach discussed in this chapter to solve problems MPl formulated in

(4.3) and MP2 formulated in (4.4).
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CHAPTER 5

ILLUSTRATIONS OF APPLICATIONS

The main objectives of this chapter are twofold: (1) illustrating how the dynamic 

programming approach discussed in Chapter 4 can be applied to solve problems MP1 

and MP2, and (2) reporting the results obtained from computing routines especially 

developed to derive numerically the DP optimal advertising policies related to the two 

problems mentioned above.

The Considered Planning Horizon 
and Model Parameters

Four-period budgeting is a common practice in the business world. A firm may 

wish to plan its advertising spending over a finite time horizon composed of four equal 

periods (e.g., quarters). The planning horizon considered in our numerical example, 

therefore, is assumed to consist of four equal time periods to reflect this situation. For 

illustrative purposes, assume a market potential of m = 1 0 0  million dollars per year, a 

decay constant a = 0.5 per year and an advertising effectiveness parameter b = 0.2. In 

addition, let us suppose that the firm would allocate exhaustively an advertising budget I 

= 4 million dollars ( I stands for the present value of the budget if the time value of 

money is considered ) over a year composed of n = 4 equal periods of duration T = 0.25 

year each.

43
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It should be emphasized here that the initial sales rate, Si, cannot exceed the market 

potential m. Therefore, for simplicity and illustration, only 10 alternative values of Si, 

smaller than the market potential, and measured in million dollars are considered in the 

numerical example. They are given by 10k; k = 0, 1, ..., 9. In addition, the alternative 

values of the convexity (concavity) parameter 5 to be investigated are given by 0.05k; k 

= I, 2, ..., 60. For the case in which the time value of money is considered, 15 

alternative values of the discount rate, r, are considered: 0 .0 Ik; k = 1 , 2 , ..., 1 2 , 1 0 0 , 

200. 300.

The domain of the state variable h , the advertising funds available at the beginning 

of stage i, is discretized as (0.05kl; k = 0, 1,..., 20} for i = 1,2, 3,4.

Formulation o f the Dynamic 
Programming Problems

Before developing computing routines to solve the problems MPI and MP2 for the 

planning horizon and model parameters specified above, the corresponding dynamic 

programming formulations are first developed.

DP Formulation for MP 1

According to (4.9) and (4.10), the return of stage i (i = 1, 2, 3,4), conditioned by the 

sales rate, S„ and the advertising funds available at the beginning of the stage, I,, is a 

function of the advertising rate over the stage, X j ,  and can be explicitly expressed as

RXStJ l ,x l ) = ] q l( t ) d t = ^ ^ - ( l - e - ^ )r) + S(xl )T: (5.1)

and return generated over the infinite stage (i.e., stage 5) is given by
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R5(S5,I5 = 0) = j q 5(t)dt = \ s 5e~*dt = S5 / a; (5.2)
o 0

where, Si and I* (i = 1, 2 , 5 )  are defined by (4.7) and (4.8) for n = 4, respectively. 

According to (4.11), the recursive relationship o f the DP model is characterized more 

specifically as follows:

At stage 4,

where, S5 is stated in terms of S4  and X4  using (4.7).

At stage i (i = 1, 2, 3),

F; (S,, / ,)  = Max {R, (S, , I„x , ) + /£ , (Sf+1 ,/„ ,)}  (5.4)
Vx, £ / , 1T

where, S^, is stated in terms of S, and x, using (4.7) and I^i in terms of Ij and x, using 

(4.8).

The solution to the DP model formulated above, x,’(i = 1, 2, 3, 4), is functionally 

dependent upon the two state variables Sj and Ij and thus can be expressed as x;*( S„ Ij). 

The recursive optimization is carried out backward until the first stage is reached. At 

stage 1 , the maximum total return, Fi*(Si, 1 0  and the corresponding optimum advertising 

rate xi* = X | * (  Si, 10 are determined. It is noted that xi* = xi*( Si, Ii) is a unique value 

due to the fact that Si and Ii = I are given. It is then possible to backtrack from the first 

stage through the succeeding stages to obtain the optimum advertising rates for all the 

other stages in the following manner:

Step 1. Determine the optimum state pair S2 * and I2 * using Sj, Ii = I, and X | *  through 

(4.7) and (4.8), respectively.

(5.3)
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Step 2. Determine the optimum advertising rate for stage 2 through X2  = X2 ( S2  , 12 )- 

Step 3. Determine the optimum state pair S3 * and I3 * using S2 *, I2 *, and X2 through (4.7) 

and (4.8). respectively.

Step 4. Determine the optimum advertising rate for stage 3 through X3 = X3 ( S3 , 13 ). 

Step 5. Determine the optimum state pair S4 * and I4 * using S3 *, I3 *, and X3 through (4.7) 

and (4.8), respectively.

Step 6 . Determine the optimum advertising rate for stage 4 through X4 * = x /(  S4 *, I4 *).

DP Formulation for MP2

According to (4.13) and (4.14), the returns of the five stages are explicitly specified 

below:

/g,(^,,/,,x,) = g-(- l>fr{5 ;~ Y (X' ) [ l - g- ^ x^ ,r ] + ̂ ^ ( l - g-rr)}, (5.5)
0 (x,) + r  r

i = /. 2. 3. 4;

and R5(S5, / 5 = 0) = e~*rrS5 / (a + r); (5.6)

where. Si and Ii (i = 1,2,..., 5) are defined by (4.7) and (4.12) for n = 4, respectively. 

Using (4.5), the advertising rate in current dollars over stage i. Xj, can be expressed as

*• -  <5 -7 >

where, y, is the present value of advertising expenditure over period i. As mentioned in 

Chapter 4, the decision variable at each stage can be stated in terms of either the 

advertising rate in current dollars or the present value of advertising expenditure when 

the time value of money is considered. Therefore, using (5.7) we can restate the stage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

returns depicted by (5.7) in terms of y„ i.e., Rj(Si, I„ yi). Consequently, the backward 

recursive relationship characterized by (4.11) is rephrased as follows:

At stage 4,

F ; ( S , J i )=M ax{R4(S „ I i ,y A)+e-4rrS5/(a  + r)} (5.8)
Vyt =l  4

where, S5 is stated in terms o f S4  and y» using (4.7) in conjunction with (5.7).

At stage i ( 1  = 1,2. 3),

F ;(S ,.I ,)=  Max{R,(S„I„y, ) + £ , ( 5 . 9 )
Vv, s / ,

where. Sj+i is stated in terms of Si and yj using (4.7) in conjunction with (5.7) and I,~i in 

terms of h and Vj using (4.12).

The solution to the DP model for MP2. yj*(i = I, 2. 3, 4). is functionally dependent 

upon the state variable pair S; and Ij and can be expressed as y, ( Sj, I;). The recursive 

optimization is carried out backward until the first stage is reached. At stage 1. the 

maximum total return, F i * ( S i ,  Ii) and the corresponding optimum present value of 

advertising expenditure yi* = yi*( Si, Ii) are determined. It is noted that yi* = yi*( Si, Ii) 

is a unique value since Si and Ii = I are given. We need to backtrack from the first stage 

through the succeeding stages to obtain the optimum advertising rates for all the other 

stages in the following manner:

Step la. Determine the optimum advertising rate in current dollars for stage 1, x i \  using 

yi* through (5.7) and then the optimum state element S2 * using Si and Xi* 

through (4.7).

Step lb. Determine the optimum state element I2 * using Ii and yi* through (4.12).
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Step 2. Determine the optimum present value of advertising expenditure for stage 2 

through y2* = y2*( S2\  I2*).

Step 3a. Determine the optimum advertising rate in current dollars for stage 2. x2 , using 

y2 through (5.7) and then the optimum state element S3 using S2 and x2 

through (4.7).

Step 3b. Determine the optimum state element I3* using I2* and y2* through (4.12).

Step 4. Determine the optimum present value of advertising expenditure for stage 3 

through y3* = y3’( S3\  I3*).

Step 5a. Determine the optimum advertising rate in current dollars for stage 3. X3 , using 

y3* through (5.7) and then the optimum state element S4* using S3* and X3 ’ 

through (4.7).

Step 5b. Determine the optimum state element L»* using I3 * and y3 * through (4.12).

Step 6 . Determine the optimum present value of advertising expenditure for stage 4 

through y4* = y4 *(S4\  L»*).

The Computing Routines 

By defining and calling user-defined functions in C++, two computer routines are 

developed, using a personal computer (75 MHz processor - 24 MB of RAM), to solve 

the DP models for MP1 and MP2, respectively. One of the major features of these 

routines is that they can accommodate various alternative values of the key parameters, 

i.e., the initial sales rate ,S[, and the convexity (concavity) parameter, 8 . In addition, the 

DP computing routine for MP2 can determine the optimal advertising policy and the 

associated return for various values of the discount rate. This feature greatly facilitates
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the sensitivity analysis of the impact of changes in the model parameters on the 

behavioral patterns of the optimal advertising policy and the corresponding total returns. 

Another interesting feature o f the computing routines that deserves mentioning is that 

they are readily extendible to accommodate a more general planning horizon composed 

of any number of consecutive equal time-periods.

In order to check computational accuracy of these two programs, two computer 

routines based on exhaustive enumeration are developed for MPl and MP2, respectively. 

It is found that no discrepancy whatsoever exists between the computational results 

generated by the DP programs and those by the enumerating programs.

The developed computing routines based on the dynamic programming approach are 

exceptionally fast. For example, the time taken to produce the optimum solution for all 

considered cases for which r = 0 (600 cases) was only about 20 minutes. For r = 0.01. 

about 47 minutes were required to arrive at the optimum solution for the same number of 

cases.

Results

The DP computing routines are developed to find the optimal advertising policy and 

the associated total return for all the alternative values of Si, 5, and r, specified in the 

first section of this chapter. Due to their enormous sizes, the computational results of 

executing the computing routines are only partially reported in Appendix B. Although 

the following discussions are based on the partially demonstrated data, they shed 

interesting light on the behavioral patterns of the DP optimal advertising policy. Tables 

Al, Bl, C l, and D1 in Appendix B illustrate the total returns yielded and the related
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patterns of advertising spending under the DP optimal policy for selected combinations 

of the model parameters, namely, the initial sales rate Si, the convexity (concavity) 

parameter 5, and the discount rate r.
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CHAPTER 6

SENSITIVITY ANALYSIS

In this chapter, the impact of changes in the convexity (concavity) parameter, 8 , and 

the initial sales rate, Si, on the pattern of the DP optimal advertising policy and its 

associated return is studied. In addition, the DP optimal advertising policy is compared 

with and contrasted to its corresponding traditional advertising pulsation counterparts 

that cost the same in terms of performance. The above analyses are conducted in two 

cases: ( 1 ) the time value of money is not considered (r = 0 ). and (2 ) the time value of 

money is considered (r > 0). Reference to different tables included in Appendix B is 

made as deemed appropriate.

DP Optimal Advertising Policy 

Case 1: r = 0

As Table A1 in Appendix B illustrates, the convexity (concavity) parameter 6  and 

the initial sales rate Si significantly influence the pattern of the optimal advertising 

policy. Let us first consider 8  e  (0,1). It is noted in Table A1 that when 5 and S| 

assume smaller values, the pattern of the optimal policy is the same as or close to that of 

UAP. Given a specific value of 8  e (0,1), there exists a threshold value for the initial 

sales rate Si such that if Si is equal to or larger than the threshold, the pattern of the

51
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optimal advertising policy is switched from one of even spending to that of increasing 

spending over time. The threshold becomes smaller as 8  approaches unity from below. 

For instance, the threshold is between 30 and 60 when 8  = 0.3. When 5 rises to 0.5, the 

threshold falls between 10 and 30.

Now consider 5 e  [1, 3]. It is interesting to note that the optimal advertising policy 

is always composed of two pulses with the same magnitude over the first and the last 

periods of the planning horizon if Si equals zero. Given that Si is positive, however, 

various policy patterns may emerge depending on the combination of 8  and Si values. 

For certain such combinations, the optimal advertising policy exhibits a BP pattern, with 

the sole pulse coinciding on the last period o f the planning horizon. It is noted that the 

advertising efforts should be focused on the last, or the first and last quarters, and no 

advertising resources should be committed over the third quarter under all these optimal 

policies.

Figure 6.1, derived from Table A .l, graphically demonstrates curves that represent 

the relationships among the optimum total return, the convexity (concavity) parameter 8  

and the initial sales rate Si. For a given specific value of 8 , it is observed that higher 

initial sales rates lead to larger total optimum returns. The vertical differences in total 

returns across curves get smaller as the value of 8  increases. In fact, if the advertising 

response function is highly convex, the differences become nearly unnoticeable as in the 

case related to 8  = 3. For a specific value of S|, the optimum total return increases along 

with 8 , implying that a convex advertising response function is much more preferred
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Figure 6.1

The Impacts of 6  and Si upon the Total Return under 
the DP Optimal Advertising Policy (r = 0)
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than a concave one in terms of generating total returns for the considered model 

parameters.

Case 2: r > 0

In this case, the time value of money is taken into account, and hence the optimal 

advertising policy is determined by, among other things, the discount factor r. For 8  e 

(0,1), as shown in Tables Bl, C l, and D1 in Appendix B, respectively, there exists a 

threshold value for the initial sale rate Si such that if Si is lower than the threshold, the 

optimal advertising policy appears to be UAP. However, if Sj is equal to or greater than 

the threshold, the advertising spending under the optimal policy, over time, may ( 1 ) 

increase monotonically, or (2) decrease first and then later increase. It is interesting to 

note, similar to the case r = 0 , that higher values of 5 are associated with lower 

thresholds.

Given 8  e [1.3], various combinations of 8 , Si. and r may lead to different patterns 

of optimum advertising spending, including that of BP under which the sole pulse occurs 

during the last period of the planning horizon. Under most of these optimal policy 

patterns, fewer or no advertising efforts are committed to the second or third quarters of 

the planning horizon, especially when 8  assumes relatively low values.

It is observed in these three tables that, everything else being equal, (1) as the 

discount rate increases, the optimum total return decreases; (2 ) a larger initial sales rate 

leads to a higher optimum total return; (3) a more convex advertising response function 

brings a greater optimum total return. For a given value of r, as demonstrated in Figure
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6 .2 , the above findings can be very well presented schematically by a graph quite similar 

to that depicted in Figure 6.1.

DP Optimal Advertising versus Traditional 
Advertising Pulsation

The tables in Appendix B as a whole reveal that, given any combination of the 

parameters, 8 , Si, and r, the DP optimal advertising policy produces a total return at least 

as good as that generated by the best traditional pulsation policy. More specifically, if 

the DP optimal advertising policy does not belong to the traditional advertising pulsation 

class, it is superior to any of the corresponding traditional policies that cost the same. 

For example, as shown in Table A l, for r = 0, 8  = 2.0, and Si = 30, the DP optimum 

policy does not belong to the traditional advertising pulsation class and yields a total 

return greater than that generated by any of the corresponding BP. APP-I. APP-II. 

APMP-I, APMP-II, and UAP that cost the same. If the DP optimal policy does 

belong to the traditional advertising pulsation class, it is the same as the best traditional 

policy. For example, for r = 0, 8  = 0.3, and S| =30, the DP optimal advertising policy 

appears to be UAP, which yields the highest total return compared to the other 

traditional advertising pulsation policies. The superiority of the DP optimal advertising 

policy and the roles of 8  and Si in shaping the performances under the various 

advertising strategies are demonstrated in Figure 6.3 through 6.14, where APMP-I3, 

APMP-I7, APMP-II3, and APMP-II7 respectively stand for the corresponding APMP-I 

and APMP-II policies associated with X = 0.3 and 0.7, respectively.
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The Impacts of 5 and S| upon the Total Return under 
the DP Optimal Advertising Policy (r = 0.05)
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Table 6.1 provides summary statistics related to the relative effectiveness of the 

optimal dynamic programming advertising policy, measured in terms of the ratio of DP 

total return to the best total return among the traditional advertising pulsation policies. 

Ten groups of the shaping parameter 8  and sixteen values of the discount factor r are 

considered in the analysis. The number of cases examined within each group is 60 ( 6  

values for 5 x 10 values for Si). The descriptive statistics depicted in Table 6.1 reveal 

that for a total of 9600 considered cases, the mean DP relative effectiveness is about 

1.80%, whereas the maximum DP relative effectiveness is as high as 11.16%.
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Table 6.1

