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ABSTRACT

This study, using the dynamic programming approach, has addressed the problem of
optimally allocating a fixed advertising budget of a monopolistic firm over a planning
horizon comprised of n equal periods to maximize two popular measures of advertising
performance: (1) profits related to the advertising effort (discount factor r = 0), and (2)
present value of profits related to the advertising effort (discount factor r > 0).

Two dynamic programming models that use the modified Vidale-Wolfe model to
represent sales response to advertising are formulated with respect to whether the time
value of money is considered. For a planning horizon comprised of four equal time
periods, computing routines are developed to solve two sample problems with respect to
the dynamic programming models. Sensitivity analyses are performed to assess the
impacts of a change in some key model parameters upon the behavior patterns of the
optimum dynamic programming advertising policy and the associated total return.

Four alternative types of traditional advertising pulsation policies are modeled for
the purpose of comparing their performance with the optimum advertising policy
determined by dynamic programming. For a planning horizon comprised of four equal
time periods, computing routines are also developed to generate total returns under these
traditional advertising pulsation policies. Computational results show that the

performance under the optimal advertising policy determined by dynamic programming,

ii
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as expected, is at least as good as the maximum performance among the four traditional
advertising pulsation policies.

The plausibility of the modified Vidale-Wolfe model is empirically examined using
the well-known Lydia Pinkham vegetable compound annual data covering the period
from 1907 to 1960. Model parameters have been estimated using the Gauss-Newton
algorithm related to nonlinear regression. The model selected is one corrected for first-
order autoregressive residuals. The empirical results indicate that the model parameters
are statistically significant and of the expected signs. More important, it is found that the

advertising response function is concave.

iv
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CHAPTER 1

INTRODUCTION

Advertising is a key factor in a firm’s marketing efforts, and significant amounts of
resources are usually committed to it. For example, Procter & Gamble Company’s
yearly advertising expenditure reached a level of 3.4 billion U.S. dollars in 1997, and
during the period from 1991 to 1997 the company spent approximately one dollar in
advertising for every 10 dollars of net sales (Proctor & Gamble Annual Reports 1991-
97.) At the national level, the average advertising expenditure per year in the United
States was approximately 93 billion dollars in the 1980s, and it rose to 139 billion
dollars in the first six years of the 1990s. In the year 1996 alone, more than 173 billion
dollars were spent on advertising in this country (Statistical Abstracts of the United
States 1993-97.) Accordingly, the determination of an optimal adverting policy with
respect to a certain performance measure over time is of central importance to
professionals as well as academicians. While numerous previous studies have explored
sales response to advertising, two questions of particular significance stand only partially
answered. The first is concerned with what is the best way of allocating advertising
funds over a number of equal consecutive time periods so that a certain performance

measure is optimized? The second question asks if the optimal advertising policy differs
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2

from the best policy within the cyclic class of advertising pulsation policies frequently

discussed in the literature, and if so, how?

The advertising pulsation class includes the following four main alternative policies

shown in Figure 1.1.

1.

!\)

Blitz Policy (BP): This is a one-pulse policy in which the firm concentrates
all advertising efforts in a single period.

Advertising Pulsing Policy (APP) : This is a policy in which the firm
alternates between high and zero levels of advertising.

Advertising Pulsing/Maintenance Policy (APMP): This is a policy in which
the firm alternates between high and low levels of advertising.

Uniform Advertising Policy (UAP): According to this policy, the firm

advertises at some constant level.

The average sales revenue or mean awareness related to the above advertising

pulsation policies have often been compared with each other under the assumption that

initial sales rate or awareness is zero as in the case of new products (e.g., Mahajan and

Muller, 1986), infinite planning horizon (e.g.. Park and Hahn, 1991), or a zero discount

rate (e.g. Hahn an Hyun, 1991). The above simplifying assumptions have resulted in the

development of tractable models and the production of powerful results at the expense of

ignoring important aspects of reality that often exist in the business environment. In

addition, the best policy within the above narrow set of pulsation policies may not

necessarily be the optimal policy within a broader class of advertising puisation policies.
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Statement of the Problem

[n this study, it is assumed that the advertiser sells a single product in a monopolistic
market and that advertising is the major element of the firm’s marketing efforts. The
monopoly assumption may well represent one or more of the following situations: (i)
the firm is granted a patent, (ii) the product is highly differentiated, and (iii) the firm has
a dominant market share and faces competition from a fringe of many small suppliers,
each too small to noticeably influence the market dynamics (Mesak, 1992). The problem
that will be addressed in this dissertation can be briefly stated as follows:

“An advertising budget, [, of a firm in a monopolistic market is to be allocated over
n equal periods over a planning horizon of length L. What is the optimal allocation of
the advertising appropriations over time to maximize either one of the following two
popular performance measures:

1. Profits related to the advertising effort (discount factor r = 0), and
2. Present value of profits related to advertising (discount factor r > 0)?”

For each of the above performance measures. both zero and positive initial sales
rates are considered in the analysis. The advertising amplitude (advertising rate) is
assumed to be constant over a given period in the planning horizon. The advertising
rate, however, may differ for different periods. The duration of these equal time periods
T and the advertising budget I are assumed to have been determined exogenously. The
above problem will be formulated as a dynamic programming problem. Sales response
to advertising is assumed to be explained by a modified version of the Vidale-Wolfe

(1957) model proposed by Little (1979).
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Obijectives of the Study

This study has five main objectives. They are (1) the formulation of a dynamic
programming (DP) model that would represent the problem stated above, (2) the
development of a computer routine to solve numerically the DP model for a given set of
parameters, (3) the performing of a sensitivity analysis to assess the impact of changes
in certain parameters on the performance measures, (4) the comparison of the
performance of the DP optimal policy with the pulsation policies of BP, APP, APMP,
and UAP that cost the same, and (5) the conducting of an empirical analysis to assess
the plausibility of the assumed dynamic model that relates advertising to sales and to
assess the shape of the advertising response function. It is of course expected that the
performance related to the DP optimal advertising policy would be at least as good as the
maximum performance among the four pulsation policies depicted in Figure 1.1. To
achieve the objectives stated above, the solution procedure will make use of a hybrid of

analytical and numerical analyses.

Contribution and Applicability

To the best knowledge of the author, the study reported herein is the first attempt in
the literature wherein DP is used to solve the finite-horizon advertising pulsation
problem wherein both the initial sales and the discount rates are allowed to be different
from zero. In addition, the modeling framework is significantly more flexible than the
rigid ones already found in the literature. The intended research is thought to be
applicable for frequently purchased unseasonal products in the mature stage of their

product life cycle for which advertising is the main element of the marketing mix.
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Organization of the Dissertation

The remaining chapters are organized as follows: Chapter 2 presents a review of the
literature relevant to this study. Chapter 3 incorporates an analysis of traditional
pulsation policies. Chapter 4 contains the methodology to be employed in this study:
the formulation of the DP model. Chapter 5 contains the solution methodology for
solving some practical advertising pulsation problems. Chapter 6 includes a sensitivity
analysis related to the impact of changes in the shaping parameter of the advertising
response function and/or the value of initial sales on the pattern of the DP optimal
advertising policy and its associated return. In addition, the chapter incorporates a
comparison between the DP optimal advertising policy return and its traditional
advertising pulsation counterparts that cost the same. Chapter 7 includes a discussion of
the findings of an empirical analysis conducted to validate the assumed dynamic
relationship between advertising and sales together with an assessment of the shape of
the advertising response function. Chapter 8 contains a summary of the main results,
conclusions and implications for managerial practice and future research. In order to
improve readability, derivation of key mathematical formulas, and documentation of

detailed results are relegated to separate Appendices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

REVIEW OF RELATED LITERATURE AND

POSITIONING OF PROPOSED RESEARCH

Relevant studies have been published with respect to three areas pertinent to this
study: (1) studies related to advertising pulsation. (2) studies addressing the Vidale-
Wolfe model. and (3) studies related to the applications of dynamic programming in

marketing.

Review of Advertising Pulsation Studies

Whether it is best to adopt a cyclic policy of advertising or one of even spending
that costs the same has been a fundamental research question in the literature. Several
researchers have examined the optimal policy within the advertising pulsation class from
various perspectives. Nerlove and Arrow (1962) and Sethi (1973, 1977) argued that a
one-time pulse. followed by constant advertising in subsequent periods. constitutes the
optimal policy under certain circumstances. Gould (1970) and Jacquemin (1973)
illustrated that the optimal policy leads to a unique, stable, steady-state level of constant
advertising spending. Sasieni (1971) found that. for a general class of sales response
models incorporating a concave advertising response function, a cyclic advertising
policy can never be superior, in the long run, to a uniform policy of advertising

spending. Mahajan and Muller (1986) and Sasieni (1989) provided normative guidelines
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8
as to the number and timing of successive exposures in a given time period in the
presence of an S-shaped advertising response function. After formulating the market
share response to advertising as a first-order Markov process, Horsky (1977) found that
the optimal policy consists of an advertising pulse to reach the optimal market share and
constant advertising spending in the subsequent periods. Based on modeling Haley’s
(1978) wearout phenomenon, Simon (1982) and later Mesak (1992) found that an
advertising pulsing policy is optimal under either a constrained or unconstrained
advertising budget. Mesak (1985) derived the conditions under which an advertising
pulsing policy dominates a uniform advertising policy for both stationary and
nonstationary markets. Hahn and Hyun (1991) analyzed the effect of different costs on
the optimal advertising policy and found that a pulsing policy is optimal when the ratio
of pulsation costs to fixed advertising costs is sufficiently large. Desai and Gupta (1996)
employed a discrete-time Markov decision model to obtain optimal control limit policies
and concluded that as the high-level advertising cost increases. pulsing becomes optimal.
Feinberg (1992) found that a pulsation policy (other than chattering) is optimal if there is
a gradual build-up in advertising goodwill in the presence of a convex advertising
response function. Mesak and Darrat (1992) compared five alternative advertising
policies that belong to the advertising pulsation class using a modified Vidale-Wolfe
model (to be discussed shortly) and considered the impact of the shape of the
advertising response function on the optimal policy. They found that for a concave or
linear advertising response function, a policy of even spending is optimal, whereas for a

convex response function, the best advertising policy is one of pulsing.
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The above literature review suggests that the shape of the advertising response
function plays an important role in determining the optimal advertising policy. To arrive
at the optimal policy, researchers have mainly pursued one of the following two
alternative methodologies: (1) proposing a few alternative advertising pulsation policies
that cost the same and comparing their effectiveness with respect to a certain
performance measure (e.g., Mahajan and Muller 1986, Mesak and Darrat 1992) or (2)
optimizing a certain measure of performance using optimal control methods (e.g.,
Sasieni 1971, 1989). It appears that because of the rigidity of media, a certain
advertising level must be applied for a certain time period. Therefore, the former
approach seems to be more applicable in practice than the latter. The first approach
employed in the current literature, however. suffers from a rigidity in its modeling
framework and the limited number of advertising pulsation policies investigated. This
dissertation will mitigate these shortcomings by allowing the modeling framework to be
more flexible and by enlarging the number of alternative advertising pulsation policies
considered using dynamic programming. Table 2.1 is self-explanatory and compares
the proposed dissertation with the closely related studies of Mahajan and Muller (1986)

and Mesak and Darrat (1992) along several dimensions.

Review of the Vidale-Wolfe Model

The Vidale-Wolfe model (1957) is one of the earliest and most intensively analyzed
mathematical models of dynamic advertising response (e.g., Mahajan and Muller 1986,
Sasieni 1989, Mesak and Darrat 1992). For that model, the instantaneous change in the

sales rate is given by a first-order linear differential equation:
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Table 2.1

Comparison of Three Inquiries

Factor \ Study Mahajan and Muller Mesak and Darrat Proposed Dissertation
(1986) (1992)
Model Employed Modified Vidale- Modified Vidale- Modified Vidale-
Wofle model Wofle model Wofle model
Shape of Advertising
Response Function S-Shaped Concave, linear, Concave, linear,
Considered and convex and convex
Decision Variable Advertising Advertising Advertising
Market Structure Monopoly Monopoly Monopoly
Equal periads of Equal periods of Arbitrary levels of
Modeling Framework | alternating high and alternating high and advertising rates over

low advertising rates

low advertising rates

equal time periods

Planning Horizon Finite Infinite Finite
Deterministic
Solution Concept Dominance concept of | Dominance concept of Dynamic
Game Theory Game Theory Programming

Performance Measure

Average undiscounted
awareness

Average undiscounted
sales revenues

Average undiscounted
and present value of
discounted sales
revenues

Initial Conditions

Zero initial awareness

Non-negative initial
sales rate

Non-negative initial
sales rate
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dS/dt=(p/ m)xim—S)—aS. 2.1)
where S = sales rate ($/unit time), x = advertising rate ($/unit time), p = response
constant, a = decay constant, and m = saturation sales. The advertising response
function for the Vidale-Wolfe model is linear given by f(x) = (p/m)x. A modified
version of the Vidale-Wolfe model has been proposed by Little (1979) for which f(x)
takes on a power function of the form
f(x)=bx°, 2.2)
where b = measure of advertising effectiveness (Krishnan and Gupta. 1967). 6 = measure
of the degree of convexity (concavity) of the advertising response function (Little, 1979).
The function (2.2) is concave for 0 < & < 1, linear for 6 = 1, and convex for 6 > 1. By
using the more general form for f(x) instead of (p/m)x, the modified version of the
Vidale-Wolfe model takes the general form
dS/dt = f(x)(m-S)-aS. (2.3)
The steady-state sales response S(x) related to a constant level of advertising spending x
is derived through setting dS/dt = 0. and solving equation (2.3) for S to obtain
S(x)=mf(x)/(a+ f(x)). (2.4)
It is noted here that the steady-state sales response (2.4) is concave if f(x) is linear or
concave (that is 0 < § < 1) whereas it is S-shaped if f(x) is convex (that is 3 > 1). Using
(2.4), it can be easily shown that (2.3) may be rewritten as
dS/dt=¢(x)[S(x)-S], (2.5)
where,

¢(x)=a+f(x). (2.6)
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The modified Vidale-Wolfe model has been used extensively in analyzing pulsation
policies in monopolistic markets (e.g., Mahajan and Muller 1986; Sasieni 1989) and
thoroughly analyzed in the marketing literature (e.g., Feichtinger et al. 1994). Mesak
and Darrat (1992) provided empirical support for the modified Vidale-Wolfe model and
offered a procedure based on OLS for assessing the shape of an advertising response
function. Using the well-known Lydia Pinkham annual data, this dissertation will
employ a nonlinear regression procedure to estimate and identify the shape of the

advertising response function in the modified Vidale-Wolfe model.

Review of Dynamic Programming
Applications in Marketing

Dynamic programming (DP) is a mathematical approach designed primarily to
improve computational efficiency by decomposing a large problem into smailer, and
hence computationally simpler. subproblems. Dynamic programming typically solves
the problem in stages. with each stage involving a few decision variables and usually
one state variable normally defined to reflect the status of the constraints that bind all
the stages together. The name dynamic programming probably evolved because of its
use with applications involving decision-making over time. However, other situations in
which time is not a factor are also solved by DP. For this reason a more apt name may
be multistage programming, since the procedure typically determines the solution in
stages (Taha, 1992). Notable studies that have used DP in solving problems related to

different areas in marketing are briefly reviewed below.
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Marketing-Production Joint
Decision Making

Thomas (1974) formulated a stochastic DP model to minimize the expected
discounted cost of an inventory control system over a planning horizon of n periods.
The decision variables for each period (stage) were the unit price and the quantity of the
product to be produced. The state variable was the inventory level at the beginning of
the period.

Lodish (1980) used a stochastic DP model to maximize the present value of profits
over a multiperiod planning horizon. For each period (stage). the decision variables
were the price to be charged and the units of the product to be added to the inventory
during the period. The single-state variable stood for the inventory level at the
beginning of the period.

Stokes et al. (1997) developed a scholastic DP model which captures the existence
of a value-added, serial-stage production process with intra- and interyear dynamics of
multiple nursery crops. The objective was to maximize the expected value of after-tax
cash flows associated with the sale of two different categories of products (one- and
three-gallon container-grown nursery crops.) The decision variable at either one of the
two stages (Fall and Spring) represented the amount of one-gallon production to be
marketed. A unique feature of this two-stage DP model was that the state variables
varied by stages. The state variables used to characterize the system were acres of non-
salable one-gallon production, acres of salable one-gallon production, acres of salable
three-gallon production, carryover business loss, and Spring net income. For the Fall

stage, the first three and the fifth state variables defined the status of the system, whereas
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for the Spring stage, the system was characterized by the first four stage variables

mentioned above.