Descriptive Statistics Related to the Relative 
Effectiveness o f the Optimal DP Policies

r = 0.00
Mean Std Dev Maximum Minimum n

0.05 < 5 < 030 1.000210238 0.000334395 1.001617475 1.000000000 60
0.35 < 5 < 0.60 1.001179207 0.001501643 1.006626046 1.000000000 60
0.65 < 5 < 0.90 1.003898937 0.003527939 1.011840265 1.000000000 60
0.95 < 5  < 1.20 1.002698618 0.004763358 1.021008968 1.000000000 60
1.25 < 5  < 1.50 1.003460613 0.008849142 1.042220703 1.000000000 60
1.55 < 6  < 1.80 1.023030399 0.018232275 1.061403523 1.000000000 60
1.85 < 5 < 2.10 1.033153216 0.021096539 1.073053108 1.004025604 60
2.15 < 5  <2.40 1.035888192 0.023855356 1.075515754 1.001605633 60
2.45 < 5 < 2.70 1.035622383 0.023376465 1.075651048 1.000849404 60
2.75 < 8  <3.00 1.027690594 0.014704295 1.056531929 1.001211667 60

r = 0.01
0.05 < 5 < 0.30 1.000203724 0.000328817 1.001595238 1.000000000 60
0.35 < 6 < 0.60 1.001152384 0.001485455 1.006563668 1.000000000 60
0.65 < 5 < 0.90 1.003836192 0.003506952 1.011730544 1.000000000 60
0.95 < 5  < 1.20 1.002793080 0.004774836 1.020878915 1.000000000 60
1.25 < 5  < 1.50 1.003885691 0.009285289 1.042115405 1.000000000 60
1.55 < 5  < 1.80 1.023567347 0.018213454 1.061074622 1.000000000 60
1.85 < 8  <2.10 1.033503400 0.021394714 1.072401004 1.003727133 60
2.15 < 8  <2.40 1.036349911 0.024068841 1.074693874 1.001452829 60
2.45 < 8 < 2.70 1.035972609 0.023417460 1.074801891 1.000796487 60
2.75 < 8 < 3.00 1.027512798 0.014335818 1.055807534 1.001410051 60

r = 0.02
0.05 < 5 < 0.30 1.000197266 0.00032336 1.001572941 1.000000000 60
0.35 < 5 < 0.60 1.001126170 0.001468989 1.006500669 1.000000000 60
0.65 < 5 < 0.90 1.003775269 0.00348575 1.011620494 1.000000000 60
0.95 < S <  1.20 1.002886050 0.004805086 1.020744677 1.000000000 60
1.25 < 5  < 1.50 1.004377762 0.009757439 1.042000124 1.000000000 60
1.55 < 5  < 1.80 1.024098348 0.018213071 1.060731942 1.000000000 60
1.85 < 5  < 2.10 1.033875526 0.021699039 1.071741462 1.003438054 60
2.15 < 5  <2.40 1.036819563 0.024293189 1.073874435 1.001328228 60
2.45 < 5 < 2.70 1.036299608 0.023435309 1.073956627 1.000820918 60
2.75 < 5 < 3.00 1.027327148 0.013959733 1.055105238 1.001608752 60

r = 0.03
0.05 < 5 < 0.30 1.000191120 0.000317862 1.001551249 1.000000000 60
0.35 < 5  <0 .60 1.001100075 0.001452820 1.006438512 1.000000000 60
0.65 < 5 < 0.90 1.003716573 0.003465198 1.011510903 1.000000000 60
0.95 < 5 < 1.20 1.003000003 0.004849367 1.020608889 1.000000000 60
1.25 < 5  < 1.50 1.004909481 0.010263373 1.041874904 1.000000000 60
1.55 < 5  < 1.80 1.024607793 0.018227120 1.06037565 1.000000000 60
1.85 < 5 < 2 .1 0 1.034256303 0.022021753 1.07107534 1.003156487 60
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2.15 < 5 < 2 .4 0 1.037296351 0.024528413 1.073058414 1.001248069
2.45 < 5  <2.70 1.036610906 0.023445259 1.073116005 1.000767596
2.75 < 8 < 3.00 1.027117547 0.013597705 1.054424958 1.001807719

r = 0.04
0.05 < 8 < 0.30 1.000185069 0.000312401 1.001529211 1.000000000
0.35 < 8 < 0.60 1.001074483 0.001436583 1.006377134 1.000000000
0.65 < 8 < 0.90 1.003661135 0.003443809 1.011401509 1.000000000
0.95 < 5  < 1.20 1.003136384 0.004929368 1.020279624 1.000000000
1.25 < 5  < 1.50 1.005544958 0.010742322 1.041738554 1.000000000
1.55 < 8  < 1.80 1.025071421 0.018275106 1.060007115 1.000000000
1.85 < 5 < 2.10 1.034639660 0.022366518 1.070404138 1.002884121
2.15 < 8  <2.40 1.037790228 0.024772340 1.072244702 1.001171073
2.45 < 5 < 2.70 1.036834968 0.023375550 1.072279548 1.000715514
2.75 < 8 < 3.00 1.026906268 0.013238566 1.053765755 1.002006556

r = 0.05
0.05 < 5 < 0.30 1.000179226 0.000307046 1.001506921 1.000000000
0.35 < 8 < 0.60 1.001049251 0.001420390 1.006314811 1.000000000
0.65 < 8 < 0.90 1.003607618 0.003422633 1.011291442 1.000000000
0.95 < 5  < 1.20 1.003268060 0.005027454 1.019936487 1.000000000
1.25 < 8  < 1.50 1.006210175 0.011219057 1.041856686 1.000000000
1.55 < S <  1.80 1.025531825 0.018347380 1.059625695 1.000000000
1.85 < 8  <2.10 1.034984679 0.022643470 1.069726413 1.002619949
2.15 < 8  <2.40 1.038109694 0.024779673 1.071433874 1.001095757
2.45 < 8 < 2.70 1.036974618 0.023199494 1.071453242 1.000676341
2.75 < 8 < 3.00 1.026688183 0.012881730 1.052991935 1.002205623

r = 0.06
0.05 < 8 < 0.30 1.000173668 0.000301691 1.001485614 1.000000000
0.35 < 8 < 0.60 1.001024610 0.001404053 1.006252972 1.000000000
0.65 < 8 < 0.90 1.003555657 0.003401974 1.011181881 1.000000000
0.95 < 5 < 1.20 1.003420067 0.005130095 1.019588748 1.000000000
1.25 < 5  < 1.50 1.006844593 0.011703946 1.041969771 1.000000000
1.55 < 5  < 1.80 1.026016489 0.018419298 1.059616392 1.000000000
1.85 < 8  <2.10 1.035210571 0.022727888 1.069043932 1.002363582
2.15 < 5  <2.40 1.038389805 0.024743927 1.070626975 1.001023228
2.45 < 8 < 2.70 1.037067890 0.022991381 1.070635521 1.000682487
2.75 < 8  <3.00 1.026454854 0.012526455 1.052110088 1.002404951

r = 0.07
0.05 < 5 < 0.30 1.000168331 0.000296326 1.001463697 1.000000000
0.35 < 8 < 0.60 1.001000642 0.001387777 1.006191443 1.000000000
0.65 < 8 < 0.90 1.003506775 0.003381498 1.011072944 1.000000000
0.95 < 5  < 1.20 1.003592993 0.005272916 1.019235008 1.000000000
1.25 < 8  < 1.50 1.007450708 0.012103609 1.042076619 1.000000000
1.55 < 5  < 1.80 1.026391848 0.018461102 1.059212278 1.000000000
1.85 < 8 < 2 .1 0 1.035437369 0.022806104 1.068356991 1.002115736
2.15 < 8  <2.40 1.038680440 0.024719346 1.069823533 1.000952661

60
60
60

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
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2.45 < 8 < 2.70 1.037114427 0.022764447 1.069824646 1.000631229 60
2.75 < 5 < 3.00 1.026222387 0.012178734 1.051247742 1.002604203 60

r = 0.08
0.05 < 8 < 0.30 1.000163310 0.000291103 1.001443011 1.000000000 60
0.35 < 8 < 0.60 1.000977314 0.001372026 1.006130006 1.000000000 60
0.65 < 8 < 0.90 1.003459010 0.003361032 1.010963024 1.000000000 60
0.95 < 8 <  1.20 1.003798163 0.005442297 1.018876308 1.000000000 60
1.25 < 8  < 1.50 1.008107007 0.012395070 1.042175222 1.000000000 60
1.55 < 8  < 1.80 1.026683679 0.018511543 1.058796229 1.000000000 60
1.85 < 8 < 2.10 1.035675343 0.022896260 1.067666481 1.001903958 60
2.15 < 5  <2.40 1.038980441 0.024708167 1.069023064 1.000884361 60
2.45 < 8 < 2.70 1.037163179 0.022544530 1.069017092 1.000580748 60
2.75 < 8 < 3.00 1.025975731 0.011841444 1.050404924 1.002804249 60

r = 0.09
0.05 < 8 < 0.30 1.000158486 0.000285725 1.001421294 1.000000000 60
0.35 < 8 < 0.60 1.000955010 0.001355958 1.006069570 1.000000000 60
0.65 < 8 < 0.90 1.003415509 0.003339970 1.010854357 1.000000000 60
0.95 < 8  < 1.20 1.004003179 0.005648630 1.018838502 1.000000000 60
1.25 < 8  < 1.50 1.008655428 0.012616284 1.042267569 1.000000000 60
1.55 < 8  < 1.80 1.026970894 0.018536994 1.058741218 1.000000000 60
1.85 < 5 < 2 .1 0 1.035943885 0.023016634 1.067013836 1.001775461 60
2.15 < 8  <2.40 1.039277165 0.024707753 1.068266585 1.000817807 60
2.45 < 8 < 2.70 1.037130464 0.022258255 1.068258331 1.000593759 60
2.75 < 8 < 3.00 1.025718758 0.011516357 1.049597845 1.003003995 60

r = 0.10
0.05 < 8 < 0.30 1.000153869 0.000280594 1.001400421 1.000000000 60
0.35 < 8 < 0.60 1.000932670 0.001340054 1.006008711 1.000000000 60
0.65 < 8 < 0.90 1.003373290 0.003320513 1.010745232 1.000000000 60
0.95 < 5  < 1.20 1.004174038 0.005824112 1.020263822 1.000000000 60
1.25 < 5  < 1.50 1.009117176 0.012719736 1.042352646 1.000000000 60
1.55 < 8  < 1.80 1.027299416 0.018539958 1.058709879 1.000000000 60
1.85 < 8  <2.10 1.036224899 0.023135718 1.066637778 1.001650876 60
2.15 < 8  <2.40 1.039431376 0.024554548 1.067638953 1.000753262 60
2.45 < 8 < 2.70 1.037060259 0.021942257 1.067599024 1.000542660 60
2.75 < 8 < 3.00 1.025463831 0.011204060 1.048876260 1.003240376 60

r = 0 .11
0.05 < 8 < 0.30 1.000149253 0.000275378 1.001378639 1.000000000 60
0.35 < 8  <0.60 1.000911395 0.001323912 1.005947698 1.000000000 60
0.65 < 8 < 0.90 1.003331352 0.003302995 1.010820920 1.000000000 60
0.95 < 8  < 1.20 1.004317275 0.005947737 1.021055537 1.000000000 60
1.25 < 8 <  1.50 1.009583096 0.012857186 1.042430581 1.000000000 60
1.55 < 5  < 1.80 1.027610883 0.018625472 1.058667180 1.000000000 60
1.85 < 8 < 2.10 1.036430236 0.023151781 1.066251504 1.001530713 60
2.15 < 8  <2.40 1.039560464 0.024380575 1.067033228 1.000690562 60
2.45 < 8 < 2.70 1.036974817 0.021634124 1.066940345 1.000493155 60
2.75 < 8  <3.00 1.025204720 0.010912948 1.048172559 1.003547962 60
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r = 0.12
0.05 < 6 < 0.30 1.000144629 0.000270223 1.001357886 1.000000000 60
0.35 < 5 < 0.60 1.000891144 0.001307632 1.005888027 1.000000000 60
0.65 < 6 < 0.90 1.003291141 0.003285902 1.010925023 1.000000000 60
0.95 < 5  < 1.20 1.004461533 0.006044061 1.021538129 1.000000000 60
1.25 < 5  < 1.50 1.010079816 0.012963358 1.042501496 1.000000000 60
1.55 < 5  < 1.80 1.027897971 0.018774588 1.058612148 1.000000000 60
1.85 < 6  <2 .10 1.036601461 0.023136059 1.065856124 1.001413708 60
2.15 < 6  <2 .40 1.039716418 0.024233306 1.066450328 1.000629949 60
2.45 < 5 < 2.70 1.036846730 0.021282918 1.066282686 1.000444572 60
2.75 < 5  <3 .00 1.024954929 0.010643946 1.047485774 1.003853028 60

r = 1.00
0.05 < 5 < 0.30 1.001019812 0.001632312 1.007553965 1.000000000 60
0.35 < 5 < 0.60 1.002725870 0.003594679 1.013712854 1.000000000 60
0.65 < 5  < 0 .90 1.005729699 0.006796340 1.028208485 1.000000000 60
0.95 < 5  < 1.20 1.009761116 0.008318066 1.032978422 1.000000000 60
1.25 < 5  < 1.50 1.020611292 0.013979823 1.050064280 1.000000000 60
1.55 < 8  < 1.80 1.040799071 0.020226681 1.074819951 1.001746842 60
1.85 < 5  < 2.10 1.035135368 0.013711554 1.065294903 1.004847782 60
2.15 < 5  <2 .40 1.029077277 0.010510362 1.042531176 1.006770381 60
2.45 < 5 < 2.70 1.020608705 0.010324769 1.040447255 1.004053686 60
2.75 < 5 < 3.00 1.011902883 0.005775700 1.025701235 1.003169772 60

r = 2.00
0.05 < 5 < 0.30 1.003941644 0.005984454 1.027953398 1.000012751 60
0.35 < 8 < 0.60 1.010828282 0.013006044 1.050005857 1.000015341 60
0.65 < 8 < 0.90 1.019782666 0.020349680 1.074632845 1.000122435 60
0.95 < 5  < 1.20 1.009837693 0.006316470 1.022674595 1.000299500 60
1.25 < 5  < 1.50 1.017837183 0.008758395 1.035517633 1.000666062 60
1.55 < 8  < 1.80 1.034257536 0.009582528 1.050429606 1.012990296 60
1.85 < S  < 2.10 1.039222305 0.014032922 1.059495711 1.012988169 60
2.15 < 8  <2 .40 1.030541680 0.011884753 1.055088066 1.010993435 60
2.45 < 8 < 2.70 1.021808189 0.007834027 1.038698557 1.008128530 60
2.75 < 8 < 3.00 1.015378339 0.005477497 1.026356009 1.005500724 60

r = 3.00
0.05 < 8  <0 .30 1.007441517 0.011701660 1.056034399 1.000054729 60
0.35 < 5 < 0.60 1.021995475 0.025887283 1.102376291 1.000327872 60
0.65 < 5 < 0.90 1.027215521 0.025562911 1.111577941 1.000638380 60
0.95 < 5  < 1.20 1.007231330 0.004737655 1.017514224 1.000000000 60
1.25 < 8  < 1.50 1.011655728 0.006184363 1.026534875 1.000275141 60
1.55 < 8  < 1.80 1.022981224 0.006083946 1.034603334 1.011347473 60
1.85 < 8  <2 .10 1.031691947 0.005532924 1.039811481 1.018258067 60
2.15 < 8  <2 .40 1.032440562 0.009211008 1.044270447 1.013105365 60
2.45 < 5 < 2.70 1.024323500 0.008486258 1.041913850 1.008426755 60
2.75 < 8 < 3.00 1.015966711 0.006173138 1.028507806 1.005110124 60

All Cases 1.018047016 0.020568000 1.111577941 1.000000000 9600
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Figure 6.3

DP Policy versus APP-I, APMP-I and UAP (Si =30, r = 0)
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Figure 6.4

DP Policy versus APP-II, APMP-II and UAP (Si = 30. r = 0)
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Figure 6.5

DP Policy versus BP Polices (Si = 30, r = 0)
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DP Policy versus APP-I. APMP-I and UAP ( 8  = 0.5. r = 0)
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Figure 6.7

DP Policy versus APP-II, APMP-II and UAP ( 6  = 0.5. r = 0)
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Figure 6 . 8

DP Policy versus BP Polices (5 = 0.5, r = 0)
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Figure 6.9

DP Policy versus APP-I, APMP-I and UAP (Si =30, r = 0.05)
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Figure 6.10

DP Policy versus APP-II, APMP-II and UAP (Si = 30, r = 0.05)
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DP Policy versus BP Polices (Si = 30, r = 0.05)
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DP Policy versus APP-I, APMP-I and UAP (8 = 0.5, r = 0.05)
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Figure 6.13

DP Policy versus APP-II, APMP-II and UAP (5 = 0.5, r = 0.05)
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DP Policy versus BP Polices (6 = 0.5, r = 0.05)
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CHAPTER 7

MODEL ESTIMATION

This chapter focuses on assessing empirically the modified Vidale-Wolfe model 

reviewed in Chapter 2. A discrete analogue of the modified Vidale-Wolfe model is 

estimated using the Newton-Gauss algorithm of nonlinear regression based on the well- 

known data of the Lydia E. Pinkham vegetable compound. Two versions of such a 

model are considered. The first version assumes that the error terms are not 

autocorrelated, whereas in the second version autocorrelation is assumed to be present. 

Choice between alternative model specifications is made based on the quality of 

estimated parameters as well as the predictive power of the proposed models, using the 

method of one-step-ahead forecasting. Based on the obtained results, the shape of the 

advertising response function is assessed.

The Data

The firm considered in this empirical study is the frequently studied Lydia E. 

Pinkham Medicine Company and its product, the Lydia Pinkham vegetable compound, 

originally examined by Palda (1964). The data used in our empirical investigation are 

the annual sales and advertising expenditures of the company for the period 1907 

through I960 available in Palda’s study. Aaker and Carman (1982) contended that “the 

Lydia Pinkham data are interesting in many respects: (1) everyone familiar with the
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situation agrees that advertising caused sales for this product; (2) there are advertising 

decreases as well as increases; (3) since the product was a monopoly product, 

competitive effects need not be built into the model; and (4) price was quite stable over 

long periods of time. Thus it has been possible to focus on the nature of the advertising- 

to-sales relationship.”

Model Discrete Analogue 

A discrete analogue of the modified Vidale-Wolfe model was introduced and 

estimated using OLS by Mesak and Darrat (1992). It can be shown that, using (2.4) and 

(2.6), the modified Vidale-Wolfe model (2.5) can be restated as in (7.1) upon employing 

the power function f(x) = bxs proposed by Little (1979):

^ /d l = mbx* - a S  -  bx°St_{. (7.1)

The discrete analogue of (7.1) is given as shown below:

5, -  Sf_, = mbxf -  a S -  bxfSt_t. (7.2)

By incorporating an error term into (7.2) and upon minor rearrangement o f terms. (7.2) 

takes the following form:

S, =mbxf + (l-a )5 ,_ , —bxfSt_t + et (7.3)

where, m, a, b, and 5 are unknown parameters, and e, is a random error term assumed to 

be normally distributed, serially uncorrelated, and has a zero mean with a constant 

variance. Following the treatment adopted by Mesak and Darrat (1992), the variables in 

equation (7.3) are operationalized as follows:
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St = Annual sales in monetary units in year t divided by the population in year t 

and divided by a general price deflator in year t (to convert sales to per 

capita real magnitudes). 

x, = Annual advertising expenditures in monetary units in year t divided by the 

population in year t and divided by a general price deflator in year t (to 

convert advertising to per capita real values).

Given the above definition of variables, the related time-series data used in subsequent 

analyses is found in Appendix C.

Seber and Wild (1989) points out that situations in which data are collected 

sequentially over time may give rise to substantial serial correlation in the errors. 

Autocorrelated errors usually exist with economic data in which the response variable 

and the explanatory variable(s) measure the state of a market at a particular time, and 

both the response and explanatory variable(s) are time series. If there exists significant 

evidence of autocorrelation, the order of the autoregressive specification on the random 

error term e, needs to be determined. Bates and Watts (1988) argued that the first order 

is adequate if time is not the only factor, or the most important factor in the regression 

situation. The first-order autoregressive specification on s, is given by (7.4):

£, = P£t-i + nt (7.4)

where, r], is assumed to be a normally distributed, serially uncorrelated random error with 

a zero mean and a constant variance and p is a parameter such that | p | < 1. Substituting 

for et from (7.4) in (7.3), the annual sales in year t can be expressed in the following form:

S, =PS,-i + bxf (m -  S,_,) + (1 -  a)S„,

~ ~ S,-2) + (1 ~ a)S,_2 ] + tj, -
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As in linear modeling, autocorrelation in nonlinear modeling is often first detected 

from plots of regression residuals (Bates and Watts, 1988), or preferably by the formal 

Durbin-Watson test with the following test statistic (Seber and Wild, 1989):

£ ( « ,  ~ e- i ) 2
D = ^ — n----------  (7.6)

<=i

where,

e, = the regression residual associated with the z'th observation; 

n = the number of observations used in the estimation.

Choosing Among Alternative Model Specifications

Seber and Wild (1989, p.5) argued that even when a linear model approximation is 

sufficient in modeling nonlinear behavior, a nonlinear model may be used to retain a 

clear interpretation of the model parameters. Therefore, the nonlinear regression rather 

than the OLS is used for estimating the nonlinear models (7.3) and (7.5). Since the 

Newton-Gauss method of nonlinear regression is a much more efficient algorithm (Seber 

and Wild. 1989. p.621), it is adopted in this empirical study for model estimation. This 

algorithm represents a non-linear least squares (NLS) method of estimation and is 

available in SAS. The algorithm was preliminarily performed on (7.3) and (7.5) to 

estimate all the parameters and the results indicated a singular matrix of partial 

derivatives, possibly suggesting strong dependency among the parameters. Therefore, 

instead of estimating all model parameters, (7.3) and (7.5) are estimated assuming 

reasonable values of m ranging between 0.10 and 1.0 in increments of 0.05.
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In order to detect autocorrelation with the Durbin-Watson test procedure, both 

models (7.3) and (7.5) are estimated over the entire period 1907 through 1960 using the 

Newton-Gauss method. The Durbin-Watson test is first performed in conjunction with 

each model specification for selected values of m and the test results are reported in 

Table 7.1.

As shown in Table 7.1, there is significant evidence of autocorrelation in 

conjunction with model (7.3) for selected m values. In contrast, no significant evidence 

of autocorrelation was revealed by the Durbin-Watson test for the 19 m values in 

relation to (7.5). Therefore, only model (7.5) is further examined to determine the most 

appropriate value of m.

Mesak and Darrat (1992) suggested one approach to discriminating among 

alternative model specifications through assessing their predictive power. This is a more 

rigorous prediction test than forecasting for years on which the estimation is based. In 

this empirical study, their approach is adopted and in particular, one-period-ahead 

predictions are made by forecasting sales in year t+l using the data through year t for all 

the values of m € {0.05k; k = 2. 3, .... 20}. Only the sales in the years 1956 through 

1960 are forecast using this procedure. For example, for m = 0.10, model (7.5) is 

estimated over the years 1907 through 1955. and the resulting empirical estimates are 

used to forecast sales for the year 1956 (out-of-sample forecast S/  ). Then, the actual 

sales data for the period 1907 through 1956 is used to estimate the model once again and 

then forecast the sales for the year 1957. The process continues until sales for the year 

1960 are forecasted. The root-mean-square percent error (RMSPE) statistic for the case
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Table 7.1

Detection of Autocorrelation: The Durbin-Watson Statistic

m Model (7.3) Model (7.5)

0.10 1.221379* 2.137237
0.15 1.216154* 2.158653
0.20 1.215014* 2.165598
0.25 1.2 14634* 2.168914
0.30 1.214481* 2.170835
0.35 1.214414* 2.172083
0.40 1.214384* 2.172957
0.45 1.214373* 2.173602
0.50 1.214370* 2.174098
0.55 1.214372* 2.174490
0.60 1.214377* 2.174808
0.65 1.214383* 2.175072
0.70 1.214389* 2.175293
0.75 1.214395* 2.175482
0.80 1.214402* 2.175645
0.85 1.214408* 2.175787
0.90 1.214414* 2.175912
0.95 1.214420* 2.176022
1.00 1.214425* 2.176121

* significant at the one percent level
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of m = 0.10 is calculated from these one-period-ahead forecast series. The same 

procedure is applied to compute the RMSPE statistic for each of the values of m ranging 

from 0.10 to 1.0 in increments of 0.05. All the values of the RMSPE statistic are 

reported in Table 7.2.

Based on the entire data set, it is found that only for the model specifications with 

the value of m equal to or greater than 0.20, all the estimated parameters, a, b, 8, and p, 

are statistically significant at the 0.05 level. The value of RMSPE is monotonically 

increasing as the value of m becomes larger. According to the RMSPE criterion, the 

model specification with m = 0.20 is the best as it minimizes the RMSPE while all the 

model parameters appear with theoretically expected signs and each is statistically 

significant at the 0.05 level.

Table 7.3 presents the nonlinear regression results of model (7.5) related to the 

optimum value of m = 0.20. The goodness of fit, measured by R2. implies that model 

(7.5) fits the data quite well. The value of R2 is approximately found to be equal to 0.93. 

More importantly, as the estimated parameter 8 lies within the interval 0 < 5 < 1. it is 

concluded that the shape of the advertising response function is concave.
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Table 7.2

Determining the Appropriate Value of m Based on the 
One-Period-Ahead Forecasting Procedure

Value of m RMSPE Value of m RMSPE

0.10 0.012023155 0.60 0.017021030
0.15 0.014320424 0.65 0.017078418
0.20m,n 0.015325771 0.70 0.017127180
0.25 0.015877367 0.75 0.017169127
0.30 0.016224054 0.80 0.017205592
0.35 0.016461702 0.85 0.017240572
0.40 0.016634630 0.90 0.017265875
0.45 0.016766048 0.95 0.017291076
0.50 0.016869283 1.00 0.017313665
0.55 0.016952513

Note: Root-mean-square percent error (RMSPE) is defined as

where S f  = forecast value of St, S“ = actual value of St, T = the number of 
forecasting periods = 5. The superscript mm indicates the optimum value of m.
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Table 7.3

Regression Results of Model (7.5) with 
the Optimal Value of m = 0.20

Parameter Estimate Asymptotic 
Std. Error

Asymptotic 95 % 
Confidence Interval 

Lower Upper

a
b
5
P

0 . 6 3 0 5 3 1 2 9 2 4  0 . 1 4 7 5 0 0 7 0 6 2 3  0 . 3 3 3 9 6 1 9 7 3 1 4  
0 . 8 7 7 5 6 7 7 2 0 0  0 . 4 3 5 8 0 0 7 7 3 5 9  0 . 0 0 1 3 3 3 6 8 6 6 5  
0 . 4 8 8 1 1 7 7 3 0 3  0 . 1 4 6 7 0 8 9 0 3 4 9  0 . 1 9 3 1 4 0 4 3 3 3 1  
0 . 8 2 7 2 8 2 0 3 8 5  0 . 1 3 2 5 1 4 3 4 7 5 3  0 . 5 6 0 8 4 4 7 3 9 0 4

0 . 9 2 7 1 0 0 6 1 1 6  
1 . 7 5 3 8 0 1 7 5 3 4  
0 . 7 8 3 0 9 5 0 2 7 4  
1 . 0 9 3 7 1 9 3 3 8 0

Source DF S.S. M.S.
Regression 4 0.05665672257 0.01416418064
Residual 48 0.00057312497 0 . Q0C01I94010
Uncorrected Total 52 0.05722984754
{Corrected Total) 51 0.00818695539
R~ 0.93

Note: R2 is computed as 1 - (Residual SS/Corrected total SS).
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CHAPTER 8

DISCUSSIONS AND IMPLICATIONS

This study has addressed the advertising pulsation problem defined in Chapter I and 

pursued its five objectives: (1) formulation of DP models that represent two versions of 

the problem, (2) solving the DP models using computing routines, (3) performing 

sensitivity analyses to assess the role of key model parameters in shaping the optimal 

policy, (4) comparing the performance of the DP optimal policy with traditional 

advertising pulsation policies that cost the same, and (5) assessing empirically the 

plausibility of the modified Vidale-Wolfe model and the shape of the advertising 

response function.

The purpose of this chapter is to summarize and present the conclusions of the 

study, highlight its contributions, discuss its managerial implications, state its 

limitations, and suggest directions for future research.

Summary and Conclusions

Armed with the dynamic programming approach, DP, this study deals with the 

problem of optimally allocating advertising expenditures over a finite planning horizon 

comprised of n equal periods to maximize either (1) profits related to the advertising 

effort or (2) present value of profits related to advertising. The underlying assumption is
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that the firm is marketing in a monopolistic market a frequently purchased unseasonal 

product in the mature stage of the life cycle for which advertising is the main element in 

the marketing mix.

The modified Vidale-Wolfe model is employed to describe the relationship between 

sales and advertising efforts. Two general dynamic programming models are 

analytically formulated for finding the optimal allocation of advertising funds over time 

with respect to whether the time value of money is taken into account. Several 

numerical examples are provided to illustrate the DP applications. In these examples, 

two fast computing routines were developed to obtain the results. The performances 

under traditional advertising pulsation policies, namely, BP(Blitz Policy), 

APP(Advertising Pulsing Policy), APMP(Advertising Pulsing/Maintenance Policy), and 

UAP(Uniform Advertising Policy), are also modeled for the purpose of their comparison 

with that under the DP optimal advertising policy. Computer programs are also 

developed and run to determine the performances under these traditional policies.

The computational experience associated with these numerical examples reveals that 

the DP models are properly formulated, and they lead to logically appealing solutions in 

an adequately short time. The results confirm our expectation that the performance 

under the DP optimal advertising policy is at least as good as the maximum performance 

among the four traditional pulsation policies mentioned above (see Appendix B.) The 

convexity (concavity) parameter, 8, and the initial sales rate, Si, are found to have 

significant impacts upon the performance under the DP optimal advertising policy and 

its behavioral patterns (see Figures 6.1 and 6.2.)
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This study has demonstrated that problems of realistic size can be efficiently solved 

by the DP approach on a microcomputer. The computational efficiency will be 

enhanced even more by forthcoming hardware and software developments, while 

permitting the consideration of Iarger-size problems. It is expected that microcomputer- 

based approaches, such as those presented in this study, will play an important part in 

enhancing a firm's profitability through improved allocation of advertising efforts in the 

future.

The plausibility of the modified Vidale-Wolfe model is empirically investigated 

using the well-known Lydia Pinkham vegetable compound annual data. Model 

parameters have been estimated using the Gauss-Newton algorithm of nonlinear 

regression. The model selected is one corrected for first-order autoregressive residuals. 

The empirical results show that model parameters are statistically significant and of the 

expected signs. More importantly, the estimated value of 5 is less than unity, implying a 

concave advertising response function. This latter finding is in line with most previous 

studies (e.g., Little 1979; Simon and Amdt 1980; Mesak and Darrat 1992).

Contributions 

Several distinctive features of this study are highlighted below:

First, to the author's best knowledge, this is the first attempt in the literature in 

which the DP approach is employed to solve the finite-horizon advertising pulsation 

problem in which both the initial sales and the discount rates are allowed to be different 

from zero. In addition, the modeling framework is significantly more flexible than the 

rigid ones already found in the literature (see Table 2.1.)
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Second, computer programs are developed to solve the DP models. These 

programs are capable o f accommodating various combinations of key model parameters. 

Therefore, this feature offers remarkable flexibility for conducting sensitivity analyses 

related to the role of the key parameters in shaping the optimal advertising policy. 

Computer programs with similar flexibility are also designed and implemented for 

assessing the performance under the traditional advertising pulsation policies.

Third, the modified Vidale-Wolfe model is empirically estimated for the first time 

using a nonlinear regression procedure to examine directly the statistical properties of 

model parameters. From this point of view, it is believed that the estimation procedure 

employed in this dissertation represents an improvement over that used by Mesak and 

Darrat (1992) who use OLS to estimate the same model. To reduce the problem of 

dependency among model parameters, a method is proposed such that the value of the 

market potential, m, is held constant at a particular value each time the model is 

estimated. The estimation procedure is performed repeatedly for a collection of 

reasonable m values. Based on the results obtained for assessing the predictive power of 

alternative model specifications and the quality of their estimated parameters, the 

optimum value of m is determined.

Managerial Implications 

This study provides the marketing manager of a monopolistic firm with an 

implementable framework for structuring and solving the problem of optimally 

allocating advertising funds over time, given that the sales-advertising relationship can 

be captured by the modified Vidale-Wolfe model. The first step is to empirically
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estimate the sales-advertising relationship using historical data as discussed in Chapter 7. 

After obtaining statistically sound estimates of the model parameters, a DP model, aimed 

at achieving maximum advertising productivity over the planning horizon, is developed 

to identify the optimal advertising policy.

The numerical example presented in this study suggests opportunities for increasing 

advertising effectiveness through properly allocating advertising funds over a finite 

multiperiod planning horizon. For alternative advertising policies that cost the same, the 

optimum total return generated by DP could significantly exceed that under different 

advertising policies. For firms operating on a large scale, small improvements in 

allocation of advertising resources can produce substantial monetary returns. From a 

managerial point of view, however, the implementation of the optimal advertising policy 

requires a multiperiod orientation and the willingness to accept temporarily low profits 

or even losses, depending on the situation (Simon, 1980).

Limitations and Directions for Future Research 

The modeling framework developed in this study is exploratory, revealing several 

limitations and many possibilities for future research.

First, advertising expenditures are treated here as the sole decision variable in the 

DP models. Incorporating other marketing mix variables such as price and distribution 

would offer avenues for future research. The modeling efforts by Robinson and Lakhani 

(1975), Lodish (1980), Boronico and Bland (1996), and Ladany (1996) should shed 

interesting light on this proposed extension.
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Second, this study deals with stationary markets for which the parameters of the 

advertising response function are assumed to be constant over time. In addition, the 

sales response structure is assumed to be deterministic. Relaxing these assumptions 

would offer further topics for future research. The studies of Schmalensee (1978), 

Jagpal and Brick (1982), Mesak (1985), and Aykac. Corstjens. Gautshi. and Horowitz 

(1989) provide valuable insights in this respect.

Third, Simon (1982), Mesak (1985), and Mahajan and Muller (1986) raised several 

interesting issues regarding the complex dynamics of advertising effects about which 

little is known. This study has addressed some of the issues, but many more remain 

unresolved. Examples of such unresolved inquiries are, Should fresh copy be introduced 

with new pulses? Which is superior, a time pulsation or a media pulsation policy? The 

experimental work of Eastlack and Rao (1986), for example, could be used as a 

reference in this avenue of future research.

Fourth, the sales-advertising relationship is modeled in this study under the 

assumption that the firm is operating in a monopolistic market. A plausible extension 

would be to incorporate competition in the modeling framework. In so doing, we will be 

in a position to address, among other things, the question raised by Simon (1982) and 

Mesak (1985): What is the effect of different competitive interference patterns? Several 

pioneering studies have attempted to incorporate competition in conjunction with the 

original or the modified Vidale-Wolfe model (Deal 1979; Little 1979; Jones 1983; 

Erickson 1985; Monahan 1987; Park and Hahn 1991). More recently, Villas-Boas 

(1993), Mesak and Calloway (1995a, b) and Mesak and Means (1998) used game theory 

to analyze pulsing models of advertising competition.
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Finally, the computer programs presented in the numerical example are flexible in 

that various values of certain key parameters can be dealt with, but they are designed to 

solve the problem only for a four-period planning horizon. Although four-period 

budgeting is a commonplace phenomenon, future efforts should be geared towards 

developing more flexible programs that allow the user to choose the number of periods 

in a planning horizon within a reasonable range of options. We feel that such an 

extension can be achieved with a relative ease through following the general approach of 

dynamic programming discussed herein.

In summary, the main thrust of this study lies in providing a guide to marketing 

managers in determining an optimal advertising pulsing policy, given a fixed amount for 

the advertising budget. Moreover, it demonstrates a practical means to assess the 

plausibility of a model representing the dynamic relationship between advertising and 

sales as well as the shape of the advertising response function. The application of a DP 

modeling framework may provide an effective means through which the allocation of 

advertising funds over time can be determined and implemented.
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APPENDIX A 

DERIVATION OF KEY EXPRESSIONS 

Derivation o f Expression (3.10)

The present value of advertising spending over period i is given by

T

I = e-," ,>rT fx e ^ d r  = e H'~hrT( l  -  e~rT )x /  r . (A. 1)
o

(3.10) is obtained by expressing x in terms of I.

Derivation o f Expression (4.13)

T

Rl( ^ , x l j = e-,'-nrrjq l(lJe-r,dt. (A.2)
o

Substituting for qj(t) from (4.1) gives

T

R, (4.x, ) = e -(,- ,)rT \[S,e-*(x,>‘ + S(x, ) ( l  -  e-*(x,J' )]e~r,dt 
o

T

{ \s ,e~ ^(x' ^ r),dt + \S ( x t )e-r,dt -  \S(x,)e-'*fx‘^ rJ,dt}=  e ~ u ~ l , r T  ^

o o

 S ^ X ‘ ^  l + r ) tIr i S ^ X ‘ K ~r cIT )
1)6 { ( t ( x , )  + r ) e l ° + r e

=  e - (,- ‘ ,rT{ ^ ~ ~ X, )  [ l - e ~ , *(x')-r>T ]  +  ^ ± ( I - e - rT ) } .  
<f>(x, ) + r r
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Derivation of Expression (4.14)

co

Rn+i =e~"rT \q n+i(‘)e~r'dt.
o

Substituting for q,*+i(t) from (4.2) yields

X

0

- ( - D e - ^ R S ^ / f a  + DJe-""*^

= e~nrTSn+, /  (a + r).