Market Segmentation

Blattberg et al. (1978) formulated a mathematical programming model of
households’ purchasing processes to identify household characteristics that should affect
deal proneness. Key factors influencing the household’s purchasing decisions were
identified as transaction costs, holding costs, stockout costs, and price. Household
characteristics were then related to these cost parameters to identify households iikely to
be deal prone. The problem was solved using a probabilistic DP approach for which the
household aims at minimizing the expected product costs over a finite time horizon. In
each time period (stage), the decision variables were the quantities of the product
purchased from different stores. The state variable was the inventory on hand at the

beginning of the period.

Pricing

Robinson and Lakhani (1975) proposed a deterministic DP model for maximizing
the present value of profits of a new product produced and sold by a monopolistic firm
over a planning horizon of 20 periods. For each period (stage), the decision variable
represented the price to be set, whereas the state variable was the cumulative sales
volume at the beginning of the period.

Ladany (1996) applied a deterministic DP model to maximize the daily profits of a
hotel. Each market segment for which a certain price per room prevails was treated as a

stage. For each stage, the decision variable was referred to as the number of rooms to be
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assigned to the segment. The single state variable considered was the number of rooms

available for assignment.

Distribution

Zufryden (1986) employed a deterministic DP model to allocate a certain available
integer shelf-space units among a set of products in a supermarket with the objective of
maximizing net profits. Within the DP formulation, each product was considered as a
stage. For each stage, the decision variable was the space to be allocated to the product.
The related state variable was the amount of space available for allocation.

Boronico and Bland (1996) used a stochastic DP model to explore the issue of
procuring adequate stocks of seasonal food products. More specifically, their study
focused on a distribution system which typifies operations for a major food producer
where the major retail outlets must determine optimal order quantities for products
received from vendors, subject to uncertainty in the distribution channel. Demand was
assumed to be known while the receipt quantity from the supplier was probabilistic. The
overall objective was to minimize the total expected delivery and holding costs over a
multiperiod planning horizon. The decision variable for each stage (period) was defined
as the lot size ordered. The state variable was the equilibrium quantity of the product at

which the quantity received from vendors equals that demanded by customers.

Salesforce
A mathematical model was developed by Beswick (1977), for allocating selling
efforts and setting sales force size, which explicitly takes into account interactions with

territorial design, forecasting, and performance evaluation. The objective was defined as
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maximizing the total profits of the firm. The problem was cast into a deterministic DP
formulation where all the control units (individual customers) were treated as a sequence
of interrelated stages. The decision variable at each stage was referred to as the selling
time to be allocated to the corresponding control unit, whereas the single state variable
considered represented the selling time available for allocation.

Gaucherand e al. (1995) modeled the situation where the productivity of members
of a salesforce was evaluated in each period over a finite time horizon. Those members
with a performance measure (accumulated expected sales) lower than a threshold value
were replaced by new members. The firm’s objective was to maximize the average
productivity by choosing an optimal threshold value for each period of evaluation. A
stochastic DP model was developed where each period was defined to be a stage. At
each stage, the decision variable was the threshold value. while the state variable was

referred to as the accumulated sales level achieved by the salesperson.

Consumer behavior

Gonil and Srinivasan (1996). from the perspective of a household, developed a
stochastic DP model with the objective of minimizing the expected expenditures over a
finite multiperiod time horizon. For each period (stage), the decision variable was
binary: to buy or not to buy. The state vector at each stage was composed of the

inventory level and the coupons available from preceding stages.
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Advertising
Little and Lodish (1966) introduced a mathematical programming model for media

selection which takes into account market segmentation, sales potential, and forgetting
patterns of the audience. The objective of maximizing the total sales over the planning
horizon was subject to a set of constraints, where the exposure value constraints
contained probabilistic components. The problem was cast into a DP formulation, where
each stage was referred to as a particular medium. The decision variable at each stage
represented the number of advertising insertions, and the state variable considered stood
for the budget available for allocation.

Zufryden (1974) employed DP in optimizing the reach of local radio advertising. A
mathematical programming model was put forward where the objective was to minimize
the uncovered audience proportion subject to a budget constraint. The model was
translated into a deterministic DP model where each decision stage corresponded to a
radio station. At each stage, the decision variable stood for the number of spots to be
inserted in the corresponding station, and the state variable was defined as the budget
available for allocation.

A nonlinear integer programming model was developed by Zufryden (1975) to
explore the impact of the dual objectives of maximizing media reach and frequency in
relation to a problem of media selection. The problem was cast into a deterministic DP
formulation where each stage corresponded to a radio station. The decision variable at
each stage was referred to as the number of spots to be inserted in the corresponding
station, and the state vector at each stage contained two elements: the budget available

at the end of the current stage and the frequency resulting from the current decision.
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As discussed above, both stochastic and deterministic DP models have been applied

to solve a variety of decision problems in marketing. It is observed that deterministic
dynamic programming formulations in the current literature mainly contain a single state
variable. However, to the author’s knowledge, the use of dynamic programming to solve
the advertising pulsation problem has not yet been addressed in the literature. This
dissertation applies a two-state deterministic dynamic programming approach to solve
the advertising pulsation problem. This approach will be illustrated in more details in

Chapter 4. Analysis of traditional advertising pulsation policies is discussed next.
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CHAPTER 3

ANALYSIS OF TRADITIONAL ADVERTISING

PULSATION POLICIES

In this chapter. four traditional alternative advertising policies that belong to the
advertising pulsation class are analyzed using the modified version of the Vidale-Wolfe
model introduced in Chapter 2. These are the BP, APMP, APP, and UAP policies
depicted schematically in Figure 1.1. First, we discuss the response of sales to
rectangular advertising pulses. Performance measures of both BP and APMP are then
analytically derived in two cases: (1) the time value of money is not considered (r = 0)
and (2) the time value of money is taken into account (r > Q). where r stands for the
discount factor. Finally. two advertising policy parameters are defined and discussed for

the characterization of APMP. APP. and UAP.

Sales Response to Advertising

The finite planning horizon under consideration consists of n equal time periods and
the length of each period equals T (see Figure 3.1.) Beginning from the starting point of
the planning horizon, the n periods are successively denoted as period i (i = 1, 2, .... n).
Since the firm is not going out of business by the end of the nth period, the infinite

period immediately following the planning horizon must also be considered to assess the

19
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effect of advertising spending in previous periods. For convenience of discussion, this
infinite period is denoted as period n+1. For comparison purposes only, it is assumed
that the firm does not advertise after time L = nT. That is, the sales rate level at time nT
decays indefinitely according to equations (2.2) and (2.3) with f{(x) = 0 corresponding to
x = 0 (for further discussion on end effects, see Little and Lodish 1969.)
At first, the following variables are defined:
Si = the sales rate at the beginning of period i (i =1, 2, ..., n+1);
[ = the total advertising budget if r = 0, or the present value of the total
advertising budget if r> 0.
Now the sales rate curve q;(t) in Figure 3.1 over period i (i = 1, 2. ..... n) in which
advertising funds are assumed to be evenly spent at rate x; is considered. Upon solving

the differential equation of the modified version of the Vidale-Wolfe model (Equation
(2.5)), the sales rate curve over this time period takes the following form:
q,(t)= S,e"”x"”"“_“n +8(x, )(I—e"w’"”"“"’r’),
(i-1)T <t <iT, G.1)

where,

S; = the sales rate at the beginning of period i;

X; = the rate of advertising spending over period i (If the time value of money is

considered, x; stands for the advertising rate measured in current dollars);
S(xi) = the steady state sales rate defined by (2.4);

$(x;) is defined by (2.6).
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Referring to Figure 1.1, since it is assumed that the firm does not advertise in period
n+1, the sales rate decreases exponentially as time elapses, as a result of solving (2.5)
when x = 0. The sales rate curve for this case takes on the form shown below:

Grot(t) =S, t>nT. (3.2)
Equation (3.2) may also be derived from (3.1) by replacing S; with S,+| and substituting
S(Xxn+1 = 0) = 0. It is worth mentioning that for a set of alternative advertising policies
that cost the same, regardless of whether they are BP, APMP, APP. or UAP. maximizing
sales revenue (or its present value) is equivalent to maximizing profit (or its present
value), given that the ratio of cost (other than advertising expenditure) to sales revenue is
constant over time and independent of these policies (See Mesak 1992 for a detailed

discussion.)

Blitz Policy (BP)

It has been mentioned in Chapter 1 that the firm, by adopting a blitz policy,
concentrates its advertising efforts only in a single time period over the planning
horizon. Without loss in generality, assume that the single advertising pulse coincides
with period i where i €{1. 2, ..., n}, as shown in Figure 3.2. Governed by (3.1) and
(3.2), the sales rate curves depicted in Figure 3.2 take the following forms:

q,t)=8,e", 0<t<(i-1)T; (3.3)
gs(1)=S,e N (=IT) L Gl )] — = #EN1==1T) )
(i-D)T st <iT; G4

q;(t)=S,,e ™ iT<t<w; (3.3)
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where, S, is given, S; = qi((i-1)T), Si1=q2(iT), and x is the rate of advertising spending
(measured in current dollars if r > 0) over period i.

The performance measure of an advertising policy when the time value of money is
not considered is different from that when the time value is taken into account. The two

cases are separately addressed in the ensuing discussions.

Casel:r=90

In this case, the time value of money is not considered, and the performance of
advertising is measured by the sales revenue over the planning horizon and the
succeeding infinite period given by

(i~1)T T «
R= fq,(t)dt + Iq_,(t)dt + J'qj(t)dt. (3.6)
0 0 0
Notice that in the above formulations a change in the time variable has been employed,
so that time is set equal to zero at the beginning of each time period (from here on. this
method of changing the time variable will be used unless stated otherwise.) Substituting
qi(t). q2(t) and q3(t) from (3.3) — (3.5) produces, after carrying out the integrations.

S, -S(x)
P(x)

S S
R =7l(1_e—(:—lla7')+ (I_e‘¢(I)T)+S(x)T+ :;I , (3.7)

where the advertising spending over period i equals the advertising budget available at
the beginning of the planning horizon, or xT = [. as the advertising funds are

exhaustively committed in this single period.
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Case2:r>0

When the time value of money is taken into consideration. the performance of
advertising is measured by the present value of sales revenue over the planning horizon

and the succeeding infinite period. In this case, R is given by

(=0T T ©
R= I q,(t)e'"dt+e"""’r qu(t)e"'dH-e—"T Iq_;(l)e_”dt. (3.8)
0 0 0

Substituting for qi(t) (i = 1, 2, 3) from (3.3) — (3.5) and carrying out the integrations

yield
R= as;fr(I_e—(l-ll(m-r)T)+e—l:-l)rT[‘S¢';(;)Si’i) _e-’ﬁfﬁ*"r)
S S,
+ (x)(l—e"r)]+e"’r o (3.9

a+r’

As shown in Appendix A, the relationship between the current and the present values of
advertising spending over period i (note that the Blitz policy requires all the advertising
efforts to be concentrated within a single time period only) is portrayed by

r
= I,
e-(l—l)rT(I_e-rT)

x (3.10)

where x is the advertising rate measured in current value. whereas [ stands for the
present value of the advertising budget available for allocation at time t = 0 (note that

this budget is exhaustively spent over period i.)
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Advertising Pulsing/Maintenance Policy (APMP)

APMP is an advertising policy in which the firm alternates between two different
levels of advertising spending as shown in Figure 3.3. As in the discussion of BP, the
two cases where r = 0 and r > 0 are also addressed with respect to APMP. The n-period
planning horizon may be composed of an even or odd number of equal time periods.

These two situations are considered in both cases as well.

Casel:r=0

The time value of money is not considered in this case. and the performance of
advertising efforts is measured by the sales revenue generated over the planning horizon
and the ensuing infinite time period. For illustrative purposes, let us consider the

following terms:

x| = the rate of advertising spending over period i given that i is an odd integer;

X, = the rate of advertising spending over period i given that i is an even integer:
where i =1, 2, .... n. Derived from the solution of (2.5), the sales rate curve over period i
is given by

q.(1)=Se " £ S(x, )1-e "),
0<t<T ifiisodd; (3.11)

q,(t)=Se ¥ " £ S(x, )(l-e 92" ),

0<t<T ifiiseven; (3.12)
i=1 2 ..,n
qn+,([)=S"+,e-a', fZO,’ (3.13)
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where S, is given and S; = q;.((T) fori = 2, 3, ..., n+1. It is noted that the sales rate at the
beginning of each period (except period 1) is determined by the rate of advertising
spending in the preceding period together with its beginning sales rate.

The following two situations are considered:

Situation A: 2m = n. The planning horizon is composed of an even number of

equal time periods in this situation (note that m is a positive integer.) The sales revenue

over the planning horizon and the ensuing infinite time period is determined by
m T T :n
R= Z[quk-l(t)dt + J"Izt (t)dt]+ an+1(f)dl- (3.14)
k=1 ¢ 0 0

Substituting qak-1(t), qak(t), and gq+i(t) from (3.11) — (3.13) and carrying out the

integrations, it can be shown that (3.14) may be rewritten as

S.’k-l _S(xI)([_e—¢(x1/T}+ S_’k _S(x.’)(l__e-qp{x_’ﬂ'}
k=] ¢(-f1) ¢(x_1/

Sn+1 -

+[S(x)+S(x;)JT) + =2 (3.15)

The advertising expenditures over the entire planning horizon altogether are constrained
by the equation m(x; + x3)T = I where [ is the advertising budget available for allocation

at the beginning of the planning horizon.

Situation B: 2m+]1 =n. In this situation, the planning horizon comprises an

odd number of equal time periods and the total sales revenue now is given by

I r T o
R=2 [ qu @t + [, (i1 + [qy,.. ()t + [q,., (1), (3.16)
V] 0 ] 0

m
k=1
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where all the integrations are the same as those included in (3.15) except

r
Somer =S(x1) -¢(xy )T
, dt = (1- 1 S T. 3.1
!q-ml(’) ¢(x1) { e )+ (xl) ( 7)

The advertising expenditures over the entire planning horizon are constrained by

[(m+1)x; +mx;] T=1.

Case2:r>0

Since the time value of money is now taken into consideration, the performance of
advertising is measured by the present value of the sales revenue generated over periods
1 through n+1. For the purpose of illustration, let us consider the following terms:

yi = the present value of advertising spending over period i given that i is odd;

y2 = the present value of advertising spending over period i given that i is even;

Xi = the rate of advertising spending measured in current dollars over period i for
i=1.2,....n

The relationship between the advertising rate in current value and the present value

of adverting spending over each period of the planning horizon is depicted by

r . ..
X, = e""”’r(l—e"r)yl , given that i is odd; (3.18)
r . ..
x, = T ] _e-rr)y.’* given that i is even: (3.19)
i=12 ..n

The two alternative levels of advertising spending inherent in APMP here are stated in

terms of their present values. The present value of the total sales revenue is given by
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n T w
R=Y e [q (t)edt +e™T [q,. (1) dr. (3.20)
0 0

=1
where the sales rate curves qi(t) (i=1, 2, ..., n) are governed by (3.1) and gu+1(t) by (3.2).

Substituting for qi(t) (i = 1, 2, ..., n+1) and carrying out the integrations in (3.20) yield

2, S —-Srx, ) - S(x,) -
R z e (=1 )rT i vy (@(x, )+r)T t—2 (] —e rT

S
yo T Dntl (3.21)
a+r

where the advertising rate stated in current dollars, x;, depending on whether i is odd or
even, is determined by (3.18) or (3.19).

[n the situation where the planning horizon consists of an even number of equal time
periods (2m = n). the present values of advertising spending over the entire horizon are
restricted by the budget constraint m(y, + v2) = [, which indirectly confines the current
value of the advertising rate x; (i = 1, 2, ..., n) through (3.18) and (3.19). When the
planning horizon is composed of an odd number of equal time periods (2m+1 = n), the
present values of advertising spending as a whole are confined by (m+l)y; + my> = I,

which, along with (3.18) and (3.19), restricts the sequence of x; (i = 1, 2, ..., n).