(A.3)
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APPENDIX B

PERFORMANCE OF ADVERTISING POLICIES

Table A 1 
Returns Of DP 

(r = 0.00)

s, X | * X2* x3* X 4 * Total Return

5 = 0 . 1 0 4 4 4 4 4 1 . 7 4 9 9 7
10 4 4 4 4 5 8 . 4 8 8 6 1
30 4 4 4 4 9 1 . 9 6 5 8 8
60 3 . 2 4 4 4 . 8 1 4 2 . 2
90 1 . 6 3 . 2 4 . 8 6 . 4 1 9 2 . 4 7 8 2

6 = 0 . 3 0 4 4 4 4 5 3 . 4 7 5 1 2
10 4 4 4 4 6 9 . 3 0 7 5
30 4 4 4 4 1 0 0 . 9 7 2 3
60 3 . 2 4 4 4 . 8 148 . 5551
90 1 . 6 3 . 2 4 . 8 6 . 4 1 9 6 . 3 6 3 4

6 = 0 . 5 0 4 4 4 4 6 7 . 8 8 8 6
10 4 4 4 4 8 2 . 6 1 3 6 7
30 3 . 2 4 4 4 . 8 1 1 2 . 0 9 4 6
60 2 . 4 3 . 2 4 . 8 5 . 6 1 5 6 . 5 0 9 9
90 0 . 8 2 . 4 4 . 8 8 2 0 1 . 5 1 8 4

5 = 0 . 7 0 4 4 4 4 8 5 . 2 2 3 6 9
10 4 4 4 4 9 8 . 6 2 7 8 9
30 3 . 2 4 4 4 . 8 1 2 5 . 5 6 7 3
60 2 . 4 3 . 2 4 6 . 4 1 6 6 . 4 3 2 3
90 0 . 8 1 . 6 4 9 . 6 2 0 8 . 5 6 5 1

5 = 0 . 9 0 4 . 8 3 . 2 3 . 2 4 . 8 1 0 5 . 6 3 3 4
10 4 3 . 2 3 . 2 5 . 6 1 1 7 . 5 3 6 9
30 3 . 2 2 . 4 4 6 . 4 1 4 1 . 6 9 9 7
60 0 . 8 1 . 6 4 9 . 6 1 7 9 . 3 4 7 2
90 0 0 2 . 4 1 3 . 6 2 1 9 . 2 7 7 6
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Table A1 (Continued)
8 = 1 . 0 0 8 0 0 8 1 1 7 . 8 5 1 6

10 7 . 2 0 0 8 . 8 1 2 8 . 8 6 4
30 4 0 0 12 1 5 1 . 7 2 2 9
60 0 0 0 16 1 8 8 . 8 5 4 4
90 0 0 0 16 2 2 7 . 3 3 1 8

5 = 1 . 1 0 8 0 0 8 1 3 6 . 0 6 6 7
10 6 . 4 0 0 9 . 6 1 4 5 . 8 3 7 6
30 0 0 0 16 1 6 7 . 5 9 4 3
60 0 0 0 16 2 0 2 . 0 4 6
90 0 0 0 16 2 3 6 . 4 9 7 6

5 = 1 . 5 0 8 0 0 8 2 1 2 . 4 1 9 9
10 7 . 2 0 0 8 . 8 2 1 6 . 8 1 7 3
30 5 . 6 0 0 1 0 . 4 2 2 6 . 5 5 4 9
60 0 0 0 16 2 4 6 . 1 2 2 6
90 0 0 0 16 2 6 7 . 8 6 3 2

5 = 2 . 0 0 8 0 0 8 2 7 1 . 2 0 6 7
10 8 0 0 8 2 7 2 . 1 3 1 2
30 8 0 0 8 2 7 3 . 9 8
60 7 . 2 0 0 8 . 8 2 7 7 . 5 4 6 8
90 0 6. 4 0 9 . 6 2 8 2 . 9 1 4 6

5 = 3.0 0 8 0 0 8 2 9 1 . 6 2 9 1
10 8 0 0 8 2 9 1 . 7 2 6 3
30 5 . 6 4 0 6 . 4 2 9 2 . 2
60 5 . 6 4 0 6 . 4 2 9 3 . 0 4 2 4
90 4 4 . 8 0 7 . 2 2 9 4 . 2 8 6 2
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Table A2 
Returns o f  BP 

(r = 0.00)

s, BP, b p 2 b p 3 b p 4

5 = 0 . 1 0 1 2 . 7 8 6 2 4 1 2 . 7 8 6 2 4 1 2 . 7 8 6 2 4 1 2 . 7 8 6 2 4
10 3 1 . 5 8 5 0 8 3 1 . 7 2 6 2 2 3 1 . 8 5 0 7 7 3 1 . 9 6 0 6 9
30 6 9 . 1 8 2 7 5 6 9 . 6 0 6 1 7 6 9 . 9 7 9 8 4 7 0 . 3 0 9 6
60 1 2 5 . 5 7 9 3 1 2 6 . 4 2 6 1 1 2 7 . 1 7 3 4 1 2 7 . 8 3 3
90 1 8 1 . 9 7 5 8 1 8 3 . 2 4 6 1 8 4 . 3 6 7 1 1 8 5 . 3 5 6 3

5 = 0 . 3 0 2 1 . 7 5 3 9 3 2 1 . 7 5 3 9 3 2 1 . 7 5 3 9 3 2 1 . 7 5 3 9 3
10 3 9 . 7 1 1 3 3 9 . 9 5 1 3 2 4 0 . 1 6 3 1 3 40 .  35005
30 7 5 . 6 2 6 0 4 7 6 . 3 4 6 0 8 7 6 . 9 8 1 5 2 7 7 . 5 4 2 3
60 1 2 9 . 4 9 8 2 1 3 0 . 9 3 8 2 1 3 2 . 2 0 9 1 1 3 3 . 3 3 0 7
90 1 8 3 . 3 7 0 3 1 8 5 . 5 3 0 4 1 8 7 . 4 3 6 7 1 8 9 . 1 1 9

5 = 0 . 5 0 3 6 . 4 0 0 3 3 6 . 4 0 0 3 3 6 . 4 0 0 3 3 6 . 4 0 0 3
10 5 2 . 9 8 5 2 5 5 3 . 3 8 6 5 2 5 3 . 7 4 0 6 5 5 4 . 0 5 3 1 7
30 8 6 . 1 5 5 1 5 8 7 . 3 5 8 9 9 8 8 . 4 2 1 3 7 8 9 . 3 5 8 9 2
60 1 3 5 . 9 1 1 3 8 . 3 1 7 7 1 4 0 . 4 4 2 4 1 4 2 . 3 1 7 5
90 1 8 5 . 6 6 4 9 1 8 9 . 2 7 6 4 1 9 2 . 4 6 3 5 1 9 5 . 2 7 6 2

5 = 0 . 7 0 5 9 . 2 2 4 5 8 5 9 . 2 2 4 5 8 5 9 . 2 2 4 5 8 5 9 . 2 2 4 5 8
10 7 3 . 6 7 6 1 5 7 4 . 3 2 8 1 7 4 . 9 0 3 4 5 7 5 . 4 1 1 2
30 1 0 2 . 5 7 9 3 1 0 4 . 5 3 5 1 1 0 6 . 2 6 1 2 1 0 7 . 7 8 4 4
60 1 4 5 . 9 3 4 1 4 9 . 8 4 5 7 1 5 3 . 2 9 7 8 1 5 6 . 3 4 4 3
90 1 8 9 . 2 8 8 7 1 9 5 . 1 5 6 3 2 0 0 . 3 3 4 5 2 0 4 . 9 0 4 2

5 = 0 . 9 0 9 2 . 0 3 4 3 2 9 2 . 0 3 4 3 2 9 2 . 0 3 4 3 2 9 2 . 0 3 4 3 2
10 1 0 3 . 4 3 3 4 1 0 4 . 4 4 4 1 0 5 . 3 3 5 9 1 0 6 . 1 2 3
30 1 2 6 . 2 3 1 5 1 2 9 . 2 6 3 4 1 3 1 . 9 3 9 1 1 3 4 . 3 0 0 3
60 1 6 0 . 4 2 8 7 1 6 6 . 4 9 2 5 1 7 1 . 8 4 3 8 1 7 6 . 5 6 6 3
90 1 9 4 . 6 2 5 9 2 0 3 . 7 2 1 7 2 1 1 . 7 4 8 6 2 1 8 . 8 3 2 4

5 = 1 . 0 0 1 1 1 . 8 9 9 5 1 1 1 . 8 9 9 5 1 1 1 . 8 9 9 5 1 1 1 . 8995
10 1 2 1 . 4 6 1 1 122.  6876 1 2 3 . 7 7 0 1 1 2 4 . 7 2 5 3
30 1 4 0 . 5 8 4 3 1 4 4 . 2 6 4 1 4 7 . 5 1 1 2 1 5 0 . 3 7 6 9
60 1 6 9 . 2 6 9 2 1 7 6 . 6 2 8 5 1 8 3 . 1 2 3 188 . 8544
90 1 9 7 . 9 5 4 1 2 0 8 . 9 9 3 2 1 8 . 7 3 4 7 2 2 7 . 3 3 1 8

5 = 1 . 1 0 1 3 3 . 1 4 2 7 1 3 3 . 1 4 2 7 1 3 3 . 1 4 2 7 1 3 3 . 1 4 2 7
10 1 4 0 . 7 5 1 8 1 4 2 . 2 0 7 7 1 4 3 . 4 9 2 6 1 4 4 . 6 2 6 6
30 1 5 5 . 9 7 1 6 0 . 3 3 7 9 1 6 4 . 1 9 2 6 1 6 7 . 5 9 4 3
60 1 7 8 . 7 9 7 4 1 8 7 . 5 3 3 2 1 9 5 . 2 4 2 5 2 0 2 . 0 4 6
90 2 0 1 . 6 2 4 8 2 1 4 . 7 2 8 5 2 2 6 . 2 9 2 4 2 3 6 . 4 9 7 6
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Table A2 (Continued)

8 = 1 . 5 0 2 0 2 . 6 4 1 5 2 0 2 . 6 4 1 5 2 0 2 . 6 4 1 5 2 0 2 . 6 4 1 5
10 2 0 4 . 0 8 5 8 2 0 6 . 2 6 6 1 2 0 8 . 1 9 0 3 2 0 9 . 8 8 8 3
30 2 0 6 . 9 7 4 3 2 1 3 . 5 1 5 4 2 1 9 . 2 8 7 9 2 2 4 . 3 8 2
60 2 1 1 . 3 0 7 2 2 2 4 . 3 8 9 3 2 3 5 . 9 3 4 2 2 4 6 . 1 2 2 6
90 2 1 5 . 6 4 2 3 5 . 2 6 3 2 2 5 2 . 5 8 0 6 2 6 7 . 8 6 3 2

8 = 2 . 0 0 2 2 0 . 9 0 8 2 2 0 . 9 0 8 2 2 0 . 9 0 8 2 2 0 . 9 0 8
10 2 2 1 . 1 0 1 5 2 2 3 . 4 2 8 8 2 2 5 . 4 8 2 6 2 2 7 . 2 9 5 2
30 2 2 1 . 4 8 8 4 2 2 8 . 4 7 0 4 2 3 4 . 6 3 2 2 4 0 . 0 6 9 5
60 2 2 2 . 0 6 8 8 2 3 6 . 0 3 2 8 2 4 8 . 3 5 5 9 2 5 9 . 2 3 1 1
90 2 2 2 . 6 4 9 2 2 4 3 . 5 9 5 2 2 6 2 . 0 7 9 9 2 7 8 . 3 9 2 6

8 = 3 . 0 0 224 . 7408 2 2 4 . 7 4 0 8 2 2 4 . 7 4 0 8 2 2 4 . 7 4 0 8
10 2 2 4 . 7 5 3 2 2 7 . 1 0 1 7 2 2 9 . 1 7 4 3 2 3 1 . 0 0 3 4
30 2 2 4 . 7 7 7 4 2 3 1 . 8 2 3 3 2 3 8 . 0 4 1 3 2 4 3 . 5 2 8 6
60 2 2 4 . 8 1 4 2 3 8 . 9 0 5 8 2 5 1 . 3 4 1 8 2 6 2 . 3 1 6 4
90 2 2 4 . 8 5 0 6 2 4 5 . 9 8 8 3 2 6 4 . 6 4 2 2 2 8 1 . 1 0 4 2
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Table A3
Returns o f  APMP-I

(r = 0.00)

Si > = 0 . 0 > = 0 . 3 X.=0 . 7 > = 1 . 0

5 = 0.1 0 2 3 . 3 5 3 4 5 4 0 . 6 3 1 2 5 4 1 . 5 8 9 8 6 4 1 . 7 4 9 9 7
10 4 1 . 4 0 7 8 5 5 7 . 4 3 9 4 6 5 8 . 3 3 4 6 4 5 8 . 4 8 8 6 1
30 7 7 . 5 1 6 6 5 9 1 . 0 5 5 8 9 9 1 . 8 2 4 2 9 1 . 9 6 5 8 9
60 1 3 1 . 6 7 9 9 1 4 1 . 4 8 0 5 1 4 2 . 0 5 8 5 1 4 2 . 1 8 1 8
90 1 8 5 . 8 4 3 1 1 9 1 . 9 0 5 1 1 9 2 . 2 9 2 9 1 9 2 . 3 9 7 7

5 = 0.3 0 3 4 . 4 6 0 2 5 0 . 3 7 5 7 3 5 3 . 0 1 3 5 4 5 3 . 4 7 5 1 2
10 5 1 . 5 9 4 4 7 6 6 . 3 8 4 6 7 6 8 . 8 5 7 6 4 6 9 . 3 0 7 5
30 8 5 . 8 6 3 0 3 9 8 . 4 0 2 5 6 1 0 0 . 5 4 5 8 1 0 0 . 9 7 2 3
60 1 3 7 . 2 6 5 9 1 4 6 . 4 2 9 4 1 4 8 . 0 7 8 1 1 4 8 . 4 6 9 4
90 1 8 8 . 6 6 8 7 1 9 4 . 4 5 6 2 1 9 5 . 6 1 0 5 1 9 5 . 9 6 6 6

5 = 0.5 0 5 0 . 1 8 0 9 6 3 . 5 5 9 4 3 6 7 . 2 1 9 8 3 6 7 . 8 8 8 6
10 6 6 . 0 1 9 1 7 7 8 . 4 8 9 4 9 8 1 . 9 4 6 0 2 8 2 . 6 1 3 6 7
30 9 7 . 6 9 5 6 9 1 0 8 . 3 4 9 6 1 1 1 . 3984 1 1 2 . 0 6 3 8
60 1 4 5 . 2 1 0 5 1 5 3 . 1 3 9 8 1 5 5 . 5 7 6 9 1 5 6 . 2 3 9
90 1 9 2 . 7 2 5 3 1 9 7 . 9 3 1 9 9 . 7 5 5 5 2 0 0 . 4 1 4 2

5 = 0.7 0 7 1 . 6 7 7 6 8 1 . 0 0 6 5 5 8 4 . 5 4 8 3 9 8 5 . 2 2 3 6 9
10 8 5 . 7 5 7 1 6 9 4 . 5 1 6 0 6 9 7 . 9 1 6 4 8 9 8 . 6 2 7 8 8
30 1 1 3 . 9 1 6 3 1 2 1 . 5 3 5 1 1 2 4 . 6 5 2 7 1 2 5 . 4 3 6 3
60 1 5 6 . 1 5 5 1 6 2 . 0 6 3 6 1 6 4 . 7 5 6 9 1 6 5 . 6 4 8 9
90 1 9 8 . 3 9 3 7 2 0 2 . 5 9 2 1 2 0 4 . 8 6 1 2 2 0 5 . 8 6 1 5

5 = 0.9 0 9 9 . 6 0 5 2 2 1 0 3 . 2 9 0 7 1 0 5 . 1 2 4 1 0 5 . 4 9 2 3
10 1 1 1 . 4 2 7 4 1 1 5 . 0 0 1 9 1 1 6 . 8 9 0 9 1 1 7 . 3 6 9 4
30 1 3 5 . 0 7 1 9 1 3 8 . 4 2 4 1 1 4 0 . 4 2 4 7 1 4 1 . 1 2 3 6
60 1 7 0 . 5 3 8 6 1 7 3 . 5 5 7 5 1 7 5 . 7 2 5 3 1 7 6 . 7 5 4 9
90 2 0 6 . 0 0 5 2 2 0 8 . 6 9 0 9 2 1 1 . 0 2 5 9 2 1 2 . 3 8 6 2

5 = 1.0 0 1 1 5 . 8 4 3 2 1 1 6 . 2 4 8 2 1 1 6 . 5 6 5 4 1 1 6 . 6 3 6 7
10 1 2 6 . 3 7 0 1 1 2 6 . 9 2 3 9 1 2 7 . 4 4 8 8 1 2 7 . 6 8 3 2
30 1 4 7 . 4 2 3 9 1 4 8 . 2 7 5 3 1 4 9 . 2 1 5 5 1 4 9 . 7 7 6 3
60 1 7 9 . 0 0 4 7 1 8 0 . 3 0 2 4 1 8 1 . 8 6 5 8 1 8 2 . 9 1 5 9
90 2 1 0 . 5 8 5 4 2 1 2 . 3 2 9 4 2 1 4 . 5 1 6 2 1 6 . 0 5 5 6

5 =  l.l 0 1 3 3 . 2 6 6 9 1 3 0 . 2 7 7 2 1 2 8 . 6 7 4 3 1 2 8 . 3 5 0 3
10 1 4 2 . 4 2 1 1 3 9 . 8 4 2 1 3 8 . 6 2 9 2 1 3 8 . 5 3 1 8
30 1 6 0 . 7 2 9 1 1 5 8 . 9 7 1 7 1 5 8 . 5 3 9 1 1 5 8 . 8 9 4 8
60 1 8 8 . 1 9 1 4 1 8 7 . 6 6 6 2 1 8 8 . 4 0 3 9 1 8 9 . 4 3 9 3
90 2 1 5 . 6 5 3 6 2 1 6 . 3 6 0 6 2 1 8 . 2 6 8 7 2 1 9 . 9 8 3 9
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Table A3 (Continued)

5 =  1.5 0 2 0 3 . 8 1 4 7 1 9 1 . 1 2 6 6 1 80 . 5 8 7 7 1 7 8 . 0 7 3 1
10 2 0 7 . 6 9 5 2 1 9 6 . 0 5 4 1 1 8 6 . 6 7 1 9 1 8 4 . 7 0 1
30 2 1 5 . 4 5 6 1 2 0 5 . 9 0 9 1 9 8 . 8 40 4 1 9 7 . 9 5 6 8
60 2 2 7 . 0 9 7 4 2 2 0 . 6 9 1 4 2 1 7 . 0 9 3 2 1 7 . 8 4 0 5
90 2 3 8 . 7 3 8 8 2 3 5 . 4 7 3 8 2 3 5 . 3 4 5 7 2 3 7 . 7 2 4 2

5 = 2.0 0 2 5 3 . 3 5 4 7 2 4 5 . 8 6 7 6 2 3 5 . 7 4 8 9 2 3 2 . 3 8 6 1
10 2 5 4 . 2 0 9 9 2 4 7 . 1 8 6 7 2 3 8 . 1 1 0 1 2 3 5 . 5 1 6 5
30 2 5 5 . 9 2 0 3 2 4 9 . 8 2 4 9 2 4 2 . 8 3 2 3 2 4 1 . 7 7 7 2
60 2 5 8 . 4 8 6 2 5 3 . 7 8 2 1 2 4 9 . 9 1 5 6 2 5 1 . 1 6 8 3
90 2 6 1 . 0 5 1 6 2 5 7 . 7 3 9 3 2 5 6 . 9 9 9 2 6 0 . 5 5 9 3

5 = 3.0 0 2 7 1 . 0 9 0 9 2 7 0 . 7 8 2 3 2 7 7 . 3 5 0 5 2 8 1 .  4854
10 2 7 1 . 1 8 8 1 2 7 0 . 9 4 0 1 2 7 7 . 7 0 0 8 2 8 2 . 2 3 7 3
30 2 7 1 . 3 8 2 5 2 7 1 . 2 5 5 6 2 7 8 . 4 0 1 4 2 8 3 . 7 4 1 1
60 2 7 1 . 6 7 4 2 7 1 . 7 2 8 9 2 7 9 . 4 5 2 4 2 8 5 . 9 9 6 8
90 2 7 1 . 9 6 5 6 2 7 2 . 2 0 2 1 2 8 0 . 5 0 3 3 2 8 8 . 2 5 2 6
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Table A4
Returns o f APMP-II

(r = 0.00)

Si >.=0.0 >.=0.3 >.=0.7 ll t-* • O

6 = 0.1 0 2 3 . 3 5 3 4 5 4 0 . 6 3 1 2 5 4 1 . 5 8 9 8 6 4 1 . 7 4 9 9 7
10 4 1 . 6 3 6 4 6 5 7 . 4 7 3 7 5 8 . 3 4 7 1 7 5 8 . 4 8 8 6 1
30 7 8 . 2 0 2 4 9 9 1 . 1 5 8 5 9 9 1 . 8 6 1 7 9 9 1 . 9 6 5 8 9
60 1 3 3 . 0 5 1 5 1 4 1 . 6 8 5 9 1 4 2 . 1 3 3 7 1 4 2 . 1 8 1 8
90 1 8 7 . 9 0 0 6 1 9 2 . 2 1 3 3 1 9 2 . 4 05 7 1 9 2 . 3 9 7 7

6 = 0.3 0 3 4 . 4 6 0 2 5 0 . 3 7 5 7 3 5 3 . 0 1 3 5 4 5 3 . 4 7 5 1 2
10 5 1 . 9 3 1 2 1 6 6 . 5 0 9 2 6 6 8 . 9 0 5 3 1 6 9 . 3 0 7 5
30 8 6 . 8 7 3 2 1 9 8 . 7 7 6 3 2 1 0 0 . 6 88 8 1 0 0 . 9 7 2 3
60 1 3 9 . 2 8 6 2 1 4 7 . 1 7 6 9 1 4 8 . 3 6 4 1 148 . 4694
90 1 9 1 . 6 9 9 3 1 9 5 . 5 7 7 5 1 9 6 . 03 94 1 9 5 . 9 6 6 6

6 = 0.5 0 5 0 . 1 8 0 9 6 3 . 5 5 9 4 2 6 7 . 2 1 9 8 3 6 7 .  8886
10 6 6 . 5 0 8 1 9 7 8 . 7 4 0 9 9 8 2 . 0 4 5 8 6 8 2 . 6 1 3 6 7
30 9 9 . 1 6 2 7 4 1 0 9 . 1 0 4 1 1 11 . 6 9 7 9 1 1 2 . 0 6 3 8
60 1 4 8 . 1 4 4 6 1 5 4 . 6 4 8 8 1 5 6 . 1 7 6 1 5 6 . 2 3 9
90 1 9 7 . 1 2 6 4 2 0 0 . 1 9 3 5 2 0 0 . 6 5 4 1 2 0 0 . 4 1 4 2

6 = 0.7 0 7 1 . 6 7 7 6 8 1 . 0 0 6 5 6 8 4 . 5 4 8 3 9 8 5 . 2 2 3 6 9
10 8 6 . 4 5 2 8 4 9 4 . 9 3 9 8 9 8 . 0 9 0 1 9 8 . 6 2 7 8 8
30 1 1 6 . 0 0 3 3 1 2 2 . 8 0 6 3 1 2 5 . 1 7 3 6 1 2 5 . 4 3 6 3
60 1 6 0 . 3 2 9 1 6 4 . 6 0 6 1 6 5 . 7 98 7 1 6 5 . 6 4 8 9
90 2 0 4 . 6 5 4 7 2 0 6 . 4 0 5 7 2 0 6 . 4 2 3 9 2 0 5 . 8 6 1 5

6 = 0.9 0 9 9 . 6 0 5 2 2 1 0 3 . 2 9 0 7 105 . 12 4 105 . 4 9 2 3
10 1 1 2 . 3 8 8 4 1 1 5 . 6 4 9 1 17 . 16 38 117 . 3694
30 1 3 7 . 9 5 4 6 1 4 0 . 3 6 5 6 1 4 1 . 2 4 3 5 1 4 1 . 1 2 3 6
60 1 7 6 . 3 0 4 1 7 7 . 4 4 0 5 1 7 7 . 3 6 3 1 1 7 6 . 7 5 4 9
90 2 1 4 . 6 5 3 5 2 1 4 . 5 1 5 4 2 1 3 . 4 8 2 6 2 1 2 . 3 8 6 2

5 =  1.0 0 1 1 5 . 8 4 3 2 1 1 6 . 2 4 8 2 1 16 . 56 54 1 1 6 . 6 3 6 7
10 1 2 7 . 4 8 3 2 1 2 7 . 7 0 1 8 1 27 . 78 17 1 2 7 . 6 8 3 2
30 1 5 0 . 7 6 3 3 1 5 0 . 6 0 8 9 1 5 0 . 21 4 4 1 4 9 . 7 7 6 3
60 1 8 5 . 6 8 3 3 1 8 4 . 9 6 9 6 1 8 3 . 8 6 3 3 1 8 2 . 9 1 5 9
90 2 2 0 . 6 0 3 4 2 1 9 . 3 3 0 2 2 1 7 . 5 1 2 3 2 1 6 . 0 5 5 6

5 =  1.1 0 1 3 3 . 2 6 6 9 1 3 0 . 2 7 7 2 1 28 . 6 7 4 3 128 . 3 5 0 3
10 1 4 3 . 6 9 5 4 1 4 0 . 7 6 1 6 1 3 9 . 0 2 8 9 138 . 5 31 8
30 1 6 4 . 5 5 2 4 1 6 1 . 7 3 0 4 1 59 . 7 3 8 2 158 . 8 948
60 1 9 5 . 8 3 8 1 9 3 . 1 8 3 6 1 9 0 . 8 0 2 2 1 8 9 . 4 3 9 3
90 2 2 7 . 1 2 3 5 2 2 4 . 6 3 6 8 2 2 1 . 8 6 6 1 2 1 9 . 9 8 3 9
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Table A4 (Continued)
8 = 1.5 0 2 0 3 . 8 1 4 7 1 9 1 . 1 2 6 6 1 8 0 . 5 8 7 7 178 . 0 7 3 1

10 2 0 9 . 5 8 9 3 1 9 7 . 5 8 2 6 1 8 7 . 3 9 2 3 1 8 4 . 7 0 1
30 2 2 1 . 1 3 8 4 2 1 0 . 4 9 4 5 2 0 1 . 0 0 1 6 1 9 7 . 9 5 6 8
60 2 3 8 . 4 6 2 2 2 9 . 8 6 2 4 2 2 1 . 4 1 5 6 2 1 7 . 8 4 0 5
90 2 5 5 . 7 8 5 7 2 4 9 . 2 3 0 3 2 4 1 . 8 2 9 5 2 3 7 . 7 2 4 2

5 = 2.0 0 2 5 3 . 3 5 4 7 2 4 5 . 8 6 7 6 2 3 5 . 7 4 8 9 2 3 2 . 3 8 6 1
10 2 5 6 . 4 5 9 5 2 4 9 . 2 2 6 7 2 3 9 . 2 2 2 5 2 3 5 . 5 1 6 5
30 2 6 2 . 6 6 9 2 5 5 . 9 4 4 9 2 4 6 . 1 6 9 5 2 4 1 . 7 7 7 2
60 2 7 1 . 9 8 3 4 2 6 6 . 0 2 2 2 2 5 6 . 5 9 0 1 2 5 1 . 1 6 8 3
90 2 8 1 . 2 9 7 8 2 7 6 . 0 9 9 5 2 6 7 . 0 1 0 6 2 6 0 . 5 5 9 3

5 = 3.0 0 2 7 1 . 0 9 0 9 2 7 0 . 7 8 2 3 2 7 7 . 3 5 0 4 2 8 1 . 4 8 5 4
10 2 7 3 . 5 2 6 8 2 7 3 . 1 6 3 4 2 7 8 . 8 9 6 3 2 8 2 . 2 3 7 3
30 2 7 8 . 3 9 8 4 2 7 7 . 9 2 5 7 2 8 1 . 9 8 8 2 8 3 . 7 4 1 1
60 2 8 5 . 7 0 5 9 2 8 5 . 0 6 9 1 2 8 6 . 6 2 5 6 2 8 5 . 9 9 6 8
90 2 9 3 . 0 1 3 3 2 9 2 . 2 1 2 4 2 9 1 . 2 6 3 2 2 8 8 . 2 5 2 6
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Table B1
Returns Of DP

(r = 0.01)

s, yi* y i ys* y * Total Return

6 = 0 .1 0 1 i i 1 4 0 . 7 5 1 8 3 9
10 1 i i 1 5 7 . 1 7 4 9 7 6
30 1 i i 1 9 0 . 0 2 1 2 5 5
60 0 . 8 i i 1 . 2 1 3 9 . 3 0 7 7 1
90 0 . 4 0 . 8 1 . 2 1 . 6 1 8 8 . 6 3 7 3 4

5 = 0 . 5 0 1 1 1 1 6 6 . 3 8 2 0 9 5
10 1 1 1 1 8 0 . 8 3 0 7 1 9
30 0 . 8 1 1 1 . 2 1 0 9 . 7 5 2 5 5
60 0 . 6 0 . 8 1 . 2 1 . 4 1 5 3 . 3 2 9 6 7
90 0 . 2 0 . 6 1 . 2 2 1 9 7 . 4 8 8 6 3

8 = 0 . 9 0 1 . 2 0 . 8 0 . 8 1 . 2 1 0 3 . 4 3 7 7 9
10 1 0 . 8 0 . 8 1 . 4 1 1 5 . 1 0 5 3 2
30 0 . 8 0 . 8 0 . 8 1 . 6 1 3 8 . 7 9 9 2 6
60 0 . 2 0 . 4 1 2 . 4 1 7 5 . 7 0 8 2 2
90 0 0 0 . 6 3 . 4 2 1 4 . 8 7 7 1 1

8 = 1 . 0 0 2 0 0 2 1 1 5 . 4 4 1 1 8
10 1 . 8 0 0 2 . 2 1 2 6 . 2 3 0 6 2
30 1 0 . 2 0 2 . 8 1 4 8 . 6 0 8 5 5
60 0 0 0 4 1 8 4 . 9 6 6 5 5
90 0 0 0 4 2 2 2 . 7 4 8 3 1

8 = 1 . 1 0 2 0 0 2 1 3 3 . 3 0 7 8 9
10 1 . 6 0 0 2 . 4 1 4 2 . 8 5 6 1 4
30 0 0 0 4 1 6 3 . 9 9 8 7 8
60 0 0 0 4 1 9 7 . 8 4 9 9 6
90 0 0 0 4 2 3 1 . 7 0 1 1 6

8 = 1 . 5 0 2 0 0 2 2 0 8 . 1 0 9 3 3
10 1 . 8 0 0 2 . 2 2 1 2 . 3 6 8 8
30 1 . 4 0 0 2 . 6 2 2 1 . 7 9 9 9 6
60 0 0 0 4 2 4 0 . 5 7 7 5 6
90 0 0 0 4 2 6 2 . 1 2 0 7

8 = 3 . 0 0 2 0 0 2 2 8 5 . 3 6 1 6
10 1 . 6 0 0 . 8 1 . 6 2 8 5 . 4 8 3
30 1 . 4 1 0 1 . 6 2 8 5 . 9 9 0 6
60 1 . 4 1 0 1 . 6 2 8 6 . 8 2 9 5 9
90 1 1 . 2 0 1 . 8 2 8 8 . 0 3 2 0 4
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Table B2
Returns o f BP

(r = 0.01)

s, BP, b p 2 b p3 bp4

5 = 0 . 1 0 1 2 . 5 2 1 5 5 1 2 . 4 9 3 3 1 1 2 . 4 6 5 1 3 4 1 2 . 4 3 7 0 2 2
10 3 0 . 9 5 3 0 6 4 3 1 . 0 6 5 3 8 8 3 1 . 1 6 0 9 8 3 1 . 2 4 1 8 4 6
30 6 7 . 8 1 6 0 9 3 68 . 2 0 9 5 4 1 6 8 . 5 5 2 6 7 3 6 8 . 8 5 1 4 9 4
60 1 2 3 . 1 1 0 6 3 1 2 3 . 9 2 5 7 7 1 2 4 . 6 4 0 2 1 1 2 5 . 2 6 5 9 6
90 1 7 8 . 4 0 5 1 8 1 7 9 . 6 4 2 0 1 1 8 0 . 7 2 7 7 4 1 8 1 . 6 80 4 4

5 = 0 . 5 0 3 5 . 6 6 3 5 9 7 3 5 . 6 1 4 9 2 2 3 5 . 5 6 6 2 9 9 3 5 . 5 1 7 7 4 2
10 5 1 . 9 2 5 4 1 9 5 2 . 2 7 3 9 4 5 5 2 . 5 7 5 3 8 2 5 2 . 8 3 5 3 2 3
30 8 4 . 4 4 9 0 5 9 8 5 . 5 9 1 9 9 5 8 6 . 5 9 3 5 4 4 8 7 . 4 7 0 4 8 2
60 1 3 3 . 2 3 4 5 3 1 3 5 . 5 6 9 0 8 1 3 7 . 6 2 0 7 7 1 3 9 . 4 2 3 2 2
90 1 8 2 . 0 1 9 9 7 1 8 5 . 5 4 6 1 6 1 8 8 . 6 4 8 0 3 1 9 1 . 3 7 5 9 6

8 = 0 . 9 0 9 0 . 2 0 2 5 3 8 9 0 . 1 2 7 0 1 4 9 0 . 0 5 1 4 5 3 8 9 . 9 7 5 8 3
10 1 0 1 . 3 8 0 4 1 1 0 2 . 3 0 1 7 5 1 0 3 . 1 0 5 1 9 1 0 3 . 8 0 4 6 3
30 1 2 3 . 7 3 6 1 4 1 2 6 . 6 5 1 2 3 1 2 9 . 2 1 2 6 6 1 3 1 . 4 6 22 2
60 1 5 7 . 2 6 9 7 3 1 6 3 . 1 7 5 4 5 1 6 8 . 3 7 3 8 7 1 7 2 . 9 4 86 1
90 1 9 0 . 8 0 3 3 3 1 9 9 . 6 9 9 6 6 2 0 7 . 5 3 5 0 8 2 1 4 . 4 3 5

8 = 1 . 0 0 1 0 9 . 6 7 6 6 9 1 0 9 . 5 8 5 6 2 1 0 9 . 4 9 4 4 2 1 0 9 . 4 03 1 1
10 1 1 9 . 0 5 3 2 2 1 2 0 . 1 7 2 0 3 1 2 1 . 1 4 7 6 6 1 2 1 . 9 97 0 2
30 1 3 7 . 8 0 6 3 1 4 1 . 3 4 4 8 5 1 4 4 . 4 5 4 1 2 1 47 . 184 84
60 1 6 5 . 9 3 5 9 1 7 3 . 1 0 4 0 8 1 7 9 . 4 1 3 8 2 1 8 4 . 9 66 5 7
90 1 9 4 . 0 6 5 4 9 2 0 4 . 8 6 3 3 1 2 1 4 . 3 7 3 5 2 2 2 . 7 4 8 2 9

6 = 1 . 1 0 1 3 0 . 4 9 9 6 6 1 3 0 . 3 8 2 5 4 1 3 0 . 2 6 5 1 8 1 3 0 . 1 4 76 1
10 1 3 7 . 9 6 2 2 8 1 3 9 . 2 8 2 1 4 1 4 0 . 4 3 1 7 9 1 41 . 43 1 34
30 1 5 2 . 8 8 7 4 7 1 5 7 . 0 8 1 3 6 1 6 0 . 7 6 5 0 3 16 3 . 9 98 7 8
60 1 7 5 . 2 7 5 2 7 1 8 3 . 7 8 0 1 8 1 9 1 . 2 6 4 8 6 1 9 7 . 8 4 99 8
90 1 9 7 . 6 6 3 0 9 2 1 0 . 4 7 9 2 2 1 . 7 6 4 6 9 2 3 1 . 7 0 1 1 4

8 = 1 . 5 0 1 9 8 . 5 8 8 9 4 1 9 8 . 2 2 3 2 7 1 9 7 . 8 5 7 4 1 1 9 7 . 4 9 1 3 6
10 2 0 0 . 0 1 1 5 2 2 0 1 . 8 1 3 3 7 2 0 3 . 3 5 6 7 4 2 0 4 . 6 7 2 3 9
30 2 0 2 . 8 5 6 6 9 2 0 8 . 9 9 3 5 5 2 1 4 . 3 5 5 3 8 2 1 9 . 0 3 4 4 5
60 2 0 7 . 1 2 4 4 4 2 1 9 . 7 6 3 8 5 2 3 0 . 8 5 3 3 5 2 4 0 . 5 7 7 5 8
90 2 1 1 . 3 9 2 1 8 2 3 0 . 5 3 4 1 3 2 4 7 . 3 5 1 3 2 2 6 2 . 1 2 0 7

8 = 3 . 0 0 2 2 0 . 3 0 2 1 2 2 1 9 . 7 5 3 9 5 2 1 9 . 2 0 7 1 4 2 1 8 . 6 6 1 6 8
10 2 2 0 . 3 1 4 2 9 2 2 2 . 1 1 1 7 7 2 2 3 . 6 2 9 8 2 2 2 4 . 9 0 2 0 7
30 2 2 0 . 3 3 8 5 9 2 2 6 . 8 2 7 3 8 2 3 2 . 4 7 5 1 7 2 3 7 . 3 8 2 8 3
60 2 2 0 . 3 7 5 0 6 2 3 3 . 9 0 0 8 2 4 5 . 7 4 3 2 3 2 5 6 . 1 0 3 9 7
90 2 2 0 . 4 1 1 5 1 2 4 0 . 9 7 4 2 3 2 5 9 . 0 1 1 2 6 2 7 4 . 8 2 5 1 3
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Table B3
Returns o f  APMP-I

(r = 0.01)

Si A=0.0 A.=0.3 A.=0. 7 ll o

5 = 0.1 0 2 2 . 8 1 9 6 2 8 3 9 . 6 6 3 6 3 1 4 0 . 5 9 6 9 7 4 0 . 7 5 1 8 3 9
10 4 0 .  525734 5 6 . 1 5 4 4 1 9 5 7 . 0 2 5 9 9 7 5 7 . 1 7 4 9 7 6
30 7 5 . 9 3 7 9 5 8 9 . 1 3 5 9 8 6 8 9 . 8 8 4 0 4 8 9 0 . 0 2 1 2 5 5
60 1 2 9 . 0 5 6 2 6 1 3 8 . 6 0 8 3 4 1 3 9 . 1 7 1 1 3 1 3 9 . 2 9 0 6 8
90 1 8 2 . 1 7 4 6 1 1 8 8 . 0 8 0 7 1 8 8 . 4 5 8 2 1 1 8 8 . 5 6 0 0 9

5 = 0.5 0 4 9 . 1 0 2 0 4 3 6 2 . 1 6 7 3 5 1 6 5 . 7 3 5 4 8 1 6 6 . 3 8 2 0 9 5
10 6 4 . 6 3 6 7 8 7 6 . 8 1 5 0 6 3 8 0 . 1 8 4 6 3 1 8 0 . 8 3 0 7 1 9
30 9 5 . 7 0 6 2 4 5 1 0 6 . 1 1 0 4 8 1 0 9 . 0 8 2 9 2 1 0 9 . 7 2 7 9 4
60 1 4 2 . 3 1 0 4 6 1 5 0 . 0 5 3 6 1 5 2 . 4 3 0 3 4 1 5 3 . 0 7 3 7 9
90 1 8 8 . 9 1 4 6 4 1 9 3 . 9 9 6 7 3 1 9 5 . 7 7 7 7 9 1 9 6 . 4 1 9 6 5

5 = 0.9 0 9 7 . 5 6 8 6 1 9 1 0 1 . 1 6 6 4 7 1 0 2 . 9 4 7 2 4 1 0 3 . 2 9 6 4 3
10 1 0 9 . 1 6 5 1 1 1 2 . 6 5 5 1 1 1 4 . 4 9 1 6 2 1 1 4 . 9 4 9 6 4
30 1 3 2 . 3 5 8 0 6 1 3 5 . 6 3 2 3 1 1 3 7 . 5 8 0 3 5 1 3 8 . 2 5 6 0 7
60 1 6 7 . 1 4 7 4 8 1 7 0 . 0 9 8 1 4 1 7 2 . 2 1 3 4 7 1 7 3 . 2 1 5 7 3
90 2 0 1 . 9 3 6 9 2 0 4 . 5 6 3 9 8 2 0 6 . 8 4 6 5 9 2 0 8 . 1 7 5 3 8