Advertising Policy Parameters

Under APMP, the firm alternates between high and low levels of advertising
spending over the planning horizon, and two different patterns of this policy can be
identified: (1) the high level of advertising starts first, and (2) the low level of
advertising starts first. For illustrative purposes, these two policy patterns are denoted as

APMP-I and APMP-II respectively. It will be shown shortly that both APMP-I and
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APMP-1I are closely related to APP and UAP. Mesak and Darrat (1992) introduced the
concept of policy sets and treated APMP, APP, and UAP each as such a set. In their
study, each policy set is characterized by a certain value (or a range of values) of a policy
parameter. Following their approach. two advertising policy parameters are defined
next, both of which account for APMP, APP, and UAP.
For convenience of exposition, let us restate the notations considered previously:
X) = the rate of advertising spending over period i given that i is odd;
Xz = the rate of advertising spending over period i given that i is even;
y1 = the present value of advertising spending over period i given that i is odd;
y> = the present value of advertising spending over period i given that 1 is even.

Definition. The advertising policy parameter of APMP-I, A,, is a numerical value such

that
1. A €[0,1];
2. D, =(2-A))D and D, = A\D, where D; (i =1, 2) stands for x; given r = 0 and y;

given r > 0 and D is a common factor greater than zero. D stands for the mean
advertising rate over the planning horizon for r = 0, or the average present
value of advertising expenditures in a period of length T over the planning
horizon forr > 0.
3. the relevant budget constraint is maintained.
The advertising policy parameter of APMP-II, A;, can be similarly defined by

letting D, = A,;D and D, = (2-A,)D.
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The common factor D assumes various specifications under different conditions. It
can be shown that given APMP-I,
1.D=V(2mT), when2m=nand r=0.
2. D=V{[2(m+1)- A,]T}, when 2m+1 =nand r = 0.
3.D=0I/(2m), when2m =nand r > 0.
4. D =V[2(m+1)- A,], when 2m+1 =nand r> 0.
[t can be similarly verified that, under APMP-II,
1. D=1/2mT), when 2m =n and r=0.
2. D =V[(2m+A;)T], when 2m+1 =nandr=20.
3.D=1I/2m), when2m=nand r > 0.
4. D =1/2m+A;), when 2m+1 =nand r> 0.
The three different advertising policies, APMP, APP, and UAP, are characterized by
different values of the policy parameters. More specifically.

1. When A, € (0,1). D; = (2-A1)D and D> = AD. indicating an APMP-I policy.

N9

. When A; =0, D, = 2D and D, = 0. indicating an APP-I policy.

. When A; = 1. Dy = D, =D, indicating a UAP policy.

(93]

=

. When A, € (0.1), Dy = ;D and D, = (2-A;)D, indicating an APMP-II policy.
5. When A; =0, D, = 0 and D, = 2D, indicating an APP-II policy.
6. When A, = 1, D; = D, =D, indicating a UAP policy.
Having shed light on the performance of traditional advertising pulsation policies,

Dynamic Programming (DP) is introduced in the next chapter to solve two specific

maximization problems.
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CHAPTER 4

FORMULATION OF THE DYNAMIC

PROGRAMMING MODELS

The primary objective of this study is to determine the optimal advertising policy
over a finite planning horizon within an enlarged advertising pulsation policy class to
maximize either the total or the present value of profits for a given budget available at
the beginning of the planning horizon. This chapter consists of two major topics: (1)
the formulation of the mathematical programming models of two maximization
problems, and (2) the introduction of a dynamic programming approach to solve the

above formulated problems.

Formulation of the Maximization Problems

Here advertising policies within an enlarged pulsation class are considered to have a
finite planning horizon of n equal time periods. The advertising rate is assumed to be
constant over each period. Unlike the BP, APMP, APP, and UAP policies examined in
Chapter 3, however, the advertising rate is allowed to vary from period to period. Figure
3.1 delineates schematically sales response to an advertising policy within the enlarged
pulsation class. Clearly. the traditional advertising pulsation policies shown in Figure

1.1 and discussed in Chapter 3 are special cases of the advertising policy depicted in

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34
Figure 3.1. For convenience of illustration, in this regard, let us restate the sales rate

curve over period i fori =1, 2, ..., n+1 depic:ied in Figure 3.1 as follows:

q.(t)=S,e* "  S(x, )(1-e %), 0<t<T, i=12,...n; 4.1)
Gui(t)=S,.,e%. t>0: 4.2)

where x; = the advertising rate (measured in current dollars if the time value of money is

considered) during period i.

[t is worth mentioning at this point that gi(t) does not only depend on x;, but also on
the advertising rates in the previous time periods. In other words, the advertising rate in
a given period influences the sales rate in the same period together with the sales rates in
subsequent periods. Accordingly, for an advertising budget I available at time t = 0. the
maximization problem for which the time value of money is not considered, MP1, and
the maximization problem for which the time value of money is considered, MP2. may
be formulated as follows:

MPI:Find X; ", X3 . ... Xp 1O

x

n T
Maxz Iq,( t)dt + J'q,,* ((t)dt
0

=1
s.t.

Y xT=1I
=1

andx,20,i=1,2,...,n. (4.3)

MP2: Find y.‘, yg‘, y,,' to

n

T ax
Max) eI j-q,- (t)e"dt +e™™T jq,,+, (t)e™"dt
i=/ 0 0
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andy,20.i=1,2...,n (4.4)

It is noticed in the above formulations that the change in the time variable
introduced in Chapter 3 is used: that is, the time variable is set equal to zero at the
beginning of each time period. Confirming earlier ideas, it is reiterated here that since
all alternative feasible advertising policies cost the same from (4.3) and (4.4),
maximizing profit (or its present value) is equivalent to maximizing sales revenue (or its
present v?.lue), provided that the ratio of cost (other than advertising expenditure) to
sales revenue is constant over time and independent of the alternative advertising
policies. In addition. it should be noted that in MP2. the decision variables y, (i = 1. 2.
.... n) stand for the present value of advertising spending over period i. If the current
values of advertising rates over period i (i = l. 2. .... n) are denoted as x;. then the

relationship between y; and x; is dictated by
T
y, =e T Ix,e"’dt e T1—e T )x, /1. 4.5)
0

Once the solution to MP2, y[', yz', yn', are found, the optimum series of the current
values of advertising rates, X; , X2 . .... X, can be determined through equation (4.5).
The optimal advertising policy, therefore. may be stated by either the series of
advertising rates measured in current dollars for different periods or the series of
associated present-value advertising expenditures for different periods.

The complex nonlinear structure of the objective functions of the mathematical

programming models, MP1 and MP2, are tremendously difficult to model and solve
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using ordinary nonlinear programming methods such as those based on the well-known
Karush-Kuhn-Tucker conditions and gradient search, since the equations related to the
KKT conditions are difficult, if not impossible, to solve analytically for the decision
variables. Thanks to the principle of decomposition inherent in dynamic programming,
it appears to provide an effective solution technique that meets the requirements of the
maximization problems. As Zufryden (1986) pointed out, one of the advantages of
dynamic programming is that it can easily handle arbitrary objective function
specifications, as long as they are separable in the decision variables. For solution
purposes, each of the mathematical programming problems MP1 and MP2 can be cast in
a dynamic programming formulation. The dynamic programming formulation of

problem MP1 is discussed first.

The Dynamic Programming Model for MP1

In general, the components of a dynamic programming model are (1) the sequence
of decision stages, (2) input state vector, (3) decision vector, (4) transition function, (5)
stage return, and (6) recursive relationship. With respect to the optimization problem of
MP1 at hand. these components, shown in Figure 4.1, are identified and discussed

below.

The Sequence of Decision Stages

The entire planning horizon is divided into a sequence of consecutive decision
stages and each time period stands for a stage. The stages are indexed corresponding to

the indices of the time periods defined earlier in Chapter 3. The n+1 stages provide a
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framework to decompose the problem represented by MP1 into a sequence of smaller

and simpler subproblems.

The State Vector (&;)

Each stage has an input state vector as well as an output vector with which it is
associated. The input state vector of stage i (i = I, 2, ..., n+l), & , contains two
elements, the sales rate, S;, and the advertising budget available, [;, at the beginning of
the stage. Obviously, as shown in Figure 5, each stage’s output state vector serves as the
input state vector to the next stage. The state vectors contain information about the
conditions of the system at various stages, and convey the variation of these conditions
from one stage to the next. In particular, &4+, stands for the output state vector of the last
stage of the planning horizon, which contains the sales rate and zero advertising budget
available at the end of the planning horizon (notice that the total advertising budget. I,
must be exhausted over the planning horizon.) The input state vector for stage i. &;, is a

key factor in determining the return associated with that stage.

The Decision Vector (x;)

The decision vector of each stage. in general. consists of a number of elements
called decision variables and represents the decision alternatives available at the stage.
Given the input state vector, each decision alternative will determine a possible value of
the stage return (to be discussed shortly) for the particular stage. In our case, the
decision vector of each stage contains only one decision variable, i.e., the rate of

advertising spending in the stage, and thus, the decision vectors, x; , (1 = 1. 2, ..., n+1)
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reduce to scalar variables. It is noted that x,+1 = 0 due to the assumption that no
advertising occurs in period n+1. It should be also noted that all the other decision

variables are constrained by the budget constraint depicted in (4.3).

The Transition Function

The process in a dynamic programming problem passes from stage to stage. As it
does so, it moves through one state vector to the next. As a result of the decision-
making at each stage, the transition function describes how the stages of a dynamic
programming model are interconnected. The transition function specifies the
relationship between the output state vector of a stage to its input state vector and the
decision made in the stage. Recalling S; and [; to be the sales rate and the advertising
budget available for allocation at the beginning of stage i. then the transition function
may be expressed as follows:

& =tlG) (4.6)

where,

& =(S, I)7: &1 = (S L.y
S, is given;

S, =S5

1 -

e =0T LS J(1=e U7 ) =23 n+l;Sp-2=0. (4.7
¢(x1—1) =a+ f(x:—l )' and S(x,_l ) = mf(xl—l)’/ ¢(xt-l)"

[,=1(given); I, =1,_,-x_T.i=23 .0 I-;=[-;=0. 4.8)

The Stage Return (R;)
The return for stage i, Ri(&;, x;), is a function of the input state vector & = (S;, I;)"

and the stage decision x;. For stage n+1, for example, R, is given by
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R, = an+l( t)dt = IS,H,,e'“’dt =S,/a 4.9)
2 0

In general for 1 <i<n,

S, -S(x,)

) (1-e7 Ty + S(x,)T. (4.10)

.
R(E x) = [q,(t)dt =
0

The Recursive Relationship

The solution of a dynamic programming problem having the characteristics

mentioned above is based upon Bellman’s (1957) principle of optimality.

Principle of Optimality. An optimal policy must have the property that, regardless

of the decision made to enter a particular state, the remaining decisions must constitute
an optimal policy for leaving that state.

To solve a dynamic programming problem, we begin by first solving a one-stage
problem. and then we sequentially add a series of one-stage problems that are solvable
until the overall optimum is found. Usually, this solution procedure is based on a
backward induction process, in which the first stage analyzed is the final stage of the
problem, and the solution of the problem proceeds by moving back one stage at a time
until all stages in the problem are included. The solution procedure for dynamic
programming problems generally begins by finding the optimal policy for each state of
the last stage of the process.

A final characteristic of dynamic programming problems is the following. The

solution proceeds in a fashion that identifies the optimal policy for each state with i
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stages remaining, given the optimal policy for each state with i -1 stages remaining,
using a recursive relationship. The recursive relationship for the problem at hand takes

the form

F, (&) = Max { F.(& x,)} subject to x;T < [; and x; 2 0.
xi

The function Fi(&;, x;) is the value associated with the best overall policy for the
remaining stages of the problem, given that the system is in state &; with i stages to go

and the decision variable x; is selected. The function Fi(&;, x;) is written in terms of &;,

xi, and F,,,(-). For our problem, this recursive relationship can be written as:

F'(&) = Max { R(& x) + F\ (Ew) } @.11)
xi
subject to
xiT <[,
Xx;=>0

We notice that in maximizing (4.11), &+ is expressed in terms of &; and X; using the
transition functions (4.7) and (4.8). The dynamic programming model formulated above
may be solved numerically upon discretizing the state variable related to the advertising

budget available at the beginning of each stage, ;.

The Dynamic Programming Model for MP2

The dynamic programming model for MP2 can be similarly formulated by following
the same procedure for MP1 presented above. However, several adjustments must be
made to account for the time value of money as follows: first, the element [; of the state

vector & now represents the present value of the advertising budget available at the
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beginning of period i. Second, the transition function links the sequence{l;} as follows:

I,=IG@given); I, =I_,—y,,, i=23...n; I, =0. (4.12)

Third, the recursive relationship is given by

F'(&) = Max { R(& x) + Fpy (&) } (4.11)
Xy
subject to
T
e T Ix‘e_"dt <I
0
x; 20,
and Ri(§;, x;) is given by
- S, —S(x;) —(é(xi S(x,) _
=t T (=i i I~ (@ xi)+r)T 1 [- rT ' 13
R =e TS e J+== (1= ) (4.13)
i=12 .., n
R. =e™S _,/(a+r). (4.14)

Expressions (4.13) and (4.14) are derived in Appendix A.

Given the above discussion, the components of the dynamic programming model of
MP?2 are represented in exactly the same way as in Figure 4.1, except that x; is replaced
in this case with y;;1=1, 2, ..., n+1.

In the next chapter, we explicitly illustrate how to implement the dynamic
programming approach discussed in this chapter to solve problems MP1 formulated in

(4.3) and MP2 formulated in (4.4).
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CHAPTER 5

ILLUSTRATIONS OF APPLICATIONS

The main objectives of this chapter are twofold: (1) illustrating how the dynamic
programming approach discussed in Chapter 4 can be applied to solve problems MP1
and MP2, and (2) reporting the results obtained from computing routines especially
developed to derive numerically the DP optimal advertising policies related to the two
problems mentioned above.

The Considered Planning Horizon
and Model Parameters

Four-period budgeting is a common practice in the business world. A firm may
wish to plan its advertising spending over a finite time horizon composed of four equal
periods (e.g.. quarters). The planning horizon considered in our numerical example,
therefore, is assumed to consist of four equal time periods to reflect this situation. For
illustrative purposes, assume a market potential of m = 100 million dollars per year, a
decay constant a = 0.5 per year and an advertising effectiveness parameter b = 0.2. In
addition, let us suppose that the firm would allocate exhaustively an advertising budget [
= 4 million dollars ( I stands for the present value of the budget if the time value of
money is considered ) over a year composed of n = 4 equal periods of duration T = 0.25

year each.

43
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It should be emphasized here that the initial sales rate, S|, cannot exceed the market
potential m. Therefore, for simplicity and illustration, only 10 alternative values of S;,
smaller than the market potential, and measured in million dollars are considered in the
numerical example. They are given by 10k; k =0, 1, ..., 9. In addition, the alternative
values of the convexity (concavity) parameter & to be investigated are given by 0.05k; k
=1, 2, ..., 60. For the case in which the time value of money is considered, 15
alternative values of the discount rate. r, are considered: 0.0lk; k =1, 2, ..., 12, 100,
200. 300.
The domain of the state variable I;, the advertising funds available at the beginning

of stage i, is discretized as {0.05kI; k=0, 1, ...,20} fori=1. 2, 3, 4.

Formulation of the Dynamic
Programming Problems

Before developing computing routines to solve the problems MP1 and MP2 for the
planning horizon and model parameters specified above, the corresponding dynamic

programming formulations are first developed.

DP Formulation for MP1

According to (4.9) and (4.10), the return of stage i (i = 1, 2, 3, 4), conditioned by the
sales rate, S;, and the advertising funds available at the beginning of the stage, [;, is a

function of the advertising rate over the stage, x;, and can be explicitly expressed as

S, —S(x,)

) (1-e*"y+S(x)T: (5.1)

T
R.(S,.1,.x,) = [q,(t)dr =
0

and return generated over the infinite stage (i.e., stage 5) is given by
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Ry(S5. 15 =0) = [qy(t)dt = [S;e™dt =S /a; (5.2)
0 0

where, S;and I; (i = 1, 2, ..., 5) are defined by (4.7) and (4.8) for n = 4, respectively.
According to (4.11), the recursive relationship of the DP model is characterized more
specifically as follows:

At stage 4,

F,(S,.1,)= vac {R,(S,.I,,x,)+S,/a} (5.3)

x, =0/ T
where, Ss is stated in terms of S4 and x4 using (4.7).
Atstagei(i=1.2,3),

F:. (Sl ’11 ) = v%‘IR/T{R' (SI’II ’xt)+ F;:-l(Sl+|’[l+|)} (5'4)

where, S;., is stated in terms of S; and x; using (4.7) and [;.| in terms of [; and x; using
(4.8).

The solution to the DP model formulated above, xi'(i =1, 2, 3, 4), is functionally
dependent upon the two state variables S; and [; and thus can be expressed as xi ( Si, L).
The recursive optimization is carried out backward until the first stage is reached. At
stage 1, the maximum total return, F ['(Sl, [1) and the corresponding optimum advertising
rate X, = x, ( Sy, I1) are determined. It is noted that x,” =x; (S;, ;) isa unique value
due to the fact that S| and [, = I are given. It is then possible to backtrack from the first
stage through the succeeding stages to obtain the optimum advertising rates for all the
other stages in the following manner:

Step 1. Determine the optimum state pair S, and I using S;, [; =1, and x,” through

(4.7) and (4.8), respectively.
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Step 2. Determine the optimum advertising rate for stage 2 through x,” =x,'( Sz, k).
Step 3. Determine the optimum state pair S3” and I3 using S;", ", and x, " through (4.7)
and (4.8). respectively.
Step 4. Determine the optimum advertising rate for stage 3 through x3* = x3°( S3", I3).
Step 5. Determine the optimum state pair Sy and Iy using S;‘, I;‘ ,and X3 through (4.7)
and (4.8), respectively.

Step 6. Determine the optimum advertising rate for stage 4 through Xs =X4 (Sq, L)

DP Formulation for MP2

According to (4.13) and (4.14), the returns of the five stages are explicitly specified

below:
5 -8 S
R(S..I.x,) = e (P SE y_puimmenry S oy (s )
#x,)+r r
i=1234:
and R(S,,I;,=0)=e™"S,/(a+r), (5.6)

where, S;and [; (i = 1, 2, ..., 5) are defined by (4.7) and (4.12) for n = 4, respectively.
Using (4.5), the advertising rate in current dollars over stage i. x;, can be expressed as

r
= PPV ~ y
1 e (1 l)rf(l_e rf) i

x (5.7)

where, y; is the present value of advertising expenditure over period i. As mentioned in
Chapter 4, the decision variable at each stage can be stated in terms of either the
advertising rate in current dollars or the present value of advertising expenditure when

the time value of money is considered. Therefore, using (5.7) we can restate the stage
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returns depicted by (5.7) in terms of y;, i.e.. Ri(S;, i, yi). Consequently, the backward
recursive relationship characterized by (4.11) is rephrased as follows:

At stage 4,

F:(S-S’I.l) = %%{RJ(S-tsl-tvyJ) +e—"rSs /(a+r)} (5.8)

where, S; is stated in terms of S4 and y4 using (4.7) in conjunction with (5.7).
Atstagei(i=1, 2, 3),

F:. (S1 ’[l) = %g{Rl (Sl ’[I ’yl) + F;:-l (S1+[ ’1:4-[)} (5‘9)

where. S;.; is stated in terms of S; and y; using (4.7) in conjunction with (5.7) and [;-| in
terms of [; and y; using (4.12).

The solution to the DP model for MP2. y; (i = 1, 2. 3. 4). is functionally dependent
upon the state variable pair S; and [; and can be expressed as vi ( Si, [). The recursive
optimization is carried out backward until the first stage is reached. At stage 1. the
maximum total return, F; (S, [;) and the corresponding optimum present value of
advertising expenditure yi" =y1'( Sy, I}) are determined. It is noted that y; =y, ( S, I})
is a unique value since S, and [; =Iare given. We need to backtrack from the first stage
through the succeeding stages to obtain the optimum advertising rates for all the other
stages in the following manner:

Step la. Determine the optimum advertising rate in current dollars for stage 1, x; ", using
y.' through (5.7) and then the optimum state element Sz‘ using S| and X[
through (4.7).

Step 1b. Determine the optimum state element I," using I, and yi" through (4.12).
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Step 2. Determine the optimum present value of advertising expenditure for stage 2
through > =y,'( S, ).

Step 3a. Determine the optimum advertising rate in current dollars for stage 2. X, . using
ya through (5.7) and then the optimum state element S5 using S, and x,
through (4.7).

Step 3b. Determine the optimum state element I;" using I’ and yg' through (4.12).

Step 4. Determine the optimum present value of advertising expenditure for stage 3
through y;~ =y;'( S5, Is).

Step 5a. Determine the optimum advertising rate in current dollars for stage 3. x;", using
y3' through (5.7) and then the optimum state element Sy using S; and x;
through (4.7).

Step 5b. Determine the optimum state element [, using I;* and y3 through (4.12).

Step 6. Determine the optimum present value of advertising expenditure for stage 4

through 4" = v4'(Ss", k).

The Computing Routines

By defining and calling user-defined functions in C++, two computer routines are
developed, using a personal computer (75 MHz processor - 24 MB of RAM), to solve
the DP models for MP1 and MP2, respectively. One of the major features of these
routines is that they can accommodate various alternative values of the key parameters,
i.e., the initial sales rate ,S,, and the convexity (concavity) parameter, 8. In addition, the
DP computing routine for MP2 can determine the optimal advertising policy and the

associated return for various values of the discount rate. This feature greatly facilitates
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the sensitivity analysis of the impact of changes in the model parameters on the
behavioral patterns of the optimal advertising policy and the corresponding total returns.
Another interesting feature of the computing routines that deserves mentioning is that
they are readily extendible to accommodate a more general planning horizon composed
of any number of consecutive equal time-periods.

In order to check computational accuracy of these two programs, two computer
routines based on exhaustive enumeration are developed for MP1 and MP2, respectively.
It is found that no discrepancy whatsoever exists between the computational results
generated by the DP programs and those by the enumerating programs.

The developed computing routines based on the dynamic programming approach are
exceptionally fast. For example. the time taken to produce the optimum solution for all
considered cases for which r = 0 (600 cases) was only about 20 minutes. For r = 0.01.
about 47 minutes were required to arrive at the optimum solution for the same number of

cases.

Results

The DP computing routines are developed to find the optimal advertising policy and
the associated total return for all the alternative values of S;, 8, and r, specified in the
first section of this chapter. Due to their enormous sizes, the computational results of
executing the computing routines are only partially reported in Appendix B. Although
the following discussions are based on the partially demonstrated data, they shed
interesting light on the behavioral patterns of the DP optimal advertising policy. Tables

Al, BIl, Cl, and D1 in Appendix B illustrate the total returns yielded and the related
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patterns of advertising spending under the DP optimal policy for selected combinations
of the model parameters, namely, the initial sales rate S|, the convexity (concavity)

parameter 8, and the discount rate r.
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CHAPTER 6

SENSITIVITY ANALYSIS

In this chapter, the impact of changes in the convexity (concavity) parameter. 3, and
the initial sales rate, S;, on the pattern of the DP optimal advertising policy and its
associated return is studied. In addition, the DP optimal advertising policy is compared
with and contrasted to its corresponding traditional advertising pulsation counterparts
that cost the same in terms of performance. The above analyses are conducted in two
cases: (1) the time value of money is not considered (r = 0). and (2) the time value of
money is considered (r > 0). Reference to different tables included in Appendix B is

made as deemed appropriate.

DP Optimal Advertising Policy

Casel:r=0

As Table Al in Appendix B illustrates. the convexity (concavity) parameter & and
the initial sales rate S, significantly influence the pattern of the optimal advertising
policy. Let us first consider & € (0,1). It is noted in Table Al that when & and S,
assume smaller values, the pattern of the optimal policy is the same as or close to that of
UAP. Given a specific value of 8 € (0,1), there exists a threshold value for the initial

sales rate S; such that if S is equal to or larger than the threshold, the pattern of the
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optimal advertising policy is switched from one of even spending to that of increasing
spending over time. The threshold becomes smaller as & approaches unity from below.
For instance, the threshold is between 30 and 60 when & = 0.3. When 8 nises to 0.5, the
threshold falls between 10 and 30.

Now consider 8 € [1. 3]. It is interesting to note that the optimal advertising policy
is always composed of two pulses with the same magnitude over the first and the last
periods of the planning horizon if S; equals zero. Given that S, is positive, however,
various policy patterns may emerge depending on the combination of & and S; values.
For certain such combinations, the optimal advertising policy exhibits a BP pattern, with
the sole pulse coinciding on the last period of the planning horizon. It is noted that the
advertising efforts should be focused on the last, or the first and last quarters. and no
advertising resources should be committed over the third quarter under all these optimal
policies.

Figure 6.1, derived from Table A.1, graphically demonstrates curves that represent
the relationships among the optimum total return, the convexity (concavity) parameter &
and the initial sales rate S;. For a given specific value of 3. it is observed that higher
initial sales rates lead to larger total optimum returns. The vertical differences in total
returns across curves get smaller as the value of & increases. In fact. if the advertising
response function is highly convex, the differences become nearly unnoticeable as in the
case related to & = 3. For a specific value of Sy, the optimum total return increases along

with 8, implying that a convex advertising response function is much more preferred
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than a concave one in terms of generating total returns for the considered model

parameters.

Case2:r>0

In this case, the time value of money is taken into account, and hence the optimal
advertising policy is determined by, among other things, the discount factor r. For 6 €
(0.1), as shown in Tables Bl, C1, and DI in Appendix B, respectively, there exists a
threshold value for the initial sale rate S; such that if S, is lower than the threshold, the
optimal advertising policy appears to be UAP. However, if S, is equal to or greater than
the threshold, the advertising spending under the optimal policy, over time, may (1)
increase monotonically, or (2) decrease first and then later increase. It is interesting to
note, similar to the case r = 0, that higher values of 8 are associated with lower
thresholds.

Given & € [1. 3], various combinations of 8, Sy. and r may lead to different patterns
of optimum advertising spending, including that of BP under which the sole pulse occurs
during the last period of the planning horizon. Under most of these optimal policy
patterns. fewer or no advertising efforts are committed to the second or third quarters of
the planning horizon, especially when & assumes relatively low values.

It is observed in these three tables that, everything else being equal, (1) as the
discount rate increases, the optimum total return decreases; (2) a larger initial sales rate
leads to a higher optimum total return; (3) a more convex advertising response function

brings a greater optimum total return. For a given value of r, as demonstrated in Figure
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6.2, the above findings can be very well presented schematically by a graph quite similar

to that depicted in Figure 6.1.

DP Optimal Advertising versus Traditional
Advertising Pulsation

The tables in Appendix B as a whole reveal that, given any combination of the
parameters, 8, S|, and r, the DP optimal advertising policy produces a total return at least
as good as that generated by the best traditional pulsation policy. More specifically, if
the DP optimal advertising policy does not belong to the traditional advertising pulsation
class, it is superior to any of the corresponding traditional policies that cost the same.
For example, as shown in Table Al, for r =0, 8 = 2.0, and S; = 30, the DP optimum
policy does not belong to the traditional advertising pulsation class and yields a total
return greater than that generated by any of the corresponding BP. APP-I. APP-II.
APMP-I, APMP-II, and UAP that cost the same. If the DP optimal policy does
belong to the traditional advertising pulsation class. it is the same as the best traditional
policy. For example, for r =0, 8§ = 0.3, and S; = 30, the DP optimal advertising policy
appears to be UAP, which yields the highest total return compared to the other
traditional advertising pulsation policies. The superiority of the DP optimal advertising
policy and the roles of 6 and S; in shaping the performances under the various
advertising strategies are demonstrated in Figure 6.3 through 6.14, where APMP-I3,
APMP-17, APMP-II3, and APMP-II7 respectively stand for the corresponding APMP-I

and APMP-II policies associated with A = 0.3 and 0.7, respectively.
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Table 6.1 provides summary statistics related to the relative effectiveness of the
optimal dynamic programming advertising policy, measured in terms of the ratio of DP
total return to the best total return among the traditional advertising pulsation policies.
Ten groups of the shaping parameter § and sixteen values of the discount factor r are
considered in the analysis. The number of cases examined within each group is 60 (6
values for 8 x 10 values for S;). The descriptive statistics depicted in Table 6.1 reveal
that for a total of 9600 considered cases, the mean DP relative effectiveness is about

1.80%, whereas the maximum DP relative effectiveness is as high as 11.16%.
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Table 6.1

Descriptive Statistics Related to the Relative

Effectiveness of the Optimal DP Policies

r=0.00

0.05<3<030
035<8<0.60
0.65<6<090
095<86<1.20
1.25<8<1.50
1.55<86<1.80
1.85<6<2.10
215586240
245<6<2.70
275<8<3.00

r=0.01

0.05<3<0.30
0.35<8<0.60
0.65<38<0.90
095<8<1.20
1.25<86<1.50
1.55<6<1.80
1.85<8<2.10
2.15<8<2.40
245<6<270
2.75<8<3.00

r=0.02

0.05<8<0.30
0.35<86<0.60
0.65<8<0.90
095<46<1.20
1.25<8<1.50
1.55<6<1.80
1.85<86<2.10
2.1586<240
245<6<2.70
2.75<8<3.00

r=0.03

0.05<86<0.30
0.35<86<0.60
0.65<6<090
095<86<120
1.25<6<1.50
1.55<6<1.80
1.85<6<2.10

Mean

1.000210238
1.001179207
1.003898937
1.002698618
1.003460613
1.023030399
1.033153216
1.035888192
1.035622383
1.027690594

1.000203724
1.001152384
1.003836192
1.002793080
1.003885691
1.023567347
1.033503400
1.036349911
1.035972609
1.027512798

1.000197266
1.001126170
1.003775269
1.002886050
1.004377762
1.024098348
1.033875526
1.036819563
1.036299608
1.027327148

1.000191120
1.001100075
1.003716573
1.003000003
1.00490948
1.024607793
1.034256303

Std Dev

0.000334395
0.001501643
0.003527939
0.004763358
0.008849142
0.018232275
0.021096539
0.023855356
0.023376465
0.014704295

0.000328817
0.001485455
0.003506952
0.004774836
0.009285289
0.018213454
0.021394714
0.024068841
0.023417460
0.014335818

0.00032336

0.001468989
0.00348575

0.004805086
0.009757439
0.018213071
0.021699039
0.024293189
0.023435309
0.013959733

0.000317862
0.001452820
0.003465198
0.004849367
0.010263373
0.018227120
0.022021753

Maximum

1.001617475
1.006626046
1.011840265
1.021008968
1.042220703
1.061403523
1.073053108
1.075515754
1.075651048
1.056531929

1.001595238
1.006563668
1.011730544
1.020878915
1.042115405
1.061074622
1.072401004
1.074693874
1.074801891
1.055807534

1.001572941
1.006500669
1.011620494
1.020744677
1.042000124
1.060731942
1.071741462
1.073874435
1.073956627
1.055105238

1.001551249
1.006438512
1.011510903
1.020608889
1.041874904
1.06037565

1.07107534

Minimum

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.004025604
1.001605633
1.000849404
1.001211667

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.003727133
1.001452829
1.000796487
1.001410051

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.003438054
1.001328228
1.000820918
1.001608752

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.003156487
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Table 6.1 (Continued)

2.15<86<240
245<8<270
2.7558<3.00

r=0.04

0.05<56<0.30
0.35<6<0.60
0.65<6<0.90
095<6<1.20
1.25<6<1.50
1.55<86<1.80
1.85<86<2.10
215<86<240
245<86<2.70
2.75<8<3.00

r=0.05

0.05<56<0.30
0.35<8<0.60
065<d5<090
095<8<1.20
1.25<6<1.50
1.55<6<1.80
1.85<6<2.10
2.1556<240
245<8<270
275<8<3.00

r=0.06

0.05<86<0.30
0.35<86<0.60
0.65<56<0.90
095<8<1.20
1.25<86<1.50
1.55<86<1.80
1.85<6<2.10
2,15<86<240
245<86<2.70
2.75<56<3.00

r=0.07

0.05<6<0.30
035<86<0.60
0.65<86<0.90
095<8<1.20
1.25<6<1.50
1.55<6<1.80
1.85<8<2.10
2158240

1.037296351
1.036610906
1.027117547

1.000185069
1.001074483
1.003661135
1.003136384
1.005544958
1.025071421
1.034639660
1.037790228
1.036834968
1.026906268

1.000179226
1.001049251
1.003607618
1.003268060
1.006210175
1.025531825
1.034984679
1.038109694
1.036974618
1.026688183