5 =  1.0 0 1 1 3 . 4 9 4 6 1 1 1 3 . 8 8 3 7 5 1 1 4 . 1 8 1 4 1 1 1 4 . 2 3 9 4 3
10 1 2 3 . 8 2 0 7 3 1 2 4 . 3 5 6 3 1 2 4 . 8 5 8 5 3 1 2 5 . 0 7 7 3 2
30 1 4 4 . 4 7 2 9 6 1 4 5 . 3 0 1 4 1 1 4 6 . 2 1 2 7 7 1 4 6 . 7 5 3 1
60 1 7 5 . 4 5 1 3 1 1 7 6 . 7 1 9 0 6 1 7 8 . 2 4 4 1 3 1 7 9 . 2 6 6 7 7
90 2 0 6 . 4 2 9 6 6 2 0 8 . 1 3 6 7 2 2 1 0 . 2 7 5 5 2 1 1 . 7 8 0 4 3

5 =  1.1 0 1 3 0 . 5 8 1 5 4 1 2 7 . 6 5 0 2 7 1 2 6 . 0 7 0 0 8 1 2 5 . 7 4 0 8 2
10 1 3 9 . 5 6 1 4 6 1 3 7 . 0 3 2 9 6 1 3 5 . 8 3 5 9 2 1 3 5 . 7 2 9 6 1
30 1 5 7 . 5 2 1 3 1 5 5 . 7 9 8 3 6 1 5 5 . 3 6 7 5 8 1 5 5 . 7 0 7 2 4
60 1 8 4 . 4 6 1 0 4 1 8 3 . 9 4 6 4 4 1 8 4 . 6 6 5 1 1 8 5 . 6 7 3 6 6
90 2 1 1 . 4 0 0 7 9 2 1 2 . 0 9 4 5 4 2 1 3 . 9 6 2 6 2 1 5 . 6 4 0 0 9

5 =  1.5 0 1 9 9 . 6 9 8 8 8 187 .  30551 1 7 7 . 0 0 2 7 2 1 7 4 . 5 2 7 9 2
10 2 0 3 . 5 1 2 2 4 1 9 2 . 1 4 2 7 8 1 8 2 . 9 7 2 6 6 1 8 1 . 0 3 1 8 6
30 2 1 1 . 1 3 8 9 3 2 0 1 . 8 1 7 3 5 1 9 4 . 9 1 2 5 8 1 9 4 . 0 3 9 7
60 2 2 2 . 5 7 8 9 6 2 1 6 . 3 2 9 1 8 2 1 2 . 8 2 2 4 3 2 1 3 . 5 5 1 5
90 2 3 4 . 0 1 9 0 4 2 3 0 . 8 4 1 0 3 2 3 0 . 7 3 2 3 2 2 3 3 . 0 6 3 2 9

5 = 3.0 0 2 6 5 . 4 8 4 3 1 2 6 5 . 2 0 3 4 9 2 7 1 . 7 1 3 5 3 2 7 5 . 6 1 4 3 2
10 2 6 5 . 5 8 1 1 2 2 6 5 . 3 6 0 6 3 2 7 2 . 0 6 2 4 4 2 7 6 . 3 6 2 7 6
30 2 6 5 . 7 7 4 7 5 2 6 5 . 6 7 4 9 3 2 7 2 . 7 6 0 1 9 2 7 7 . 8 5 9 6 5
60 2 6 6 . 0 6 5 1 6 2 6 6 . 1 4 6 3 9 2 7 3 . 8 0 6 8 5 2 8 0 . 1 0 4 9 8
90 2 6 6 . 3 5 5 5 9 2 6 6 . 6 1 7 8 6 2 7 4 . 8 5 3 4 9 2 8 2 . 3 5 0 2 8
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Table B4
Returns o f APMP-II

(r = 0.01)

Si X=0. 0 Jl=0.3 A=0.7
oi—iII

5 = 0.1 0 2 2 . 7 6 8 0 4 4 3 9 . 6 5 5 8 4 6 4 0 . 5 9 4 1 2 4 0 . 7 5 1 8 3 9
10 4 0 . 7 0 1 4 0 5 5 6 . 1 8 0 6 6 8 5 7 . 0 3 5 6 0 3 5 7 . 1 7 4 9 7 6
30 7 6 . 5 6 8 1 3 8 9 . 2 3 0 3 2 4 8 9 . 9 1 8 5 6 4 9 0 . 0 2 1 2 5 5
60 1 3 0 . 3 6 8 2 3 1 3 8 . 8 0 4 8 1 1 3 9 . 2 4 3 0 3 1 3 9 . 2 9 0 6 8
90 1 8 4 . 1 6 8 3 1 8 8 . 3 7 9 2 9 1 8 8 . 5 6 7 4 7 1 8 8 . 5 6 0 0 9

5 = 0.5 0 4 9 . 0 3 3 5 5 6 2 . 1 3 0 9 8 5 6 5 . 7 2 0 9 1 7 6 6 . 3 8 2 0 9 5
10 6 5 . 0 5 1 9 4 1 7 7 . 0 2 7 5 1 2 8 0 . 2 6 8 8 4 5 8 0 . 8 3 0 7 1 9
30 9 7 . 0 8 8 7 1 5 1 0 6 . 8 2 0 5 6 1 0 9 . 3 6 4 7 3 1 0 9 . 7 2 7 9 4
60 1 4 5 . 1 4 3 8 6 1 5 1 . 5 1 0 1 5 1 5 3 . 0 0 8 5 4 1 5 3 . 0 7 3 7 9
90 1 9 3 . 1 9 9 0 1 1 9 6 . 1 9 9 7 4 1 9 6 . 6 5 2 3 4 1 9 6 . 4 1 9 6 5

5 = 0.9 0 9 7 . 4 8 9 2 6 5 1 0 1 . 1 1 1 5 4 1 0 2 . 9 2 3 7 6 1 0 3 . 2 9 6 4 3
10 1 1 0 . 0 3 3 1 3 1 1 3 . 2 3 8 2 9 1 1 4 . 7 3 7 3 1 1 4 . 9 4 9 6 4
30 1 3 5 . 1 2 0 8 5 1 3 7 . 4 9 1 7 9 1 3 8 . 3 6 4 4 1 3 8 . 2 5 6 0 7
60 1 7 2 . 7 5 2 4 6 1 7 3 . 8 7 2 0 4 1 7 3 . 8 0 5 0 2 1 7 3 . 2 1 5 7 3
90 2 1 0 . 3 8 4 0 3 2 1 0 . 2 5 2 2 9 2 0 9 . 2 4 5 6 7 2 0 8 . 1 7 5 3 8

5 = 1.0 0 1 1 3 . 4 0 9 6 3 1 1 3 . 8 2 4 3 3 1 1 4 . 1 5 5 9 8 1 1 4 . 2 3 9 4 3
10 1 2 4 . 8 3 2 9 5 1 2 5 . 0 6 3 6 1 1 2 5 . 1 6 1 2 5 1 2 5 . 0 7 7 3 2
30 1 4 7 . 6 7 9 5 7 1 4 7 . 5 4 2 1 4 1 4 7 . 1 7 18 1 4 6 . 7 5 3 1
60 1 8 1 . 9 4 9 4 9 1 8 1 . 2 5 9 9 6 1 8 0 . 1 8 7 6 1 1 7 9 . 2 6 6 7 7
90 2 1 6 . 2 1 9 4 1 2 1 4 . 9 7 7 7 8 2 1 3 . 2 0 3 4 3 2 1 1 . 7 8 0 4 3

5 =  1.1 0 1 3 0 . 4 8 6 4 7 1 2 7 . 5 8 4 6 1 2 6 . 0 4 2 2 8 1 2 5 . 7 4 0 8 2
10 1 4 0 . 7 2 2 6 6 1 3 7 . 8 7 3 5 5 1 3 6 . 2 0 1 9 8 1 3 5 . 7 2 9 6 1
30 1 6 1 . 1 9 5 0 7 1 5 8 . 4 5 1 4 5 1 5 6 . 5 2 1 3 8 1 5 5 . 7 0 7 2 4
60 1 9 1 . 9 0 3 7 1 8 9 . 3 1 8 2 8 1 8 7 . 0 0 0 4 6 1 8 5 . 6 7 3 6 6
90 2 2 2 . 6 1 2 3 2 2 2 0 . 1 8 5 1 2 2 1 7 . 4 7 9 5 8 2 1 5 . 6 4 0 0 9

5 =  1.5 0 1 9 9 . 4 7 2 5 1 8 7 . 1 6 0 1 4 1 7 6 . 9 4 8 1 7 1 7 4 . 5 2 7 9 2
10 2 0 5 . 1 5 9 8 1 1 9 3 . 5 0 7 0 8 1 8 3 . 6 2 8 6 5 1 8 1 . 0 3 1 8 6
30 2 1 6 . 5 3 4 4 2 2 0 6 . 2 0 0 9 9 1 9 6 . 9 8 9 6 1 1 9 4 . 0 3 9 7
60 2 3 3 . 5 9 6 3 3 2 2 5 . 2 4 1 8 2 2 1 7 . 0 3 1 0 4 2 1 3 . 5 5 1 5
90 2 5 0 . 6 5 8 2 5 2 4 4 . 2 8 2 6 7 2 3 7 . 0 7 2 4 9 2 3 3 . 0 6 3 2 9

5 = 3.0 0 2 6 4 . 8 3 8 8 7 2 6 4 . 5 7 9 4 4 2 7 1 . 2 8 1 1 3 2 7 5 . 6 1 4 3 2
10 2 6 7 . 2 7 0 6 3 2 6 6 . 9 5 5 6 9 2 7 2 . 8 2 1 3 2 2 7 6 . 3 6 2 7 6
30 2 7 2 . 1 3 4 1 9 2 7 1 . 7 0 8 2 5 2 7 5 . 9 0 1 6 7 2 7 7 . 8 5 9 6 5
60 2 7 9 . 4 2 9 5 2 7 8 . 8 3 7 0 4 2 8 0 . 5 2 2 1 6 2 8 0 . 1 0 4 9 8
90 2 8 6 . 7 2 4 8 2 2 8 5 . 9 6 5 8 5 2 8 5 . 1 4 2 6 7 2 8 2 . 3 5 0 2 8
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Table Cl
Returns o f DP

(r = 0.05)

s, yi* Y i
«

y3 y4* Total Return

6 = 0.1 0 1 1 i i 37 .  132111
10 1 1 i i 5 2 . 4 0 7 3 2 2
30 1 1 i i 8 2 . 9 5 7 7 4 1
60 0 . 8 1 i 1 . 2 1 2 8 . 7 9 6 2 5
90 0 . 4 0 . 8 1 . 2 1 . 6 1 7 4 . 6 7 4 6 1

5 = 0.5 0 1 1 1 1 6 0 . 9 0 9 6 1 1
10 1 1 1 1 7 4 . 3 5 2 5 7 7
30 0 . 8 1 1 1 . 2 1 0 1 . 2 4 0 8 1
60 0 . 8 0 . 8 1 1 . 4 1 4 1 . 7 7 0 5 1
90 0 . 2 0 . 6 1 . 2 2 1 8 2 . 8 3 7 9 8

5 = 0.9 0 1 . 2 0 . 8 0 . 8 1 . 2 9 5 . 4 5 3 3 3 9
10 1 . 2 0 . 8 0 . 8 1 . 2 1 0 6 . 2 7 7 3
30 0 . 8 0 . 8 0 . 8 1 . 6 1 2 8 . 2 6 5 1 5
60 0 . 2 0 . 4 1 2 . 4 1 6 2 . 4 7 4 4 9
90 0 0 0 . 6 3 . 4 1 9 8 . 8 7 3 8 4

5 =  1.0 0 2 . 2 0 0 1 . 8 1 0 6 . 6 7 9 0 2
10 1 . 8 0 0 2 . 2 1 1 6 . 6 5 0 3 1
30 1 0 . 2 0 2 . 8 1 3 7 . 2 8 4 3 8
60 0 0 0 4 1 7 0 . 8 2 2 2 4
90 0 0 0 4 2 0 6 . 0 7 6 2 6

6 =  l.l 0 2 . 2 0 0 1 . 8 1 2 3 . 2 9 9 0 5
10 1 . 8 0 0 2 . 2 1 3 2 . 0 4 6 2 3
30 0 0 0 4 1 5 0 . 9 0 6 5 7
60 0 0 0 4 1 8 2 . 5 7 8 4 9
90 0 0 0 4 214 .2504

5 =  1.5 0 2 . 2 0 0 1 . 8 1 9 2 . 4 5 0 1 5
10 2 0 0 2 1 9 6 . 3 1 8 3 4
30 1 . 6 0 0 2 . 4 2 0 4 . 7 4 6 0 9
60 0 0 0 4 2 2 0 . 4 0 5 4 4
90 0 0 0 4 2 4 1 . 2 3 1 5 8

5 = 3.0 0 1 . 6 0 1 1 . 4 2 6 2 . 8 3 1 3 3
10 1 . 6 0 1 1 . 4 2 6 3 . 0 1 6 6 3
30 1 . 4 1 0 1 . 6 2 6 3 . 4 3 2 1 9
60 1 . 4 1 0 1 . 6 2 6 4 . 2 5 7 9 7
90 1 . 2 1 . 2 0 1 . 6 2 6 5 . 3 3 3 1 9
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Table C2
Returns o f BP

(r = 0.05)

s, BP, b p2 b p 3 b p 4

5 = 0.1 0 1 1 . 5 5 9 2 4 1 1 . 4 2 9 4 8 1 1 1 . 3 0 1 1 7 9 1 1 . 1 7 4 3 1 5
10 2 8 . 6 5 5 0 1 8 2 8 . 6 6 3 6 3 2 8 . 6 5 6 0 7 3 2 8 . 6 3 4 5 6 7
30 6 2 . 8 4 6 5 6 9 6 3 . 1 3 1 9 2 7 6 3 . 3 6 5 8 5 6 6 3 . 5 5 5 0 6 9
60 1 1 4 . 1 3 3 9 1 1 4 . 8 3 4 3 7 1 1 5 . 4 3 0 5 3 1 1 5 . 9 3 5 8 3
90 1 6 5 . 4 2 1 2 3 1 6 6 . 5 3 6 8 2 1 6 7 . 4 9 5 2 1 1 6 8 . 3 1 6 5 7

5 = 0.5 0 3 2 . 9 8 4 9 4 3 2 . 7 6 0 3 7 2 3 2 . 5 3 7 2 2 8 3 2 . 3 1 5 4 8 3
10 4 8 . 0 7 1 7 1 2 4 8 . 2 2 9 4 5 4 4 8 . 3 4 1 3 9 6 48 . 4 1 3 3 6 1
30 7 8 . 2 4 5 2 6 2 7 9 . 1 6 7 6 1 7 9 . 9 4 9 7 3 8 8 0 . 6 0 9 1 0 8
60 1 2 3 . 5 0 5 5 8 1 2 5 . 5 7 4 8 5 1 2 7 . 3 6 2 2 5 1 2 8 . 9 0 2 7 4
90 1 6 8 . 7 6 5 9 1 7 1 . 9 8 2 0 9 1 7 4 . 7 7 4 7 7 1 7 7 . 1 9 6 3 8

5 = 0.9 0 8 3 . 5 4 1 7 1 8 8 3 . 1 9 1 0 4 8 2 . 8 3 9 3 7 8 8 2 . 4 8 6 7 4
10 9 3 . 9 1 5 1 9 2 9 4 . 5 1 1 3 8 3 9 4 . 9 9 1 9 5 9 9 5 . 3 7 0 7 7 3
30 1 1 4 . 6 6 2 1 4 1 1 7 . 1 5 2 0 8 1 1 9 . 2 9 7 1 3 1 2 1 . 1 3 8 8 5
60 1 4 5 . 7 8 2 5 6 1 5 1 . 1 1 3 1 3 1 5 5 . 7 5 4 8 8 1 5 9 . 7 9 0 9 7
90 1 7 6 . 9 0 2 9 8 1 8 5 . 0 7 4 1 7 1 9 2 . 2 1 2 6 5 1 9 8 . 4 4 3 0 8

5 =  1.0 0 1 0 1 . 5 9 4 0 4 1 0 1 . 1 7 0 1 2 1 0 0 . 7 4 3 4 8 1 0 0 . 3 1 4 1 7
10 1 1 0 . 2 9 7 5 1 1 1 1 . 0 2 3 1 1 1 . 60674 1 1 2 . 0 6 5 5 1
30 1 2 7 . 7 0 4 4 4 1 3 0 . 7 2 8 7 8 1 3 3 . 3 3 3 2 4 1 3 5 . 5 6 8 1 9
60 1 5 3 . 8 1 4 8 5 1 6 0 . 2 8 7 4 5 1 6 5 . 9 2 2 9 9 1 7 0 . 8 2 2 2 2
90 1 7 9 . 9 2 5 2 5 1 8 9 . 8 4 6 1 1 9 8 . 5 1 2 7 4 2 0 6 . 0 7 6 2 5

5 =  1.1 0 1 2 0 . 8 8 8 9 2 1 2 0 . 3 4 2 6 1 1 9 . 7 9 1 1 6 1 1 9 . 2 3 4 6 7
10 1 2 7 . 8 1 8 7 3 1 2 8 . 6 4 0 7 2 1 2 9 . 2 9 1 7 8 1 2 9 . 7 9 1 9 8
30 1 4 1 . 6 7 8 3 1 4 5 . 2 3 6 9 7 1 4 8 . 2 9 3 1 5 0 . 9 0 6 5 7
60 1 6 2 . 4 6 7 6 8 1 7 0 . 1 3 1 3 3 1 7 6 . 7 9 4 8 3 1 8 2 . 5 7 8 4 9
90 1 8 3 . 2 5 7 0 6 1 9 5 . 0 2 5 7 2 0 5 . 2 9 6 6 8 2 1 4 . 2 5 0 4

5 = 1.5 0 1 8 3 . 8 5 3 7 6 1 8 2 . 1 5 6 7 1 1 8 0 . 4 5 6 2 7 178 . 7 5 3 1 7
10 1 8 5 . 1 9 7 3 1 1 8 5 . 6 2 1 1 5 1 8 5 . 7 7 5 8 5 1 8 5 . 6 9 5 2 2
30 1 8 7 . 8 8 4 3 8 1 9 2 . 5 5 0 0 5 1 9 6 . 4 1 5 0 1 1 9 9 . 5 7 9 3
60 1 9 1 . 9 1 5 0 1 2 0 2 . 9 4 3 3 7 2 1 2 . 3 7 3 7 3 2 2 0 . 4 0 5 4 4
90 1 9 5 . 9 4 5 6 2 2 1 3 . 3 3 6 7 2 2 8 . 3 3 2 4 7 2 4 1 . 2 3 1 5 8

5 = 3.0 0 2 0 4 . 1 6 1 9 7 2 0 1 . 6 3 4 6 3 1 9 9 . 1 3 8 2 4 1 9 6 . 6 7 2 4 7
10 2 0 4 . 1 7 3 9 5 2 0 3 . 9 8 0 4 2 2 0 3 . 5 1 8 1 2 0 2 . 8 2 5 1 2
30 2 0 4 . 1 9 7 8 9 2 0 8 . 6 7 2 2 1 2 . 2 7 7 8 2 1 5 . 1 3 0 4 5
60 2 0 4 . 2 3 3 8 1 2 1 5 . 7 0 9 3 7 2 2 5 . 4 1 7 3 6 2 3 3 . 5 8 8 4 2
90 2 0 4 . 2 6 9 7 3 2 2 2 . 7 4 6 7 3 2 3 8 . 5 5 6 9 2 2 5 2 . 0 4 6 4 2
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Table C3
Returns o f  APMP-I

(r = 0.05)

Si A.=0.0 X = 0 . 3 31=0.7
or-tII

5 = 0.1 0 2 0 . 8 8 1 9 6 6 3 6 . 1 5 4 2 8 9 3 6 . 9 9 6 1 2 4 3 7 . 1 3 2 1 1 1
10 3 7 . 3 2 1 2 8 9 5 1 . 4 9 0 1 8 5 5 2 . 2 7 6 3 1 5 2 . 4 0 7 3 1 8
30 7 0 . 1 9 9 9 3 6 8 2 . 1 6 1 9 6 4 8 2 . 8 3 6 6 7 8 2 . 9 5 7 7 4 1
60 1 1 9 . 5 1 7 9 1 1 2 8 . 1 6 9 6 5 1 2 8 . 6 7 7 2 2 1 2 8 . 7 8 3 3 7
90 1 6 8 . 8 3 5 8 6 1 7 4 . 1 7 7 3 1 1 7 4 . 5 1 7 7 6 1 7 4 . 6 0 9 0 2

5 = 0.5 0 4 5 . 1 8 1 5 0 7 5 7 . 1 0 9 7 6 6 0 . 3 4 3 1 5 9 6 0 . 9 0 9 6 1 5
10 5 9 . 6 1 2 3 1 2 7 0 . 7 3 0 4 7 3 . 7 8 4 5 3 1 7 4 . 3 5 2 5 8 5
30 8 8 . 4 7 3 9 2 3 9 7 . 9 7 1 6 7 2 1 0 0 . 6 6 7 2 7 1 0 1 . 2 3 8 5 2
60 1 3 1 . 7 6 6 3 3 1 3 8 . 8 3 3 5 7 1 4 0 . 9 9 1 3 8 1 4 1 . 5 6 7 4 3
90 1 7 5 . 0 5 8 7 3 1 7 9 . 6 9 5 5 1 8 1 . 3 1 5 4 9 1 8 1 . 8 9 6 3 5

6 = 0.9 0 9 0 . 1 6 2 4 9 1 9 3 . 4 4 1 6 6 6 9 5 . 0 3 1 2 8 8 9 5 . 3 1 0 9 5 1
10 1 0 0 . 9 3 8 0 9 1 0 4 . 1 2 1 0 9 1 0 5 . 7 6 6 5 6 1 0 6 . 1 5 0 0 9
30 1 2 2 . 4 8 9 2 7 1 2 5 . 4 7 9 9 9 1 2 7 . 2 3 7 1 1 2 7 . 8 2 8 3 7
60 1 5 4 . 8 1 6 0 6 1 5 7 . 5 1 8 3 1 5 9 . 4 4 2 9 1 6 0 . 3 4 5 7 8
90 1 8 7 . 1 4 2 8 4 1 8 9 . 5 5 6 6 1 1 9 1 . 6 4 8 7 1 1 9 2 . 8 6 3 2

6 =  1.0 0 1 0 4 . 9 5 2 7 1 1 0 5 . 2 8 3 7 1 1 0 5 . 5 1 0 2 4 1 0 5 . 5 1 9 5 9
10 1 1 4 . 5 4 8 7 6 1 1 5 . 0 1 7 7 2 1 1 5 . 4 3 7 4 1 1 5 . 5 9 8 9 1
30 1 3 3 . 7 4 0 8 6 1 3 4 . 4 8 5 7 2 1 3 5 . 2 9 1 7 3 1 3 5 . 7 5 7 5 1
60 1 6 2 . 5 2 9 0 1 1 6 3 . 6 8 7 7 4 1 6 5 . 0 7 3 2 3 1 6 5 . 9 9 5 4 2
90 1 9 1 . 3 1 7 1 8 1 9 2 . 8 8 9 7 7 1 9 4 . 8 5 4 7 2 1 9 6 . 2 3 3 3 4

5 =  1.1 0 1 2 0 . 8 1 3 2 2 1 1 8 . 0 9 4 0 3 1 1 6 . 5 9 5 7 7 1 1 6 . 2 4 6 4 7
10 1 2 9 . 1 6 0 0 5 1 2 6 . 8 1 4 6 8 1 2 5 . 6 7 4 2 7 1 2 5 . 5 3 4 9
30 1 4 5 . 8 5 3 6 8 1 4 4 . 2 5 6 1 4 3 . 8 3 1 2 7 1 4 4 . 1 1 1 7 4
60 1 7 0 . 8 9 4 1 3 1 7 0 . 4 1 7 9 7 1 7 1 . 0 6 6 7 6 1 7 1 . 9 7 7 0 1
90 1 9 5 . 9 3 4 6 1 9 6 . 5 7 9 9 4 1 9 8 . 3 0 2 2 5 1 9 9 . 8 4 2 2 9

5 =  1.5 0 1 8 4 . 7 1 8 3 8 1 7 3 . 3 9 5 8 3 1 6 3 . 9 4 9 0 5 1 6 1 . 6 1 4 8 2
10 1 8 8 . 2 8 8 3 6 1 7 7 . 9 0 5 9 9 1 6 9 . 5 0 4 5 2 1 6 7 . 6 6 9 2 4
30 1 9 5 . 4 2 8 3 3 1 8 6 . 9 2 6 2 7 1 8 0 . 6 1 5 4 6 1 7 9 . 7 7 8 0 6
60 2 0 6 . 1 3 8 2 9 2 0 0 . 4 5 6 7 1 9 7 . 2 8 1 8 9 1 9 7 . 9 4 1 3 1
90 2 1 6 . 8 4 8 2 2 2 1 3 . 9 8 7 1 4 2 1 3 . 9 4 8 3 2 2 1 6 . 1 0 4 5 4

5 = 3.0 0 2 4 5 . 1 0 7 8 8 2 4 4 . 9 2 8 5 1 2 5 1 . 2 0 8 9 7 2 5 4 . 2 3 9 9 4
10 2 4 5 . 2 0 3 2 2 2 4 5 . 0 8 3 2 5 2 5 1 . 5 5 2 1 7 2 5 4 . 9 7 4 7 9
30 2 4 5 . 3 9 3 9 1 2 4 5 . 3 9 2 7 3 2 5 2 . 2 3 8 5 7 2 5 6 . 4 4 4 4 6
60 2 4 5 . 6 7 9 9 3 2 4 5 . 8 5 6 9 5 2 5 3 . 2 6 8 1 7 2 5 8 . 6 4 9 0 2
90 2 4 5 . 9 6 5 9 6 2 4 6 . 3 2 1 1 5 2 5 4 . 2 9 7 7 8 2 6 0 . 8 5 3 5 2
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Table C4
Returns o f  APMP-II

(r = 0.05)

Si

o
•

oIIr<

1

>.=0.3 >.=0.7 II i-* • o

8 = 0.1 0 2 0 . 6 4 7 0 1 7 3 6 . 1 1 8 8 3 9 3 6 . 9 8 3 1 4 3 37 . 1 3 2 1 1 1
10 3 7 . 3 0 8 3 9 5 5 1 . 4 8 8 0 1 5 2 . 2 7 5 5 0 5 5 2 . 4 0 7 3 1 8
30 7 0 . 6 3 1 1 5 7 8 2 . 2 2 6 3 4 1 8 2 . 8 6 0 2 2 9 8 2 . 9 5 7 7 4 1
60 1 2 0 . 6 1 5 3 1 2 8 . 3 3 3 8 5 1 2 8 . 7 3 7 3 2 1 2 8 . 7 8 3 3 7
90 1 7 0 . 5 9 9 4 4 1 7 4 . 4 4 1 3 8 1 7 4 . 6 1 4 4 3 1 7 4 . 6 0 9 0 2

8 = 0.5 0 4 4 . 8 6 7 1 0 7 5 6 . 9 4 2 8 2 2 6 0 . 2 7 6 2 9 1 6 0 . 9 0 9 6 1 5
10 5 9 . 7 6 1 8 6 4 7 0 . 8 0 2 4 3 7 7 3 . 8 1 2 5 7 6 74 . 352585
30 8 9 . 5 5 1 3 7 6 9 8 . 5 2 1 6 6 7 1 0 0 . 8 8 5 1 5 1 0 1 . 2 3 8 5 2
60 1 3 4 . 2 3 5 6 4 1 4 0 . 1 0 0 4 9 1 4 1 . 4 9 4 1 4 1 . 5 6 7 4 3
90 1 7 8 . 9 1 9 9 1 1 8 1 . 6 7 9 3 4 1 8 2 . 1 0 2 8 7 1 8 1 . 8 9 6 3 5

8 = 0.9 0 8 9 . 7 9 3 8 5 4 9 3 . 1 8 6 4 1 7 9 4 . 9 2 2 1 9 5 9 5 . 3 1 0 9 5 1
10 1 0 1 . 4 6 7 6 8 1 0 4 . 4 7 1 2 3 1 0 5 . 9 1 2 9 1 0 6 . 1 5 0 0 9
30 1 2 4 . 8 1 5 3 6 1 2 7 . 0 4 0 8 5 1 2 7 . 8 9 4 2 6 1 2 7 . 8 2 8 3 7
60 1 5 9 . 8 3 6 8 7 1 6 0 . 8 9 5 2 8 1 6 0 . 8 6 6 3 2 1 6 0 . 3 4 5 7 8
90 1 9 4 . 8 5 8 3 7 1 9 4 . 7 4 9 7 3 1 9 3 . 8 3 8 3 8 1 9 2 . 8 6 3 2

8=  1.0 0 1 0 4 . 5 5 5 9 2 1 0 5 . 0 0 6 2 7 1 0 5 . 3 9 1 4 3 1 0 5 . 5 1 9 5 9
10 1 1 5 . 1 9 1 4 3 1 1 5 . 4 6 6 5 8 1 1 5 . 6 2 9 4 3 1 1 5 . 5 9 8 9 1
30 1 3 6 . 4 6 2 4 5 1 3 6 . 3 8 7 2 2 1 3 6 . 1 0 5 4 4 1 3 5 . 7 5 7 5 1
60 1 6 8 . 3 6 9 1 6 7 . 7 6 8 1 7 1 6 6 . 8 1 9 4 4 1 6 5 . 9 9 5 4 2
90 2 0 0 . 2 7 5 5 4 1 9 9 . 1 4 9 1 2 1 9 7 . 5 3 3 4 5 1 9 6 . 2 3 3 3 4

8=  l.l 0 1 2 0 . 3 6 6 7 3 1 1 7 . 7 8 5 5 5 1 1 6 . 4 6 5 1 1 1 6 . 2 4 6 4 7
10 1 2 9 . 9 0 4 2 2 1 2 7 . 3 6 4 2 5 1 2 5 . 9 1 6 2 8 1 2 5 . 5 3 4 9
30 1 4 8 . 9 7 9 1 9 1 4 6 . 5 2 1 6 7 1 4 4 . 8 1 8 6 5 1 4 4 . 1 1 1 7 4
60 1 7 7 . 5 9 1 6 4 1 7 5 . 2 5 7 8 1 1 7 3 . 1 7 2 2 1 7 1 . 9 7 7 0 1
90 2 0 6 . 2 0 4 1 2 0 3 . 9 9 3 9 6 2 0 1 . 5 2 5 7 6 1 9 9 . 8 4 2 2 9

8 =  1.5 0 1 8 3 . 6 4 8 9 1 7 2 . 7 0 2 7 1 6 3 . 6 8 6 3 6 1 6 1 . 6 1 4 8 2
10 1 8 9 . 0 2 0 5 7 1 7 8 . 6 5 5 0 8 1 6 9 . 9 1 6 9 1 6 7 . 6 6 9 2 4
30 1 9 9 . 7 6 3 9 2 1 9 0 . 5 5 9 8 1 8 2 . 3 7 8 0 4 1 7 9 . 7 7 8 0 6
60 2 1 5 . 8 7 8 9 1 2 0 8 . 4 1 6 9 2 0 1 . 0 6 9 7 1 9 7 . 9 4 1 3 1
90 2 3 1 . 9 9 3 9 3 2 2 6 . 2 7 4 2 1 9 . 7 6 1 3 8 2 1 6 . 1 0 4 5 4

8 = 3.0 0 2 4 2 . 1 4 1 1 1 2 4 2 . 0 5 7 2 7 2 4 9 . 2 2 6 5 9 2 5 4 . 2 3 9 9 4
10 2 4 4 . 5 5 6 9 2 2 4 4 . 4 1 4 3 8 2 5 0 . 7 4 4 4 5 2 5 4 . 9 7 4 7 9
30 2 4 9 . 3 8 8 4 9 2 4 9 . 1 2 8 6 2 2 5 3 . 7 8 0 1 2 2 5 6 . 4 4 4 4 6
60 2 5 6 . 6 3 5 8 6 2 5 6 . 1 9 9 9 8 2 5 8 . 3 3 3 6 5 2 5 8 . 6 4 9 0 2
90 2 6 3 . 8 8 3 2 4 2 6 3 . 2 7 1 3 3 2 6 2 . 8 8 7 1 8 2 6 0 . 8 5 3 5 2
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Table D1
Returns o f  DP

(r = 0.12)

s , yi* Y r y i ' y 4* Total Return

5 = 0.1 0 i 1 i i 3 1 . 9 5 4 1 8 9
10 i 1 i i 4 5 . 5 7 4 7 2 6
30 i 1 i i 7 2 . 8 1 5 8 0 4
60 0 . 8 1 i 1 . 2 1 1 3 . 6 8 4 5 2
90 0 . 6 0 . 8 1 . 2 1 . 4 1 5 4 . 5 9 0 1 6

5 = 0.5 0 1 1 1 1 5 3 . 0 5 1 0 7 9
10 1 1 1 1 6 5 . 0 4 5 1 1 3
30 1 1 1 1 8 9 . 0 3 3 1 8
60 0 . 8 0 . 8 1 1 . 4 1 2 5 . 1 5 7 2 1
90 0 . 2 0 . 6 1 . 2 2 1 6 1 . 7 5 7 8 4

5 = 0.9 0 1 . 4 0 . 8 0 . 8 1 8 3 . 9 9 3 5 6 8
10 1 . 2 0 . 8 0 . 8 1 . 2 9 3 . 6 0 9 3 7 5
30 0 . 8 0 . 8 0 . 8 1 . 6 1 1 3 . 0 9 8 5 6
60 0 . 2 0 . 6 0 . 8 2 . 4 1 4 3 . 4 3 8 2 6
90 0 0 0 . 6 3 . 4 1 7 5 . 8 3 2 8 2

5 =  1.0 0 2 . 2 0 0 1 . 8 9 4 . 1 1 9 2 7 8
10 2 0 0 o 1 0 2 . 8 9 6 5 9
30 1 . 2 0 . 2 0 2 . 6 1 2 1 . 0 3 5 4 3
60 0 0 . 4 0 3 . 6 1 5 0 . 5 1 7 8 1
90 0 0 0 4 1 8 2 . 0 6 0 8 5

6 =  1.1 0 2 . 4 0 0 1 . 6 1 0 8 . 9 3 9 4 5
10 2 0 0 2 1 1 6 . 5 6 3 8 4
30 1 . 2 0 0 2 . 8 1 3 2 . 7 1 3 4 1
60 0 0 0 4 1 6 0 . 5 5 0 5 2
90 0 0 0 4 1 8 9 . 0 9 9 3 3

5 =  1.5 0 2 . 2 0 0 1 . 8 1 7 0 . 0 3 9 5 2
10 2 . 2 0 0 1 . 8 1 7 3 . 2 7 8 0 8
30 1 . 8 0 0 2 . 2 1 8 0 . 3 8 1 7 1
60 1 . 2 0 0 2 . 8 1 9 2 . 9 8 4 5 1
90 0 0 0 4 2 1 1 . 1 4 9 4 6

6 = 3.0 0 1 . 6 0 1 1 . 4 2 3 0 . 6 7 0 8 4
10 1 . 6 0 1 1 . 4 2 3 0 . 8 5 1 1 5
30 1 . 6 0 1 1 . 4 2 3 1 . 2 1 1 8 2
60 1 . 4 1 0 1 . 6 2 3 1 . 8 3 7 1 1
90 1 . 2 1 . 2 0 1 . 6 2 3 2 . 8 4 9 8 1
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Table D2
Returns o f BP

(r = 0.12)

s, BP, b p 2 b p3 b p4

5 = 0.1 0 1 0 . 1 7 4 6 5 8 9 . 9 0 2 6 8 9 9 9 . 6 3 7 9 8 9 9.  3 8 0 3 6 0 6
10 2 5 . 3 4 7 5 5 7 2 5 . 2 1 0 4 9 3 2 5 . 0 6 1 6 6 5 2 4 . 9 0 3 5 5 9
30 5 5 . 6 9 3 3 5 2 5 5 . 8 2 6 0 9 9 5 5 . 9 0 9 0 0 8 5 5 . 9 4 9 9 5 1
60 1 0 1 . 2 1 2 0 5 1 0 1 . 7 4 9 5 1 1 0 2 . 1 8 0 0 3 1 0 2 . 5 1 9 5 4
90 1 4 6 . 7 3 0 7 4 1 4 7 . 6 7 2 9 1 1 4 8 . 4 5 1 0 5 1 4 9 . 0 8 9 1 3

5 = 0.5 0 2 9 . 1 2 9 7 5 9 2 8 . 6 5 5 8 4 6 2 8 . 1 8 9 0 6 6 2 7 . 7 2 9 3 1 7
10 4 2 . 5 2 4 9 6 3 4 2 . 4 1 1 6 0 6 4 2 . 2 5 7 8 7 4 2 . 0 6 9 9 0 8
30 6 9 . 3 1 5 3 6 9 6 9 . 9 2 3 1 1 9 7 0 . 3 9 5 4 7 7 0 . 7 5 1 0 9 1
60 1 0 9 . 5 0 0 9 8 1 1 1 . 19038 1 1 2 . 6 0 1 8 7 1 1 3 . 7 7 2 8 7
90 1 4 9 . 6 8 6 6 1 5 2 . 4 5 7 6 6 1 5 4 . 8 0 8 2 7 1 5 6 . 7 9 4 6 3