1.000173668
1.001024610
1.003555657
1.003420067
1.006844593
1.026016489
1.035210571
1.038389805
1.037067890
1.026454854

1.000168331
1.001000642
1.003506775
1.003592993
1.007450708
1.026391848
1.035437369
1.038680440

0.024528413
0.023445259
0.013597705

0.000312401
0.001436583
0.003443809
0.004929368
0.010742322
0.018275106
0.022366518
0.024772340
0.023375550
0.013238566

0.000307046
0.001420390
0.003422633
0.005027454
0.011219057
0.018347380
0.022643470
0.024779673
0.023199494
0.012881730

0.000301691
0.001404053
0.003401974
0.005130095
0.011703946
0.018419298
0.022727888
0.024743927
0.022991381
0.012526455

0.000296326
0.001387777
0.003381498
0.005272916
0.012103609
0.018461102
0.022806104
0.024719346

1.073058414
1.073116005
1.054424958

1.001529211
1.006377134
1.011401509
1.020279624
1.041738554
1.060007115
1.070404138
1.072244702
1.072279548
1.053765755

1.001506921
1.006314811
1.011291442
1.019936487
1.041856686
1.059625695
1.069726413
1.071433874
1.071453242
1.052991935

1.001485614
1.006252972
1.011181881
1.019588748
1.041969771
1.059616392
1.069043932
1.070626975
1.070635521
1.052110088

1.001463697
1.006191443
1.011072944
1.019235008
1.042076619
1.059212278
1.068356991
1.069823533

1.001248069
1.000767596
1.001807719

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.002884121
1.001171073
1.000715514
1.002006556

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.002619949
1.001095757
1.000676341
1.002205623

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.002363582
1.001023228
1.000682487
1.002404951

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.002115736
1.000952661
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Table 6.1 (Continued)

r=0.08

0.05<56<0.30
0.35<6<0.60
0.65<5<0.90
095<56<1.20
1.25<6<1.50
1.55<3<1.80
1.85<6<2.10

r=0.09

0.05<8<0.30
035<6<0.60
0.65<8<0.90
0.95<8<1.20
1.25<86<1.50
1.55<6<1.80
5<2.10

o7

IN A A

W1 19
S 3 &
S © O

IAN A NN

& O On

0.05<6<0.30
0.35<86<0.60
0.65<8<090
095<8<1.20
1.25<6<1.50
1.55<6<1.80
1.85<86<2.10
2.15<86<240
245<38<2.70
275<86<3.00

r=0.11

0.05<5<0.30
035<56<0.60
0.65<56<090
095<6<1.20
1.25<8<1.50
1.55<6<1.80
1.856<2.10
2.15<8<240
245<5<270
275<6<3.00

1.037114427
1.026222387

1.000163310
1.000977314
1.003459010
1.003798163
1.008107007
1.026683679
1.035675343
1.038980441
1.037163179
1.025975731

1.000158486
1.000955010
1.003415509
1.004003179
1.008655428
1.026970894
1.035943885
1.039277165
1.037130464
1.025718758

1.000153869
1.000932670
1.003373290
1.004174038
1.009117176
1.027299416
1.036224899
1.039431376
1.037060259
1.025463831

1.000149253
1.00091 1395
1.003331352
1.004317275
1.009583096
1.027610883
1.036430236
1.039560464
1.036974817
1.025204720

0.022764447
0.012178734

0.000291103
0.001372026
0.003361032
0.005442297
0.012395070
0.018511543
0.022896260
0.024708167
0.022544530
0.011841444

0.000285725
0.001355958
0.003339970
0.005648630
0.012616284
0.018536994
0.023016634
0.024707753
0.022258255
0.011516357

0.000280594
0.001340054
0.003320513
0.005824112
0.012719736
0.018539958
0.023135718
0.024554548
0.021942257
0.011204060

0.000275378
0.001323912
0.003302995
0.005947737
0.012857186
0.018625472
0.023151781
0.024380575
0.021634124
0.010912948

1.069824646
1.051247742

1.001445011
1.006130006
1.010963024
1.018876308
1.042175222
1.058796229
1.067666481
1.069023064
1.069017092
1.050404924

1.001421294
1.006069570
1.010854357
1.018838502
1.042267569
1.058741218
1.067013836
1.068266585
1.068258331
1.049597845

1.001400421
1.00600871 1
1.010745232
1.020263822
1.042352646
1.058709879
1.066637778
1.067638953
1.067599024
1.048876260

1.001378639
1.005947698
1.010820920
1.021055537
1.042430581
1.058667180
1.066251504
1.067033228
1.066940345
1.048172559

1.000631229
1.002604203

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001903958
1.000884361
1.000580748
1.002804249

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001775461
1.000817807
1.000593759
1.003003995

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001650876
1.000753262
1.000542660
1.003240376

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001530713
1.000690562
1.000493 155
1.003547962
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Table 6.1 (Continued)

r=0.12

0.05<8<0.30
0.35<56<0.60
0.65<6<0.90
095<5<120
1.25<85<1.50
1.55<86<1.80
1.85<6<2.10
215<86<240
245<86<2.70
2.75<8<3.00

r=1.00

0.05<5<0.30
0.35<85<0.60
065<8<0.90
095<8<1.20
1.25<8<1.50
1.55<86<1.80
1.85<6<2.10
2.15<8<240
245<8<270
275<8<3.00

r=2.00
0.05<86<0.30
0.35<8<0.60
065<86<090
095<86<1.20
1.25<8<1.50
1.55<56<1.80
[1.85<8<2.10
2,156 <240
2456270
275<8<3.00
r=3.00
0.05<6<0.30
0.35<56<0.60
065<6<090
095<6<1.20
1.25<6<1.50
1.55<6<1.80
1.85<8<2.10
2156240
245<6<2.70
2.75<6<3.00
All Cases

1.000144629
1.000891144
1.003291 141
1.004461533
1.010079816
1.027897971
1.036601461
1.039716418
1.036846730
1.024954929

1.001019812
1.002725870
1.005729699
1.009761116
1.020611292
1.040799071
1.035135368
1.029077277
1.020608705
1.011902883

1.00394 1644
1.010828282
1.019782666
1.009837693
1.017837183
1.034257536
1.039222305
1.03054 1680
1.021808189
1.015378339

1.007441517
1.021995475
1.027215521
1.007231330
1.011655728
1.022981224
1.031691947
1.032440562
1.024323500
1.015966711

1.018047016

0.000270223
0.001307632
0.003285902
0.006044061
0.012963358
0.018774588
0.023136059
0.024233306
0.021282918
0.010643946

0.001632312
0.003594679
0.006796340
0.008318066
0.013979823
0.020226681
0.013711554
0.010510362
0.010324769
0.005775700

0.005984454
0.013006044
0.020349680
0.006316470
0.008758395
0.009582528
0.014032922
0.011884753
0.007834027
0.005477497

0.011701660
0.025887283
0.025562911
0.004737655
0.006184363
0.006083946
0.005532924
0.009211008
0.008486258
0.006173138

0.020568000

1.001357886
1.005888027
1.010925023
1.021538129
1.042501496
1.058612148
1.065856124
1.066450328
1.066282686
1.047485774

1.007553965
1.013712854
1.028208485
1.032978422
1.050064280
1.074819951
1.065294903
1.042531176
1.040447255
1.025701235

1.027953398
1.050005857
1.074632845
1.022674595
1.035517633
1.050429606
1.059495711
1.055088066
1.038698557
1.026356009

1.056034399
1.102376291
1.111577941
1.017514224
1.026534875
1.034603334
1.039811481
1.044270447
1.041913850
1.028507806

L.111577941

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001413708
1.000629949
1.000444572
1.003853028

1.000000000
1.000000000
1.000000000
1.000000000
1.000000000
1.001746842
1.004847782
1.006770381
1.004053686
1.003169772

1.000012751
1.000015341
1.000122435
1.000299500
1.000666062
1.012990296
1.012988169
1.010993435
1.008128530
1.005500724

1.000054729
1.000327872
1.000638380
1.000000000
1.000275141
1.011347473
1.018258067
1.013105365
1.008426755
1.005110124

1.000000000

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
60
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DP Policy versus APP-I, APMP-I and UAP (S; =30, r = 0)
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DP Policy versus APP-II, APMP-II and UAP (S; =30.r=0)
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DP Policy versus BP Polices (S| =30, r=0)
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DP Policy versus APP-II, APMP-II and UAP (8 =0.5.r=0)
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DP Policy versus BP Polices (6 =0.5, r=0)
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CHAPTER 7

MODEL ESTIMATION

This chapter focuses on assessing empirically the modified Vidale-Wolfe model
reviewed in Chapter 2. A discrete analogue of the modified Vidale-Wolfe model is
estimated using the Newton-Gauss algorithm of nonlinear regression based on the well-
known data of the Lydia E. Pinkham vegetable compound. Two versions of such a
model are considered. The first version assumes that the error terms are not
autocorrelated. whereas in the second version autocorrelation is assumed to be present.
Choice between alternative model specifications is made based on the quality of
estimated parameters as well as the predictive power of the proposed models, using the
method of one-step-ahead forecasting. Based on the obtained results, the shape of the

advertising response function is assessed.

The Data
The firm considered in this empirical study is the frequently studied Lydia E.
Pinkham Medicine Company and its product, the Lydia Pinkham vegetable compound,
originally examined by Palda (1964). The data used in our empirical investigation are
the annual sales and advertising expenditures of the company for the period 1907
through 1960 available in Palda’s study. Aaker and Carman (1982) contended that “the

Lydia Pinkham data are interesting in many respects: (1) everyone familiar with the
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situation agrees that advertising caused sales for this product; (2) there are advertising
decreases as well as increases; (3) since the product was a monopoly product,
competitive effects need not be built into the model; and (4) price was quite stable over
long periods of time. Thus it has been possible to focus on the nature of the advertising-

to-sales relationship.”

Model Discrete Analogue

A discrete analogue of the modified Vidale-Wolfe model was introduced and
estimated using OLS by Mesak and Darrat (1992). It can be shown that, using (2.4) and
(2.6), the modified Vidale-Wolfe model (2.5) can be restated as in (7.1) upon employing
the power function f(x) = bx® proposed by Little (1979):

det =mbx’ —aS -bx°’S, . (7.1)
The discrete analogue of (7.1) is given as shown below:

S, —-S,_, =mbx’ —aS,_, —-bx’S, . (7.2)
By incorporating an error term into (7.2) and upon minor rearrangement of terms. (7.2)
takes the following form:

S, =mbx] +(1-a)S,., —bx/S,_, +¢ (7.3)
where, m, a, b, and & are unknown parameters, and & is a random error term assumed to
be normally distributed, serially uncorrelated, and has a zero mean with a constant

variance. Following the treatment adopted by Mesak and Darrat (1992), the variables in

equation (7.3) are operationalized as follows:
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S;= Annual sales in monetary units in year ¢ divided by the population in year ¢
and divided by a general price deflator in year ¢ (to convert sales to per
capita real magnitudes).

x, = Annual advertising expenditures in monetary units in year ¢ divided by the
population in year ¢ and divided by a general price deflator in year ¢ (to
convert advertising to per capita real values).

Given the above definition of variables, the related time-series data used in subsequent
analyses is found in Appendix C.

Seber and Wild (1989) points out that situations in which data are collected
sequentially over time may give rise to substantial serial correlation in the errors.
Autocorrelated errors usually exist with economic data in which the response variable
and the explanatory variable(s) measure the state of a market at a particular time. and
both the response and explanatory variable(s) are time series. If there exists significant
evidence of autocorrelation, the order of the autoregressive specification on the random
error term & needs to be determined. Bates and Watts (1988) argued that the first order
is adequate if time is not the only factor, or the most important factor in the regression
situation. The first-order autoregressive specification on & is given by (7.4):

& =pE_ 1 (7.4)
where. 7, is assumed to be a normally distributed, serially uncorrelated random error with
a zero mean and a constant variance and p is a parameter such that | p | < 1. Substituting

for g from (7.4) in (7.3), the annual sales in year ¢ can be expressed in the following form:

Sz =psl—l +bxf(m—sr-l)+(l—a)s -1

) (7.5)
- pbx; (m-S,,)+(1-a)S,_,]1+7,.
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As in linear modeling, autocorrelation in nonlinear modeling is often first detected
from plots of regression residuals (Bates and Watts, 1988), or preferably by the formal

Durbin-Watson test with the following test statistic (Seber and Wild, 1989):

n

Z (e, —€, )2

D=+3%— (7.6)

n
2
2,
=]

where,

e, = the regression residual associated with the ith observation;

n = the number of observations used in the estimation.

Choosing Among Alternative Model Specifications

Seber and Wild (1989, p.5) argued that even when a linear model approximation is
sufficient in modeling nonlinear behavior, a nonlinear model may be used to retain a
clear interpretation of the model parameters. Therefore, the nonlinear regression rather
than the OLS is used for estimating the nonlinear models (7.3) and (7.5). Since the
Newton-Gauss method of nonlinear regression is a much more efficient algorithm (Seber
and Wild. 1989. p.621), it is adopted in this empirical study for model estimation. This
algorithm represents a non-linear least squares (NLS) method of estimation and is
available in SAS. The algorithm was preliminarily performed on (7.3) and (7.5) to
estimate all the parameters and the results indicated a singular matrix of partial
derivatives, possibly suggesting strong dependency among the parameters. Therefore,
instead of estimating all model parameters, (7.3) and (7.5) are estimated assuming

reasonable values of m ranging between 0.10 and 1.0 in increments of 0.05.
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In order to detect autocorrelation with the Durbin-Watson test procedure, both
models (7.3) and (7.5) are estimated over the entire period 1907 through 1960 using the
Newton-Gauss method. The Durbin-Watson test is first performed in conjunction with
each model specification for selected values of m and the test results are reported in
Table 7.1.

As shown in Table 7.1, there is significant evidence of autocorrelation in
conjunction with model (7.3) for selected m values. In contrast, no significant evidence
of autocorrelation was revealed by the Durbin-Watson test for the 19 m values in
relation to (7.5). Therefore, only model (7.5) is further examined to determine the most
appropriate value of m.

Mesak and Darrat (1992) suggested one approach to discriminating among
alternative model specifications through assessing their predictive power. This is a more
rigorous prediction test than forecasting for years on which the estimation is based. In
this empirical study. their approach is adopted and in particular, one-period-ahead
predictions are made by forecasting sales in year ¢+/ using the data through year ¢ for all
the values of m € {0.05k; k = 2. 3, .... 20}. Only the sales in the years 1956 through
1960 are forecast using this procedure. For example. for m = 0.10, model (7.5) is

estimated over the years 1907 through 1955. and the resulting empirical estimates are
used to forecast sales for the year 1956 (out-of-sample forecast S/ ). Then, the actual

sales data for the period 1907 through 1956 is used to estimate the model once again and
then forecast the sales for the year 1957. The process continues until sales for the year

1960 are forecasted. The root-mean-square percent error (RMSPE) statistic for the case
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Table 7.1

Detection of Autocorrelation: The Durbin-Watson Statistic

m Model (7.3) Model (7.5)
0.10 1.221379* 2.137237
0.15 1.216154* 2.158653
0.20 1.215014* 2.165598
0.25 1.214634* 2.168914
0.30 1.214481* 2.170835
0.35 1.214414* 2.172083
0.40 1.214384* 2.172957
0.45 1.214373* 2.173602
0.50 1.214370* 2.174098
0.55 1.214372* 2.174490
0.60 1.214377* 2.174808
0.65 1.214383* 2.175072
0.70 1.214389+* 2.175293
0.75 1.214395* 2.175482
0.80 1.214402* 2.175645
0.85 1.214408* 2.175787
0.90 1.214414* 2.175912
0.95 1.214420* 2.176022
1.00 1.214425* 2.176121

* significant at the one percent level
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of m = 0.10 is calculated from these one-period-ahead forecast series. The same
procedure is applied to compute the RMSPE statistic for each of the values of m ranging
from 0.10 to 1.0 in increments of 0.05. All the values of the RMSPE statistic are
reported in Table 7.2.

Based on the entire data set. it is found that only for the model specifications with
the value of m equal to or greater than 0.20, all the estimated parameters, a, b, 8., and p,
are statistically significant at the 0.05 level. The value of RMSPE is monotonically
increasing as the value of m becomes larger. According to the RMSPE criterion, the
model specification with m = 0.20 is the best as it minimizes the RMSPE while all the
model parameters appear with theoretically expected signs and each is statistically
significant at the 0.05 level.

Table 7.3 presents the nonlinear regression results of model (7.5) related to the
optimum value of m = 0.20. The goodness of fit, measured by R>. implies that model
(7.5) fits the data quite well. The value of R? is approximately found to be equal to 0.93.
More importantly. as the estimated parameter 8 lies within the interval 0 < § < 1. it is

concluded that the shape of the advertising response function is concave.
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Table 7.2

Determining the Appropriate Value of m Based on the
One-Period-Ahead Forecasting Procedure

Value of m RMSPE Valueofm RMSPE
0.10 0.012023155 0.60 0.017021030
0.15 0.014320424 0.65 0.017078418
0.20™" 0.015325771 0.70 0.017127180
0.25 0.015877367 0.75 0.017169127
0.30 0.016224054 0.80 0.017205592
0.35 0.016461702 0.85 0.017240572
0.40 0.016634630 0.90 0.017265875
0.45 0.016766048 095 0.017291076
0.50 0.016869283 1.00 0.017313665
0.55 0.016952513

Note: Root-mean-square percent error (RMSPE) is defined as

1 &[S -sT
?Z.[ s; J

where S,f = forecast value of S,, S;" = actual value of S, T = the number of
forecasting periods = 5. The superscript min indicates the optimum value of m.
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Table 7.3

Regression Results of Model (7.5) with
the Optimal Value of m = 0.20

Parameter Estimate

0.6305312924
0.8775677200

a

b

6 0.4881177303
P 0.8272820385

Source

Regressicn
Residual
Uncerrected Total
{Corrected Total)

38

Asymptotic Asymptotic 95 %
Std. Error Confidence Interval
Lower Upper

0.14750070623 0.33396197314 (0.9271006116
0.43580077359 0.00133368665 1.7538017534

0.14670890349 0.19314043331 0.7830950274
0.13251434753 0.56084473904 1.0937193380

DF

S.S.

0.05663672257
0.00057312497
0.05722984754

0.00818695539

Note: R? is computed as 1 - (Residual SS/Corrected total SS).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8

DISCUSSIONS AND IMPLICATIONS

This study has addressed the advertising pulsation problem defined in Chapter | and
pursued its five objectives: (1) formulation of DP models that represent two versions of
the problem, (2) solving the DP models using computing routines, (3) performing
sensitivity analyses to assess the role of key model parameters in shaping the optimal
policy, (4) comparing the performance of the DP optimal policy with traditional
advertising pulsation policies that cost the same. and (5) assessing empirically the
plausibility of the modified Vidale-Wolfe model and the shape of the advertising
response function.

The purpose of this chapter is to summarize and present the conclusions of the
study, highlight its contributions. discuss its managerial implications, state its

limitations, and suggest directions for future research.

Summary and Conclusions

Armed with the dynamic programming approach, DP. this study deals with the
problem of optimally allocating advertising expenditures over a finite planning horizon
comprised of n equal periods to maximize either (1) profits related to the advertising

effort or (2) present value of profits related to advertising. The underlying assumption is

33
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that the firm is marketing in a monopolistic market a frequently purchased unseasonal
product in the mature stage of the life cycle for which advertising is the main element in
the marketing mix.

The modified Vidale-Wolfe model is employed to describe the relationship between
sales and advertising efforts. Two general dynamic programming models are
analytically formulated for finding the optimal allocation of advertising funds over time
with respect to whether the time value of money is taken into account. Several
numerical examples are provided to illustrate the DP applications. In these examples.
two fast computing routines were developed to obtain the results. The performances
under traditional advertising pulsation policies, namely, BP(Blitz Policy),
APP(Advertising Pulsing Policy), APMP(Advertising Pulsing/Maintenance Policy), and
UAP(Uniform Advertising Policy), are also modeled for the purpose of their comparison
with that under the DP optimal advertising policy. Computer programs are also
developed and run to determine the performances under these traditional policies.

The computational experience associated with these numerical examples reveals that
the DP models are properly formulated, and they lead to logically appealing solutions in
an adequately short time. The results confirm our expectation that the performance
under the DP optimal advertising policy is at least as good as the maximum performance
among the four traditional pulsation policies mentioned above (see Appendix B.) The
convexity (concavity) parameter, 8, and the initial sales rate, S;, are found to have
significant impacts upon the performance under the DP optimal advertising policy and

its behavioral patterns (see Figures 6.1 and 6.2.)
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This study has demonstrated that problems of realistic size can be efficiently solved
by the DP approach on a microcomputer. The computational efficiency will be
enhanced even more by forthcoming hardware and software developments, while
permitting the consideration of larger-size problems. It is expected that microcomputer-
based approaches, such as those presented in this study, will play an important part in
enhancing a firm’s profitability through improved allocation of advertising efforts in the
future.

The plausibility of the modified Vidale-Wolfe model is empirically investigated
using the well-known Lydia Pinkham vegetable compound annual data. Model
parameters have been estimated using the Gauss-Newton algorithm of nonlinear
regression. The model selected is one corrected for first-order autoregressive residuals.
The empirical results show that model parameters are statistically significant and of the
expected signs. More importantly, the estimated value of  is less than unity, implying a
concave advertising response function. This latter finding is in line with most previous

studies (e.g., Little 1979; Simon and Arndt 1980; Mesak and Darrat 1992).

Contributions

Several distinctive features of this study are highlighted below:

First, to the author's best knowledge, this is the first attempt in the literature in
which the DP approach is employed to solve the finite-horizon advertising pulsation
problem in which both the initial sales and the discount rates are allowed to be different
from zero. In addition, the modeling framework is significantly more flexible than the

rigid ones already found in the literature (see Table 2.1.)
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Second, computer programs are developed to solve the DP models. These
programs are capable of accommodating various combinations of key model parameters.
Therefore, this feature offers remarkable flexibility for conducting sensitivity analyses
related to the role of the key parameters in shaping the optimal advertising policy.
Computer programs with similar flexibility are also designed and implemented for
assessing the performance under the traditional advertising pulsation policies.

Third, the modified Vidale-Wolfe model is empirically estimated for the first time
using a nonlinear regression procedure to examine directly the statistical properties of
model parameters. From this point of view, it is believed that the estimation procedure
employed in this dissertation represents an improvement over that used by Mesak and
Darrat (1992) who use OLS to estimate the same model. To reduce the problem of
dependency among model parameters. a method is proposed such that the value of the
market potential. m, is held constant at a particular value each time the model is
estimated. The estimation procedure is performed repeatedly for a collection of
reasonable m values. Based on the results obtained for assessing the predictive power of
alternative model specifications and the quality of their estimated parameters, the

optimum value of m is determined.

Managerial Implications

This study provides the marketing manager of a monopolistic firm with an
implementable framework for structuring and solving the problem of optimally
allocating advertising funds over time, given that the sales-advertising relationship can

be captured by the modified Vidale-Wolfe model. The first step is to empirically
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estimate the sales-advertising relationship using historical data as discussed in Chapter 7.
After obtaining statistically sound estimates of the model parameters, a DP model, aimed
at achieving maximum advertising productivity over the planning horizon, is developed
to identify the optimal advertising policy.

The numerical example presented in this study suggests opportunities for increasing
advertising effectiveness through properly allocating advertising funds over a finite
multiperiod planning horizon. For alternative advertising policies that cost the same, the
optimum total return generated by DP could significantly exceed that under different
advertising policies. For firms operating on a large scale, small improvements in
allocation of advertising resources can produce substantial monetary returns. From a
managerial point of view, however, the implementation of the optimal advertising policy
requires a multiperiod orientation and the willingness to accept temporarily low profits

or even losses, depending on the situation (Simon, 1980).

Limitations and Directions for Future Research

The modeling framework developed in this study is exploratory, revealing several
limitations and many possibilities for future research.

First, advertising expenditures are treated here as the sole decision variable in the
DP models. Incorporating other marketing mix variables such as price and distribution
would offer avenues for future research. The modeling efforts by Robinson and Lakhani
(1975), Lodish (1980), Boronico and Bland (1996), and Ladany (1996) should shed

interesting light on this proposed extension.
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Second, this study deals with stationary markets for which the parameters of the
advertising response function are assumed to be constant over time. In addition, the
sales response structure is assumed to be deterministic. Relaxing these assumptions
would offer further topics for future research. The studies of Schmalensee (1978),
Jagpal and Brick (1982), Mesak (1985), and Aykac. Corstjens. Gautshi. and Horowitz
(1989) provide valuable insights in this respect.

Third, Simon (1982), Mesak (1985), and Mahajan and Muller (1986) raised several
interesting issues regarding the complex dynamics of advertising effects about which
little is known. This study has addressed some of the issues, but many more remain
unresolved. Examples of such unresolved inquiries are, Should fresh copy be introduced
with new pulses? Which is superior, a time pulsation or a media pulsation policy? The
experimental work of Eastlack and Rao (1986), for example, could be used as a
reference in this avenue of future research.

Fourth, the sales-advertising relationship is modeled in this study under the
assumption that the firm is operating in a monopolistic market. A plausible extension
would be to incorporate competition in the modeling framework. In so doing, we will be
in a position to address, among other things, the question raised by Simon (1982) and
Mesak (1985): What is the effect of different competitive interference patterns? Several
pioneering studies have attempted to incorporate competition in conjunction with the
original or the modified Vidale-Wolfe model (Deal 1979; Little 1979; Jones 1983;
Erickson 1985; Monahan 1987; Park and Hahn 1991). More recently, Villas-Boas
(1993), Mesak and Calloway (1995a, b) and Mesak and Means (1998) used game theory

to analyze pulsing models of advertising competition.
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Finally, the computer programs presented in the numerical example are flexible in
that various values of certain key parameters can be dealt with, but they are designed to
solve the problem only for a four-period planning horizon. Although four-period
budgeting is a commonplace phenomenon, future efforts should be geared towards
developing more flexible programs that allow the user to choose the number of periods
in a planning horizon within a reasonable range of options. We feel that such an
extension can be achieved with a relative ease through following the general approach of
dynamic programming discussed herein.

In summary, the main thrust of this study lies in providing a guide to marketing
managers in determining an optimal advertising pulsing policy, given a fixed amount for
the advertising budget. Moreover, it demonstrates a practical means to assess the
plausibility of a model representing the dynamic relationship between advertising and
sales as well as the shape of the advertising response function. The application of a DP
modeling framework may provide an effective means through which the allocation of

advertising funds over time can be determined and implemented.
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APPENDIX A

DERIVATION OF KEY EXPRESSIONS

Derivation of Expression (3.10)

The present value of advertising spending over period i is given by

-
[=e 0T Ixe'"dt =e " Tr—eT )x/r. (A.1)
0
(3.10) is obtained by expressing x in terms of L.

Derivation of Expression (4.13)

r
R(E.x,)=e"""T (g (1)edr. (A2)
N
Substituting for gi(t) from (4.1) gives

T
R(E.x,)=e T [[S,e™ 4 S(x, )(1-e™ " )Jedt
0

T T T
=e T[S, Gy 1+ [S(x, e dt ~ [S(x, je Ty
0 0 0

SI - S(x,) e-(¢(x,- )t

= __1 ~(i=i)rT
(=e {(¢(x,)+r)

S(x, )
g’_'_ [ e—rt
r

1y

=e—(l—ler SI _S(xt)

- X J)+r S(xl) -r
s er L1 90y 'T]+—r—(1—e "))
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Derivation of Expression (4.14)

]

Rn+l =e! Iq'u-l (t)e ~dr.
0
Substituting for qq+(t) from (4.2) yields
Rn+1 = e—an ISn+le—(a+r)ld{
0

o«

=(=1)e™™ [(S,.,/ (a+r)Je |5

_ T ;
=e 'S, /(a+r).
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APPENDIX B

PERFORMANCE OF ADVERTISING POLICIES

Table Al
Returns Of DP
(r = 0.00)
S) X|‘ Xz. X3. X4. Total Return
d = 0.1 0 4 4 4 4 41.74997
10 4 4 4 4 58.48861
30 4 4 4 4 91.96588
60 3.2 4 4 4.8 142.2
90 1.6 3.2 4.8 6.4 152.4782
d = 0.3 0 4 4 4 4 53.47512
10 4 4 4 4 ©9.3075
30 4 4 4 4 100.9723
60 3.2 4 4 4.8 148.5551
90 1.6 3.2 4.8 6.4 196.3634
d = 0.5 0 4 4 4 4 67.888¢6
10 4 4 4 4 82.61367
30 3.2 4 4 4.8 112.094¢6
60 2.4 3.2 4.8 5.6 156.5099
90 0.8 2.4 4.8 8 201.5184
d = 0.7 0 4 4 4 4 85.22369
10 4 4 4 4 98.62789
30 3.2 4 4 4.8 125.5673
e0 2.4 3.2 4 6.4 166.4323
90 0.8 1.6 4 9.6 208.5651
6 = 0.9 0 4.8 3.2 3.2 4.8 105.6334
10 4 3.2 3.2 5.6 117.5369
30 3.2 2.4 4 6.4 141.6997
60 0.8 1.6 4 9.6 179.3472
90 0 0 2.4 13.6 219.2776
92
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Table Al (Continued)

6=1.0 O 8 0 0 8 117.8516
10 7.2 0 0 8.8 128.864
30 4 0 0 12 151.7229
60 0 0 0 16 188.8544
90 0 0 0 le 227.3318
6=1.1 0 8 0 0 8 136.0667
10 6.4 0 0 9.6 145.8376
30 0 0 0 16 167.5943
60 0 0 0 16 202.046
90 0 0 0 16 236.4976
8 =1.5 O 8 0 0 8 212.4199
10 7.2 0 0 8.8 216.8173
30 5.6 0 0 10.4 226.5549
60 0 0 0 16 246.1226
90 0 0 0 16 267.8632
6 =2.0 0 8 0 0 8 271.2067
10 8 0 0 8 272.1312
30 8 0 0 8 273.98
60 7.2 0 0 8.8 277.5468
90 0 6.4 O 9.6 282.9146
6=3.0 0 8 0 0 8 291.6291
10 8 0 0 8 291.7263
30 5.6 4 0 6.4 292.2
60 5.6 4 0 6.4 293.0424
90 4 4.8 O 7.2 294.2862
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Table A2
Returns of BP
(r=0.00)
S BP; BP, BP; BP,
o = 0.1 4] 12.78624 12.78624 12.78624 12.78624
10 31.58508 31.72622 31.85077 31.96069
30 69.18275 69.60617 69.97984 70.3096
60 125.5793 126.4261 127.1734 127.833
90 181.9758 183.24¢6 184.3671 185.3563
6 =0.3 0 21.75393 21.75393 21.75393 21.75393
10 39.7113 39.95132 40.16313 40.35005
30 75.62604 76.34608 76.98152 77.5423
60 129.4982 130.9382 132.2091 133.3307
30 183.3703 185.5304 187.4367 189.119
o = 0.5 0 36.4003 36.4003 36.4003 36.4003
10 52.98525 53.38652 53.74065 54.05317
30 86.15515 87.35899 88.42137 89.35892
60 135.91 138.3177 140.4424 142.3175
30 185.6649 189.2764 192.4635 195.2762
o = 0.7 0 59.22458 59.22458 59.22458 59.22458
10 73.67615 74.3281 74.90345 75.4112
30 102.5793 104.5351 106.2612 107.7844
60 145.934 149.8457 1532.2978 156.3443
90 189.2887 195.1563 200.3345 204.9042
60 = 0.9 0 92.03432 92.03432 92.03432 92.03432
10 103.4334 104.444 105.3359 106.123
30 126.2315 129.2634 131.9391 134.3003
60 160.4287 166.4925 171.8438 176.5663
90 194.6259 203.7217 211.7486 218.8324
o =1.0 0 111.8995 111.8995 111.8995 111.8995
10 121.4611 122.6876 123.77C1 124.7253
30 140.5843 144.264 147.5112 150.3769
60 169.2692 176.6285 183.123 188.8544
90 197.9541 208.993 218.7347 227.3318
d=1.1 0 133.1427 133.1427 133.1427 133.1427
10 140.7518 142.2077 143.4926 144.6266
30 155.97 160.3379 164.1926 167.5943
60 178.7974 187.5332 195.2425 202.046
30 201.6248 214.7285 226.2924 236.4976
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Table A2 (Continued)