5 = 0.9 0 7 3 . 9 5 4 0 1 7 3 . 2 0 5 4 8 2 7 2 . 4 5 2 0 2 6 7 1 . 6 9 3 6 8
10 8 3 . 1 6 9 4 8 7 8 3 . 2 9 6 0 2 8 8 3 . 3 0 7 8 0 8 8 3 . 2 1 8 5 4 4
30 1 0 1 . 6 0 0 4 5 1 0 3 . 4 7 7 1 1 1 0 5 . 0 1 9 3 6 1 0 6 . 2 6 8 2 9
60 1 2 9 . 2 4 6 9 1 3 3 . 7 4 8 7 3 1 3 7 . 5 8 6 7 1 4 0 . 8 4 2 9
90 1 5 6 . 8 9 3 3 4 1 6 4 . 0 2 0 3 6 1 7 0 . 1 5 4 0 2 1 7 5 . 4 1 7 5

oIIto 0 8 9 . 9 5 9 5 1 8 8 9 . 0 5 0 7 8 9 8 8 . 1 2 8 4 1 8 7 . 1 9 2 5 6 6
10 9 7 . 6 9 4 0 3 8 9 7 . 8 4 8 1 8 3 9 7 . 8 5 5 7 9 7 9 7 . 7 3 3 4 8 2
30 1 1 3 . 1 6 3 0 9 1 1 5 . 4 4 2 9 6 1 1 7 . 3 1 0 5 7 1 1 8 . 8 1 5 3 3
60 1 3 6 . 3 6 6 6 7 1 4 1 . 8 3 5 1 4 1 4 6 . 4 9 2 7 2 1 5 0 . 4 3 8 1 1
90 1 5 9 . 5 7 0 2 5 1 6 8 . 2 2 7 3 3 1 7 5 . 6 7 4 8 8 1 8 2 . 0 6 0 8 7

5 =  1.1 0 1 0 7 . 0 5 4 6 3 1 0 5 . 8 7 9 4 6 1 0 4 . 6 7 8 6 9 1 0 3 . 4 5 2 9
10 1 1 3 . 2 1 7 4 1 1 3 . 3 1 2 6 1 1 1 3 . 2 2 3 1 4 1 1 2 . 9 6 9 1 6
30 1 2 5 . 5 4 2 9 2 1 2 8 . 1 7 8 8 8 1 3 0 . 3 1 2 0 6 1 3 2 . 0 0 1 7 1
60 1 4 4 . 0 3 1 1 9 1 5 0 . 4 7 8 3 2 1 5 5 . 9 4 5 4 1 6 0 . 5 5 0 5 2
90 1 6 2 . 5 1 9 4 5 1 7 2 . 7 7 7 7 4 1 8 1 . 5 7 8 7 7 1 8 9 . 0 9 9 3 3

5 =  1.5 0 1 6 2 . 6 4 6 8 4 1 5 9 . 0 2 9 8 1 5 5 . 4 0 2 7 3 1 5 1 . 7 7 4 6 6
10 1 6 3 . 8 7 6 1 4 1 6 2 . 3 1 3 0 3 1 6 0 . 4 6 3 2 6 1 5 8 . 3 7 1 8 4
30 1 6 6 . 3 3 4 7 3 1 6 8 . 8 7 9 5 2 1 7 0 . 5 8 4 3 2 1 7 1 . 5 6 6 2 5
60 1 7 0 . 0 2 2 6 1 1 7 8 . 7 2 9 2 5 1 8 5 . 7 6 5 9 3 1 9 1 . 3 5 7 8 6
90 1 7 3 . 7 1 0 5 3 1 8 8 . 5 7 8 9 6 2 0 0 . 9 4 7 5 3 2 1 1 . 1 4 9 4 8

6 = 3.0 0 1 8 0 . 9 2 9 9 9 1 7 5 . 6 0 1 2 4 1 7 0 . 4 2 7 8 9 1 6 5 . 4 0 5 5 8
10 1 8 0 . 9 4 1 6 5 1 7 7 . 9 2 6 2 5 1 7 4 . 7 3 4 2 7 1 7 1 . 4 0 9
30 1 8 0 . 9 6 4 9 8 1 8 2 . 5 7 6 2 8 1 8 3 . 3 4 7 0 5 1 8 3 . 4 1 5 8 2
60 1 8 0 . 9 9 9 9 7 1 8 9 . 5 5 1 3 2 1 9 6 . 2 6 6 2 2 2 0 1 . 4 2 6 0 7
90 1 8 1 . 0 3 4 9 6 1 9 6 . 5 2 6 3 5 2 0 9 . 1 8 5 3 8 2 1 9 . 4 3 6 3 1
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Table D3
Returns o f  APMP-I

(r = 0.12)

Si >.=0.0 >.=0.3 >.=0.7 orHII<<
8 =  0 . 1 0 1 8 . 1 0 4 3 3 2 3 1 . 1 3 3 3 8 3 3 1 . 8 4 4 8 8 3 3 1 .  954191

10 3 2 . 7 1 9 2 5 4 4 4 . 8 0 4 6 9 9 4 5 . 4 6 9 1 1 2 4 5 . 5 7 4 7 3
30 6 1 . 9 4 9 0 9 3 7 2 . 1 4 7 3 2 4 7 2 . 7 1 7 5 7 5 7 2 . 8 1 5 8 0 4
60 1 0 5 . 7 9 3 8 6 1 1 3 . 1 6 1 2 7 1 1 3 . 5 9 0 2 7 1 1 3 . 6 7 7 4 2
90 1 4 9 . 6 3 8 6 3 1 5 4 . 1 7 5 2 2 1 5 4 . 4 6 2 9 7 1 5 4 . 5 3 9 0 5

5 = 0.5 0 3 9 . 5 4 6 4 6 7 4 9 . 8 4 4 3 4 1 5 2 . 5 9 8 6 8 2 5 3 . 0 5 1 0 7 9
10 5 2 . 3 8 7 5 2 7 6 1 . 9 8 5 4 5 8 6 4 . 5 8 8 1 3 5 6 5 . 0 4 5 1 1 3
30 7 8 . 0 6 9 6 4 9 8 6 . 2 6 7 7 8 8 . 5 6 7 0 5 5 8 9 . 0 3 3 1 8
60 1 1 6 . 5 9 2 8 3 1 2 2 . 6 9 1 0 6 1 2 4 . 5 3 5 4 2 1 2 5 . 0 1 5 3
90 1 5 5 . 1 1 6 0 1 1 5 9 . 1 1 4 4 3 1 6 0 . 5 0 3 7 8 1 6 0 . 9 9 7 3 9

5 = 0.9 0 7 9 . 5 0 0 1 6 8 2 . 3 2 0 4 8 8 8 3 . 6 3 4 7 2 8 3 . 8 1 4 0 0 3
10 8 9 . 0 9 4 1 3 9 9 1 . 8 3 5 1 7 5 9 3 . 2 0 5 3 4 5 9 3 . 4 8 1 3 4 6
30 108 . 2 8 2 1 1 1 0 . 8 6 4 5 4 1 1 2 . 3 4 6 6 1 1 2 . 8 1 6 0 4
60 1 3 7 . 0 6 4 0 3 1 3 9 . 4 0 8 5 8 1 4 1 . 0 5 8 4 6 1 4 1 . 8 1 8 0 8
90 1 6 5 . 8 4 5 9 8 1 6 7 . 9 5 2 6 4 1 6 9 . 7 7 0 3 2 1 7 0 . 8 2 0 1 3

5 =  1.0 0 9 2 . 6 5 0 8 7 1 9 2 . 8 9 7 4 7 6 9 3 . 0 2 0 1 8 9 2 . 9 5 8 1 3 8
10 1 0 1 . 1 9 6 3 4 1 0 1 . 5 6 8 7 4 1 0 1 . 8 6 8 2 5 1 0 1 . 9 4 6 0 2
30 1 1 8 . 2 8 7 2 8 1 1 8 . 9 1 1 2 5 1 1 9 . 5 6 4 4 2 1 1 9 . 9 2 1 7 8
60 1 4 3 . 9 2 3 7 1 1 4 4 . 9 2 5 0 2 1 4 6 . 1 0 8 6 6 1 4 6 . 8 8 5 4 2
90 1 6 9 . 5 6 0 1 2 1 7 0 . 9 3 8 7 8 1 7 2 . 6 5 2 9 1 1 7 3 . 8 4 9 0 6

5 =  1.1 0 1 0 6 . 7 3 9 9 8 1 0 4 . 3 2 5 0 8 1 0 2 . 9 4 2 1 5 1 0 2 . 5 6 1 2 3
10 1 1 4 . 1 7 6 1 8 1 1 2 . 0 9 3 5 4 1 1 1 . 0 3 2 1 9 1 1 0 . 8 4 2 5 9
30 1 2 9 . 0 4 8 5 7 1 2 7 . 6 3 0 4 4 1 2 7 . 2 1 2 2 7 1 2 7 . 4 0 5 2 9
60 1 5 1 . 3 5 7 1 3 1 5 0 . 9 3 5 7 9 1 51 .  48239 1 5 2 . 2 4 9 3 6
90 1 7 3 . 6 6 5 7 1 1 7 4 . 2 4 1 1 5 1 7 5 . 7 5 2 5 1 7 7 . 0 9 3 4 3

5 =  1.5 0 1 6 3 . 1 0 7 1 6 1 5 3 . 3 2 2 4 5 1 4 5 . 0 9 8 2 2 1 4 2 . 9 5 1 9 7
10 1 6 6 . 3 2 8 9 8 1 5 7 . 3 6 4 4 6 1 5 0 . 0 6 0 6 4 1 4 8 . 3 6 3 7 5
30 1 7 2 . 7 7 2 5 8 1 6 5 . 4 4 8 4 3 1 5 9 . 9 8 5 4 9 1 5 9 . 1 8 7 3 3
60 182 . 43802 1 7 7 . 5 7 4 3 9 174 . 87277 1 7 5 . 4 2 2 7 1
90 1 9 2 . 1 0 3 4 4 1 8 9 . 7 0 0 3 5 1 8 9 . 7 6 0 0 4 1 9 1 . 6 5 8 0 7

5 = 3.0 0 2 1 5 . 8 1 4 2 4 2 1 5 . 7 8 3 2 8 2 2 1 . 6 6 6 6 6 2 2 3 . 4 0 2 3
10 2 1 5 . 9 0 7 0 7 2 1 5 . 9 3 3 9 2 2 2 . 0 0 0 2 1 2 2 4 . 1 1 4 3 8
30 2 1 6 . 0 9 2 7 4 2 1 6 . 2 3 5 1 4 2 2 2 . 6 6 7 3 4 2 2 5 . 5 3 8 5 4
60 2 1 6 . 3 7 1 2 3 2 1 6 . 6 8 6 9 8 2 2 3 . 6 6 8 0 1 2 2 7 . 6 7 4 8
90 2 1 6 . 6 4 9 7 3 2 1 7 . 1 3 8 8 4 2 2 4 . 6 6 8 7 2 2 9 . 8 1 1 0 5
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Table D4
Returns o f  APMP-II

(r = 0.12)

Si >.=0.0

m•oII r-oIIr< II O

5 = 0.1 0 1 7 . 6 1 9 3 1 8 3 1 . 0 6 0 1 8 4 3 1 . 8 1 8 0 7 9 3 1 . 9 5 4 1 9 1
10 3 2 . 4 4 7 9 6 4 4 . 7 6 3 5 5 4 5 . 4 5 4 0 4 1 4 5 . 5 7 4 7 3
30 6 2 . 1 0 5 2 4 7 7 2 . 1 7 0 2 8 8 7 2 . 7 2 5 9 7 5 7 2 . 8 1 5 8 0 4
60 1 0 6 . 5 9 1 1 8 1 1 3 . 2 8 0 4 1 1 3 . 6 3 3 8 7 1 1 3 . 6 7 7 4 2
90 1 5 1 . 0 7 7 1 2 1 5 4 . 3 9 0 4 9 1 5 4 . 5 4 1 7 5 1 5 4 . 5 3 9 0 5

5 = 0.5 0 3 8 . 8 8 8 7 6 4 9 . 4 9 5 1 3 2 5 2 . 4 5 8 8 2 4 5 3 . 0 5 1 0 7 9
10 5 2 . 1 6 4 7 5 3 6 1 . 8 6 0 7 0 3 6 4 . 5 3 7 4 7 6 6 5 . 0 4 5 1 1 3
30 7 8 . 7 1 6 7 3 6 8 6 . 5 9 1 8 5 8 8 8 . 6 9 4 7 7 8 8 9 . 0 3 3 1 8
60 1 1 8 . 5 4 4 7 2 1 2 3 . 6 8 8 5 8 1 2 4 . 9 3 0 7 3 1 2 5 . 0 1 5 3
90 1 5 8 . 3 7 2 7 1 6 0 . 7 8 5 3 1 1 6 1 . 1 6 6 6 9 1 6 0 . 9 9 7 3 9

5 = 0.9 0 7 8 . 7 1 2 6 6 2 8 1 . 7 7 5 2 5 3 8 3 . 4 0 1 7 0 3 8 3 . 8 1 4 0 0 3
10 8 9 . 1 3 4 2 7 9 1 . 8 4 8 2 3 6 9 3 . 2 0 7 9 7 7 9 3 . 4 8 1 3 4 6
30 1 0 9 . 9 7 7 5 1 1 1 . 99419 1 1 2 . 8 2 0 5 3 1 1 2 . 8 1 6 0 4
60 1 4 1 . 2 4 2 3 4 1 4 2 . 2 1 3 1 2 1 4 2 . 2 3 9 3 6 1 4 1 . 8 1 8 0 8
90 1 7 2 . 5 0 7 1 9 1 7 2 . 4 3 2 0 5 1 7 1 . 6 5 8 1 9 1 7 0 . 8 2 0 1 3

5 =  1.0 0 9 1 . 7 9 5 8 6 9 2 . 2 9 9 5 1 5 9 2 . 7 6 4 0 9 9 9 2 . 9 5 8 1 3 8
10 1 0 1 . 2 9 8 2 5 1 0 1 . 6 3 9 3 2 1 0 1 . 8 9 8 2 5 1 0 1 . 9 4 6 0 2
30 1 2 0 . 3 0 3 0 2 1 2 0 . 3 1 8 9 1 2 0 . 1 6 6 5 6 1 1 9 . 9 2 1 7 8
60 1 4 8 . 8 1 0 1 8 1 4 8 . 3 3 8 2 9 1 4 7 . 5 6 9 0 5 1 4 6 . 8 8 5 4 2
90 1 7 7 . 3 1 7 3 5 1 7 6 . 3 5 7 6 7 1 7 4 . 9 7 1 5 3 1 7 3 . 8 4 9 0 6

5 =  1.1 0 1 0 5 . 7 6 8 8 8 1 0 3 . 6 5 3 2 4 1 0 2 . 6 5 7 2 8 1 0 2 . 5 6 1 2 3
10 1 1 4 . 3 0 2 4 1 1 2 . 2 1 1 1 9 1 1 1 . 0 8 9 8 8 1 1 0 . 8 4 2 5 9
30 1 3 1 . 3 6 9 4 5 1 2 9 . 3 2 7 1 1 2 7 . 9 5 5 0 9 1 2 7 . 4 0 5 2 9
60 1 5 6 . 9 7 0 0 2 1 5 5 . 0 0 0 9 6 1 5 3 . 2 5 2 9 1 1 5 2 . 2 4 9 3 6
90 1 8 2 . 5 7 0 5 9 1 8 0 . 6 7 4 8 4 1 7 8 . 5 5 0 7 4 1 7 7 . 0 9 3 4 3

5 =  1.5 0 1 6 0 . 7 6 0 4 5 1 5 1 . 7 7 7 8 1 4 4 . 5 0 2 6 6 1 4 2 . 9 5 1 9 7
10 1 6 5 . 6 8 2 8 8 1 5 7 . 1 6 8 2 6 1 5 0 . 0 9 0 9 7 1 4 8 . 3 6 3 7 5
30 1 7 5 . 5 2 7 7 1 1 6 7 . 9 4 9 1 4 1 6 1 . 2 6 7 6 2 1 5 9 . 1 8 7 3 3
60 1 9 0 . 2 9 4 9 5 1 8 4 . 1 2 0 4 7 1 7 8 . 0 3 2 6 1 1 7 5 . 4 2 2 7 1
90 2 0 5 . 0 6 2 2 1 2 0 0 . 2 9 1 8 1 1 9 4 . 7 9 7 5 8 1 9 1 . 6 5 8 0 7

5 = 3.0 0 2 0 9 . 5 9 2 9 3 2 0 9 . 7 5 2 1 2 2 1 7 . 5 4 2 7 9 2 2 3 . 4 0 2 3
10 2 1 1 . 9 8 1 5 1 2 1 2 . 0 7 6 8 3 2 1 9 . 0 2 3 0 3 2 2 4 . 1 1 4 3 8
30 2 1 6 . 7 5 8 6 7 2 1 6 . 7 2 6 2 1 2 2 1 . 9 8 3 5 1 2 2 5 . 5 3 8 5 4
60 2 2 3 . 9 2 4 4 1 2 2 3 . 7 0 0 3 2 2 2 6 . 4 2 4 2 1 2 2 7 . 6 7 4 8
90 2 3 1 . 0 9 0 1 5 2 3 0 . 6 7 4 4 2 2 3 0 . 8 6 4 9 3 2 2 9 . 8 1 1 0 5
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APPENDIX C

THE SERIES OF ANNUAL SALES AND 

ADVERTISING EXPENDITURES

{St }and {xt}

Year t s t xt

1907 0.041703883 0.024956654
1908 0.038452385 0.018829561
1909 0.038228083 0.021651666
1910 0.037721323 0.020986351
1911 0.03538592 0.019975922
1912 0.038050938 0.019857381
1913 0.041003157 0.018181299
1914 0.036503922 0.019374901
1915 0.035562408 0.019924109
1916 0.034611783 0.015116411
1917 0.033539351 0.018963603
1918 0.042537826 0.013169539
1919 0.04106154 0.015922199
1920 0.034488373 0.01355739
1921 0.043213423 0.017464136
1922 0.049344191 0.024617792
1923 0.055677032 0.025906864
1924 0.057356754 0.027523026
1925 0.056536545 0.029600285
1926 0.046881723 0.031195551
1927 0.038110963 0.019855182
1928 0.036233574 0.02220924
1929 0.035154859 0.025789835
1930 0.034303729 0.025479984
1931 0.031929429 0.017379085
1932 0.032197692 0.02048588
1933 0.037229614 0.029820634
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1934 0.034927794 0.029678759
1935 0.029024995 0.015430284
1936 0.020755713 0.006379136
1937 0.022854151 0.010145366
1938 0.026886357 0.013598327
1939 0.02613595 0.01375673
1940 0.031883405 0.015553761
1941 0.036810321 0.017613083
1942 0.035744364 0.016127808
1943 0.0374179 0.01673883
1944 0.035955816 0.015736024
1945 0.036929019 0.016034784
1946 0.026570948 0.012351768
1947 0.020007216 0.008711475
1948 0.01813296 0.008933568
1949 0.018691094 0.009241917
1950 0.016388416 0.008932466
1951 0.014160532 0.006422124
1952 0.015076209 0.007433072
1953 0.014958362 0.007605412
1954 0.012980104 0.006251107
1955 0.012392334 0.005987478
1956 0.012167086 0.005888958
1957 0.010924453 0.005361268
1958 0.009260794 0.0042573
1959 0.008969285 0.004164542
1960 0.008074348 0.003532919
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