d =1.5 0 202.6415 202.6415 202.6415 202.6415
10 204.0858 206.2661 208.1903 209.8883
30 206.9743 213.5154 219.2879 224.382
60 211.3072 224.3893 235.9342 246.1226
90 215.064 235.2632 252.5806 267.8632

o = 2.0 0 220.908 220.908 220.908 220.908
10 221.1015 223.4288 225.4826 227.2952
30 221.4884 228.4704 234.632 240.0695
60 222.00688 236.0328 248.3559 259.2311
30 222.6492 243.5952 262.0799 278.3926

d = 3.0 0 224.7408 224.7408 224.7408 224.7408
10 224.753 227.1017 229.1743 231.0034
30 224.7774 231.8233 238.0413 243.5286
e0 224 .814 238.9058 251.3418 262.3164
30 224.8506 245.9883 264.6422 281.1042
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Table A3
Returns of APMP-I
(r=10.00)
S: A=0.0 A=0.3 A=0.7 A=1.0
5=0.1 0 23.35345 40.63125 41.58986 41.74997
10 41.40785 57.43946 58.33464 58.48861
30 77.51665 91.05589 91.8242 91.96589
60 131.6799 141.4805 142.0585 142.1818
90 185.8431 191.9051 192.2%29 192.3977
60=03 0 34.4602 50.37573 53.01354 53.47512
10 51.59447 66.38467 68.85764 69.3075
30 85.86303 98.40256 100.5458 100.9723
60 137.2659 146.4294 148.0781 148.4694
30 188.6687 194.4562 195.6105 195.9666
56=0.35 0 50.1809 63.55943 67.21983 ©67.8886
10 66.01917 78.48949 81.940602 82.61367
30 97.69569 108.3496 111.3984 112.0638
60 145.2105 153.1398 155.57€¢9 156.239
90 192.7253 197.93 199.7555 200.4142
6=0.7 0 71.6776 81.00655 84.54839 85.22369
10 85.75716 94.51606 97.91648 98.62788
30 113.9163 121.5351 124.6527 125.4363
60 156.155 162.0636 164.7569 165.6489
90 198.3937 202.5921 204.8612 205.8615
56=0.9 0 99.60522 103.2907 105.124 105.4923
10 111.4274 115.0019 116.8909 117.3694
30 135.0719 138.4241 140.4247 141.1236
60 170.5386 173.5575 175.7253 176.7549
90 206.0052 208.6909 211.0259 212.3862
6=1.0 0 115.8432 116.2482 116.5654 116.6367
10 126.3701 126.9239 127.4488 127.6832
30 147.4239 148.2753 149.2155 149.7763
60 179.0047 180.3024 181.8658 182.9159
90 210.5854 212.3294 214.516 216.0556
d=1.1 0 133.2669 130.2772 128.6743 128.3503
10 142.421 139.842 138.6292 138.5318
30 160.7291 158.9717 158.5391 158.8948
60 188.1914 187.6662 188.4039 189.4393
90 215.6536 216.3606 218.2687 219.9839
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Table A3 (Continued)

8=1.5 0 203.8147 191.1266 180.5877 178.0731
10 207.6952 196.0541 186.6719 184.701
30 215.4561 205.909 198.8404 197.9568
60 227.0974 220.6914 217.093 217.8405
90 238.7388 235.4738 235.3457 237.7242

6=20 0 253.3547 245.8676 235.7489 232.3861
10 254.2099 247.1867 238.1101 235.5165
30 255.9203 249.8249 242.8323 241.7772
60 258.486 253.7821 249.9156 251.1683
90 261.0516 257.7393 256.999 260.5593

6=3.0 0 271.0909 270.7823 277.3505 281.4854
10 271.1881 270.9401 277.7008 282.2373
30 271.3825 271.2556 278.4014 283.7411
60 271.674 271.7289 279.4524 285.9968
S0 271.9656 272.2021 280.5033 288.2526
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Table A4
Returns of APMP-II
(r=0.00)
S, A=0.0 A=0.3 A=0.7 A=1.0
6=0.1 0 23.35345 40.63125 41.58986 41.74997
10 41 .63646 57.4737 58.34717 58.48861
30 78.20249 91.15859 91.86179 91.96589
60 133.0515 141.6859 142.1337 142.1818
90 187.9006 192.2133 192.4057 192.3977
0=0.3 0 34.4602 50.37573 53.01354 53.47512
10 51.93121 66.50926 68.90531 69.3075
30 86.87321 98.77632 100.6888 100.9723
60 139.2862 147.1769 148.3641 148.4694
90 191.6993 195.5775 196.0394 195.9666
6=0.5 0 50.1809 63.55942 ©67.21983 67.888¢6
10 66.50819 78.74099 82.04586 82.61367
30 89.16274 109.1041 111.6979 112.0638
60 148.1446 154.6488 156.176 156.239
90 197.1264 200.1935 200.6541 200.4142
6=0.7 0 71.6776 81.00656 84.54839 85.22369
10 86.45284 94.9398 98.0901 98.62788
30 116.0033 122.8063 125.1736 125.4363
60 160.329 164.606 165.7987 165.6489
90 204.6547 206.4057 206.4239 205.8615
6=09 0 99.60522 103.2907 105.124 105.4923
10 112.3884 115.649 117.1638 117.3694
30 137.9546 140.3656 141.2435 141.1236
60 176.304 177.4405 177.3631 176.7549
90 214.6535 214.5154 213.4826 212.3862
6=1.0 0 115.8432 116.2482 116.5654 116.6367
10 127.4832 127.7018 127.7817 127.6832
30 150.7633 150.6089 150.2144 149.7763
60 185.6833 184.9696 183.8633 182.9159
90 220.6034 219.3302 217.5123 216.0556
6=1.1 0 133.2669 130.2772 128.6743 128.3503
10 143.6954 140.7616 139.0289 138.5318
30 164.5524 161.7304 159.7382 158.8948
60 195.838 193.1836 190.8022 189.4393
90 227.1235 224.6368 221.8661 219.9839
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Table A4 (Continued)

§=1.5 0 203.8147 191.1266 180.5877 178.0731
10 209.5893 197.5826 187.3923 184.701
30 221.1384 210.4945 201.0016 197.9568
60 238.462  229.8624 221.4156 217.8405
90 255.7857 249.2303 241.8295 237.7242

5§=2.0 0 253.3547 245.8676 235.7489 232.3861
10 256.4595 249.2267 239.2225 235.5165
30 262.669  255.9449 246.1695 241.7772
60 271.9834 266.0222 256.5901 251.1683
90 281.2978 276.0995 267.0106 260.5593

§=3.0 0 271.0909 270.7823 277.3504 281.4854
10 273.5268 273.1634 278.8963 282.2373
30 278.3984 277.9257 281.988  283.7411
60 285.7059 285.0691 286.6256 285.9968
90 293.0133 292.2124 291.2632 288.2526
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Table Bl
Returns Of DP
(r=0.01)
Sy Yi y2 y3 Ya Total Return
6 =0.1 0 1 1 1 1 40.751839
10 1 1 1 1 57.174976
30 1 1 1 1 90.021255
60 0.8 1 1 1.2 139.30771
S0 0.4 0.8 1.2 1l.e6 188.63734
d = 0.5 0 1 1 1 1 66.382095
10 1 1 1 1 80.830719
30 0.8 1 1 1.2 109.75255
60 0.6 0.8 1.2 1.4 153.32967
90 0.2 0.6 1.2 2 197.48863
d=0.9 0 1.2 0.8 0.8 1.2 103.43779
10 1 0.8 0.8 1.4 115.10532
30 0.8 0.8 0.8 1.6 138.79926
60 0.2 0.4 1 2.4 175.70822
90 0 0 0.6 3.4 214.87711
d =1.0 0 2 0 0 2 115.44118
10 1.8 0 0 2.2 126.23062
30 1 0.2 0 2.8 148.60855
60 0 0 0 4 184.96655
90 0 0 0 4 222.74831
d =1.1 0 2 0 0 2 133.30789
10 1.6 0 0 2.4 142.85614
30 0 0 0 4 163.99878
60 0 0 0 4 197.84996
90 0 0 0 4 231.70116
5 =1.5 0 2 0 0 2 208.10933
10 1.8 O 0 2.2 212.3688
30 1.4 0 0 2.6 221.79996
60 0 0 0 4 240.57756
90 0 0 0 4 262.1207
§=3.0 0 2 0 0 2 285.3616
10 1.6 0 0.8 1.6 285.483
30 1.4 1 0 1.6 285.9906
60 1.4 1 0 1.6 286.82959
90 1 1.2 0 1.8 288.03204
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Table B2

101

Returns of BP
(r=0.01)
Si BP; BP, BP; BP,;
d =0.1 0 12.52155 12.49331 12.465134 12.437022
10 30.953064 31.065388 31.16098 31.241846
30 67.816093 68.209541 68.552673 68.851494
60 123.11063 123.92577 124.64021 125.26596
30 178.40518 179.64201 180.72774 181.68044
6 = 0.5 0 35.663597 35.614922 35.566299 35.517742
10 51.925419 52.273945 52.575382 52.835323
30 84.449059 85.591995 86.593544 87.470482
60 133.23453 135.56908 137.62077 139.42322
90 182.01997 185.54616 188.64803 191.37596
d = 0.9 0 90.202538 90.127014 90.051453 89.97583
10 101.38041 102.30175 103.10519 103.80463
30 123.73614 126.65123 129.21266 131.46222
e0 157.26973 1632.17545 168.37387 172.94861
S0 190.80333 199.69966 207.53508 214.435
d =1.0 Q 109.67669 109.58562 109.49442 109.40311
10 119.05322 120.17203 121.14766 121.99702
30 137.8063 141.34485 144.45412 147.18484
60 165.9359 173.10408 179.41382 184.96657
90 194.06549 204.86331 214.3735 222.74829
d =1.1 0 130.49966 130.38254 130.26518 130.14761
10 137.96228 139.28214 140.43179 141.43134
30 152.88747 157.08136 160.76503 163.99878
60 175.27527 183.78018 191.26486 197.84998
90 197.66309 210.479 221.76469 231.70114
5§ =1.5 0 198.58894 198.22327 197.85741 197.49136
10 200.01152 201.81337 203.35674 204.6723%
30 202.85669 208.99355 214.35538 219.03445
60 207.12444 219.76385 230.85335 240.57758
90 211.39218 230.53413 247.35132 262.1207
§ =3.0 0 220.30212 219.75395 219.20714 218.66168
10 220.31429 222.11177 223.62982 224.90207
30 220.33859 226.82738 232.47517 237.38283
60 220.37506 233.9008 245.74323 256.10397
a0 220.41151 240.97423 259.01126 274.82513
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Table B3
Returns of APMP-I
(r=0.01)
S A=0.0 A=0.3 A=0.7 A=1.0
6=0.1 0 22.819628 39.663631 40.59697 40.751839
10 40.525734 56.154419 57.025997 57.174976
30 75.93795 89.135986 89.884048 90.021255
60 129.05626 138.60834 139.17113 139.29068
S0 182.17461 188.0807 188.45821 188.56009
6=0.5 0 49.102043 62.167351 65.735481 66.382095
10 64.63678 76.815063 80.184631 80.830719
30 95.706245 106.11048 109.08292 109.7279%94
60 142.31046 150.0536 152.43034 153.07379
90 188.91464 193.99673 195.77779 196.41965
=09 0 97.568619 101.16647 102.94724 103.29643
10 109.1651 112.6551 114.49162 114.94964
30 132.35806 135.63231 137.58035 138.25607
60 167.14748 170.09814 172.21347 173.21573
90 201.9369 204.56398 206.84659 208.17538
d=1.0 0 113.494061 113.88375 114.18141 114.23943
10 123.82073 124.3563 124.85853 125.07732
30 144.47296 145.30141 146.21277 146.7531
60 175.45131 176.71906 178.24413 17%9.26677
30 206.42966 208.13672 210.2755 211.78043
d=1.1 0 130.58154 127.65027 126.07008 125.74082
10 139.56146 137.03296 135.83592 135.72961
30 157.5213 155.79836 155.36758 155.70724
60 184.46104 183.94644 184.6651 185.67366
90 211.40079 212.09454 213.9626 215.64009
0=1.5 0 199.69888 187.30551 177.00272 174.52792
10 203.51224 192.14278 182.97266 181.03186
30 211.13893 201.81735 194.91258 194.0397
60 222.57896 216.32918 212.82243 213.5515
90 234.01904 230.84103 230.73232 233.06329
6=3.0 0 265.48431 265.20349 271.71353 275.61432
10 265.58112 265.36063 272.06244 276.36276
30 265.77475 265.67493 272.76019 277.85965
60 266.06516 266.14639 273.80685 280.10498
90 266.35559 266.61786 274.85349 282.35028
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Table B4

Returns of APMP-II
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(r=0.01)
S A=0.0 A=0.3 A=0.7 A=1.0
5=0.1 0 22.768044 39.655846 40.59412 40.751839
10 40.701405 56.180668 57.035603 57.174976
30 76.56813 89.230324 89.918564 90.021255
60 130.36823 138.80481 139.24303 139.29063
90 184.1683 188.37929 188.56747 188.56009
86=0.5 0 49.03355 62.130985 65.720917 66.382095
10 65.051941 77.027512 80.268845 80.830719
30 97.088715 106.82056 109.36473 109.72794
60 145.14386 151.51015 153.00854 153.07379
30 193.19901 196.19974 196.65234 196.41965
5=0.9 0 97.489265 101.11154 102.92376 103.29643
10 110.03313 113.23829 114.7373 114.949064
30 135.12085 137.49179 138.3644 138.25607
60 172.75246 173.87204 173.80502 173.21573
90 210.38403 210.25229 209.24567 208.17538
6=1.0 0 113.40963 113.82433 114.15598 114.23943
10 124.83295 125.06361 125.16125 125.07732
30 147.67957 147.54214 147.1718 146.7531
60 181.94949 181.25996 180.18761 179.26677
90 216.21941 214.97778 213.20343 211.78C43
5=1.1 0 130.48647 127.5846 126.04228 125.74082
10 140.72266 137.87355 136.20198 135.72961
30 161.19507 158.45145 156.52138 155.70724
60 191.9037 189.31828 187.00046 185.67366
90 222.61232 220.18512 217.47958 215.64009
6=1.15 0 199.4725 187.16014 176.94817 174.52792
10 205.15981 193.50708 183.62865 181.03186
30 216.53442 206.20099 196.98961 194.0397
60 233.59633 225.24182 217.03104 213.5515
90 250.65825 244.28267 237.07249 233.06329
6=3.0 0 264.83887 264.57944 271.28113 275.61432
10 267.27063 266.95569 272.82132 276.36276
30 272.13419 271.70825 275.90167 277.85965
60 279.4295 278.83704 280.52216 280.10498
90 286.72482 285.96585 285.14267 282.35028
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Table C1

Returns of DP
(r=0.05)
Si yl' yz. )’3‘ }’4‘ Total Return
5=0.1 0 1 1 1 1 37.132111
10 1 1 1 1 52.407322
30 1 1 1 1 82.957741
60 0.8 1 1 1.2 128.79625
90 0.4 0.8 1.2 1.6 174.67461
6=0.5 0 1 1 1 1 60.909611
10 1 1 1 1 74.352577
30 0.8 1 1 1.2 101.24081
60 0.8 0.8 1 1.4 141.77051
90 0.2 0.8 1.2 2 182.83798
5=0.9 0 1.2 0.8 0.8 1.2 95.453339
10 1.2 0.8 0.8 1.2 106.2773
30 0.8 0.8 0.8 1.6 128.26515
60 0.2 0.4 1 2.4 162.47449
90 0 0 0.6 3.4 198.87384
8=1.0 0 2.2 0 0 1.8 106.67902
10 1.8 0 0 2.2 116.65031
30 1 0.2 O 2.8 137.28438
60 0 0 0 4 170.82224
30 0 0 0 4 206.07626
d=1.1 0 2.2 0 0 1.8 123.29905
10 1.8 O 0 2.2 132.04623
30 0 0 0 4 150.90657
60 0 0 0 4 182.57849
90 0 0 0 4 214.2504
3=1.5 0 2.2 0 0 1.8 192.45015
10 2 0 0 2 196.31834
30 l1.e O 0 2.4 204.74609
60 0 0 0 4 220.40544
90 0 0 0 4 241.23158
8=3.0 0 1.6 O 1 1.4 262.83133
10 1.6 0 1 1.4 263.01663
30 1.4 1 0 1.6 263.43219
60 1.4 1 0 1.6 264.25797
90 1.2 1.2 O 1.6 265.33319
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Table C2
Returns of BP
(r=0.05)
S, BP, BP, BP; BP,
6=0.1 0 11.55924 11.429481 11.301179 11.174315
10 28.655018 28.66363 28.656073 28.634567
30 62.846569 63.131927 63.365856 63.555069
60 114.1339 114.83437 115.43053 115.93583
90 165.42123 166.53682 167.49521 168.31657
3=0.5 0 32.98494 32.760372 32.537228 32.315483
10 48.071712 48.229454 48.341396 48.413361
30 78.245262 79.16761 79.949738 80.609108
60 123.50558 125.57485 127.36225 128.90274
S0 168.7659 171.98209 174.77477 177.19638
6=0.9 0 83.541718 83.19104 82.839378 82.48674
10 93.915192 94.511383 94.991959 85.370773
30 114.66214 117.15208 11S5.29713 121.13885
60 145.78256 151.11313 155.75488 159.79097
90 176.90298 185.07417 192.21265 198.44308
5§=1.0 0 101.59404 101.17012 100.74348 100.31417
10 110.29751 111.023 111.60674 112.06551
30 127.70444 130.72878 133.33324 135.56819
60 153.81485 160.28745 165.92299 170.82222
90 179.92525 189.8461 198.51274 206.07625
6=1.1 0 120.88892 120.3426 119.79116 119.23467
10 127.81873 128.64072 129.29178 129.79198
30 141.6783 145.23697 148.293 150.90657
¢ 162.46768 170.13133 176.79483 182.57849
90 183.25706 195.0257 205.29668 214.2504
5=1.5 0 183.85376 182.15671 180.45627 178.75317
10 185.19731 185.62115 185.77585 185.69522
30 187.88438 192.55005 196.41501 199.5793
60 191.91501 202.94337 212.37373 220.40544
90 195.94562 213.3367 228.33247 241.23158
56=3.0 0 204.16197 201.63463 199.13824 196.67247
10 204.17395 203.98042 203.5181 202.82512
30 204.19789 208.672 212.2778 215.13045
60 204.23381 215.70937 225.41736 233.58842
90 204.26973 222.74673 238.55692 252.04642
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Table C3

Returns of APMP-I
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(r=0.05)
S: A=0.0 A=0.3 A=0.7 A=1.0
5§=0.1 0 20.881966 36.154289 36.996124 37.132111
10 37.321289 51.490185 52.27631 52.407318
30 70.199936 82.161964 82.83667 82.957741
60 119.51791 128.16965 128.67722 128.78337
90 168.83586 174.17731 174.51776 174.60902
5=0.5 0 45.181507 57.10976 60.343159 60.909615
10 59.612312 70.7304  73.784531 74.352585
30 88.473923 97.971672 100.66727 101.23852
60 131.76633 138.83357 140.99138 141.56743
90 175.05873 179.6955 181.31549 181.89635
5=0.9 0 90.162491 93.441666 95.031288 95.310951
10 100.93809 104.12109 105.76656 106.15009
30 122.48927 125.47999 127.2371 127.82837
60 154.81606 157.5183 159.4429 160.34578
90 187.14284 189.55661 191.64871 192.8632
5§=1.0 0 104.95271 105.28371 105.51024 105.51959
10 114.54876 115.01772 115.4374 115.59891
30 133.74086 134.48572 135.29173 135.75751
60 162.52901 163.68774 165.07323 165.99542
90 191.31718 192.88977 194.85472 196.23334
5=1.1 0 120.81322 118.09403 116.59577 116.24647
10 129.16005 126.81468 125.67427 125.5349
30 145.85368 144.256  143.83127 144.11174
60 170.89413 170.41797 171.06676 171.97701
90 195.9346 196.57994 198.30225 199.84229
5§=15 0 184.71838 173.39583 163.94905 161.61482
10 188.28836 177.90599 169.50452 167.66924
30 195.42833 186.92627 180.61546 179.77806
60 206.13829 200.4567 197.28189 197.94131
90 216.84822 213.98714 213.94832 216.10454
§=3.0 0 245.10788 244.92851 251.20897 254.23994
10 245.20322 245.08325 251.55217 254.97479
30 245.39391 245.39273 252.23857 256.44446
60 245.67993 245.85695 253.26817 258.64902
90 245.96596 246.32115 254.29778 260.85352
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Table C4
Returns of APMP-II
(r=0.05)
S A=0.0 A=0.3 A=0.7 A=1.0
5=0.1 0 20.647017 36.118839 36.983143 37.132111
10 37.308395 51.48801 52.275505 52.407318
30 70.631157 82.226341 82.860229 82.957741
60 120.6153 128.33385 128.73732 128.78337
90 170.59944 174.44138 174.61443 174.60902
86=0.5 0 44 .867107 56.942822 60.276291 60.909615
10 59.761864 70.802437 73.812576 74.352585
30 89.551376 98.521667 100.88515 101.23852
60 134.23564 140.10049 141.494 141.56743
90 178.91991 181.67934 182.10287 181.89635
6=0.9 0 89.793854 93.186417 94.922195 95.310951
10 101.46768 104.47123 105.9129 106.15009
30 124.81536 127.04085 127.89426 127.82837
60 159.83687 160.89528 160.86632 160.34578
90 194.85837 194.74973 193.83838 192.8632
3=1.0 0 104.55592 105.00627 105.39143 105.51959
10 115.138143 115.46658 115.62943 115.59891
30 136.46245 136.38722 136.10544 135.75751
60 168.369 167.76817 166.81944 165.99542
90 200.27554 199.14912 197.53345 196.23334
5=1.1 0 120.36673 117.78555 116.4651 116.24647
10 129.90422 127.36425 125.91628 125.5349
30 148.97919 146.52167 144.81865 144.11174
60 177.59164 175.25781 173.1722 171.97701
90 206.2041 203.99396 201.52576 199.84229
0=1.5 0 183.6489 172.7027 163.68636 161.61482
10 189.02057 178.65508 169.9169 167.66924
30 199.76392 190.5598 182.37804 179.77806
60 215.87891 208.4169 201.0697 197.94131
90 231.99393 226.274 219.76138 216.10454
§=3.0 0 242.14111 242.05727 249.22659 254.23994
10 244 .55692 244.41438 250.74445 254.97479
30 249.38849 249.12862 253.78012 256.4444¢6
o0 256.63586 256.19998 258.33365 258.64902
90 263.88324 263.27133 262.88718 260.85352
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Table D1
Returns of DP
(r=0.12)
Sy v vy v Total Return
5=0.1 0 1 1 1 1 31.954189
10 1 1 1 1 45.574726
30 1 1 1 1 72.815804
60 0.8 1 1 1.2 113.68452
90 0.6 0.8 1.2 1.4 154.59016
0=05 0 1 1 1 1 53.051079
10 1 1 1 1 65.045113
30 1 1 1 1 89.03318
60 0.8 0.8 1 1.4 125.15721
90 0.2 0.6 1.2 2 161.75784
6=09 0 1.4 0.8 0.8 1 83.993568
10 1.2 0.8 0.8 1.2 93.609375
30 0.8 0.8 0.8 1.6 113.09856
60 0.2 0.6 0.8 2.4 143.43826
90 0 0 0.6 3.4 175.83282
=10 0 2.2 0 0 1.8 94.119278
10 2 0 0 2 102.89659
30 1.2 0.2 O 2.6 121.03543
60 0 0.4 O 3.6 150.51781
90 0 0 0 4 182.06085
d=11 0 2.4 0 0 1.6 108.93945
10 2 0 0 2 116.56384
30 1.2 0O 0 2.8 132.71341
60 0 0 0 4 160.55052
90 0 0 0 4 189.09933
5=15 0 2.2 0 0 1.8 170.03952
10 2.2 0 0 1.8 173.27808
30 1.8 0 0 2.2 180.38171
60 1.2 0 0 2.8 192.98451
90 0 0 0 4 211.14946
8=3.0 0 1.6 0 1 1.4 230.67084
10 1.6 O 1 1.4 230.85115
30 1.6 0 1 1.4 231.21182
60 1.4 1 0 1.6 231.83711
90 1.2 1.2 O 1.6 232.84981
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Returns of BP
(r=0.12)
Si BP, BP-» BP; BP;
5§=0.1 0 10.174658 9.9026899 9.637989 9.3803606
10 25.347557 25.210493 25.061665 24.903559
30 55.693352 55.826099 55.909008 55.949951
60 101.21205 101.74951 102.18003 102.51954
90 146.73074 147.67291 148.45105 149.08913
§=0.5 0 29.129759 28.655846 28.189066 27.729317
10 42.524963 42.411606 42.25787 42.069908
30 69.315369 ©9.923119 70.39547 70.751091
60 109.50098 111.19038 112.60187 113.77287
90 149.6866 152.45766 154.80827 156.79463
§=0.9 0 73.95401 73.205482 72.452026 71.69368
10 83.169487 83.296028 83.307808 83.218544
30 101.60045 103.47711 105.01936 106.26829
60 129.2469 123.74873 137.5867 140.8429
30 156.89334 164.02036 170.15402 175.4175
o0=1.0 0 89.959518 89.050789 88.12841 87.192566
10 97.694038 97.848183 97.855797 97.733482
30 113.16309 115.44296 117.31057 118.81533
60 136.36667 141.83514 146.49272 150.43811
30 159.57025 168.22733 175.67488 182.06087
5=1.1 0 107.05463 105.87946 104.67869 103.4529
10 113.2174 113.31261 113.22314 112.96916
30 125.54292 128.17888 130.31206 132.00171
60 144.03119 150.47832 155.9454 160.55052
90 162.51945 172.77774 181.57877 189.09933
o0=1.35 0 162.64684 159.0298 155.40273 151.77466
10 163.87614 162.31303 160.46326 158.37184
30 166.33473 168.87952 170.58432 171.56625
60 170.02261 178.72925 185.76593 191.35786
90 173.71053 188.57896 200.94753 211.14948
5§=3.0 0 180.92999 175.60124 170.42789 165.40558
10 180.94165 177.92625 174.73427 171.409
30 180.96498 182.57628 183.34705 183.41582
60 180.99997 189.55132 196.26622 201.42607
90 181.03496 196.52635 209.18538 219.43631
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Table D3

Returns of APMP-]
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(r=0.12)
S A=0.0 A=0.3 A=0.7 A=1.0
8=0.1 0 18.104332 31.133383 31.844883 31.954191
10 32.719254 44.804699 45.469112 45.57473
30 61.949093 72.147324 72.717575 72.815804
60 105.79386 113.16127 113.59027 113.67742
90 149.63863 154.17522 154.46297 154.53905
§=0.5 0 39.546467 49.844341 52.598682 53.051079
10 52.387527 61.985458 64.588135 65.045113
30 78.069649 86.2677 88.567055 89.03318
60 116.59283 122.69106 124.53542 125.0153
90 155.11601 159.11443 160.50378 160.99739
5§=09 0 79.50016 82.320488 83.63472 83.814003
10 89.094139 91.835175 93.205345 93.481346
30 108.2821 110.86454 112.3466 112.81604
60 137.06403 139.40858 141.05846 141.81808
90 165.84598 167.95264 169.77032 170.82013
§=1.0 0 92.650871 92.897476 93.02018 92.958138
1C 101.19634 101.56874 101.86825 101.94602
30 118.28728 118.91125 119.56442 119.92178
60 143.92371 144.92502 146.10866 146.88542
90 169.56012 170.93878 172.65291 173.84906
§=1.1 0 106.73998 104.32508 102.94215 102.56123
10 114.17618 112.09354 111.03219 110.84259
30 129.04857 127.63044 127.21227 127.40529
60 151.35713 150.93579 151.48239 152.24936
90 173.66571 174.24115 175.7525 177.09343
§=1.5 0 163.10716 153.32245 145.09822 142.95197
10 166.32898 157.36446 150.06064 148.36375
30 172.77258 165.44843 159.98549 159.18733
60 182.43802 177.57439 174.87277 175.42271
90 192.10344 189.70035 189.76004 191.65807
§=3.0 0 215.81424 215.78328 221.66666 223.4023
10 215.90707 215.9339 222.00021 224.11438
30 216.09274 216.23514 222.66734 225.53854
60 216.37123 216.68698 223.66801 227.6748
90 216.64973 217.13884 224.6687 229.81105
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Returns of APMP-II

11

(r=0.12)
S: A=0.0 A=0.3 A=0.7 A=1.0
5=0.1 0 17.619318 31.060184 31.818079 31.954191
10 32.44796 44.76355 45.454041 45.57473
30 62.105247 72.170288 72.725975 72.815804
60 106.59118 113.2804 113.63387 113.67742
90 151.07712 154.39049 154.54175 154.53905
5=0.5 0 38.88876 49.495132 52.458824 53.051079
10 52.164753 61.860702 64.537476 65.045113
30 78.716736 86.591858 88.694778 89.03318
60 118.54472 123.68858 124.93073 125.0153
90 158.3727 160.78531 161.16669 160.99739
6=09 0 78.712662 81.775253 83.401703 83.814003
10 89.13427 91.848236 93.207977 93.481346
30 109.9775 111.99419 112.82053 112.81604
60 141.24234 142.21312 142.23936 141.81808
90 172.50719 172.43205 171.65819 170.82013
6=10 0 91.79586 92.299515 92.764099 92.958138
10 101.29825 101.63932 101.89825 101.94602
30 120.30302 120.3189 120.16656 119.92178
60 148.81018 148.33829 147.56905 146.88542
90 177.31735 176.35767 174.97153 173.84906
6=1.1 0 105.76888 103.65324 102.65728 102.56123
10 114.3024 112.21119 111.08988 110.84259
30 131.36945 129.3271 127.95509 127.40529
60 156.97002 155.00096 153.25291 152.24936
90 182.57059 180.67484 178.55074 177.09343
5=15 0 160.76045 151.7778 144.50266 142.95197
10 165.68288 157.16826 150.09097 148.36375
30 175.52771 167.94914 161.26762 159.18733
60 190.29495 184.12047 178.03261 175.42271
90 205.06221 200.29181 194.79758 191.65807
6=3.0 0 209.59293 209.75212 217.54279 223.4023
10 211.98151 212.07683 219.02303 224.11438
30 216.75867 216.72621 221.98351 225.53854
60 223.92441 223.70032 226.42421 227.6748
90 231.09015 230.67442 230.86493 229.81105
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APPENDIX C

THE SERIES OF ANNUAL SALES AND

ADVERTISING EXPENDITURES

{S: tand {x.}

Yeart S X

1907 0.041703883 0.024956654
1908 0.038452385 0.018829561
1909 0.038228083 0.021651666
1910 0.037721323 0.020986351
1911 0.03538592 0.019975922
1912 0.038050938 0.019857381
1913 0.041003157 0.018181299
1914 0.036503922 0.019374901
1915 0.035562408 0.019924109
1916 0.034611783 0.015116411
1917 0.033539351 0.018963603
1918 0.042537826 0.013169539
1919 0.04106154 0.015922199
1920 0.034488373 0.01355739
1921 0.043213423 0.017464136
1922 0.049344191 0.024617792
1923 0.055677032 0.025906864
1924 0.057356754 0.027523026
1925 0.056536545 0.029600285
1926 0.046881723 0.031195551
1927 0.038110963 0.019855182
1928 0.036233574 0.02220924
1929 0.035154859 0.025789835
1930 0.034303729 0.025479984
1931 0.031929429 0.017379085
1932 0.032197692 0.02048588
1933 0.037229614 0.029820634
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1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1969
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0.034927794
0.029024995
0.020755713
0.022854151
0.026886357
0.02613595
0.031883405
0.036810321
0.035744364
0.0374179
0.035955816
0.036929019
0.026570948
0.020007216
0.01813296
0.018691094
0.016388416
0.014160532
0.015076209
0.014958362
0.012980104
0.012392334
0.012167086
0.010924453
0.009260794
0.008969285
0.008074348

0.029678759
0.015430284
0.006379136
0.010145366
0.013598327
0.01375673
0.015553761
0.017613083
0.016127808
0.01673883
0.015736024
0.016034784
0.012351768
0.008711475
0.008933568
0.009241917
0.008932466
0.006422124
0.007433072
0.007605412
0.006251107
0.005987478
0.005888958
0.005361268
0.0042573
0.004164542
0.003532919
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